1
|
Barrett AK, Shingare MR, Rechtsteiner A, Rodriguez KM, Le QN, Wijeratne TU, Mitchell CE, Membreno MW, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. Nat Commun 2024; 15:4450. [PMID: 38789411 PMCID: PMC11126580 DOI: 10.1038/s41467-024-48724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) play a crucial role in transcriptional regulation and are implicated in various diseases, including cancer. They are involved in histone tail deacetylation and canonically linked to transcriptional repression. Previous studies suggested that HDAC recruitment to cell-cycle gene promoters via the retinoblastoma (RB) protein or the DREAM complex through SIN3B is essential for G1/S and G2/M gene repression during cell-cycle arrest and exit. Here we investigate the interplay among DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. Knockout of SIN3B does not globally derepress cell-cycle genes in non-proliferating HCT116 and C2C12 cells. Loss of SIN3A/B moderately upregulates several cell-cycle genes in HCT116 cells but does so independently of DREAM/RB. HDAC inhibition does not induce general upregulation of RB/DREAM target genes in arrested transformed or non-transformed cells. Our findings suggest that E2F:RB and DREAM complexes can repress cell-cycle genes without relying on HDAC activity.
Collapse
Affiliation(s)
- Alison K Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Manisha R Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA
| | - Kelsie M Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Quynh N Le
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Corbin E Mitchell
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Miles W Membreno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Barrett A, Shingare MR, Rechtsteiner A, Wijeratne TU, Rodriguez KM, Rubin SM, Müller GA. HDAC activity is dispensable for repression of cell-cycle genes by DREAM and E2F:RB complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.28.564489. [PMID: 37961464 PMCID: PMC10634886 DOI: 10.1101/2023.10.28.564489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone deacetylases (HDACs) are pivotal in transcriptional regulation, and their dysregulation has been associated with various diseases including cancer. One of the critical roles of HDAC-containing complexes is the deacetylation of histone tails, which is canonically linked to transcriptional repression. Previous research has indicated that HDACs are recruited to cell-cycle gene promoters through the RB protein or the DREAM complex via SIN3B and that HDAC activity is essential for repressing G1/S and G2/M cell-cycle genes during cell-cycle arrest and exit. In this study, we sought to explore the interdependence of DREAM, RB, SIN3 proteins, and HDACs in the context of cell-cycle gene repression. We found that genetic knockout of SIN3B did not lead to derepression of cell-cycle genes in non-proliferating HCT116 and C2C12 cells. A combined loss of SIN3A and SIN3B resulted in a moderate upregulation in mRNA expression of several cell-cycle genes in arrested HCT116 cells, however, these effects appeared to be independent of DREAM or RB. Furthermore, HDAC inhibition did not induce a general upregulation of RB and DREAM target gene expression in arrested transformed or non-transformed cells. Our findings provide evidence that E2F:RB and DREAM complexes can repress cell-cycle genes without reliance on HDAC activity.
Collapse
Affiliation(s)
- Alison Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Manisha R. Shingare
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Tilini U. Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
- Current Affiliation: Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA
| | - Kelsie M. Rodriguez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A. Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Ramanujan A, Bansal S, Guha M, Pande NT, Tiwari S. LxCxD motif of the APC/C coactivator subunit FZR1 is critical for interaction with the retinoblastoma protein. Exp Cell Res 2021; 404:112632. [PMID: 33971196 DOI: 10.1016/j.yexcr.2021.112632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
Retinoblastoma protein (pRB) regulates cell cycle by utilizing different regions of its pocket domain for interacting with E2F family of transcription factors and with cellular and viral proteins containing an LxCxE motif. An LxCxE-like motif, LxCxD, is present in FZR1, an adaptor protein of the multi-subunit E3 ligase complex anaphase-promoting complex/cyclosome (APC/C). The APC/CFZR1 complex regulates the timely degradation of multiple cell cycle proteins for mitotic exit and maintains G1 state. We report that FZR1 interacts with pRB via its LxCxD motif. By using point mutations, we found that the cysteine residue in the FZR1 LxCxD motif is critical for direct interaction with pRb. The direct binding of the LxCxD motif of FZR1 to the pRB LxCxE binding pocket is confirmed by using human papillomavirus protein E7 as a competitor, both in vitro and in vivo. While mutation of the cysteine residue significantly disrupts FZR1 interaction with pRB, this motif does not affect FZR1 and core APC/C association. Expression of the FZR1 point mutant results in accumulation of S-phase kinase-associated protein 2 (SKP2) and Polo-like kinase 1 (PLK1), while p27Kip1 and p21Cip1 proteins are downregulated, indicating a G1 cell cycle defect. Consistently, cells containing point mutant FZR1 enter the S phase prematurely. Together our results suggest that the LxCxD motif of FZR1 is a critical determinant for the interaction between FZR1 and pRB and is important for G1 restriction.
Collapse
Affiliation(s)
- Ajeena Ramanujan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manalee Guha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Nupur T Pande
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Liu M, Liu W, Qin Y, Xu X, Yu X, Zhuo Q, Ji S. Regulation of metabolic reprogramming by tumor suppressor genes in pancreatic cancer. Exp Hematol Oncol 2020. [DOI: 10.1186/s40164-020-00179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Abstract
Background
Pancreatic cancer continues to be one of the most aggressive malignant tumors. Work in recent years in cancer molecular biology has revealed that metabolic reprogramming is an additional hallmark of cancer that is involved in the pathogenesis of cancers, and is intricately linked to gene mutations.
Main text
However, though oncogenes such as KRAS and c-Myc play important roles in the process, and have been extensively studied, no substantial improvements in the prognosis of pancreatic cancer have seen. Therefore, some scientists have tried to explain the mechanisms of abnormal cancer metabolism from the perspective of tumor suppressor genes. In this paper, we reviewed researches about how metabolic reprogramming was regulated by tumor suppressor genes in pancreatic cancer and their clinical implications.
Conclusion
Abnormal metabolism and genetic mutations are mutually causal and complementary in tumor initiation and development. A clear understanding of how metabolic reprogramming is regulated by the mutated genes would provide important insights into the pathogenesis and ultimately treatment of pancreatic cancer.
Collapse
|
5
|
Lopez-Mejia IC, Castillo-Armengol J, Lagarrigue S, Fajas L. Role of cell cycle regulators in adipose tissue and whole body energy homeostasis. Cell Mol Life Sci 2018; 75:975-987. [PMID: 28988292 PMCID: PMC11105252 DOI: 10.1007/s00018-017-2668-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 09/01/2017] [Accepted: 09/26/2017] [Indexed: 05/22/2024]
Abstract
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.
Collapse
Affiliation(s)
- I C Lopez-Mejia
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - J Castillo-Armengol
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - S Lagarrigue
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - L Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Fischer M, Müller GA. Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol 2017; 52:638-662. [PMID: 28799433 DOI: 10.1080/10409238.2017.1360836] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The precise timing of cell cycle gene expression is critical for the control of cell proliferation; de-regulation of this timing promotes the formation of cancer and leads to defects during differentiation and development. Entry into and progression through S phase requires expression of genes coding for proteins that function in DNA replication. Expression of a distinct set of genes is essential to pass through mitosis and cytokinesis. Expression of these groups of cell cycle-dependent genes is regulated by the RB pocket protein family, the E2F transcription factor family, and MuvB complexes together with B-MYB and FOXM1. Distinct combinations of these transcription factors promote the transcription of the two major groups of cell cycle genes that are maximally expressed either in S phase (G1/S) or in mitosis (G2/M). In this review, we discuss recent work that has started to uncover the molecular mechanisms controlling the precisely timed expression of these genes at specific cell cycle phases, as well as the repression of the genes when a cell exits the cell cycle.
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany.,b Department of Medical Oncology , Dana-Farber Cancer Institute , Boston , MA , USA.,c Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Boston , MA , USA
| | - Gerd A Müller
- a Molecular Oncology, Medical School, University of Leipzig , Leipzig , Germany
| |
Collapse
|
7
|
Thwaites MJ, Cecchini MJ, Talluri S, Passos DT, Carnevale J, Dick FA. Multiple molecular interactions redundantly contribute to RB-mediated cell cycle control. Cell Div 2017; 12:3. [PMID: 28293272 PMCID: PMC5348811 DOI: 10.1186/s13008-017-0029-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background The G1-S phase transition is critical to maintaining proliferative control and preventing carcinogenesis. The retinoblastoma tumor suppressor is a key regulator of this step in the cell cycle. Results Here we use a structure–function approach to evaluate the contributions of multiple protein interaction surfaces on pRB towards cell cycle regulation. SAOS2 cell cycle arrest assays showed that disruption of three separate binding surfaces were necessary to inhibit pRB-mediated cell cycle control. Surprisingly, mutation of some interaction surfaces had no effect on their own. Rather, they only contributed to cell cycle arrest in the absence of other pRB dependent arrest functions. Specifically, our data shows that pRB–E2F interactions are competitive with pRB–CDH1 interactions, implying that interchangeable growth arrest functions underlie pRB’s ability to block proliferation. Additionally, disruption of similar cell cycle control mechanisms in genetically modified mutant mice results in ectopic DNA synthesis in the liver. Conclusions Our work demonstrates that pRB utilizes a network of mechanisms to prevent cell cycle entry. This has important implications for the use of new CDK4/6 inhibitors that aim to activate this proliferative control network.
Collapse
Affiliation(s)
- Michael J Thwaites
- London Regional Cancer Program, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| | - Matthew J Cecchini
- London Regional Cancer Program, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| | - Srikanth Talluri
- London Regional Cancer Program, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| | - Jasmyne Carnevale
- London Regional Cancer Program, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| | - Frederick A Dick
- London Regional Cancer Program, London, Canada.,Children's Health Research Institute, London, Canada.,Department of Biochemistry, Western University, London, ON Canada
| |
Collapse
|
8
|
Ishak CA, Marshall AE, Passos DT, White CR, Kim SJ, Cecchini MJ, Ferwati S, MacDonald WA, Howlett CJ, Welch ID, Rubin SM, Mann MRW, Dick FA. An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences. Mol Cell 2016; 64:1074-1087. [PMID: 27889452 DOI: 10.1016/j.molcel.2016.10.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/17/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive genomic regions include tandem sequence repeats and interspersed repeats, such as endogenous retroviruses and LINE-1 elements. Repressive heterochromatin domains silence expression of these sequences through mechanisms that remain poorly understood. Here, we present evidence that the retinoblastoma protein (pRB) utilizes a cell-cycle-independent interaction with E2F1 to recruit enhancer of zeste homolog 2 (EZH2) to diverse repeat sequences. These include simple repeats, satellites, LINEs, and endogenous retroviruses as well as transposon fragments. We generated a mutant mouse strain carrying an F832A mutation in Rb1 that is defective for recruitment to repetitive sequences. Loss of pRB-EZH2 complexes from repeats disperses H3K27me3 from these genomic locations and permits repeat expression. Consistent with maintenance of H3K27me3 at the Hox clusters, these mice are developmentally normal. However, susceptibility to lymphoma suggests that pRB-EZH2 recruitment to repetitive elements may be cancer relevant.
Collapse
Affiliation(s)
- Charles A Ishak
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Aren E Marshall
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Carlee R White
- Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Seung J Kim
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Sara Ferwati
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada
| | - William A MacDonald
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Christopher J Howlett
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Ian D Welch
- Animal Care Services, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mellissa R W Mann
- Magee-Womens Research Institute, Pittsburgh, PA 15213, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Frederick A Dick
- London Regional Cancer Program, London, ON N6A 4L6, Canada; Children's Health Research Institute, London, ON N6A 4L6, Canada; Department of Biochemistry, Western University, London, ON N6A 3K7, Canada.
| |
Collapse
|
9
|
Ahmadzadeh A, Norozi F, Shahrabi S, Shahjahani M, Saki N. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res 2015; 363:321-35. [PMID: 26475718 DOI: 10.1007/s00441-015-2300-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022]
Abstract
The bone marrow (BM) niche is a specific physiological environment for hematopoietic and non-hematopoietic stem cells (HSCs). Several signaling pathways (including Wnt/β-catenin) regulate various aspects of stem cell growth, function and death in the BM niche. In addition, the canonical Wnt pathway is crucial for directing self-renewal and differentiation as important mechanisms in many types of stem cells. We review the role of the Wnt/β-catenin pathway in the BM niche and its importance in stem cells. Relevant literature was identified by a PubMed search (1997-2014) of English-language literature by using the following keywords: BM niche, Wnt/β-catenin signaling, osteoblast, osteoclast and bone disease. The Wnt/β-catenin pathway regulates the stability of the β-catenin proto-oncogene. The stabilized β-catenin then translocates to the nucleus, forming a β-catenin-TCF/LEF complex regulating the transcription of specific target genes. Stem cells require β-catenin to mediate their response to Wnt signaling for maintenance and transition from the pluripotent state during embryogenesis. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to the specification of the diverse tissues. Aberrant Wnt/β-catenin signaling and its downstream transcriptional regulators are observed in several malignant stem cells and human cancers. Because Wnt signaling can maintain stem cells and cancer cells, the ability to modulate the Wnt pathway either positively or negatively may be of therapeutic relevance. The controlled activation of Wnt signaling might allow us to enhance stem and progenitor cell activity when regeneration is needed.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Liu M, Zhou K, Huang Y, Cao Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:121. [PMID: 26467212 PMCID: PMC4606992 DOI: 10.1186/s13046-015-0235-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Background Microspherule protein 1 (MCRS1) is a candidate oncogene and participates in various cellular processes, including growth, migration, senescence and transformation. MCRS1 is overexpressed in non-small cell lung cancer (NSCLC) and promotes the growth of cancer cells. However, the mechanisms driving these processes are not fully understood. Methods Retrovirus-mediated RNA interference was employed to knockdown MCRS1 expression in cell lines. Cell proliferation assays and animal experiments were respectively performed to evaluate the growth of NSCLC cells in vitro and in vivo. Microarray analysis was carried out for mRNA profiling. Luciferase reporter assay and microRNA (miRNA) transfection were used to investigate the interaction between miRNA and gene. Results Stably knocking down MCRS1 expression inhibited the proliferation of NSCLC cells in vitro and in vivo. By comparing the mRNA expression profiles of NSCLC cells with or without MCRS1 silencing, we found that MCRS1 regulated expressions of various genes related to cell proliferation, including Rb1, TP53, cell cycle-related genes, MYC, E2F2, PCNA, and Ki67. However, MCRS1 did not directly bind to these differentially expressed genes. Here, we confirmed that Rb1, an important tumor suppression gene (TSG), is a direct target of miR-155 which is directly up-regulated by MCRS1. Furthermore, the level of Rb1 expression in NSCLC tissues was inversely correlated with those of miR-155 and MCRS1, and MCRS1 regulated expression of Rb1 via miR-155. Additionally, we found that the DNA copy number of the MCRS1 gene played a role in MCRS1 overexpression in NSCLCs. Conclusion MCRS1 overexpression induced NSCLC proliferation through the miR-155–Rb1 pathway and DNA copy-number amplification is one of the mechanisms underlying MCRS1 overexpression in NSCLC. Moreover, we put forward the hypothesis that there are regulatory relationships between oncogenes and TSGs apart from the functional synergy of both; the oncogene-miRNA-TSG networks are one of mechanisms among the regulatory relationships; the regulatory relationships and the networks might play active roles in the development and progression of cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0235-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minxia Liu
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| | - Kecheng Zhou
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| | - Yunchao Huang
- Department of Thoracic and Cardiovascular Surgery, The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China.
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
11
|
Vormer TL, Hansen JB, Te Riele H. The retinoblastoma protein: multitasking to suppress tumorigenesis. Mol Cell Oncol 2015; 2:e968062. [PMID: 27308398 PMCID: PMC4905230 DOI: 10.4161/23723548.2014.968062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/25/2022]
Abstract
Tumor suppressor activity of the retinoblastoma protein pRB is preserved despite loss of interaction with E2F transcription factors (E2F) or proteins harboring a leucine-x-cysteine-x-glutamic acid motif (LxCxE, where x is any amino acid). This indicates that pRB uses several parallel pathways to suppress tumorigenesis, which may also include E2F- and LxCxE-independent interactions.
Collapse
Affiliation(s)
- Tinke L Vormer
- Division of Biological Stress Response; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| | - Jacob B Hansen
- Department of Biology; University of Copenhagen ; Copenhagen, Denmark
| | - Hein Te Riele
- Division of Biological Stress Response; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| |
Collapse
|