1
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
2
|
Mai Y, Su J, Yang C, Xia C, Fu L. The strategies to cure cancer patients by eradicating cancer stem-like cells. Mol Cancer 2023; 22:171. [PMID: 37853413 PMCID: PMC10583358 DOI: 10.1186/s12943-023-01867-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem-like cells (CSCs), a subpopulation of cancer cells, possess remarkable capability in proliferation, self-renewal, and differentiation. Their presence is recognized as a crucial factor contributing to tumor progression and metastasis. CSCs have garnered significant attention as a therapeutic focus and an etiologic root of treatment-resistant cells. Increasing evidence indicated that specific biomarkers, aberrant activated pathways, immunosuppressive tumor microenvironment (TME), and immunoevasion are considered the culprits in the occurrence of CSCs and the maintenance of CSCs properties including multi-directional differentiation. Targeting CSC biomarkers, stemness-associated pathways, TME, immunoevasion and inducing CSCs differentiation improve CSCs eradication and, therefore, cancer treatment. This review comprehensively summarized these targeted therapies, along with their current status in clinical trials. By exploring and implementing strategies aimed at eradicating CSCs, researchers aim to improve cancer treatment outcomes and overcome the challenges posed by CSC-mediated therapy resistance.
Collapse
Affiliation(s)
- Yansui Mai
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiyan Su
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
3
|
Nimisha, Saluja SS, Sharma AK, Nekarakanti PK, Apurva, Kumar A, Sattar RSA, Anjum H, Batra VV, Husain SA. Molecular aspects of ABCB1 and ABCG2 in Gallbladder cancer and its clinical relevance. Mol Cell Biochem 2023; 478:2379-2394. [PMID: 36720839 DOI: 10.1007/s11010-023-04667-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
The function of ABC transporters in the body is manifold; such as maintenance of homeostasis, effect on multi-drug resistance and their role in tumor initiation & progression. Evidence pointing towards the direct or indirect role of ABC transporter genes in particular; ABCB1 and ABCG2 in cancer genesis is increasing. However, their role in gallbladder cancer is unexplored. Therefore, we investigated the methylation status and expression pattern of ABCB1 and ABCG2in gallbladder carcinogenesis. The methylation and expression study of ABCB1/MDR1 and ABCG2/BCRP was performed in tumour and normal fresh tissue samples collected from 61 histopathologically diagnosed gallbladder cancer patients. The methylation status was analysed by Methylation-Specific PCR and expression was determined by Real-Time PCR and Immunohistochemistry. Hypomethylation of ABCB1 and ABCG2 was found in 44 (72.13%) and 48 (78.6%) cases, respectively. ABCB1 hypomethylation pattern showed association with female patients (p = 0.040) and GradeII tumors (p = 0.036) while, ABCG2 hypomethylation was more frequent in early tumors (T1-T2). The mRNA expression ofABCB1 and ABCG2 was up-regulated in 33 (54.10%) and 41 (67.21%) patients with fold change of 4.7 and 5.5, respectively. The mRNA expression of both genes showed association with Grade II tumours and the increased fold change of ABCG2 was higher in (T1-T2) depth of invasion (p = 0.02) and Stage I-II disease (p = 0.08). The protein expression on IHC was strongly positive for ABCB1/MDR1and ABCG2/BCRP in 32 (52.46%) and 45 (73.77%) patients, respectively. The protein expression in ABCG2 showed association with patients age > 50 years (p = 0.04) and GradeII differentiation (p = 0.07). Interestingly, the hypomethylation of both the genes showed significant correlation with increased expression. ABCB1/MDR1 and ABCG2/BCRP hypomethylation and overexpression could have a potential role in gallbladder cancer tumorigenesis especially in early stages. The epigenetic change might be a plausible factor for altered gene expression of ABCB1 and ABCG2 in gallbladder cancer.
Collapse
Affiliation(s)
- Nimisha
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Phani Kumar Nekarakanti
- Department of Gastrointestinal Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Lab, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hasib Anjum
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Vineeta Vijay Batra
- Department of Pathology, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | | |
Collapse
|
4
|
Bian J, Zhao J, Zhao Y, Hao X, He S, Li Y, Huang L. Impact of individual factors on DNA methylation of drug metabolism genes: A systematic review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:401-415. [PMID: 37522536 DOI: 10.1002/em.22567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Individual differences in drug response have always existed in clinical treatment. Many non-genetic factors show non-negligible impacts on personalized medicine. Emerging studies have demonstrated epigenetic could connect non-genetic factors and individual treatment differences. We used systematic retrieval methods and reviewed studies that showed individual factors' impact on DNA methylation of drug metabolism genes. In total, 68 studies were included, and half (n = 36) were cohort studies. Six aspects of individual factors were summarized from the perspective of personalized medicine: parental exposure, environmental pollutants exposure, obesity and diet, drugs, gender and others. The most research (n = 11) focused on ABCG1 methylation. The majority of studies showed non-genetic factors could result in a significant DNA methylation alteration in drug metabolism genes, which subsequently affects the pharmacokinetic processes. However, the underlying mechanism remained unknown. Finally, some viewpoints were presented for future research.
Collapse
Affiliation(s)
- Jialu Bian
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Jinxia Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yinyu Zhao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Xu Hao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Shiyu He
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
| | - Yuanyuan Li
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| | - Lin Huang
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China
| |
Collapse
|
5
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
6
|
Zhou H, Tan L, Liu B, Guan XY. Cancer stem cells: Recent insights and therapies. Biochem Pharmacol 2023; 209:115441. [PMID: 36720355 DOI: 10.1016/j.bcp.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Tumors are intricate ecosystems containing malignant components that generate adaptive and evolutionarily driven abnormal tissues. Through self-renewal and differentiation, cancers are reconstructed by a dynamic subset of stem-like cells that enforce tumor heterogeneity and remodel the tumor microenvironment (TME). Through recent technology advances, we are now better equipped to investigate the fundamental role of cancer stem cells (CSCs) in cancer biology. In this review, we discuss the latest insights into characteristics, markers and mechanism of CSCs and describe the crosstalk between CSCs and other cells in TME. Additionally, we explore the performance of single-cell sequencing and spatial transcriptome analysis in CSCs studies and summarize the therapeutic strategies to eliminate CSCs, which could broaden the understanding of CSCs and exploit for therapeutic benefit.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, Guangdong, China; Advanced Nuclear Energy and Nuclear Technology Research Center, Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, China.
| |
Collapse
|
7
|
Adhikari S, Bhattacharya A, Adhikary S, Singh V, Gadad S, Roy S, Das C. The paradigm of drug resistance in cancer: an epigenetic perspective. Biosci Rep 2022; 42:BSR20211812. [PMID: 35438143 PMCID: PMC9069444 DOI: 10.1042/bsr20211812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Innate and acquired resistance towards the conventional therapeutic regimen imposes a significant challenge for the successful management of cancer for decades. In patients with advanced carcinomas, acquisition of drug resistance often leads to tumor recurrence and poor prognosis after the first therapeutic cycle. In this context, cancer stem cells (CSCs) are considered as the prime drivers of therapy resistance in cancer due to their 'non-targetable' nature. Drug resistance in cancer is immensely influenced by different properties of CSCs such as epithelial-to-mesenchymal transition (EMT), a profound expression of drug efflux pump genes, detoxification genes, quiescence, and evasion of apoptosis, has been highlighted in this review article. The crucial epigenetic alterations that are intricately associated with regulating different mechanisms of drug resistance, have been discussed thoroughly. Additionally, special attention is drawn towards the epigenetic mechanisms behind the interaction between the cancer cells and their microenvironment which assists in tumor progression and therapy resistance. Finally, we have provided a cumulative overview of the alternative treatment strategies and epigenome-modifying therapies that show the potential of sensitizing the resistant cells towards the conventional treatment strategies. Thus, this review summarizes the epigenetic and molecular background behind therapy resistance, the prime hindrance of present day anti-cancer therapies, and provides an account of the novel complementary epi-drug-based therapeutic strategies to combat drug resistance.
Collapse
Affiliation(s)
- Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| | - Shrikanth S. Gadad
- Department of Molecular and Translational Medicine, Center of Emphasis in Cancer, Texas Tech University Health Sciences Center El Paso, El Paso, TX, U.S.A
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, U.S.A
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
- Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
8
|
EGFR Mutations in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073818. [PMID: 35409179 PMCID: PMC8999014 DOI: 10.3390/ijms23073818] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
EGFR is a prototypical receptor tyrosine kinase that is overexpressed in multiple cancers including head and neck squamous cell carcinoma (HNSCC). The standard of care for HNSCC remains largely unchanged despite decades of research. While EGFR blockade is an attractive target in HNSCC patients and anti-EGFR strategies including monoclonal antibodies and kinase inhibitors have shown some clinical benefit, efficacy is often due to the eventual development of resistance. In this review, we discuss how the acquisition of mutations in various domains of the EGFR gene not only alter drug binding dynamics giving rise to resistance, but also how mutations can impact radiation response and overall survival in HNSCC patients. A better understanding of the EGFR mutational landscape and its dynamic effects on treatment resistance hold the potential to better stratify patients for targeted therapies in order to maximize therapeutic benefits.
Collapse
|
9
|
Zhang T, Zhou H, Wang K, Wang X, Wang M, Zhao W, Xi X, Li Y, Cai M, Zhao W, Xu Y, Shao R. Role, molecular mechanism and the potential target of breast cancer stem cells in breast cancer development. Biomed Pharmacother 2022; 147:112616. [PMID: 35008001 DOI: 10.1016/j.biopha.2022.112616] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women globally, and its occurrence has surpassed lung cancer and become the biggest threat for women. At present, breast cancer treatment includes surgical resection or postoperative chemotherapy and radiotherapy. However, tumor relapse and metastasis usually lead to current therapy failure thanks to breast cancer stem cells (BCSCs)-mediated tumorigenicity and drug resistance. Drug resistance is mainly due to the long-term quiescent G0 phase, strong DNA repairability, and high expression of ABC transporter, and the tumorigenicity is reflected in the activation of various proliferation pathways related to BCSCs. Therefore, understanding the characteristics of BCSCs and their intracellular and extracellular molecular mechanisms is crucial for the development of targeted drugs for BCSCs. To this end, we discussed the latest developments in BCSCs research, focusing on the analysis of specific markers, critical signaling pathways that maintain the stemness of BCSCs,such as NOTCH, Wnt/β-catenin, STAT3, Hedgehog, and Hippo-YAP signaling, immunomicroenviroment and summarizes targeting therapy strategies for stemness maintenance and differentiation, which provides a theoretical basis for further exploration of treating breast cancer and preventing relapse derived from BCSCs.
Collapse
Affiliation(s)
- Tianshu Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Zhou
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kexin Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaowei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mengyan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxia Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoming Xi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meilian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yanni Xu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Hassan G, Seno M. ERBB Signaling Pathway in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:65-81. [PMID: 36587302 DOI: 10.1007/978-3-031-12974-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) was first tyrosine kinase receptor linked to human cancers. EGFR or ERBB1 is a member of ERBB subfamily, which consists of four type I transmembrane receptor tyrosine kinases, ERBB1, 2, 3 and 4. ERBBs form homo/heterodimers after ligand binding except ERBB2 and consequently becomes activated. Different signal pathways, such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), RAS/RAF/MEK/ERK, phospholipase Cγ and JAK-STAT, are triggered by ERBB activation. Since ERBBs, through these pathways, regulate stemness and differentiation of cancer stem cells (CSCs), their roles in CSC tumorigenicity have extensively been investigated. The hyperactivation of ERBBs and its downstream pathways stimulated by either genetic and/or epigenetic factors are frequently described in many types of human cancers. Their dysregulations make cells acquiring CSC characters such as survival, tumorigenicity and stemness. Because of the roles in tumor growth and progress, ERBBs are considered to be one of the drug targets as cancer treatment strategy. In this chapter, we will summarize the structure, function and roles of ERBB subfamily along with their relative pathways regulating the stemness and tumorigenicity of CSCs. Finally, we will discuss the targeting therapy strategies of cancer along with ERBBs in addition to some challenges and future perspectives.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Natural Food and Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Liu X, Suo H, Zhou S, Hou Z, Bu M, Liu X, Xu W. Afatinib induces pro-survival autophagy and increases sensitivity to apoptosis in stem-like HNSCC cells. Cell Death Dis 2021; 12:728. [PMID: 34294686 PMCID: PMC8298552 DOI: 10.1038/s41419-021-04011-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Afatinib, a second-generation tyrosine kinase inhibitor (TKI), exerts its antitumor effects in head and neck squamous cell carcinoma (HNSCC) by inducing intrinsic apoptosis through suppression of mTORC1. However, the detailed mechanism and biological significance of afatinib-induced autophagy in HNSCC remains unclear. In the present study, we demonstrated that afatinib induced mTORC1 suppression-mediated autophagy in HNSCC cells. Further mechanistic investigation revealed that afatinib stimulated REDD1-TSC1 signaling, giving rise to mTORC1 inactivation and subsequent autophagy. Moreover, ROS generation elicited by afatinib was responsible for the induction of the REDD1-TSC1-mTORC1 axis. In addition, pharmacological or genetic inhibition of autophagy sensitized HNSCC cells to afatinib-induced apoptosis, demonstrating that afatinib activated pro-survival autophagy in HNSCC cells. Importantly, in vitro and in vivo assays showed that afatinib caused enhanced apoptosis but weaker autophagy in stem-like HNSCC cells constructed by CDH1 knockdown. This suggested that blocking autophagy has the potential to serve as a promising strategy to target HNSCC stem cells. In conclusion, our findings suggested that the combination treatment with afatinib and autophagy inhibitors has the potential to eradicate HNSCC cells, especially cancer stem cells in clinical therapy.
Collapse
Affiliation(s)
- Xianfang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Huiyuan Suo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Shengli Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Zhenxing Hou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Mingqiang Bu
- Department of Otorhinolaryngology-Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, P.R. China
| | - Xiuxiu Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250022, P.R. China.
| |
Collapse
|
12
|
Rong QX, Wang F, Guo ZX, Hu Y, An SN, Luo M, Zhang H, Wu SC, Huang HQ, Fu LW. GM-CSF mediates immune evasion via upregulation of PD-L1 expression in extranodal natural killer/T cell lymphoma. Mol Cancer 2021; 20:80. [PMID: 34051805 PMCID: PMC8164269 DOI: 10.1186/s12943-021-01374-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background Granulocyte-macrophage colony stimulating factor (GM-CSF) is a cytokine that is used as an immunopotentiator for anti-tumor therapies in recent years. We found that some of the extranodal natural killer/T cell lymphoma (ENKTL) patients with the treatment of hGM-CSF rapidly experienced disease progression, but the underlying mechanisms remain to be elucidated. Here, we aimed to explore the mechanisms of disease progression triggered by GM-CSF in ENKTL. Methods The mouse models bearing EL4 cell tumors were established to investigate the effects of GM-CSF on tumor growth and T cell infiltration and function. Human ENKTL cell lines including NK-YS, SNK-6, and SNT-8 were used to explore the expression of programmed death-ligand 1 (PD-L1) induced by GM-CSF. To further study the mechanisms of disease progression of ENKTL in detail, the mutations and gene expression profile were examined by next-generation sequence (NGS) in the ENKTL patient’s tumor tissue samples. Results The mouse-bearing EL4 cell tumor exhibited a faster tumor growth rate and poorer survival in the treatment with GM-CSF alone than in treatment with IgG or the combination of GM-CSF and PD-1 antibody. The PD-L1 expression at mRNA and protein levels was significantly increased in ENKTL cells treated with GM-CSF. STAT5A high-frequency mutation including p.R131G, p.D475N, p.F706fs, p.V707E, and p.S710F was found in 12 ENKTL cases with baseline tissue samples. Importantly, STAT5A-V706fs mutation tumor cells exhibited increased activation of STAT5A pathway and PD-L1 overexpression in the presence of GM-CSF. Conclusions These findings demonstrate that GM-CSF potentially triggers the loss of tumor immune surveillance in ENKTL patients and promotes disease progression, which is associated with STAT5 mutations and JAK2 hyperphosphorylation and then upregulates the expression of PD-L1. These may provide new concepts for GM-CSF application and new strategies for the treatment of ENKTL. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01374-y.
Collapse
Affiliation(s)
- Qi-Xiang Rong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhi-Xing Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yi Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Sai-Nan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Shao-Cong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Hui-Qiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
13
|
Lei X, He Q, Li Z, Zou Q, Xu P, Yu H, Ding Y, Zhu W. Cancer stem cells in colorectal cancer and the association with chemotherapy resistance. Med Oncol 2021; 38:43. [PMID: 33738588 DOI: 10.1007/s12032-021-01488-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of colorectal cancer (CRC) have always been among the highest in the world, although the diagnosis and treatment are becoming more and more advanced. At present, the main reason is that patients have acquired drug resistance after long-term conventional drug treatment. An increasing number of evidences confirm the existence of cancer stem cells (CSCs), which are a group of special cells in cancer, only a small part of cancer cells. These special cell populations are not eliminated by chemotherapeutic drugs and result in tumor recurrence and metastasis after drug treatment. CSCs have the ability of self-renewal and multidirectional differentiation, which is associated with the occurrence and development of cancer. CSCs can be screened and identified by related surface markers. In this paper, the characteristic surface markers of CSCs in CRC and the related mechanism of drug resistance will be discussed in detail. A better understanding of the mechanism of CSCs resistance to chemotherapy may lead to better targeted therapy.
Collapse
Affiliation(s)
- Xue Lei
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qinglian He
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Qian Zou
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Pingrong Xu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong Province, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, No.1 Xincheng Road, Dongguan, 523808, Guangdong Province, China.
| |
Collapse
|
14
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 203] [Impact Index Per Article: 67.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Jing W, Zhou M, Chen R, Ye X, Li W, Su X, Luo J, Wang Z, Peng S. In vitro and ex vivo anti‑tumor effect and mechanism of Tucatinib in leukemia stem cells and ABCG2‑overexpressing leukemia cells. Oncol Rep 2020; 45:1142-1152. [PMID: 33650639 PMCID: PMC7859976 DOI: 10.3892/or.2020.7915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/20/2020] [Indexed: 12/28/2022] Open
Abstract
Leukemia stem cells (LSCs), which evade standard chemotherapy, may lead to chemoresistance and disease relapse. The overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) is an important determinant of drug resistance in LSCs and it can serve as a marker for LSCs. Targeting ABCG2 is a potential strategy to selectively treat and eradicate LSCs, and, hence, improve leukemia therapy. Tucatinib (Irbinitinib) is a novel tyrosine kinase inhibitor, targeting ErbB family member HER2, and was approved by the Food and Drug Administration in April 2020, and in Switzerland in May 2020 for the treatment of HER2-positive breast cancer. In the present study, the results demonstrated that tucatinib significantly improved the efficacy of conventional chemotherapeutic agents in ABCG2-overexpressing leukemia cells and primary leukemia blast cells, derived from patients with leukemia. In addition, tucatinib markedly decreased the proportion of leukemia stem cell-like side population (SP) cells. In SP cells, isolated from leukemia cells, the intracellular accumulation of Hoechst 33342, which is an ABCG2 substrate, was significantly elevated by tucatinib. Furthermore, tucatinib notably inhibited the efflux of [3H]-mitoxantrone and, hence, there was a higher level of [3H]-mitoxantrone in the HL60/ABCG2 cell line. The result from the ATPase assay revealed that tucatinib may interact with the drug substrate-binding site and stimulated ATPase activity of ABCG2. However, the protein expression level and cellular location of ABCG2 were not affected by tucatinib treatment. Taken together, these data suggested that tucatinib could sensitize conventional chemotherapeutic agents, in ABCG2-overexpressing leukemia cells and LSCs, by blocking the pump function of the ABCG2 protein. The present study revealed that combined treatment with tucatinib and conventional cytotoxic agents could be a potential therapeutic strategy in ABCG2-positive leukemia.
Collapse
Affiliation(s)
- Wen Jing
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Ruixia Chen
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Weixing Li
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Xiangfei Su
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Jianwei Luo
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Zhi Wang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510289, P.R. China
| |
Collapse
|
16
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
17
|
Jing W, Zhang X, Chen R, Ye X, Zhou M, Li W, Yan W, Xuyun X, Peng J. KD025, an anti-adipocyte differentiation drug, enhances the efficacy of conventional chemotherapeutic drugs in ABCG2-overexpressing leukemia cells. Oncol Lett 2020; 20:309. [PMID: 33093918 PMCID: PMC7573885 DOI: 10.3892/ol.2020.12172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
Most patients with advanced leukemia eventually die from multidrug resistance (MDR). Chemotherapy-resistant leukemia cells may lead to treatment failure and disease relapse. Overexpression of ATP-binding cassette subfamily G member 2 (ABCG2) leads to MDR, which serves as a potential biomarker and target of therapeutic intervention for leukemia cells. Targeting ABCG2 is a potential strategy for selective therapy and eradicate MDR cells, thus improving malignant leukemia treatment. KD025 (SLx-2119) is a novel Rho-associated protein kinase 2-selective inhibitor, which has been shown to inhibit adipogenesis in human adipose-derived stem cells and restore impaired immune homeostasis in autoimmunity therapy. The present study demonstrated that KD025 improved the efficacy of antineoplastic drugs in ABCG2-overexpressing leukemia cells and primary leukemia blast cells derived from patients with leukemia. Moreover, KD025 significantly inhibited the efflux of [3H]-mitoxantrone and hence accumulated higher levels of [3H]-mitoxantrone in HL60/ABCG2 cells. However, mechanistic research indicated that KD025 did not alter the protein levels and subcellular locations of ABCG2. KD025 may restrain the efflux activity of ABCG2 by obstructing ATPase activity. Taken together, KD025 can sensitize conventional antineoplastic drugs in ABCG2-overexpressing leukemia cells by blocking the pump function of ABCG2 protein. The present findings may provide a novel and useful combinational therapeutic strategy of KD025 and antineoplastic drugs for leukemia patients with ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Wen Jing
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xuerong Zhang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Ruixia Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Mao Zhou
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Weixing Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Wenchan Yan
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Xiuxiu Xuyun
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
18
|
Wu S, Zhang X, Dong M, Yang Z, Zhang M, Chen Q. sATP‑binding cassette subfamily G member 2 enhances the multidrug resistance properties of human nasal natural killer/T cell lymphoma side population cells. Oncol Rep 2020; 44:1467-1478. [PMID: 32945520 PMCID: PMC7448492 DOI: 10.3892/or.2020.7722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
Extranodal natural killer (NK)/T cell lymphoma, nasal type (ENKL) is a rare type of non-Hodgkin's lymphoma that is associated with limited effective treatment options and unfavorable survival rate, which is partly the result of multidrug resistance (MDR). The presence of side population (SP) cells-SNK-6/ADM-SP (SSP) cells has been previously used to explore mechanisms of drug resistance. ATP-binding cassette subfamily G member 2 (ABCG2) is a gene involved in MDR and is closely associated with SPs. However, the function of ABCG2 in SSP cells is unclear. The present study verified the high expression of ABCG2 in SSP cells. The IC50 values of doxorubicin, cytarabine, cisplatin, gemcitabine and l-asparaginase were tested to evaluate drug sensitivity in SSP cells with different levels of ABCG2 expression. ABCG2 was identified as a gene promoting in MDR. ABCG2 upregulated cell proliferation, increased clonogenicity, increased invasive ability and decreased apoptosis, in vivo and in vitro, when cells were treated with gemcitabine. To conclude, ABCG2 enhanced MDR and increased the typical biological characteristics associated with cancer cells in SP cells. With further investigation of the ABCG2 gene could have the potential to reverse MDR in ENKL.
Collapse
Affiliation(s)
- Shaoxuan Wu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Zhenzhen Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Qingjiang Chen
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
19
|
Wang F, Li D, Zheng Z, Kin Wah To K, Chen Z, Zhong M, Su X, Chen L, Fu L. Reversal of ABCB1-related multidrug resistance by ERK5-IN-1. J Exp Clin Cancer Res 2020; 39:50. [PMID: 32164732 PMCID: PMC7066765 DOI: 10.1186/s13046-020-1537-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
Background Inhibition of ABC transporters is considered the most effective way to circumvent multidrug resistance (MDR). In the present study, we evaluated the MDR modulatory potential of ERK5-IN-1, a potent extracelluar signal regulated kinase 5 (ERK5) inhibitor. Methods The cytotoxicity and MDR reversal effect of ERK5-IN-1 were assessed by MTT assay. The KBv200-inoculated nude mice xenograft model was used for the in vivo study. Doxorubicin efflux and accumulation were measured by flow cytometry. The modulation of ABCB1 activity was measured by colorimetric ATPase assay and [125I]-iodoarylazidoprazosin (IAAP) photolabeling assay. Effect of ERK5-IN-1 on expression of ABCB1 and its downstream markers was measured by PCR and/or Western blot. Cell surface expression and subcellular localization of ABCB1 were tested by flow cytometry and immunofluorescence. Results Our results showed that ERK5-IN-1 significantly increased the sensitivity of vincristine, paclitaxel and doxorubicin in KBv200, MCF7/adr and HEK293/ABCB1 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Moreover, in vivo combination studies showed that ERK5-IN-1 effectively enhanced the antitumor activity of paclitaxel in KBv200 xenografts without causing addition toxicity. Mechanistically, ERK5-IN-1 increased intracellular accumulation of doxorubicin dose dependently by directly inhibiting the efflux function of ABCB1. ERK5-IN-1 stimulated the ABCB1 ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into ABCB1 in a concentration-dependent manner. In addition, ERK5-IN-1 treatment neither altered the expression level of ABCB1 nor blocked the phosphorylation of downstream Akt or Erk1/2. No significant reversal effect was observed on ABCG2-, ABCC1-, MRP7- and LRP-mediated drug resistance. Conclusions Collectively, these results indicated that ERK5-IN-1 efficiently reversed ABCB1-mediated MDR by competitively inhibiting the ABCB1 drug efflux function. The use of ERK5-IN-1 to restore sensitivity to chemotherapy or to prevent resistance could be a potential treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Delan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - ZongHeng Zheng
- Department of Gastrointestinal surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Kenneth Kin Wah To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaodong Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
20
|
Wang Y, Sun G, Gong Y, Zhang Y, Liang X, Yang L. Functionalized Folate-Modified Graphene Oxide/PEI siRNA Nanocomplexes for Targeted Ovarian Cancer Gene Therapy. NANOSCALE RESEARCH LETTERS 2020; 15:57. [PMID: 32140846 PMCID: PMC7058751 DOI: 10.1186/s11671-020-3281-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/12/2020] [Indexed: 05/05/2023]
Abstract
Gene therapy is emerging as a valid method for the treatment of ovarian cancer, including small interfering RNA (siRNA). Although it is so powerful, few targeting efficient gene delivery systems seriously hindered the development of gene therapy. In this study, we synthesized a novel gene vector PEG-GO-PEI-FA by functionalized graphene oxide (GO), in which folic acid (FA) can specifically bind to the folate receptor (FR), which is overexpressed in ovarian cancer. Characterizations of the nanocomplexes were evaluated by dynamic light scattering (DLS), atomic force microscopy (AFM), and Fourier transform infrared spectroscopy (FTIR). The siRNA condensation ability and stability were assessed by agarose gel electrophoresis. Cellular uptake efficiency and lysosomal escape ability in ovarian cancer cells were investigated by confocal laser scanning microscopy. Furthermore, cellular biosafety of the system and inhibitory of the siRNA tolerability were evaluated by CCK-8 assay. The size of the PEG-GO-PEI-FA nanocomplexes was 216.1 ± 2.457 nm, exhibiting mild cytotoxicity in ovarian cancer cells. With high uptake efficiency, PEG-GO-PEI-FA can escape from the lysosome rapidly and release the gene. Moreover, PEG-GO-PEI-FA/siRNA can effectively inhibit the growth of ovarian cancer cells. By and large, the PEG-GO-PEI-FA/siRNA may offer a promising strategy for siRNA delivery in the treatment of FR-positive ovarian carcinoma or similar tumors.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China.
| | - Guoping Sun
- Department of Pharmacy, Qingdao Seventh People's Hospital, 299 Nanjing Road, Qingdao, 266034, Shandong, People's Republic of China
| | - Yingying Gong
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Yuying Zhang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| | - Xiaofei Liang
- Department of State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, People's Republic of China
| | - Linqing Yang
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, 272029, Shandong, People's Republic of China
| |
Collapse
|
21
|
Mashima T, Iwasaki R, Kawata N, Kawakami R, Kumagai K, Migita T, Sano T, Yamaguchi K, Seimiya H. In silico chemical screening identifies epidermal growth factor receptor as a therapeutic target of drug-tolerant CD44v9-positive gastric cancer cells. Br J Cancer 2019; 121:846-856. [PMID: 31607750 PMCID: PMC6889183 DOI: 10.1038/s41416-019-0600-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 01/07/2023] Open
Abstract
Background Tumours consist of heterogeneous cancer cells and are likely to contain drug-tolerant cell subpopulations, causing early relapse. However, treatment strategies to eliminate these cells have not been established. Methods We established gastric cancer patient-derived cells (PDCs) to examine the contribution of CD44 splicing variant 9 (CD44v9)-positive cells in gastric cancer drug tolerance. We performed gene expression signature-based in silico screening using JFCR_LinCAGE, our anticancer compound gene expression database and subsequent validation in BALB/c-nu/nu mouse xenograft to identify agents targeting the drug-tolerant cancer cells. Results CD44v9-positive cancer cells were enriched among residual cancer cells after treatment with SN-38, an active metabolic of irinotecan. CD44v9 protein was responsible for this drug resistance. We identified epidermal growth factor receptor (EGFR) inhibitors as agents that can target CD44v9-positive cell populations in gastric cancer PDCs. CD44v9 promoted cell proliferation, and EGFR inhibition attenuated CD44v9 protein expression through downregulation of the AKT and the ERK signalling pathways, leading to preferential suppression of CD44v9-positive cells. Importantly, EGFR inhibitors significantly reduced the number of residual cancer cells after cytotoxic anticancer drug treatment and enhanced the antitumor effect of irinotecan in vivo. Conclusions EGFR inhibitors could be potential agents to eradicate cytotoxic anticancer drug-tolerant gastric cancer cell populations.
Collapse
Affiliation(s)
- Tetsuo Mashima
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Risa Iwasaki
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Naomi Kawata
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryuhei Kawakami
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Koshi Kumagai
- Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toshiro Migita
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensei Yamaguchi
- Gastroenterological Medicine, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
22
|
Wang MY, Qiu YH, Cai ML, Zhang CH, Wang XW, Liu H, Chen Y, Zhao WL, Liu JB, Shao RG. Role and molecular mechanism of stem cells in colorectal cancer initiation. J Drug Target 2019; 28:1-10. [PMID: 31244351 DOI: 10.1080/1061186x.2019.1632317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the rate of colorectal cancer has sharply increased, especially in China, where it ranks second for the number of cancer fatalities. Currently, the treatment of colorectal cancer patients involves the combination of resection surgery and treatment with postoperative anticancer drugs such as 5-FU and oxaliplatin. However, recurrence and metastasis after treatment are still the dominant reasons for the low survival rate. Colorectal cancer stem cells (CSCs) are regarded as the key contributors to tumour recurrence and metastasis due to their resistance to chemotherapy drugs and their extremely high tumourigenicity. Once CSCs overcome chemotherapy treatment, they continue to survive and reinitiate proliferation to form tumours, leading to recurrence. The dominant reason for CSC resistance is that most anticancer drugs are aimed at inhibiting proliferative pathways in cancer cells that differ from those in CSCs. Therefore, studies on the characteristics of CSCs and their intracellular molecular pathways are essential for the exploration of CSC-targeted drugs. In this report, we review recent advances in the research of CSCs and, in particular, review the important intracellular molecular pathways, such as HOXA5-catenin, STRAP-NOTCH and YAP/TAZ, related to the maintenance and differentiation of stem cells to generate a theoretical basis for the exploration of CSC-targeted drugs.
Collapse
Affiliation(s)
- Meng-Yan Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu-Han Qiu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mei-Lian Cai
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hui Zhang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Wei Wang
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Liu
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi- Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China
| | - Wu-Li Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jing-Bo Liu
- Department of Urology, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Rong-Guang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Lettnin AP, Wagner EF, Carrett-Dias M, Dos Santos Machado K, Werhli A, Cañedo AD, Trindade GS, de Souza Votto AP. Silencing the OCT4-PG1 pseudogene reduces OCT-4 protein levels and changes characteristics of the multidrug resistance phenotype in chronic myeloid leukemia. Mol Biol Rep 2019; 46:1873-1884. [PMID: 30721421 DOI: 10.1007/s11033-019-04639-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Cancer stem cells show epigenetic plasticity and intrinsic resistance to anti-cancer therapy, rendering capable of initiating cancer relapse and progression. Transcription factor OCT-4 regulates various pathways in stem cells, but its expression can be regulated by pseudogenes. This work evaluated how OCT4-PG1 pseudogene can affect OCT-4 expression and mechanisms related to the multidrug resistance (MDR) phenotype in FEPS cells. Considering that OCT-4 protein is a transcription factor that regulates expression of ABC transporters, level of gene expression, activity of ABC proteins and cell sensitivity to chemotherapy were evaluated after OCT4-PG1 silencing. Besides we set up a STRING network. Results showed that after OCT4-PG1 silencing, cells expressed OCT-4 gene and protein to a lesser extent than mock cells. The gene and protein expression of ABCB1, as well as its activity were reduced. On the other hand, ALOX5 and ABCC1 genes was increased even as the activity of this transporter. Moreover, the silencing cells become sensitive to two chemotherapics tested. The network structure demonstrated that OCT4-PG1 protein interacts directly with OCT-4, SOX2, and NANOG and indirectly with ABC transporters. We conclude that OCT4-PG1 pseudogene plays a key role in the regulation OCT-4 transcription factor, which alters MDR phenotype in the FEPS cell line.
Collapse
Affiliation(s)
- Aline Portantiolo Lettnin
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil.,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Eduardo Felipe Wagner
- Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Michele Carrett-Dias
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Karina Dos Santos Machado
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Adriano Werhli
- Center of Computational Sciences - C3, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Andrés Delgado Cañedo
- Federal University of Pampa - UNIPAMPA, Avenue Antônio Trilha, 1847, São Gabriel, RS, Zip Code 97300-000, Brazil
| | - Gilma Santos Trindade
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil
| | - Ana Paula de Souza Votto
- Post-Graduate Program in Physiological Sciences - PPGCF, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Laboratory of Cell Culture, Institute of Biological Sciences - ICB, Federal University of Rio Grande -FURG, Avenue Itália, Km 8, Rio Grande, RS, Zip Code 96203-900, Brazil. .,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália, Km 8, s/n, Rio Grande, RS, Zip Code 96203-900, Brazil.
| |
Collapse
|
24
|
Sasaki N, Ishiwata T, Hasegawa F, Michishita M, Kawai H, Matsuda Y, Arai T, Ishikawa N, Aida J, Takubo K, Toyoda M. Stemness and anti-cancer drug resistance in ATP-binding cassette subfamily G member 2 highly expressed pancreatic cancer is induced in 3D culture conditions. Cancer Sci 2018; 109:1135-1146. [PMID: 29444383 PMCID: PMC5891171 DOI: 10.1111/cas.13533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The expression of ATP-binding cassette subfamily G member 2 (ABCG2) is related to tumorigenic cancer stem cells (CSC) in several cancers. However, the effects of ABCG2 on CSC-related malignant characteristics in pancreatic ductal adenocarcinoma (PDAC) are not well elucidated. In this study, we compared the characteristics of low (ABCG2-) and high (ABCG2+)-ABCG2-expressing PDAC cells after cell sorting. In adherent culture condition, human PDAC cells, PANC-1, contained approximately 10% ABCG2+ cell populations, and ABCG2+ cells displayed more and longer microvilli compared with ABCG2- cells. Unexpectedly, ABCG2+ cells did not show significant drug resistance against fluorouracil, gemcitabine and vincristine, and ABCG2- cells exhibited higher sphere formation ability and stemness marker expression than those of ABCG2+ cells. Cell growth and motility was greater in ABCG2- cells compared with ABCG2+ cells. In contrast, epithelial-mesenchymal transition ability between ABCG2- and ABCG2+ cells was comparable. In 3D culture conditions, spheres derived from ABCG2- cells generated a large number of ABCG2+ cells, and the expression levels of stemness markers in these spheres were higher than spheres from ABCG2+ cells. Furthermore, spheres containing large populations of ABCG2+ cells exhibited high resistance against anti-cancer drugs presumably depending on ABCG2. ABCG2+ cells in PDAC in adherent culture are not correlated with stemness and malignant behaviors, but ABCG2+ cells derived from ABCG2- cells after sphere formation have stemness characteristics and anti-cancer drug resistance. These findings suggest that ABCG2- cells generate ABCG2+ cells and the malignant potential of ABCG2+ cells in PDAC varies depending on their environments.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Toshiyuki Ishiwata
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Fumio Hasegawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masaki Michishita
- Department of Veterinary PathologySchool of Veterinary MedicineNippon Veterinary and Life Science UniversityTokyoJapan
| | - Hiroki Kawai
- Research and Development DepartmentLPixleTokyoJapan
| | - Yoko Matsuda
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Tomio Arai
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Naoshi Ishikawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Junko Aida
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Kaiyo Takubo
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| |
Collapse
|
25
|
Cheng CC, Chou KF, Wu CW, Su NW, Peng CL, Su YW, Chang J, Ho AS, Lin HC, Chen CGS, Yang BL, Chang YC, Chiang YW, Lim KH, Chang YF. EGFR-mediated interleukin enhancer-binding factor 3 contributes to formation and survival of cancer stem-like tumorspheres as a therapeutic target against EGFR-positive non-small cell lung cancer. Lung Cancer 2017; 116:80-89. [PMID: 29413056 DOI: 10.1016/j.lungcan.2017.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVES YM155, an inhibitor of interleukin enhancer-binding factor 3 (ILF3), significantly suppresses cancer stemness property, implying that ILF3 contributes to cell survival of cancer stem cells. However, the molecular function of ILF3 inhibiting cancer stemness remains unclear. This study aimed to uncover the potential function of ILF3 involving in cell survival of epidermal growth factor receptor (EGFR)-positive lung stem-like cancer, and to investigate the potential role to improve the efficacy of anti-EGFR therapeutics. MATERIALS AND METHODS The association of EGFR and ILF3 in expression and regulations was first investigated in this study. Lung cancer A549 cells with deprivation of ILF3 were created by the gene-knockdown method and then RNAseq was applied to identify the putative genes regulated by ILF3. Meanwhile, HCC827- and A549-derived cancer stem-like cells were used to investigate the role of ILF3 in the formation of cancer stem-like tumorspheres. RESULTS We found that EGFR induced ILF3 expression, and YM155 reduced EGFR expression. The knockdown of ILF3 reduced not only EGFR expression in mRNA and protein levels, but also cell proliferation in vitro and in vivo, demonstrating that ILF3 may play an important role in contributing to cancer cell survival. Moreover, the knockdown and inhibition of ILF3 by shRNA and YM155, respectively, reduced the formation and survival of HCC827- and A549-derived tumorspheres through inhibiting ErbB3 (HER3) expression, and synergized the therapeutic efficacy of afatinib, a tyrosine kinase inhibitor, against EGFR-positive A549 lung cells. CONCLUSION This study demonstrated that ILF3 plays an oncogenic like role in maintaining the EGFR-mediated cellular pathway, and can be a therapeutic target to improve the therapeutic efficacy of afatinib. Our results suggested that YM155, an ILF3 inhibitor, has the potential for utilization in cancer therapy against EGFR-positive lung cancers.
Collapse
Affiliation(s)
- Chun-Chia Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Kuei-Fang Chou
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Cheng-Liang Peng
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Ying-Wen Su
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ai-Sheng Ho
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Caleb Gon-Shen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Bi-Ling Yang
- Division of Gastroenterology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Yu-Cheng Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Wen Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| | - Yi-Fang Chang
- Division of Hematology and Oncology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan; Laboratory of Good Clinical Research Center, Department of Medical Research, MacKay Memorial Hospital, Tamsui District, New Taipei City, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
26
|
Macha MA, Rachagani S, Qazi AK, Jahan R, Gupta S, Patel A, Seshacharyulu P, Lin C, Li S, Wang S, Verma V, Kishida S, Kishida M, Nakamura N, Kibe T, Lydiatt WM, Smith RB, Ganti AK, Jones DT, Batra SK, Jain M. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget 2017; 8:20961-20973. [PMID: 28423495 PMCID: PMC5400558 DOI: 10.18632/oncotarget.15468] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/06/2017] [Indexed: 12/29/2022] Open
Abstract
The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication.
Collapse
Affiliation(s)
- Muzafar A Macha
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Asif Khurshid Qazi
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Suprit Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anery Patel
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sicong Li
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vivek Verma
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan,
| | - Michiko Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan,
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Toshiro Kibe
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - William M Lydiatt
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Russell B Smith
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K Ganti
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.,VA Nebraska Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dwight T Jones
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Buffett Cancer Center, Omaha, NE 68198, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
27
|
Structure Identification and In Vitro Anticancer Activity of Lathyrol-3-phenylacetate-5,15-diacetate. Molecules 2017; 22:molecules22091412. [PMID: 28841191 PMCID: PMC6151716 DOI: 10.3390/molecules22091412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022] Open
Abstract
Natural products from the genus Euphorbia show attention-attracting activities, such as anticancer activity. In this article, classical isolation and structure identification were used in a study on Caper Euphorbia Seed. Subsequently, MTT and wound healing assays, flow cytometry, western blotting, Hoechst 33258 staining and fluorescence microscopy examination were applied to investigate the anticancer activity of the obtained compounds. In a result, lathyrol-3-phenyl- acetate-5,15-diacetate (deoxy Euphorbia factor L1, DEFL1) was isolated from Caper Euphorbia Seed. Moreover, the NMR signals were totally assigned. DEFL1 showed potent inhibition against lung cancer A549 cells, with an IC50 value of 17.51 ± 0.85 μM. Furthermore, DEFL1 suppressed wound healing of A549 cells in a concentration-dependent manner. Mechanically, DEFL1 induced apoptosis, with involvement of an increase of reactive oxygen species (ROS), decrease of mitochondrial membrane potential (ΔΨm), release of cytochrome c, activity raise of caspase-9 and 3. Characteristic features of apoptosis were observed by fluorescence microscopy. In summary, DEFL1 inhibited growth and induced apoptosis in lung cancer A549 cells via a mitochondrial pathway.
Collapse
|
28
|
To KKW, Fu LW. CUDC-907, a dual HDAC and PI3K inhibitor, reverses platinum drug resistance. Invest New Drugs 2017; 36:10-19. [PMID: 28819699 DOI: 10.1007/s10637-017-0501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Platinum (Pt)-based anticancer drugs are the mainstay of treatment for solid cancers. However, resistance to Pt drugs develops rapidly, which can be caused by overexpression of multidrug resistance transporters and activation of DNA repair. CUDC-907 is a potent molecular targeted anticancer agent, rationally designed to simultaneously inhibit histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). We investigated the potentiation effect of CUDC-907 on Pt drugs in resistant cancer cells. ABCC2 stably-transfected HEK293 cells and two pairs of parental and Pt-resistant cancer cell lines were used to test for the circumvention of resistance by CUDC-907. Chemosensitivity was assessed by the sulphorhodamine B assay. Drug combinations were evaluated by the median effect analysis. ABCC2 transport activity was examined by flow cytometric assay. Cellular Pt drug accumulation and DNA platination were detected by inductively coupled plasma optical emission spectroscopy. ABCC2, ERCC1 and p21 expression were evaluated by quantitative real-time PCR. Cell cycle analysis and apoptosis assay were performed by standard flow cytometric method. The combination of CUDC-907 with cisplatin were found to exhibit synergistic cytotoxic effect in cisplatin-resistant cancer cells. In Pt-resistant cancer cells, CUDC-907 apparently circumvented the resistance through inhibition of ABCC2 and DNA repair but induction of cell cycle arrest. In the presence of CUDC-907, cellular accumulation of Pt drugs and formation of DNA-Pt adducts were found to be increased whereas expression levels of ABCC2 and ERCC1 was inhibited in Pt-resistant cells. The data advocates further development of CUDC-907 as a resistance reversal agent for use in combination cancer chemotherapy.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 801N, Area 39, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, New Territories, Hong Kong, SAR, China.
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
29
|
YM155 as an inhibitor of cancer stemness simultaneously inhibits autophosphorylation of epidermal growth factor receptor and G9a-mediated stemness in lung cancer cells. PLoS One 2017; 12:e0182149. [PMID: 28787001 PMCID: PMC5546577 DOI: 10.1371/journal.pone.0182149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Cancer stem cell survival is the leading factor for tumor recurrence after tumor-suppressive treatments. Therefore, specific and efficient inhibitors of cancer stemness must be discovered for reducing tumor recurrence. YM155 has been indicated to significantly reduce stemness-derived tumorsphere formation. However, the pharmaceutical mechanism of YM155 against cancer stemness is unclear. This study investigated the potential mechanism of YM155 against cancer stemness in lung cancer. Tumorspheres derived from epidermal growth factor receptor (EGFR)-mutant HCC827 and EGFR wild-type A549 cells expressing higher cancer stemness markers (CD133, Oct4, and Nanog) were used as cancer stemness models. We observed that EGFR autophosphorylation (Y1068) was higher in HCC827- and A549-derived tumorspheres than in parental cells; this autophosphorylation induced tumorsphere formation by activating G9a-mediated stemness. Notably, YM155 inhibited tumorsphere formation by blocking the autophosphorylation of EGFR and the EGFR-G9a-mediated stemness pathway. The chemical and genetic inhibition of EGFR and G9a revealed the significant role of the EGFR-G9a pathway in maintaining the cancer stemness property. In conclusion, this study not only revealed that EGFR could trigger tumorsphere formation by elevating G9a-mediated stemness but also demonstrated that YM155 could inhibit this formation by simultaneously blocking EGFR autophosphorylation and G9a activity, thus acting as a potent agent against lung cancer stemness.
Collapse
|
30
|
Chen X, Liao R, Li D, Sun J. Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications. Oncotarget 2017; 8:17301-17312. [PMID: 28038467 PMCID: PMC5370042 DOI: 10.18632/oncotarget.14230] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
Local and distant recurrence of malignant tumors following radio- and/or chemotherapy correlates with poor prognosis of patients. Among the reasons for cancer recurrence, preexisting cancer stem cells (CSCs) are considered the most likely cause due to their properties of self-renewal, pluripotency, plasticity and tumorigenicity. It has been demonstrated that preexisting cancer stem cells derive from normal stem cells and differentiated somatic cells that undergo transformation and dedifferentiation respectively under certain conditions. However, recent studies have revealed that cancer stem cells can also be induced from non-stem cancer cells by radiochemotherapy, constituting the subpopulation of induced cancer stem cells (iCSCs). These findings suggest that radiochemotherapy has the side effect of directly transforming non-stem cancer cells into induced cancer stem cells, possibly contributing to tumor recurrence and metastasis. Therefore, drugs targeting cancer stem cells or preventing dedifferentiation of non-stem cancer cells can be combined with radiochemotherapy to improve its antitumor efficacy. The current review is to investigate the mechanisms by which induced cancer stem cells are generated by radiochemotherapy and hence provide new strategies for cancer treatment.
Collapse
Affiliation(s)
- Xiewan Chen
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, China.,Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rongxia Liao
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Dezhi Li
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jianguo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Li Y, Atkinson K, Zhang T. Combination of chemotherapy and cancer stem cell targeting agents: Preclinical and clinical studies. Cancer Lett 2017; 396:103-109. [PMID: 28300634 DOI: 10.1016/j.canlet.2017.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
The cancer stem cell model claims that the initiation, maintenance, and growth of a tumor are driven by a small population of cancer cells termed cancer stem cells. Cancer stem cells possess a variety of phenotypes associated with therapeutic resistance and often cause recurrence of the diseases. Several strategies have been investigated to target cancer stem cells in a variety of cancers, such as blocking one or more self-renewal signaling pathways, reducing the expression of drug efflux and ATP-binding cassette efflux transporters, modulating epigenetic aberrations, and promoting cancer stem cell differentiation. A number of cell and animal studies strongly support the potential benefits of combining chemotherapeutic drugs with cancer stem cell targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This mini-review provides an updated discussion of these preclinical and clinical studies.
Collapse
Affiliation(s)
- Yanyan Li
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA.
| | - Katharine Atkinson
- College of Science and Humanities, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| | - Tao Zhang
- School of Pharmacy, Husson University, 1 College Circle, Bangor, ME, 04401, USA
| |
Collapse
|
32
|
Rossi A, La Salvia A, Di Maio M. Chemotherapy and intercalated gefitinib or erlotinib in the treatment of advanced non-small-cell lung cancer. Expert Rev Respir Med 2017; 11:171-180. [DOI: 10.1080/17476348.2017.1290526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Antonio Rossi
- Division of Medical Oncology, IRCCS ‘Casa Sollievo della Sofferenza’ Hospital, San Giovanni Rotondo (FG), Italy
| | - Anna La Salvia
- Department of Oncology, University of Turin, ‘San Luigi Gonzaga’ Hospital, Orbassano (TO), Italy
| | - Massimo Di Maio
- Department of Oncology, University of Turin, ‘Ordine Mauriziano’ Hospital, Turin, Italy
| |
Collapse
|
33
|
MicroRNA-153/Nrf-2/GPx1 pathway regulates radiosensitivity and stemness of glioma stem cells via reactive oxygen species. Oncotarget 2016; 6:22006-27. [PMID: 26124081 PMCID: PMC4673142 DOI: 10.18632/oncotarget.4292] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Glioma stem cells (GSCs) exhibit stem cell properties and high resistance to radiotherapy. The main aim of our study was to determine the roles of ROS in radioresistance and stemness of GSCs. We found that microRNA (miR)-153 was down-regulated and its target gene nuclear factor-erythroid 2-related factor-2 (Nrf-2) was up-regulated in GSCs compared with that of non-GSCs glioma cells. The enhanced Nrf-2 expression increased glutathione peroxidase 1 (GPx1) transcription and decreased ROS level leading to radioresistance of GSCs. MiR-153 overexpression resulted in increased ROS production and radiosensitization of GSCs. Moreover, miR-153 overexpression led to decreased neurosphere formation capacity and stem cell marker expression, and induced differentiation through ROS-mediated activation of p38 MAPK in GSCs. Nrf-2 overexpression rescued the decreased stemness and radioresistance resulting from miR-153 overexpression in GSCs. In addition, miR-153 overexpression reduced tumorigenic capacity of GSCs and increased survival in mice bearing human GSCs. These findings demonstrated that miR-153 overexpression decreased radioresistance and stemness of GSCs through targeting Nrf-2/GPx1/ROS pathway.
Collapse
|
34
|
Erguven M, Oktem G, Kara AN, Bilir A. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol Lett 2016; 12:2948-2955. [PMID: 27703531 DOI: 10.3892/ol.2016.4946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequent type of cancer in men worldwide and the levels of differentiation growth factor midkine (MK) are increased in PCa. Cancer and/or the treatment process itself may lead to psychiatric disorders. Lithium chloride (LiCl) has anti-manic properties and has been used in cancer therapy; however, it has a queried safety profile. In addition, cancer stem cells are responsible for the heterogeneous phenotype of tumor cells; they are involved in progression, metastasis, recurrence and therapy resistance in various cancer types. The aims of the present study were to investigate the effect of different concentrations of LiCl on PCa stem cells (whether a shift from tumorigenic to non-tumorigenic cells occurs) and to determine if these results can be explained through changes in MK levels. Monolayer and spheroid cultures of human prostate stem cells and non-stem cells were incubated with low (1, 10 µM) and high (100, 500 µM) concentrations of LiCl for 72 h. Cell proliferation, apoptotic indices, MK levels and ultrastructure were evaluated. Cells stimulated with low concentrations showed high proliferation, low apoptotic indices, high MK levels and more healthy ultrastructure. Opposite results were obtained at high concentrations. Furthermore, stem cells were more sensitive to stimulation and more resistant to inhibition than non-stem cells. LiCl exhibited concentration-dependent effects on stem cell and non-stem cell groups. MK levels were not involved in the biphasic effect of LiCl; however, they were proportionally affected. To the best of our knowledge, the present study was the first to show the effect of LiCl on PCa stem cells through MK.
Collapse
Affiliation(s)
- Mine Erguven
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Aydın University, Küçükçekmece 34295, İstanbul, Turkey
| | - Gulperi Oktem
- Department of Histology and Embryology, School of Medicine, Ege University, Bornova 35040, İzmir, Turkey
| | - Ali Nail Kara
- Department of Histology and Embryology, İstanbul Faculty of Medicine, İstanbul University, Capa 34390, İstanbul, Turkey
| | - Ayhan Bilir
- Department of Histology and Embryology, Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Zirve University, Gaziantep 27260, Turkey
| |
Collapse
|
35
|
Arrigoni E, Galimberti S, Petrini M, Danesi R, Di Paolo A. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview. Expert Opin Drug Metab Toxicol 2016; 12:1419-1432. [PMID: 27459275 DOI: 10.1080/17425255.2016.1215423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Members of the ATP-binding cassette (ABC) transmembrane transporters control the passage of several substrates across cell membranes, including drugs. This means that ABC transporters may exert a significant influence on the kinetics and dynamics of pharmacological agents, being responsible for the occurrence of multidrug-resistant (MDR) phenotype. Pharmacogenetic analyses have shed light on gene expression and polymorphisms as possible markers predictive of transporter activity. However, a non-negligible part of the variability in drug pharmacokinetics and pharmacodynamics still remains. Further research has demonstrated that different epigenetic mechanisms exert a coordinated control over ABC genes, and on the corresponding MDR phenotype. Areas covered: DNA methylation and histone modifications (namely acetylation, methylation, phosphorylation, etc.) significantly impact gene expression, as well as noncoding RNA molecules that are involved in the post-transcriptional control of the ABC transporters ABCB1, ABCC1 and ABCG2. We describe the epigenetic mechanisms of gene expression control for ABC transporters and their relevant association with the MDR phenotype in human cancer. Expert opinion: The clinical meaning of those observations is discussed in the review, highlighting the importance of the epigenetic control of the ABC transporters for the clinical therapeutic outcomes that despite their effects and applications, requires further investigation.
Collapse
Affiliation(s)
- Elena Arrigoni
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Sara Galimberti
- b Section of Hematology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Mario Petrini
- b Section of Hematology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Romano Danesi
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Antonello Di Paolo
- a Section of Pharmacology, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
36
|
Gao C, Zhang J, Wang Q, Ren C. Overexpression of lncRNA NEAT1 mitigates multidrug resistance by inhibiting ABCG2 in leukemia. Oncol Lett 2016; 12:1051-1057. [PMID: 27446393 DOI: 10.3892/ol.2016.4738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/29/2016] [Indexed: 01/08/2023] Open
Abstract
Leukemia is a heterogeneous clonal disorder in which early hematopoietic cells fail to differentiate and do not undergo programmed cell death or apoptosis. Less than one-third of adult patients with leukemia are managed using current therapies due to the emergence of multidrug resistance (MDR), emphasizing the need for newer and more robust approaches. Recent reports have suggested that long non-coding RNAs (lncRNAs) contribute to selective gene expression and, hence, could be manipulated effectively to halt the progression of cancer. However, little is known regarding the role of lncRNA in leukemia. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a nuclear-restricted lncRNA involved in the pathogenesis of certain types of cancer. Deregulated expression of NEAT1 has been reported in a number of human malignancies, including leukemia and other solid tumors. The present study aimed to characterize the role of NEAT1 in the regulation of MDR in leukemia. Using reverse transcription-quantitative polymerase chain reaction, it was demonstrated that NEAT1 messenger RNA (mRNA) expression levels were significantly downregulated in leukemia patient samples compared with those from healthy donors. Furthermore, NEAT1 mRNA expression was repressed in a number of leukemia cell lines, including K562, THP-1, HL-60 and Jurkat cells, compared with peripheral white blood control cells, consistent with the expression observed in patients with leukemia. In addition, the transfection of a NEAT1 overexpression plasmid into K562 and THP-1 leukemia cell lines alleviated MDR induced by cytotoxic agents, such as Alisertib and Bortezomib, through inhibition of ATP-binding cassette G2. Although more robust studies are warranted, the current findings provide the basis for the use of NEAT1 as a novel promising target in the treatment of leukemia.
Collapse
Affiliation(s)
- Caihua Gao
- Department of Medical Services, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Jianying Zhang
- Department of Emergency, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Qingyan Wang
- Department of Medical Services, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Chunhua Ren
- Happy Sisters Family Service Centre, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
37
|
Martinello R, Milani A, Geuna E, Zucchini G, Aversa C, Nuzzo A, Montemurro F. Investigational ErbB-2 tyrosine kinase inhibitors for the treatment of breast cancer. Expert Opin Investig Drugs 2016; 25:393-403. [DOI: 10.1517/13543784.2016.1153063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Li L, Duan T, Wang X, Zhang RH, Zhang M, Wang S, Wang F, Wu Y, Huang H, Kang T. KCTD12 Regulates Colorectal Cancer Cell Stemness through the ERK Pathway. Sci Rep 2016; 6:20460. [PMID: 26847701 PMCID: PMC4742820 DOI: 10.1038/srep20460] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Targeting cancer stem cells (CSCs) in colorectal cancer (CRC) remains a difficult problem, as the regulation of CSCs in CRC is poorly understood. Here we demonstrated that KCTD12, potassium channel tetramerization domain containing 12, is down-regulated in the CSC-like cells of CRC. The silencing of endogenous KCTD12 and the overexpression of ectopic KCTD12 dramatically enhances and represses CRC cell stemness, respectively, as assessed in vitro and in vivo using a colony formation assay, a spheroid formation assay and a xenograft tumor model. Mechanistically, KCTD12 suppresses CRC cell stemness markers, such as CD44, CD133 and CD29, by inhibiting the ERK pathway, as the ERK1/2 inhibitor U0126 abolishes the increase in expression of CRC cell stemness markers induced by the down-regulation of KCTD12. Indeed, a decreased level of KCTD12 is detected in CRC tissues compared with their adjacent normal tissues and is an independent prognostic factor for poor overall and disease free survival in patients with CRC (p = 0.007). Taken together, this report reveals that KCTD12 is a novel regulator of CRC cell stemness and may serve as a novel prognostic marker and therapeutic target for patients with CRC.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Tingmei Duan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ru-Hua Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Meifang Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Suihai Wang
- School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Fen Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
39
|
Podolski-Renić A, Milošević Z, Dinić J, Stanković T, Banković J, Pešić M. Mutual regulation and targeting of multidrug resistance and cancer stem phenotype. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00391e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeting stemness mechanisms leads to the suppression of ABC transporter activity and elimination of CSCs.
Collapse
Affiliation(s)
- Ana Podolski-Renić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Zorica Milošević
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jelena Dinić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Tijana Stanković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Jasna Banković
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| | - Milica Pešić
- Institute for Biological Research “Siniša Stanković”
- University of Belgrade
- 11060 Belgrade
- Serbia
| |
Collapse
|
40
|
Chen W, Wang F, Zhang X, Hu J, Wang X, Yang K, Huang L, Xu M, Li Q, Fu L. Overcoming ABCG2-mediated multidrug resistance by a mineralized hyaluronan–drug nanocomplex. J Mater Chem B 2016; 4:6652-6661. [DOI: 10.1039/c6tb01545j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicomponent nanocomplex generated by hyaluronan-based biomineralization was successfully employed to combat ABCG2-mediated multidrug resistance.
Collapse
|
41
|
Chan KS. Molecular Pathways: Targeting Cancer Stem Cells Awakened by Chemotherapy to Abrogate Tumor Repopulation. Clin Cancer Res 2015; 22:802-6. [PMID: 26671994 DOI: 10.1158/1078-0432.ccr-15-0183] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
Abstract
Cytotoxic chemotherapy remains the first-line therapy for many advanced solid tumors; hence, understanding the underlying mechanisms to overcome chemoresistance remains a top research priority. In the clinic, chemotherapy is administered in multiple cycles that are spaced out to allow the recovery or repopulation of normal tissues and tissue stem cells between treatment cycles. However, residual surviving cancer cells and cancer stem cells can also repopulate tumors during the gap periods between chemotherapy cycles. Tumor repopulation is a phenomenon that has not been well studied; it is often overlooked due to current customized experimental study strategies. Recent findings reveal an alarming role for dying cells targeted by chemotherapy in releasing mitogens to stimulate active repopulation of quiescent cancer stem cells. Therefore, new therapeutic options to abrogate tumor repopulation will provide new avenues to improve chemotherapeutic response and clinical outcome.
Collapse
Affiliation(s)
- Keith Syson Chan
- Department of Molecular and Cellular Biology, Scott Department of Urology, Dan L. Duncan Cancer Center, Center for Cell Gene and Therapy, Center for Drug Discovery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
42
|
Afatinib circumvents multidrug resistance via dually inhibiting ATP binding cassette subfamily G member 2 in vitro and in vivo. Oncotarget 2015; 5:11971-85. [PMID: 25436978 PMCID: PMC4322967 DOI: 10.18632/oncotarget.2647] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) to chemotherapeutic drugs is a formidable barrier to the success of cancer chemotherapy. Expressions of ATP-binding cassette (ABC) transporters contribute to clinical MDR phenotype. In this study, we found that afatinib, a small molecule tyrosine kinase inhibitor (TKI) targeting EGFR, HER-2 and HER-4, reversed the chemoresistance mediated by ABCG2 in vitro, but had no effect on that mediated by multidrug resistance protein ABCB1 and ABCC1. In addition, afatinib, in combination with topotecan, significantly inhibited the growth of ABCG2-overexpressing cell xenograft tumors in vivo. Mechanistic investigations exhibited that afatinib significantly inhibited ATPase activity of ABCG2 and downregulated expression level of ABCG2, which resulted in the suppression of efflux activity of ABCG2 in parallel to the increase of intracellular accumulation of ABCG2 substrate anticancer agents. Taken together, our findings may provide a new and useful combinational therapeutic strategy of afatinib with chemotherapeutical drug for the patients with ABCG2 overexpressing cancer cells.
Collapse
|
43
|
Damiani D, Tiribelli M, Geromin A, Michelutti A, Cavallin M, Sperotto A, Fanin R. ABCG2 overexpression in patients with acute myeloid leukemia: Impact on stem cell transplantation outcome. Am J Hematol 2015; 90:784-9. [PMID: 26059733 DOI: 10.1002/ajh.24084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 01/12/2023]
Abstract
ABGG2 protein overexpression in acute myeloid leukemia (AML) has been associated with poor response to conventional chemotherapy and increased relapse risk. No data are available on the role of allogeneic stem cell transplantation (SCT) in reversing its negative prognostic role. We have reviewed the outcome of 142 patients with high risk AML who underwent allogeneic SCT in complete remission (n = 94) or with active disease (n = 48). Patients with ABCG2 overexpression at AML diagnosis have lower leukemia free survival (LFS) and increased cumulative incidence of relapse (CIR) compared with ABCG2- patients (5-year LFS 50% vs. 65%, P = 0.01; 5-year CIR 46% vs. 27%, P = 0.003). Five-year overall survival was not significantly different between ABCG2+ and ABCG2- patients (39% vs. 51%, P = 0.1). However, if we consider only disease-related deaths, ABCG2 maintains its negative role (64% vs. 78%, P = 0.018). The negative impact of ABCG2 overexpression was higher in patients undergoing SCT in CR compared with patients receiving transplant with active disease. Conditioning regimen did not abrogate the effect of ABCG2 overexpression, as CIR was higher in ABCG2+ patients receiving both myeloablative (44% vs. 22%, P = 0.018) or reduced intensity conditioning (50% vs. 32%, P = 0.03). In conclusion, ABCG2 overexpression at AML diagnosis identifies a subset of patients with poor outcome also after allogeneic SCT, mainly in terms of higher relapse rates. Prospective studies employing conditioning drugs or post-transplant strategies able to target ABCG2 are needed to maximize the curative potential of stem cell transplantation.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Mario Tiribelli
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Antonella Geromin
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Angela Michelutti
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Margherita Cavallin
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Alessandra Sperotto
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| | - Renato Fanin
- Division of Hematology and Bone Marrow Transplantation; Azienda Ospedaliero-Universitaria di Udine; Udine Italy
| |
Collapse
|
44
|
Hardy KM, Strizzi L, Margaryan NV, Gupta K, Murphy GF, Scolyer RA, Hendrix MJC. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol Cancer Res 2015; 13:670-80. [PMID: 25767211 DOI: 10.1158/1541-7786.mcr-14-0077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. IMPLICATIONS Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Katharine M Hardy
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luigi Strizzi
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Naira V Margaryan
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kanika Gupta
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Howard Hughes Medical Institute NU Bioscientist Program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - George F Murphy
- Department of Pathology, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts
| | - Richard A Scolyer
- Melanoma Institute Australia; Sydney Medical School, The University of Sydney; and Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mary J C Hendrix
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
45
|
Selbo PK, Bostad M, Olsen CE, Edwards VT, Høgset A, Weyergang A, Berg K. Photochemical internalisation, a minimally invasive strategy for light-controlled endosomal escape of cancer stem cell-targeting therapeutics. Photochem Photobiol Sci 2015; 14:1433-50. [DOI: 10.1039/c5pp00027k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite progress in radio-, chemo- and photodynamic-therapy (PDT) of cancer, treatment resistance still remains a major problem for patients with aggressive tumours.
Collapse
Affiliation(s)
- Pål Kristian Selbo
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Monica Bostad
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Cathrine Elisabeth Olsen
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Victoria Tudor Edwards
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Anders Høgset
- Cancer Stem Cell Innovation Center (SFI-CAST)
- Institute for Cancer Research
- Norwegian Radium Hospital
- Oslo University Hospital
- Oslo
| | - Anette Weyergang
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| | - Kristian Berg
- Department of Radiation Biology
- Institute for Cancer Research
- The Norwegian Radium Hospital
- Oslo University Hospital
- Montebello
| |
Collapse
|