1
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
2
|
Chen X, Han L, Xu W. Dissecting causal relationships between gut microbiota, blood metabolites, and glioblastoma multiforme: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1403316. [PMID: 39021629 PMCID: PMC11251919 DOI: 10.3389/fmicb.2024.1403316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Given the increasing interest in the role of gut microbiota in glioblastoma multiforme (GBM), our objective was to examine the potential causal relationship between gut microbiota and GBM, as well as the mediating effects of specific metabolites. Methods A bidirectional two-sample Mendelian randomization (MR) analysis was conducted to investigate the associations between 196 microbial taxa and GBM. A two-step MR technique was used to identify significant mediators in this relationship. Subsequently, a mediation analysis was performed to explore and quantify the mediating effects of specific metabolites on the causal relationship between gut microbiota and GBM. Results Five taxa showed significant associations with GBM. Among them, family Victivallaceae [odds ratio (OR): 1.95; 95% confidence interval (CI): 1.21, 3.13; p = 0.005] and genus Lactococcus (OR: 1.81; 95% CI: 1.04, 3.15; p = 0.036) were positively correlated with the risk of GBM, while phylum Cyanobacteria had a protective effect against GBM (OR: 0.45; 95% CI: 0.22, 0.89; p = 0.021). The mediation analysis revealed that the connections among family Victivallaceae, genus Lactococcus, phylum Cyanobacteria and GBM were mediated by Methyl-4-hydroxybenzoate sulfate, phosphoethanolamine and dehydroepiandrosterone sulfate. Each of these accounted for 7.27, 7.98, and 8.65%, respectively. Conclusion Our study provides evidence supporting a potential causal association between certain gut microbiota taxa and GBM. The study highlights the central role of gut microbiota in GBM pathogenesis and their interactions with vital serum metabolites. This paves the way for potential novel therapeutic interventions in GBM management.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Lihui Han
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| |
Collapse
|
3
|
Infante Cruz A, Coronel JV, Saibene Vélez P, Remes Lenicov F, Iturrizaga J, Abelleyro M, Rosato M, Shiromizu CM, Candolfi M, Vermeulen M, Jancic C, Yasuda E, Berner S, Villaverde MS, Salamone GV. Relevance of Thymic Stromal Lymphopoietin on the Pathogenesis of Glioblastoma: Role of the Neutrophil. Cell Mol Neurobiol 2024; 44:31. [PMID: 38557942 PMCID: PMC10984908 DOI: 10.1007/s10571-024-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma multiforme (GBM) is the most predominant and malignant primary brain tumor in adults. Thymic stromal lymphopoietin (TSLP), a cytokine primarily generated by activated epithelial cells, has recently garnered attention in cancer research. This study was aimed to elucidate the significance of TSLP in GBM cells and its interplay with the immune system, particularly focused on granulocyte neutrophils. Our results demonstrate that the tumor produces TSLP when stimulated with epidermal growth factor (EGF) in both the U251 cell line and the GBM biopsy (GBM-b). The relevance of the TSLP function was evaluated using a 3D spheroid model. Spheroids exhibited increased diameter, volume, and proliferation. In addition, TSLP promoted the generation of satellites surrounding the main spheroids and inhibited apoptosis in U251 treated with temozolomide (TMZ). Additionally, the co-culture of polymorphonuclear (PMN) cells from healthy donors with the U251 cell line in the presence of TSLP showed a reduction in apoptosis and an increase in IL-8 production. TSLP directly inhibited apoptosis in PMN from GBM patients (PMN-p). Interestingly, the vascular endothelial growth factor (VEGF) production was elevated in PMN-p compared with PMN from healthy donors. Under these conditions, TSLP also increased VEGF production, in PMN from healthy donors. Moreover, TSLP upregulated programed death-ligand 1 (PDL-1) expression in PMN cultured with U251. On the other hand, according to our results, the analysis of RNA-seq datasets from Illumina HiSeq 2000 sequencing platform performed with TIMER2.0 webserver demonstrated that the combination of TSLP with neutrophils decreases the survival of the patient. In conclusion, our results position TSLP as a possible new growth factor in GBM and indicate its modulation of the tumor microenvironment, particularly through its interaction with PMN.
Collapse
Affiliation(s)
- Alejandra Infante Cruz
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Juan Valentin Coronel
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Paula Saibene Vélez
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Remes Lenicov
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires - CONICET, Paraguay 2155, Buenos Aires, Argentina
| | - Juan Iturrizaga
- División Neurocirugía, Instituto de Investigaciones Médicas A Lanari, Universidad de Buenos Aires, Av. Combatientes de Malvinas 3150, Buenos Aires, Argentina
| | - Martín Abelleyro
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Micaela Rosato
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | - Carolina Jancic
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Yasuda
- Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Berner
- Servicio de Neurocirugía de la Clínica y Maternidad Santa Isabel, Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Área Investigación, Instituto de Oncología Ángel H. Roffo, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Verónica Salamone
- Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Cordner R, Jhun M, Panwar A, Wang H, Gull N, Murali R, McAbee JH, Mardiros A, Sanchez-Takei A, Mazer MW, Fan X, Jouanneau E, Yu JS, Black KL, Wheeler CJ. Glioma immunotherapy enhancement and CD8-specific sialic acid cleavage by isocitrate dehydrogenase (IDH)-1. Oncogene 2023:10.1038/s41388-023-02713-7. [PMID: 37161052 DOI: 10.1038/s41388-023-02713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
The promise of adaptive cancer immunotherapy in treating highly malignant tumors such as glioblastoma multiforme (GBM) can only be realized through expanding its benefits to more patients. Alleviating various modes of immune suppression has so far failed to achieve such expansion, but exploiting endogenous immune enhancers among mutated cancer genes could represent a more direct approach to immunotherapy improvement. We found that Isocitrate Dehydrogenase-1 (IDH1), which is commonly mutated in gliomas, enhances glioma vaccine efficacy in mice and discerns long from short survivors after vaccine therapy in GBM patients. Extracellular IDH1 directly enhanced T cell responses to multiple tumor antigens, and prolonged experimental glioma cell lysis. Moreover, IDH1 specifically bound to and exhibited sialidase activity against CD8. By contrast, mutant IDH1R132H lacked sialidase activity, delayed killing in glioma cells, and decreased host survival after immunotherapy. Overall, our findings identify IDH1 as an immunotherapeutic enhancer that mediates the known T cell-enhancing reaction of CD8 desialylation. This uncovers a new axis for immunotherapeutic improvement in GBM and other cancers, reveals novel physiological and molecular functions of IDH1, and hints at an unexpectedly direct link between lytic T cell function and metabolic activity in target cells.
Collapse
Affiliation(s)
- Ryan Cordner
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, UT, Provo, USA
| | - Michelle Jhun
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Akanksha Panwar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - HongQiang Wang
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicole Gull
- Department of Biomedical Sciences, Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joseph H McAbee
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Armen Mardiros
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- A2 Biotherapeutics, Agoura Hills, CA, USA
| | - Akane Sanchez-Takei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mia W Mazer
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xuemo Fan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA, USA
| | - Emmanuel Jouanneau
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurosurgery, Neurological Hospital and INSERM 842 Research Unit, Claude Bernard University, Lyon, France
| | - John S Yu
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher J Wheeler
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- International Brain Mapping Foundation, Society for Brain Mapping & Therapeutics, 860 Via De La Paz, Suite E-1, Pacific Palisades, CA, USA.
- StemVax Therapeutics (subsidiary of NovAccess Global), 8584 E. Washington St. #127, Chagrin Falls, OH, USA.
- T-Neuro Pharma, PO Box 781, Aptos, CA, USA.
| |
Collapse
|
5
|
Penet MF, Sharma RK, Bharti S, Mori N, Artemov D, Bhujwalla ZM. Cancer insights from magnetic resonance spectroscopy of cells and excised tumors. NMR IN BIOMEDICINE 2023; 36:e4724. [PMID: 35262263 PMCID: PMC9458776 DOI: 10.1002/nbm.4724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Multinuclear ex vivo magnetic resonance spectroscopy (MRS) of cancer cells, xenografts, human cancer tissue, and biofluids is a rapidly expanding field that is providing unique insights into cancer. Starting from the 1970s, the field has continued to evolve as a stand-alone technology or as a complement to in vivo MRS to characterize the metabolome of cancer cells, cancer-associated stromal cells, immune cells, tumors, biofluids and, more recently, changes in the metabolome of organs induced by cancers. Here, we review some of the insights into cancer obtained with ex vivo MRS and provide a perspective of future directions. Ex vivo MRS of cells and tumors provides opportunities to understand the role of metabolism in cancer immune surveillance and immunotherapy. With advances in computational capabilities, the integration of artificial intelligence to identify differences in multinuclear spectral patterns, especially in easily accessible biofluids, is providing exciting advances in detection and monitoring response to treatment. Metabolotheranostics to target cancers and to normalize metabolic changes in organs induced by cancers to prevent cancer-induced morbidity are other areas of future development.
Collapse
Affiliation(s)
- Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Raj Kumar Sharma
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Santosh Bharti
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Noriko Mori
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
| | - Dmitri Artemov
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Nanomechanical Signatures in Glioma Cells Depend on CD44 Distribution in IDH1 Wild-Type but Not in IDH1R132H Mutant Early-Passage Cultures. Int J Mol Sci 2023; 24:ijms24044056. [PMID: 36835465 PMCID: PMC9959176 DOI: 10.3390/ijms24044056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Atomic force microscopy (AFM) recently burst into biomedicine, providing morphological and functional characteristics of cancer cells and their microenvironment responsible for tumor invasion and progression, although the novelty of this assay needs to coordinate the malignant profiles of patients' specimens to diagnostically valuable criteria. Applying high-resolution semi-contact AFM mapping on an extended number of cells, we analyzed the nanomechanical properties of glioma early-passage cell cultures with a different IDH1 R132H mutation status. Each cell culture was additionally clustered on CD44+/- cells to find possible nanomechanical signatures that differentiate cell phenotypes varying in proliferative activity and the characteristic surface marker. IDH1 R132H mutant cells compared to IDH1 wild-type ones (IDH1wt) characterized by two-fold increased stiffness and 1.5-fold elasticity modulus. CD44+/IDH1wt cells were two-fold more rigid and much stiffer than CD44-/IDH1wt ones. In contrast to IDH1 wild-type cells, CD44+/IDH1 R132H and CD44-/IDH1 R132H did not exhibit nanomechanical signatures providing statistically valuable differentiation of these subpopulations. The median stiffness depends on glioma cell types and decreases according to the following manner: IDH1 R132H mt (4.7 mN/m), CD44+/IDH1wt (3.7 mN/m), CD44-/IDH1wt (2.5 mN/m). This indicates that the quantitative nanomechanical mapping would be a promising assay for the quick cell population analysis suitable for detailed diagnostics and personalized treatment of glioma forms.
Collapse
|
7
|
Zizmare L, Mehling R, Gonzalez-Menendez I, Lonati C, Quintanilla-Martinez L, Pichler BJ, Kneilling M, Trautwein C. Acute and chronic inflammation alter immunometabolism in a cutaneous delayed-type hypersensitivity reaction (DTHR) mouse model. Commun Biol 2022; 5:1250. [PMID: 36380134 PMCID: PMC9666528 DOI: 10.1038/s42003-022-04179-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
T-cell-driven immune responses are responsible for several autoimmune disorders, such as psoriasis vulgaris and rheumatoid arthritis. Identification of metabolic signatures in inflamed tissues is needed to facilitate novel and individualised therapeutic developments. Here we show the temporal metabolic dynamics of T-cell-driven inflammation characterised by nuclear magnetic resonance spectroscopy-based metabolomics, histopathology and immunohistochemistry in acute and chronic cutaneous delayed-type hypersensitivity reaction (DTHR). During acute DTHR, an increase in glutathione and glutathione disulfide is consistent with the ear swelling response and degree of neutrophilic infiltration, while taurine and ascorbate dominate the chronic phase, suggesting a switch in redox metabolism. Lowered amino acids, an increase in cell membrane repair-related metabolites and infiltration of T cells and macrophages further characterise chronic DTHR. Acute and chronic cutaneous DTHR can be distinguished by characteristic metabolic patterns associated with individual inflammatory pathways providing knowledge that will aid target discovery of specialised therapeutics. Nuclear magnetic resonance spectroscopy-based tissue metabolomics is used to define detailed temporal signatures of acute and chronic inflammation in cutaneous delayed-type hypersensitivity reaction.
Collapse
|
8
|
Potential role of Marine Bioactive Compounds targeting signaling pathways in cancer: A review. Eur J Pharmacol 2022; 936:175330. [DOI: 10.1016/j.ejphar.2022.175330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
|
9
|
Bogusiewicz J, Kupcewicz B, Goryńska PZ, Jaroch K, Goryński K, Birski M, Furtak J, Paczkowski D, Harat M, Bojko B. Investigating the Potential Use of Chemical Biopsy Devices to Characterize Brain Tumor Lipidomes. Int J Mol Sci 2022; 23:ijms23073518. [PMID: 35408879 PMCID: PMC8998862 DOI: 10.3390/ijms23073518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/21/2022] Open
Abstract
The development of a fast and accurate intraoperative method that enables the differentiation and stratification of cancerous lesions is still a challenging problem in laboratory medicine. Therefore, it is important to find and optimize a simple and effective analytical method of enabling the selection of distinctive metabolites. This study aims to assess the usefulness of solid-phase microextraction (SPME) probes as a sampling method for the lipidomic analysis of brain tumors. To this end, SPME was applied to sample brain tumors immediately after excision, followed by lipidomic analysis via liquid chromatography-high resolution mass spectrometry (LC-HRMS). The results showed that long fibers were a good option for extracting analytes from an entire lesion to obtain an average lipidomic profile. Moreover, significant differences between tumors of different histological origin were observed. In-depth investigation of the glioma samples revealed that malignancy grade and isocitrate dehydrogenase (IDH) mutation status impact the lipidomic composition of the tumor, whereas 1p/19q co-deletion did not appear to alter the lipid profile. This first on-site lipidomic analysis of intact tumors proved that chemical biopsy with SPME is a promising tool for the simple and fast extraction of lipid markers in neurooncology.
Collapse
Affiliation(s)
- Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland;
| | - Paulina Zofia Goryńska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Krzysztof Goryński
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
| | - Marcin Birski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Dariusz Paczkowski
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
| | - Marek Harat
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland; (M.B.); (J.F.); (D.P.)
- Department of Neurosurgery and Neurology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-168 Bydgoszcz, Poland
- Correspondence: (M.H.); (B.B.)
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089 Bydgoszcz, Poland; (J.B.); (P.Z.G.); (K.J.); (K.G.)
- Correspondence: (M.H.); (B.B.)
| |
Collapse
|
10
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
11
|
Korzowski A, Weckesser N, Franke VL, Breitling J, Goerke S, Schlemmer HP, Ladd ME, Bachert P, Paech D. Mapping an Extended Metabolic Profile of Gliomas Using High-Resolution 31P MRSI at 7T. Front Neurol 2022; 12:735071. [PMID: 35002914 PMCID: PMC8733158 DOI: 10.3389/fneur.2021.735071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphorus magnetic resonance spectroscopic imaging (31P MRSI) is of particular interest for investigations of patients with brain tumors as it enables to non-invasively assess altered energy and phospholipid metabolism in vivo. However, the limited sensitivity of 31P MRSI hampers its broader application at clinical field strengths. This study aimed to identify the additional value of 31P MRSI in patients with glioma at ultra-high B0 = 7T, where the increase in signal-to-noise ratio may foster its applicability for clinical research. High-quality, 3D 31P MRSI datasets with an effective voxel size of 5.7 ml were acquired from the brains of seven patients with newly diagnosed glioma. An optimized quantification model was implemented to reliably extract an extended metabolic profile, including low-concentrated metabolites such as extracellular inorganic phosphate, nicotinamide adenine dinucleotide [NAD(H)], and uridine diphosphoglucose (UDPG), which may act as novel tumor markers; a background signal was extracted as well, which affected measures of phosphomonoesters beneficially. Application of this model to the MRSI datasets yielded high-resolution maps of 12 different 31P metabolites, showing clear metabolic differences between white matter (WM) and gray matter, and between healthy and tumor tissues. Moreover, differences between tumor compartments in patients with high-grade glioma (HGG), i.e., gadolinium contrast-enhancing/necrotic regions (C+N) and peritumoral edema, could also be suggested from these maps. In the group of patients with HGG, the most significant changes in metabolite intensities were observed in C+N compared to WM, i.e., for phosphocholine +340%, UDPG +54%, glycerophosphoethanolamine −45%, and adenosine-5′-triphosphate −29%. Furthermore, a prominent signal from mobile phospholipids appeared in C+N. In the group of patients with low-grade glioma, only the NAD(H) intensity changed significantly by −28% in the tumor compared to WM. Besides the potential of 31P MRSI at 7T to provide novel insights into the biochemistry of gliomas in vivo, the attainable spatial resolutions improve the interpretability of 31P metabolite intensities obtained from malignant tissues, particularly when only subtle differences compared to healthy tissues are expected. In conclusion, this pilot study demonstrates that 31P MRSI at 7T has potential value for the clinical research of glioma.
Collapse
Affiliation(s)
- Andreas Korzowski
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weckesser
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Vanessa L Franke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Johannes Breitling
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Mark E Ladd
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JS. Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2021; 2:100469. [PMID: 35028610 PMCID: PMC8714851 DOI: 10.1016/j.xcrm.2021.100469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The most frequently mutated metabolic genes in human cancer are those encoding the enzymes isocitrate dehydrogenase 1 (IDH1) and IDH2; these mutations have so far been identified in more than 20 tumor types. Since IDH mutations were first reported in glioma over a decade ago, extensive research has revealed their association with altered cellular processes. Mutations in IDH lead to a change in enzyme function, enabling efficient conversion of 2-oxoglutarate to R-2-hydroxyglutarate (R-2-HG). It is proposed that elevated cellular R-2-HG inhibits enzymes that regulate transcription and metabolism, subsequently affecting nuclear, cytoplasmic, and mitochondrial biochemistry. The significance of these biochemical changes for tumorigenesis and potential for therapeutic exploitation remains unclear. Here we comprehensively review reported direct and indirect metabolic changes linked to IDH mutations and discuss their clinical significance. We also review the metabolic effects of first-generation mutant IDH inhibitors and highlight the potential for combination treatment strategies and new metabolic targets.
Collapse
Affiliation(s)
- Ingvild Comfort Hvinden
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tom Cadoux-Hudson
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Christopher J. Schofield
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
- Ineos Oxford Institute for Antimicrobial Research, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - James S.O. McCullagh
- Chemistry Research Laboratory, 12 Mansfield Road, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| |
Collapse
|
13
|
Simultaneous Recording of the Uptake and Conversion of Glucose and Choline in Tumors by Deuterium Metabolic Imaging. Cancers (Basel) 2021; 13:cancers13164034. [PMID: 34439188 PMCID: PMC8394025 DOI: 10.3390/cancers13164034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumors increase their glucose and choline uptake to support growth. These properties are employed to detect and identify tumors in the body by imaging the uptake of radio-isotope analogs of these compounds. In this study we show that deuterium metabolic imaging (DMI) (a new MRI method to image metabolites using non-radioactive labeling with deuterium) can image choline uptake in tumors. Furthermore, we demonstrate that DMI can image the tumor uptake of choline and glucose (and additionally its metabolic conversion) simultaneously, in contrast to radio-isotope imaging, which only assesses the uptake of one radio-isotope labeled compound at a time. For these reasons (and also because DMI is relatively simple and can be combined with other MR methods), it is a promising modality for a more specific tumor characterization than by separate imaging of the uptake of radio-isotope labeled glucose or choline. Abstract Increased glucose and choline uptake are hallmarks of cancer. We investigated whether the uptake and conversion of [2H9]choline alone and together with that of [6,6′-2H2]glucose can be assessed in tumors via deuterium metabolic imaging (DMI) after administering these compounds. Therefore, tumors with human renal carcinoma cells were grown subcutaneously in mice. Isoflurane anesthetized mice were IV infused in the MR magnet for ~20 s with ~0.2 mL solutions containing either [2H9]choline (0.05 g/kg) alone or together with [6,6′-2H2]glucose (1.3 g/kg). 2H MR was performed on a 11.7T MR system with a home-built 2H/1H coil using a 90° excitation pulse and 400 ms repetition time. 3D DMI was recorded at high resolution (2 × 2 × 2 mm) in 37 min or at low resolution (3.7 × 3.7 × 3.7 mm) in 2:24 min. Absolute tissue concentrations were calculated assuming natural deuterated water [HOD] = 13.7 mM. Within 5 min after [2H9]choline infusion, its signal appeared in tumor spectra representing a concentration increase to 0.3–1.2 mM, which then slowly decreased or remained constant over 100 min. In plasma, [2H9]choline disappeared within 15 min post-infusion, implying that its signal arises from tumor tissue and not from blood. After infusing a mixture of [2H9]choline and [6,6′-2H2]glucose, their signals were observed separately in tumor 2H spectra. Over time, the [2H9]choline signal broadened, possibly due to conversion to other choline compounds, [[6,6′-2H2]glucose] declined, [HOD] increased and a lactate signal appeared, reflecting glycolysis. Metabolic maps of 2H compounds, reconstructed from high resolution DMIs, showed their spatial tumor accumulation. As choline infusion and glucose DMI is feasible in patients, their simultaneous detection has clinical potential for tumor characterization.
Collapse
|
14
|
Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol 2021; 18:645-661. [PMID: 34131315 DOI: 10.1038/s41571-021-00521-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Mutations in the genes encoding the cytoplasmic and mitochondrial forms of isocitrate dehydrogenase (IDH1 and IDH2, respectively; collectively referred to as IDH) are frequently detected in cancers of various origins, including but not limited to acute myeloid leukaemia (20%), cholangiocarcinoma (20%), chondrosarcoma (80%) and glioma (80%). In all cases, neomorphic activity of the mutated enzyme leads to production of the oncometabolite D-2-hydroxyglutarate, which has profound cell-autonomous and non-cell-autonomous effects. The broad effects of IDH mutations on epigenetic, differentiation and metabolic programmes, together with their high prevalence across a variety of cancer types, early presence in tumorigenesis and uniform expression in tumour cells, make mutant IDH an ideal therapeutic target. Herein, we describe the current biological understanding of IDH mutations and the roles of mutant IDH in the various associated cancers. We also present the available preclinical and clinical data on various methods of targeting IDH-mutant cancers and discuss, based on the underlying pathogenesis of different IDH-mutated cancer types, whether the treatment approaches will converge or be context dependent.
Collapse
Affiliation(s)
- Christopher J Pirozzi
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| | - Hai Yan
- Department of Pathology, Duke University Medical Center, Durham, NC, USA. .,Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
Pronin IN, Batalov AI, Shultz EI, Mertsalova MP, Vikhrova NB, Pogosbekyan EL, Konakova TA, Kornienko VN. [Phosphorus MR spectroscopy and 18F-FDG PET/CT in the study of energy metabolism of glial tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:26-33. [PMID: 33864666 DOI: 10.17116/neiro20218502126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study energy metabolism in glial tumors using dynamic MR spectroscopy and 18F-FDG PET/CT. MATERIAL AND METHODS The study included 19 patients (9 women and 10 men) with newly diagnosed supratentorial glial tumors WHO Grade I-IV (diffuse astrocytoma - 4 cases, oligodendroglioma - 4 cases, anaplastic astrocytoma - 5 cases, glioblastoma - 6 cases). All patients underwent examination and surgical treatment at the Burdenko Neurosurgery Center. Dynamic MR spectroscopy and 18F-FDG PET/CT were applied in each patient. RESULTS We found multiple correlations between the ratio of bioorganic phosphate peaks and parameters of glucose uptake by tumor tissue. These relationships were more significant in patients with high-grade tumors: positive significant correlation between SUVtumor and PME/PCr ratio (RS=0.75, p=0.01), T/Nmix and βATP/Pi ratio (Rs=0.76, p=0.02), SUVpeaktumor and aATP/Pi ratio (RS=0.77, p=0.008). Moreover, there were negative correlations between SUVtumor and PCr/bATP ratio (RS= -0.66, p=0.05), T/Nmix and PDE/bATP ratio (RS= -0.83, p=0.006), SUVpeaktumor and PDE/aATP ratio (RS= -0.76, p=0.009). CONCLUSION High-grade gliomas were characterized by higher glucose consumption, ATP release (intensification of energy metabolism) and faster cell membrane synthesis. These processes indicate enhanced proliferation of tumor cells (intensification of plastic metabolism).
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - E I Shultz
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
16
|
Ruiz-Rodado V, Brender JR, Cherukuri MK, Gilbert MR, Larion M. Magnetic resonance spectroscopy for the study of cns malignancies. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 122:23-41. [PMID: 33632416 PMCID: PMC7910526 DOI: 10.1016/j.pnmrs.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 05/04/2023]
Abstract
Despite intensive research, brain tumors are amongst the malignancies with the worst prognosis; therefore, a prompt diagnosis and thoughtful assessment of the disease is required. The resistance of brain tumors to most forms of conventional therapy has led researchers to explore the underlying biology in search of new vulnerabilities and biomarkers. The unique metabolism of brain tumors represents one potential vulnerability and the basis for a system of classification. Profiling this aberrant metabolism requires a method to accurately measure and report differences in metabolite concentrations. Magnetic resonance-based techniques provide a framework for examining tumor tissue and the evolution of disease. Nuclear Magnetic Resonance (NMR) analysis of biofluids collected from patients suffering from brain cancer can provide biological information about disease status. In particular, urine and plasma can serve to monitor the evolution of disease through the changes observed in the metabolic profiles. Moreover, cerebrospinal fluid can be utilized as a direct reporter of cerebral activity since it carries the chemicals exchanged with the brain tissue and the tumor mass. Metabolic reprogramming has recently been included as one of the hallmarks of cancer. Accordingly, the metabolic rewiring experienced by these tumors to sustain rapid growth and proliferation can also serve as a potential therapeutic target. The combination of 13C tracing approaches with the utilization of different NMR spectral modalities has allowed investigations of the upregulation of glycolysis in the aggressive forms of brain tumors, including glioblastomas, and the discovery of the utilization of acetate as an alternative cellular fuel in brain metastasis and gliomas. One of the major contributions of magnetic resonance to the assessment of brain tumors has been the non-invasive determination of 2-hydroxyglutarate (2HG) in tumors harboring a mutation in isocitrate dehydrogenase 1 (IDH1). The mutational status of this enzyme already serves as a key feature in the clinical classification of brain neoplasia in routine clinical practice and pilot studies have established the use of in vivo magnetic resonance spectroscopy (MRS) for monitoring disease progression and treatment response in IDH mutant gliomas. However, the development of bespoke methods for 2HG detection by MRS has been required, and this has prevented the wider implementation of MRS methodology into the clinic. One of the main challenges for improving the management of the disease is to obtain an accurate insight into the response to treatment, so that the patient can be promptly diverted into a new therapy if resistant or maintained on the original therapy if responsive. The implementation of 13C hyperpolarized magnetic resonance spectroscopic imaging (MRSI) has allowed detection of changes in tumor metabolism associated with a treatment, and as such has been revealed as a remarkable tool for monitoring response to therapeutic strategies. In summary, the application of magnetic resonance-based methodologies to the diagnosis and management of brain tumor patients, in addition to its utilization in the investigation of its tumor-associated metabolic rewiring, is helping to unravel the biological basis of malignancies of the central nervous system.
Collapse
Affiliation(s)
- Victor Ruiz-Rodado
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Murali K Cherukuri
- Radiation Biology Branch, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States
| | - Mioara Larion
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institute of Health, Bethesda, United States.
| |
Collapse
|
17
|
Wang J, Quan Y, Lv J, Dong Q, Gong S. LncRNA IDH1-AS1 suppresses cell proliferation and tumor growth in glioma. Biochem Cell Biol 2020; 98:556-564. [PMID: 32990028 DOI: 10.1139/bcb-2019-0465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glioma is a type of brain tumor that is common globally, and is associated with a variety of genetic changes. It has been reported that isocitrate dehydrogenase 1 (IDH1) is overexpressed in glioma and in HeLa cells. The lncRNA IDH1-AS1 is believed to interact with IDH1, and when IDH1-AS1 is overexpressed, HeLa cell proliferation is inhibited. However, the effects of IDH1-AS1 on glioma were relatively unknown. The results from this work show that IDH1-AS1 is downregulated in the glioma tissues. We used primary glioblastoma cell lines U251 and U87-MG to study the effects of IDH1-AS1 on glioma cell growth, in vitro and in vivo. We found that when IDH1-AS1 is overexpressed cell proliferation is inhibited, cell cycle is arrested at the G1 phase, and the protein expression levels of cyclinD1, cyclinA, cyclinE, CDK2, and CDK4 are decreased. We found that cell apoptosis was increased when IDH1-AS1 was overexpressed, as evidenced by increases in the levels of cleaved caspase-9 and -3. Conversely, knockdown of IDH1-AS1 promoted cell proliferation. Moreover, we proved that overexpression of IDH1-AS1 inhibits the tumorigenesis of U251 cells, in vivo. Furthermore, IDH1-AS1 did not affect IDH1 protein expression, but altered its enzymatic activities in glioma cells. Silencing of IDH1 reversed the effects of IDH1-AS1 upregulation on cell viability. Hence, our study provides first-hand evidence for the effects of lncRNA IDH1-AS1 on gliomas. Because overexpressing IDH1-AS1 inhibited cell growth, IDH1-AS1 could also be considered as a potential target for glioma treatment.
Collapse
Affiliation(s)
- Jubo Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Yu Quan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Jian Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Quan Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Shouping Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| |
Collapse
|
18
|
Main genetic differences in high-grade gliomas may present different MR imaging and MR spectroscopy correlates. Eur Radiol 2020; 31:749-763. [PMID: 32875375 DOI: 10.1007/s00330-020-07138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To assess whether the main genetic differences observed in high-grade gliomas (HGG) will present different MR imaging and MR spectroscopy correlates that could be used to better characterize lesions in the clinical setting. METHODS Seventy-nine patients with histologically confirmed HGG were recruited. Immunohistochemistry analyses for isocitrate dehydrogenase gene 1 (IDH1), alpha thalassemia mental retardation X-linked gene (ATRX), Ki-67, and p53 protein expression were performed. Tumour radiological features were examined on MR images. Metabolic profile and infiltrative pattern were assessed with MR spectroscopy. MR features were analysed to identify imaging-molecular associations. The Kaplan-Meier method and the Cox regression model were used to identify survival prognostic factors. RESULTS In total, 17.7% of the lesions were IDH1-mutated, 8.9% presented ATRX-mutated, 70.9% presented p53 unexpressed, and 22.8% had Ki-67 > 5%. IDH1 wild-type tumours had higher levels of mobile lipids (p = 0.001). The tumour-infiltrative pattern was higher in HGG with unexpressed p53 (p = 0.009). Mutated ATRX tumours presented higher levels of glutamate and glutamine (Glx) (p = 0.001). An association was observed between Glx tumour levels (p = 0.038) and Ki-67 expression (p = 0.008) with the infiltrative pattern. Survival analyses identified IDH1 status, age, and tumour choline levels as independent predictors of prognostic significance. CONCLUSIONS Our results suggest that IDH1-wt tumours are more necrotic than IDH1-mut. And that the presence of an infiltrative pattern in HGG is associated with loss of p53 expression, Ki-67 index, and Glx levels. Finally, tumour choline levels could be used as a predictive factor in survival in addition to the IDH1 status to provide a more accurate prediction of survival in HGG patients. KEY POINTS • IDH1-wt tumours present higher levels of mobile lipids than IDH1-mut. • Mutated ATRX tumours exhibit higher levels of glutamate and glutamine. • Loss of p53 expression, Ki-67 expression, and glutamate and glutamine levels may contribute to the presence of an infiltrative pattern in HGG.
Collapse
|
19
|
Branzoli F, Marjańska M. Magnetic resonance spectroscopy of isocitrate dehydrogenase mutated gliomas: current knowledge on the neurochemical profile. Curr Opin Neurol 2020; 33:413-421. [PMID: 32657882 PMCID: PMC7526653 DOI: 10.1097/wco.0000000000000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Magnetic resonance spectroscopy (MRS) may play a key role for the management of patients with glioma. We highlighted the utility of MRS in the noninvasive diagnosis of gliomas with mutations in isocitrate dehydrogenase (IDH) genes, by providing an overview of the neurochemical alterations observed in different glioma subtypes, as well as during treatment and progression, both in vivo and ex vivo. RECENT FINDINGS D-2-hydroxyglutarate (2HG) decrease during anticancer treatments was recently shown to be associated with altered levels of other metabolites, including lactate, glutamate and glutathione, suggesting that tumour treatment leads to a metabolic reprogramming beyond 2HG depletion. In combination with 2HG quantification, cystathionine and glycine seem to be the most promising candidates for higher specific identification of glioma subtypes and follow-up of disease progression and response to treatment. SUMMARY The implementation of advanced MRS methods in the routine clinical practice will allow the quantification of metabolites that are not detectable with conventional methods and may enable immediate, accurate diagnosis of gliomas, which is crucial for planning optimal therapeutic strategies and follow-up examinations. The role of different metabolites as predictors of patient outcome still needs to be elucidated.
Collapse
Affiliation(s)
- Francesca Branzoli
- Institut du Cerveau - ICM, Centre de Neuroimagerie de Recherche - CENIR
- ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
20
|
Wenger KJ, Steinbach JP, Bähr O, Pilatus U, Hattingen E. Lower Lactate Levels and Lower Intracellular pH in Patients with IDH-Mutant versus Wild-Type Gliomas. AJNR Am J Neuroradiol 2020; 41:1414-1422. [PMID: 32646946 DOI: 10.3174/ajnr.a6633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/03/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Preclinical evidence points toward a metabolic reprogramming in isocitrate dehydrogenase (IDH) mutated tumor cells with down-regulation of the expression of genes that encode for glycolytic metabolism. We noninvasively investigated lactate and Cr concentrations, as well as intracellular pH using 1H/phosphorus 31 (31P) MR spectroscopy in a cohort of patients with gliomas. MATERIALS AND METHODS Thirty prospectively enrolled, mostly untreated patients with gliomas met the spectral quality criteria (World Health Organization II [n = 7], III [n = 16], IV [n = 7]; IDH-mutant [n = 23]; IDH wild-type [n = 7]; 1p/19q codeletion [n = 9]). MR imaging protocol included 3D 31P chemical shift imaging and 1H single-voxel spectroscopy (point-resolved spectroscopy sequence at TE = 30 ms and TE = 97 ms with optimized echo spacing for detection of 2-hydroxyglutarate) from the tumor area. Values for absolute metabolite concentrations were calculated (phantom replacement method). Intracellular pH was determined from 31P chemical shift imaging. RESULTS At TE = 97 ms, lactate peaks can be fitted with little impact of lipid/macromolecule contamination. We found a significant difference in lactate concentrations, lactate/Cr ratios, and intracellular pH when comparing tumor voxels of patients with IDH-mutant with those of patients with IDH wild-type gliomas, with reduced lactate levels and near-normal intracellular pH in patients with IDH-mutant gliomas. We additionally found evidence for codependent effects of 1p/19q codeletion and IDH mutations with regard to lactate concentrations for World Health Organization tumor grades II and III, with lower lactate levels in patients exhibiting the codeletion. There was no statistical significance when comparing lactate concentrations between IDH-mutant World Health Organization II and III gliomas. CONCLUSIONS We found indirect evidence for metabolic reprogramming in IDH-mutant tumors with significantly lower lactate concentrations compared with IDH wild-type tumors and a near-normal intracellular pH.
Collapse
Affiliation(s)
- K J Wenger
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.) .,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - J P Steinbach
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - O Bähr
- Neurooncology (J.P.S., O.B.), University Hospital Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - U Pilatus
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| | - E Hattingen
- From the Departments of Neuroradiology (K.J.W., U.P., E.H.).,German Cancer Consortium Partner Site (K.J.W., J.P.S., O.B., U.P., E.H.), Frankfurt am Main/Mainz, Germany.,German Cancer Research Center (K.J.W., J.P.S., O.B., U.P., E.H.), Heidelberg, Germany
| |
Collapse
|
21
|
Molloy AR, Najac C, Viswanath P, Lakhani A, Subramani E, Batsios G, Radoul M, Gillespie AM, Pieper RO, Ronen SM. MR-detectable metabolic biomarkers of response to mutant IDH inhibition in low-grade glioma. Theranostics 2020; 10:8757-8770. [PMID: 32754276 PMCID: PMC7392019 DOI: 10.7150/thno.47317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1mut) are reported in 70-90% of low-grade gliomas and secondary glioblastomas. IDH1mut catalyzes the reduction of α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG), an oncometabolite which drives tumorigenesis. Inhibition of IDH1mut is therefore an emerging therapeutic approach, and inhibitors such as AG-120 and AG-881 have shown promising results in phase 1 and 2 clinical studies. However, detection of response to these therapies prior to changes in tumor growth can be challenging. The goal of this study was to identify non-invasive clinically translatable metabolic imaging biomarkers of IDH1mut inhibition that can serve to assess response. Methods: IDH1mut inhibition was confirmed using an enzyme assay and 1H- and 13C- magnetic resonance spectroscopy (MRS) were used to investigate the metabolic effects of AG-120 and AG-881 on two genetically engineered IDH1mut-expressing cell lines, NHAIDH1mut and U87IDH1mut. Results:1H-MRS indicated a significant decrease in steady-state 2-HG following treatment, as expected. This was accompanied by a significant 1H-MRS-detectable increase in glutamate. However, other metabolites previously linked to 2-HG were not altered. 13C-MRS also showed that the steady-state changes in glutamate were associated with a modulation in the flux of glutamine to both glutamate and 2-HG. Finally, hyperpolarized 13C-MRS was used to show that the flux of α-KG to both glutamate and 2-HG was modulated by treatment. Conclusion: In this study, we identified potential 1H- and 13C-MRS-detectable biomarkers of response to IDH1mut inhibition in gliomas. Although further studies are needed to evaluate the utility of these biomarkers in vivo, we expect that in addition to a 1H-MRS-detectable drop in 2-HG, a 1H-MRS-detectable increase in glutamate, as well as a hyperpolarized 13C-MRS-detectable change in [1-13C] α-KG flux, could serve as metabolic imaging biomarkers of response to treatment.
Collapse
Affiliation(s)
- Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Aliya Lakhani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Russell O Pieper
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Transformation Foci in IDH1-mutated Gliomas Show STAT3 Phosphorylation and Downregulate the Metabolic Enzyme ETNPPL, a Negative Regulator of Glioma Growth. Sci Rep 2020; 10:5504. [PMID: 32218467 PMCID: PMC7099072 DOI: 10.1038/s41598-020-62145-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/27/2020] [Indexed: 01/07/2023] Open
Abstract
IDH1-mutated gliomas are slow-growing brain tumours which progress into high-grade gliomas. The early molecular events causing this progression are ill-defined. Previous studies revealed that 20% of these tumours already have transformation foci. These foci offer opportunities to better understand malignant progression. We used immunohistochemistry and high throughput RNA profiling to characterize foci cells. These have higher pSTAT3 staining revealing activation of JAK/STAT signaling. They downregulate RNAs involved in Wnt signaling (DAAM2, SFRP2), EGFR signaling (MLC1), cytoskeleton and cell-cell communication (EZR, GJA1). In addition, foci cells show reduced levels of RNA coding for Ethanolamine-Phosphate Phospho-Lyase (ETNPPL/AGXT2L1), a lipid metabolism enzyme. ETNPPL is involved in the catabolism of phosphoethanolamine implicated in membrane synthesis. We detected ETNPPL protein in glioma cells as well as in astrocytes in the human brain. Its nuclear localization suggests additional roles for this enzyme. ETNPPL expression is inversely correlated to glioma grade and we found no ETNPPL protein in glioblastomas. Overexpression of ETNPPL reduces the growth of glioma stem cells indicating that this enzyme opposes gliomagenesis. Collectively, these results suggest that a combined alteration in membrane lipid metabolism and STAT3 pathway promotes IDH1-mutated glioma malignant progression.
Collapse
|
23
|
Xu W, Liu Z, Ren H, Peng X, Wu A, Ma D, Liu G, Liu L. Twenty Metabolic Genes Based Signature Predicts Survival of Glioma Patients. J Cancer 2020; 11:441-449. [PMID: 31897239 PMCID: PMC6930419 DOI: 10.7150/jca.30923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioma, caused by carcinogenesis of brain and spinal glial cells, is the most common primary malignant brain tumor. To find the important indicator for glioma prognosis is still a challenge and the metabolic alteration of glioma has been frequently reported recently. Methods: In our current work, a risk score model based on the expression of twenty metabolic genes was developed using the metabolic gene expressions in The Cancer Genome Atlas (TCGA) dataset, the methods of which included the cox multivariate regression and the random forest variable hunting, a kind of machine learning algorithm, and the risk score generated from this model is used to make predictions in the survival of glioma patients in the training dataset. Subsequently, the result was further verified in other three verification sets (GSE4271, GSE4412 and GSE16011). Risk score related pathways collected in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were identified using Gene Set Enrichment Analysis (GSEA). Results: The risk score generated from our model makes good predictions in the survival of glioma patients in the training dataset and other three verification sets. By assessing the relationships between clinical indicators and the risk score, we found that the risk score was an independent and significant indicator for the prognosis of glioma patients. Simultaneously, we conducted a survival analysis of the patients who received chemotherapy and who did not, finding that the risk score was equally valid in both cases. And signaling pathways related to the genesis and development of multiple cancers were also identified. Conclusions: In summary, our risk score model is predictive for 967 glioma patients' survival from four independent datasets, and the risk score is a meaningful and independent parameter of the clinicopathological information.
Collapse
Affiliation(s)
- Wenfang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Zhenhao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - He Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Xueqing Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Aoshen Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Gang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, P.R.China
| |
Collapse
|
24
|
Biedermann J, Preussler M, Conde M, Peitzsch M, Richter S, Wiedemuth R, Abou-El-Ardat K, Krüger A, Meinhardt M, Schackert G, Leenders WP, Herold-Mende C, Niclou SP, Bjerkvig R, Eisenhofer G, Temme A, Seifert M, Kunz-Schughart LA, Schröck E, Klink B. Mutant IDH1 Differently Affects Redox State and Metabolism in Glial Cells of Normal and Tumor Origin. Cancers (Basel) 2019; 11:cancers11122028. [PMID: 31888244 PMCID: PMC6966450 DOI: 10.3390/cancers11122028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023] Open
Abstract
IDH1R132H (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1wt converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP+), whereas IDH1R132H uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1R132H are still ambiguous. The present study demonstrates that IDH1R132H expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD+ levels upon IDH1R132H transduction. However, in astrocytes IDH1R132H led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1R132H cells utilize NAD+ to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.
Collapse
Affiliation(s)
- Julia Biedermann
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Matthias Preussler
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Marina Conde
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
| | - Ralf Wiedemuth
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
| | - Khalil Abou-El-Ardat
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
| | - Alexander Krüger
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Meinhardt
- Institute for Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Gabriele Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - William P. Leenders
- Department of Biochemistry, Radboud University Medical Center, 6525 Nijmegen, The Netherlands;
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Simone P. Niclou
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Rolf Bjerkvig
- Department of Oncology, NorLux Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg; (S.P.N.); (R.B.)
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.P.); (S.R.); (G.E.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (M.C.); (R.W.); (G.S.); (A.T.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
| | - Evelin Schröck
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Barbara Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (J.B.); (M.P.); (K.A.-E.-A.); (A.K.); (E.S.)
- National Center for Tumor Diseases (NCT), Partner site Dresden, 01307 Dresden, Germany;
- German Cancer Consortium (DKTK), Dresden, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- National Center of Genetics (NCG), Laboratoire national de santé (LNS), L-3555 Dudelange, Luxembourg
- Correspondence: ; Tel.: +352-28100-418; Fax: +352-28100-441
| |
Collapse
|
25
|
Julià-Sapé M, Candiota AP, Arús C. Cancer metabolism in a snapshot: MRS(I). NMR IN BIOMEDICINE 2019; 32:e4054. [PMID: 30633389 DOI: 10.1002/nbm.4054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The contribution of MRS(I) to the in vivo evaluation of cancer-metabolism-derived metrics, mostly since 2016, is reviewed here. Increased carbon consumption by tumour cells, which are highly glycolytic, is now being sampled by 13 C magnetic resonance spectroscopic imaging (MRSI) following the injection of hyperpolarized [1-13 C] pyruvate (Pyr). Hot-spots of, mostly, increased lactate dehydrogenase activity or flow between Pyr and lactate (Lac) have been seen with cancer progression in prostate (preclinical and in humans), brain and pancreas (both preclinical) tumours. Therapy response is usually signalled by decreased Lac/Pyr 13 C-labelled ratio with respect to untreated or non-responding tumour. For therapeutic agents inducing tumour hypoxia, the 13 C-labelled Lac/bicarbonate ratio may be a better metric than the Lac/Pyr ratio. 31 P MRSI may sample intracellular pH changes from brain tumours (acidification upon antiangiogenic treatment, basification at fast proliferation and relapse). The steady state tumour metabolome pattern is still in use for cancer evaluation. Metrics used for this range from quantification of single oncometabolites (such as 2-hydroxyglutarate in mutant IDH1 glial brain tumours) to selected metabolite ratios (such as total choline to N-acetylaspartate (plain ratio or CNI index)) or the whole 1 H MRSI(I) pattern through pattern recognition analysis. These approaches have been applied to address different questions such as tumour subtype definition, following/predicting the response to therapy or defining better resection or radiosurgery limits.
Collapse
Affiliation(s)
- Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Biociències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| |
Collapse
|
26
|
Lee JE, Jeun SS, Kim SH, Yoo CY, Baek HM, Yang SH. Metabolic profiling of human gliomas assessed with NMR. J Clin Neurosci 2019; 68:275-280. [PMID: 31409545 DOI: 10.1016/j.jocn.2019.07.078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/12/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023]
Abstract
Little is known about the underlying metabolic alterations of gliomas. The objective of this study was to analyze metabolomic profiles of gliomas diagnosed according to revised WHO classification to demonstrate metabolic signatures beyond isocitrate dehydrogenase (IDH) 1/2 mutation. 1H NMR spectroscopy of tumor extracts was performed to analyze brain tumor metabolism. We detected 46 metabolites including 2-hydroxyglutarate from human brain tumors. Metabolic profiles obtained were analyzed using multivariate analysis and MetaboAnalyst 3.0, a pathway analysis tool. We found that lactate, glutamate, alanine, glutamine, 2-hydroxglutarate, serine, O-phosphocholine, glycine, glycerol, myo-inositol, aspartate, leucine, threonine, creatine, and valine had top-ranked VIP scores in metabolic pathway analyses of glioma. Major metabolism pathways perturbed in glioma included alanine/aspartate/glutamate metabolism, glycine/serine/threonine metabolism, pyruvate metabolism, taurine/hypotaurine metabolism, and d-glutamine/d-glutamate metabolism. Altered metabolites were defined between low-grade and high-grade gliomas. We identified metabolomics signatures of gliomas associated with 2-hydroxglutarate and glioma grade. Metabolic approach may lead to metabolomic cluster-precision strategy and development of metabolic anti-glioma therapy in the future.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Sin Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University of College of Medicine, Republic of Korea
| | - Chang Young Yoo
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Hyeon-Man Baek
- Department of Molecular Medicine, Gachon University School of Medicine, Republic of Korea.
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
27
|
Yan Z, Yang J, Fan L, Xu D, Hu Y. 31 gene expression-based signatures serve as indicators of prognosis for patients with glioma. Oncol Lett 2019; 18:291-297. [PMID: 31289499 PMCID: PMC6540079 DOI: 10.3892/ol.2019.10327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 07/17/2018] [Indexed: 11/17/2022] Open
Abstract
Glioma has one of the highest mortality rates of all cancer types; however, the prognosis cannot be predicted effectively using clinical indicators, due to the biological heterogeneity of the disease. A total of 31 gene expression-based signatures were identified using selected features in The Cancer Genome Atlas cohorts and machine learning methods. The signatures were assayed in the training dataset and were further validated in four completely independent datasets. Association analyses were implemented, and the results indicated that the signature was not significantly associated with age, radiation therapy or primary tumor size. A nomogram for the 1-year overall survival rate of patients with glioma following initial diagnosis was plotted to facilitate the clinical utilization of the signature. Gene Set Enrichment Analysis was performed based on the signature, in order to determine the potential altered pathways. Metabolic pathways were determined to be significantly enriched. In summary, the 31 gene expression-based signatures were effective and robust in predicting the clinical outcome of glioma in 1,016 glioma samples in five independent international cohorts.
Collapse
Affiliation(s)
- Zhongjun Yan
- Neurosurgery Department, The Second Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jianlong Yang
- Neurosurgery Department, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Lingling Fan
- Neurology Department, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Dongwei Xu
- Neurosurgery Department, The Second Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan Hu
- Neurosurgery Department, The Second Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
28
|
Livermore LJ, Isabelle M, Bell IM, Scott C, Walsby-Tickle J, Gannon J, Plaha P, Vallance C, Ansorge O. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol Adv 2019; 1:vdz008. [PMID: 31608327 PMCID: PMC6777649 DOI: 10.1093/noajnl/vdz008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The molecular genetic classification of gliomas, particularly the identification of isocitrate dehydrogenase (IDH) mutations, is critical for clinical and surgical decision-making. Raman spectroscopy probes the unique molecular vibrations of a sample to accurately characterize its molecular composition. No sample processing is required allowing for rapid analysis of tissue. The aim of this study was to evaluate the ability of Raman spectroscopy to rapidly identify the common molecular genetic subtypes of diffuse glioma in the neurosurgical setting using fresh biopsy tissue. In addition, classification models were built using cryosections, formalin-fixed paraffin-embedded (FFPE) sections and LN-18 (IDH-mutated and wild-type parental cell) glioma cell lines. METHODS Fresh tissue, straight from neurosurgical theatres, underwent Raman analysis and classification into astrocytoma, IDH-wild-type; astrocytoma, IDH-mutant; or oligodendroglioma. The genetic subtype was confirmed on a parallel section using immunohistochemistry and targeted genetic sequencing. RESULTS Fresh tissue samples from 62 patients were collected (36 astrocytoma, IDH-wild-type; 21 astrocytoma, IDH-mutated; 5 oligodendroglioma). A principal component analysis fed linear discriminant analysis classification model demonstrated 79%-94% sensitivity and 90%-100% specificity for predicting the 3 glioma genetic subtypes. For the prediction of IDH mutation alone, the model gave 91% sensitivity and 95% specificity. Seventy-nine cryosections, 120 FFPE samples, and LN18 cells were also successfully classified. Meantime for Raman data collection was 9.5 min in the fresh tissue samples, with the process from intraoperative biopsy to genetic classification taking under 15 min. CONCLUSION These data demonstrate that Raman spectroscopy can be used for the rapid, intraoperative, classification of gliomas into common genetic subtypes.
Collapse
Affiliation(s)
- Laurent James Livermore
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Ian Mac Bell
- Renishaw plc., Spectroscopy Products Division, UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Joan Gannon
- Department of Chemistry, University of Oxford, UK
| | - Puneet Plaha
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
29
|
Dando I, Pozza ED, Ambrosini G, Torrens-Mas M, Butera G, Mullappilly N, Pacchiana R, Palmieri M, Donadelli M. Oncometabolites in cancer aggressiveness and tumour repopulation. Biol Rev Camb Philos Soc 2019; 94:1530-1546. [PMID: 30972955 DOI: 10.1111/brv.12513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.
Collapse
Affiliation(s)
- Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| |
Collapse
|
30
|
Zhou L, Wang Z, Hu C, Zhang C, Kovatcheva-Datchary P, Yu D, Liu S, Ren F, Wang X, Li Y, Hou X, Piao H, Lu X, Zhang Y, Xu G. Integrated Metabolomics and Lipidomics Analyses Reveal Metabolic Reprogramming in Human Glioma with IDH1 Mutation. J Proteome Res 2019; 18:960-969. [PMID: 30596429 DOI: 10.1021/acs.jproteome.8b00663] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mutations in isocitrate dehydrogenase ( IDH) 1 are high-frequency events in low-grade glioma and secondary glioblastoma, and IDH1 mutant gliomas are vulnerable to interventions. Metabolic reprogramming is a hallmark of cancer. In this study, comprehensive metabolism investigation of clinical IDH1 mutant glioma specimens was performed to explore its specific metabolic reprogramming in real microenvironment. Massive metabolic alterations from glycolysis to lipid metabolism were identified in the IDH1 mutant glioma tissue when compared to IDH1 wild-type glioma. Of note, tricarboxylic acid (TCA) cycle intermediates were in similar levels in both groups, with more pyruvate found entering the TCA cycle in IDH1 mutant glioma. The pool of fatty acyl chains was also reduced, displayed as decreased triglycerides and sphingolipids, although membrane phosphatidyl lipids were not changed. The lower fatty acyl pool may be mediated by the lower protein expression levels of long-chain acyl-CoA synthetase 1 (ACSL1), ACSL4, and very long-chain acyl-CoA synthetase 3 (ACSVL3) in IDH1 mutant glioma. Lower ACSL1 was further found to contribute to the better survival of IDH1 mutant glioma patients based on the The Cancer Genome Atlas (TCGA) RNA sequencing data. Our research provides valuable insights into the tissue metabolism of human IDH1 mutant glioma and unravels new lipid-related targets.
Collapse
Affiliation(s)
- Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Chaoqi Zhang
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Petia Kovatcheva-Datchary
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shasha Liu
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Feifei Ren
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yanli Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xiaoli Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Hailong Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| | - Yi Zhang
- Biotherapy Center and Cancer Center , The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P. R. China
| |
Collapse
|
31
|
Karsy M, Guan J, Huang LE. Prognostic role of mitochondrial pyruvate carrier in isocitrate dehydrogenase-mutant glioma. J Neurosurg 2019; 130:56-66. [PMID: 29547090 DOI: 10.3171/2017.9.jns172036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/20/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Gliomas are one of the most common types of primary brain tumors. Recent studies have supported the importance of key genetic alterations, including isocitrate dehydrogenase (IDH) mutations and 1p19q codeletion, in glioma prognosis. Mutant IDH produces 2-hydroxyglutarate from α-ketoglutarate, a key metabolite of the Krebs cycle. The mitochondrial pyruvate carrier (MPC) is composed of MPC1 and MPC2 subunits and is functionally essential for the Krebs cycle. The authors sought to explore the impact of MPC1 and MPC2 expression on patient prognosis. METHODS Genomic and clinical data in patients with lower-grade glioma (WHO grades II and III) from The Cancer Genome Atlas (TCGA) were evaluated using Kaplan-Meier analysis and hazards modeling. Validation was conducted with additional data sets, including glioblastoma. RESULTS A total of 286 patients with lower-grade glioma (mean age 42.7 ± 13.5 years, 55.6% males) included 54 cases of IDH-wild type (18.9%); 140 cases of IDH-mutant, 1p19q-intact (49.0%); and 85 cases of IDH-mutant, 1p19q-codeleted (29.7%) tumors. Kaplan-Meier analysis showed that an MPC1 z-score > 0 distinguished better survival, particularly in IDH-mutant (p < 0.01) but not IDH-wild type tumors. Conversely, an MPC2 z-score > 0 identified worsened survival, particularly in IDH-mutant (p < 0.01) but not IDH-wild type tumors. Consistently, neither MPC1 nor MPC2 was predictive in a glioblastoma data set containing 5% IDH-mutant cases. Within the IDH-stratified lower-grade glioma data set, MPC1 status distinguished improved survival in 1p19q-codeleted tumors (p < 0.05), whereas MPC2 expression delineated worsened survival in 1p19q-intact tumors (p < 0.01). A hazards model identified IDH and 1p19q status, age (p = 0.01, HR = 1.03), Karnofsky Performance Scale (KPS) score (p = 0.03, HR = 0.97), and MPC1 (p = 0.003, HR = 0.52) but not MPC2 (p = 0.38) as key variables affecting overall survival. Further validation confirmed MPC1 as an independent predictor of lower-grade glioma. A clinical risk score using IDH and 1p19q status, age, KPS score, and MPC1 and MPC2 z-scores defined 4 risk categories for lower-grade glioma; this score was validated using a secondary glioma data set. CONCLUSIONS These results support the importance of MPC, especially MPC1, in improving prognostication of IDH-mutant tumors. The generation of a risk score system directly translates this finding to clinical application; however, further research to improve the molecular understanding of the role of MPC in the metabologenomic regulation of gliomas is warranted.
Collapse
Affiliation(s)
| | | | - L Eric Huang
- Departments of1Neurosurgery and
- 2Oncological Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
32
|
Hujber Z, Horváth G, Petővári G, Krencz I, Dankó T, Mészáros K, Rajnai H, Szoboszlai N, Leenders WPJ, Jeney A, Tretter L, Sebestyén A. GABA, glutamine, glutamate oxidation and succinic semialdehyde dehydrogenase expression in human gliomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:271. [PMID: 30404651 PMCID: PMC6223071 DOI: 10.1186/s13046-018-0946-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022]
Abstract
Background Bioenergetic characterisation of malignant tissues revealed that different tumour cells can catabolise multiple substrates as salvage pathways, in response to metabolic stress. Altered metabolism in gliomas has received a lot of attention, especially in relation to IDH mutations, and the associated oncometabolite D-2-hydroxyglutarate (2-HG) that impact on metabolism, epigenetics and redox status. Astrocytomas and oligodendrogliomas, collectively called diffuse gliomas, are derived from astrocytes and oligodendrocytes that are in metabolic symbiosis with neurons; astrocytes can catabolise neuron-derived glutamate and gamma-aminobutyric acid (GABA) for supporting and regulating neuronal functions. Methods Metabolic characteristics of human glioma cell models – including mitochondrial function, glycolytic pathway and energy substrate oxidation – in relation to IDH mutation status and after 2-HG incubation were studied to understand the Janus-faced role of IDH1 mutations in the progression of gliomas/astrocytomas. The metabolic and bioenergetic features were identified in glioma cells using wild-type and genetically engineered IDH1-mutant glioblastoma cell lines by metabolic analyses with Seahorse, protein expression studies and liquid chromatography-mass spectrometry. Results U251 glioma cells were characterised by high levels of glutamine, glutamate and GABA oxidation. Succinic semialdehyde dehydrogenase (SSADH) expression was correlated to GABA oxidation. GABA addition to glioma cells increased proliferation rates. Expression of mutated IDH1 and treatment with 2-HG reduced glutamine and GABA oxidation, diminished the pro-proliferative effect of GABA in SSADH expressing cells. SSADH protein overexpression was found in almost all studied human cases with no significant association between SSADH expression and clinicopathological parameters (e.g. IDH mutation). Conclusions Our findings demonstrate that SSADH expression may participate in the oxidation and/or consumption of GABA in gliomas, furthermore, GABA oxidation capacity may contribute to proliferation and worse prognosis of gliomas. Moreover, IDH mutation and 2-HG production inhibit GABA oxidation in glioma cells. Based on these data, GABA oxidation and SSADH activity could be additional therapeutic targets in gliomas/glioblastomas. Electronic supplementary material The online version of this article (10.1186/s13046-018-0946-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gergő Horváth
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Katalin Mészáros
- Hungarian Academy of Sciences - Momentum Hereditary Endocrine Tumours Research Group, Semmelweis University - National Bionics Program, Budapest, 1088, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, 1518, Hungary
| | - William P J Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - László Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, 1444, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.
| |
Collapse
|
33
|
|
34
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
35
|
Methylation-mediated miR-155-FAM133A axis contributes to the attenuated invasion and migration of IDH mutant gliomas. Cancer Lett 2018; 432:93-102. [DOI: 10.1016/j.canlet.2018.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
|
36
|
Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, Alansary D, Sonner JK, Green E, Deumelandt K, Kilian M, Neftel C, Uhlig S, Kessler T, von Landenberg A, Berghoff AS, Marsh K, Steadman M, Zhu D, Nicolay B, Wiestler B, Breckwoldt MO, Al-Ali R, Karcher-Bausch S, Bozza M, Oezen I, Kramer M, Meyer J, Habel A, Eisel J, Poschet G, Weller M, Preusser M, Nadji-Ohl M, Thon N, Burger MC, Harter PN, Ratliff M, Harbottle R, Benner A, Schrimpf D, Okun J, Herold-Mende C, Turcan S, Kaulfuss S, Hess-Stumpp H, Bieback K, Cahill DP, Plate KH, Hänggi D, Dorsch M, Suvà ML, Niemeyer BA, von Deimling A, Wick W, Platten M. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med 2018; 24:1192-1203. [PMID: 29988124 DOI: 10.1038/s41591-018-0095-6] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
The oncometabolite (R)-2-hydroxyglutarate (R-2-HG) produced by isocitrate dehydrogenase (IDH) mutations promotes gliomagenesis via DNA and histone methylation. Here, we identify an additional activity of R-2-HG: tumor cell-derived R-2-HG is taken up by T cells where it induces a perturbation of nuclear factor of activated T cells transcriptional activity and polyamine biosynthesis, resulting in suppression of T cell activity. IDH1-mutant gliomas display reduced T cell abundance and altered calcium signaling. Antitumor immunity to experimental syngeneic IDH1-mutant tumors induced by IDH1-specific vaccine or checkpoint inhibition is improved by inhibition of the neomorphic enzymatic function of mutant IDH1. These data attribute a novel, non-tumor cell-autonomous role to an oncometabolite in shaping the tumor immune microenvironment.
Collapse
Affiliation(s)
- Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Theresa Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- Department of Neurology, University Hospital and Medical Faculty Mannheim, Mannheim, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Khwab Sanghvi
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mirco Friedrich
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Jana K Sonner
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Edward Green
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Deumelandt
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Kilian
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Cyril Neftel
- Broad Institute of Harvard and MIT and Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefanie Uhlig
- FlowCore Mannheim and Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Tobias Kessler
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Anna von Landenberg
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna S Berghoff
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
- CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kelly Marsh
- Agios Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Dongwei Zhu
- Agios Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Neuro-Kopf-Zentrum, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Michael O Breckwoldt
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Ruslan Al-Ali
- Max Eder Junior Group on Low Grade Gliomas, Heidelberg University Medical Center, Heidelberg, Germany
| | - Simone Karcher-Bausch
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Iris Oezen
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magdalena Kramer
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Meyer
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Antje Habel
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Jessica Eisel
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Gernot Poschet
- Center for Organismal Studies, University Heidelberg, Heidelberg, Germany
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- CNS Tumors Unit, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department for Medicine I, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Minou Nadji-Ohl
- Department of Neurosurgery, Stuttgart Clinics, Stuttgart, Germany
| | - Niklas Thon
- Department of Neurosurgery, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Michael C Burger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Hospital, Frankfurt, Germany
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
| | - Patrick N Harter
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), University Hospital and Medical Faculty, Goethe University, Frankfurt, Germany
| | - Miriam Ratliff
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Axel Benner
- Division of Biostatistics, DKFZ, Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Jürgen Okun
- Metabolic Center Heidelberg, University Children's Hospital, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Medical Center, Heidelberg, Germany
| | - Sevin Turcan
- Max Eder Junior Group on Low Grade Gliomas, Heidelberg University Medical Center, Heidelberg, Germany
| | - Stefan Kaulfuss
- Research and Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | | - Karen Bieback
- FlowCore Mannheim and Institute of Transfusion Medicine and Immunology, Mannheim, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl H Plate
- DKTK Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Institute of Neurology (Edinger Institute), University Hospital and Medical Faculty, Goethe University, Frankfurt, Germany
| | - Daniel Hänggi
- Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Mario L Suvà
- Broad Institute of Harvard and MIT and Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Andreas von Deimling
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany.
- National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany.
- Department of Neurology, University Hospital and Medical Faculty Mannheim, Mannheim, Germany.
| |
Collapse
|
37
|
Lenting K, Khurshed M, Peeters TH, van den Heuvel CNAM, van Lith SAM, de Bitter T, Hendriks W, Span PN, Molenaar RJ, Botman D, Verrijp K, Heerschap A, Ter Laan M, Kusters B, van Ewijk A, Huynen MA, van Noorden CJF, Leenders WPJ. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J 2018; 33:557-571. [PMID: 30001166 DOI: 10.1096/fj.201800907rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Tom H Peeters
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Corina N A M van den Heuvel
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanne A M van Lith
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tessa de Bitter
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wiljan Hendriks
- Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and Oncoimmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Dennis Botman
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - Kiek Verrijp
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands; and
| | - Benno Kusters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne van Ewijk
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Cornelis J F van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Centre, Amsterdam, The Netherlands
| | - William P J Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.,Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
38
|
Khurshed M, Aarnoudse N, Hulsbos R, Hira VVV, van Laarhoven HWM, Wilmink JW, Molenaar RJ, van Noorden CJF. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity. FASEB J 2018; 32:fj201800547R. [PMID: 29879375 PMCID: PMC6181637 DOI: 10.1096/fj.201800547r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1MUT) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely used anticancer agent cisplatin in IDH1MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1MUT cancer cells, as compared with IDH1 wild-type ( IDH1WT) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Niels Aarnoudse
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Renske Hulsbos
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vashendriya V. V. Hira
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanneke W. M. van Laarhoven
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Johanna W. Wilmink
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Remco J. Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, and
| | - Cornelis J. F. van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
39
|
Viswanath P, Radoul M, Izquierdo-Garcia JL, Ong WQ, Luchman HA, Cairncross JG, Huang B, Pieper RO, Phillips JJ, Ronen SM. 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res 2018; 78:2290-2304. [PMID: 29358170 PMCID: PMC5932252 DOI: 10.1158/0008-5472.can-17-2926] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Tumor metabolism is reprogrammed to meet the demands of proliferating cancer cells. In particular, cancer cells upregulate synthesis of the membrane phospholipids phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdE) in order to allow for rapid membrane turnover. Nonetheless, we show here that, in mutant isocitrate dehydrogenase 1 (IDHmut) gliomas, which produce the oncometabolite 2-hydroxyglutarate (2-HG), PtdCho and PtdE biosynthesis is downregulated and results in lower levels of both phospholipids when compared with wild-type IDH1 cells. 2-HG inhibited collagen-4-prolyl hydroxylase activity, leading to accumulation of misfolded procollagen-IV in the endoplasmic reticulum (ER) of both genetically engineered and patient-derived IDHmut glioma models. The resulting ER stress triggered increased expression of FAM134b, which mediated autophagic degradation of the ER (ER-phagy) and a reduction in the ER area. Because the ER is the site of phospholipid synthesis, ER-phagy led to reduced PtdCho and PtdE biosynthesis. Inhibition of ER-phagy via pharmacological or molecular approaches restored phospholipid biosynthesis in IDHmut glioma cells, triggered apoptotic cell death, inhibited tumor growth, and prolonged the survival of orthotopic IDHmut glioma-bearing mice, pointing to a potential therapeutic opportunity. Glioma patient biopsies also exhibited increased ER-phagy and downregulation of PtdCho and PtdE levels in IDHmut samples compared with wild-type, clinically validating our observations. Collectively, this study provides detailed and clinically relevant insights into the functional link between oncometabolite-driven ER-phagy and phospholipid biosynthesis in IDHmut gliomas.Significance: Downregulation of phospholipid biosynthesis via ER-phagy is essential for proliferation and clonogenicity of mutant IDH1 gliomas, a finding with immediate therapeutic implications. Cancer Res; 78(9); 2290-304. ©2018 AACR.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Jose Luis Izquierdo-Garcia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Wei Qiang Ong
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hema Artee Luchman
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - J Gregory Cairncross
- Department of Clinical Neurosciences and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, California
| | - Joanna J Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
| |
Collapse
|
40
|
Viswanath P, Radoul M, Izquierdo-Garcia JL, Luchman HA, Gregory Cairncross J, Pieper RO, Phillips JJ, Ronen SM. Mutant IDH1 gliomas downregulate phosphocholine and phosphoethanolamine synthesis in a 2-hydroxyglutarate-dependent manner. Cancer Metab 2018; 6:3. [PMID: 29619216 PMCID: PMC5881177 DOI: 10.1186/s40170-018-0178-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) studies have identified elevated levels of the phospholipid precursor phosphocholine (PC) and phosphoethanolamine (PE) as metabolic hallmarks of cancer. Unusually, however, PC and PE levels are reduced in mutant isocitrate dehydrogenase 1 (IDHmut) gliomas that produce the oncometabolite 2-hydroxyglutarate (2-HG) relative to wild-type IDH1 (IDHwt) gliomas. The goal of this study was to determine the molecular mechanism underlying this unusual metabolic reprogramming in IDHmut gliomas. METHODS Steady-state PC and PE were quantified using 31P-MRS. To quantify de novo PC and PE synthesis, we used 13C-MRS and measured flux to 13C-PC and 13C-PE in cells incubated with [1,2-13C]-choline and [1,2-13C]-ethanolamine. The activities of choline kinase (CK) and ethanolamine kinase (EK), the enzymes responsible for PC and PE synthesis, were quantified using 31P-MR-based assays. To interrogate the role of 2-HG, we examined IDHwt cells incubated with 2-HG and, conversely, IDHmut cells treated with the IDHmut inhibitor AGI-5198. To examine the role of hypoxia-inducible factor 1-α (HIF-1α), we silenced HIF-1α using RNA interference. To confirm our findings in vivo and in the clinic, we studied IDHwt and IDHmut orthotopic tumor xenografts and glioma patient biopsies. RESULTS De novo synthesis of PC and PE was reduced in IDHmut cells relative to IDHwt. Concomitantly, CK activity and EK activity were reduced in IDHmut cells. Pharmacological manipulation of 2-HG levels established that 2-HG was responsible for reduced CK activity, EK activity, PC and PE. 2-HG has previously been reported to stabilize levels of HIF-1α, a known regulator of CK activity. Silencing HIF-1α in IDHmut cells restored CK activity, EK activity, PC and PE to IDHwt levels. Our findings were recapitulated in IDHmut orthotopic tumor xenografts and, most importantly, in IDHmut patient biopsies, validating our findings in vivo and in the clinic. CONCLUSIONS This study identifies, to our knowledge for the first time, a direct role for 2-HG in the downregulation of CK and EK activity, and thereby, PC and PE synthesis in IDHmut gliomas. These results highlight the unusual reprogramming of phospholipid metabolism in IDHmut gliomas and have implications for the identification of MRS-detectable metabolic biomarkers associated with 2-HG status.
Collapse
Affiliation(s)
- Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, Box 2532. Byers Hall 3rd Floor, Suite, San Francisco, CA 94143 USA
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, Box 2532. Byers Hall 3rd Floor, Suite, San Francisco, CA 94143 USA
| | - Jose Luis Izquierdo-Garcia
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Hema Artee Luchman
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada
| | - J. Gregory Cairncross
- Department of Clinical Neurosciences and Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta Canada
| | - Russell O. Pieper
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, Helen Diller Research Center, University of California San Francisco, San Francisco, CA USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4th Street, Box 2532. Byers Hall 3rd Floor, Suite, San Francisco, CA 94143 USA
| |
Collapse
|
41
|
Uckermann O, Juratli TA, Galli R, Conde M, Wiedemuth R, Krex D, Geiger K, Temme A, Schackert G, Koch E, Steiner G, Kirsch M. Optical Analysis of Glioma: Fourier-Transform Infrared Spectroscopy Reveals the IDH1 Mutation Status. Clin Cancer Res 2017; 24:2530-2538. [PMID: 29259030 DOI: 10.1158/1078-0432.ccr-17-1795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Somatic mutations in the human cytosolic isocitrate dehydrogenase 1 (IDH1) gene cause profound changes in cell metabolism and are a common feature of gliomas with unprecedented predictive and prognostic impact. Fourier-transform infrared (FT-IR) spectroscopy addresses the molecular composition of cells and tissue and was investigated to deduct the IDH1 mutation status.Experimental Design: We tested the technique on human cell lines that were transduced with wild-type IDH1 or mutated IDH1 and on 34 human glioma samples. IR spectra were acquired at 256 positions from cell pellets or tissue cryosections. Moreover, IR spectra were obtained from fresh, unprocessed biopsies of 64 patients with glioma.Results:IDH1 mutation was linked to changes in spectral bands assigned to molecular groups of lipids and proteins in cell lines and human glioma. The spectra of cryosections of brain tumor samples showed high interpatient variability, for example, bands related to calcifications at 1113 cm-1 However, supervised classification recognized relevant spectral regions at 1103, 1362, 1441, 1485, and 1553 cm-1 and assigned 88% of the tumor samples to the correct group. Similar spectral positions allowed the classification of spectra of fresh biopsies with an accuracy of 86%.Conclusions: Here, we show that vibrational spectroscopy reveals the IDH1 genotype of glioma. Because it can provide information in seconds, an implementation into the intraoperative workflow might allow simple and rapid online diagnosis of the IDH1 genotype. The intraoperative confirmation of IDH1 mutation status might guide the decision to pursue definitive neurosurgical resection and guide future in situ therapies of infiltrative gliomas. Clin Cancer Res; 24(11); 2530-8. ©2017 AACRSee related commentary by Hollon and Orringer, p. 2467.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK) Dresden, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Tareq A Juratli
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Marina Conde
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Ralf Wiedemuth
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Dietmar Krex
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK) Dresden, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Kathrin Geiger
- Neuropathology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Achim Temme
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK) Dresden, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK) Dresden, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany.,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK) Dresden, National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| |
Collapse
|
42
|
Fack F, Tardito S, Hochart G, Oudin A, Zheng L, Fritah S, Golebiewska A, Nazarov PV, Bernard A, Hau AC, Keunen O, Leenders W, Lund-Johansen M, Stauber J, Gottlieb E, Bjerkvig R, Niclou SP. Altered metabolic landscape in IDH-mutant gliomas affects phospholipid, energy, and oxidative stress pathways. EMBO Mol Med 2017; 9:1681-1695. [PMID: 29054837 PMCID: PMC5709746 DOI: 10.15252/emmm.201707729] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 01/22/2023] Open
Abstract
Heterozygous mutations in NADP-dependent isocitrate dehydrogenases (IDH) define the large majority of diffuse gliomas and are associated with hypermethylation of DNA and chromatin. The metabolic dysregulations imposed by these mutations, whether dependent or not on the oncometabolite D-2-hydroxyglutarate (D2HG), are less well understood. Here, we applied mass spectrometry imaging on intracranial patient-derived xenografts of IDH-mutant versus IDH wild-type glioma to profile the distribution of metabolites at high anatomical resolution in situ This approach was complemented by in vivo tracing of labeled nutrients followed by liquid chromatography-mass spectrometry (LC-MS) analysis. Selected metabolites were verified on clinical specimen. Our data identify remarkable differences in the phospholipid composition of gliomas harboring the IDH1 mutation. Moreover, we show that these tumors are characterized by reduced glucose turnover and a lower energy potential, correlating with their reduced aggressivity. Despite these differences, our data also show that D2HG overproduction does not result in a global aberration of the central carbon metabolism, indicating strong adaptive mechanisms at hand. Intriguingly, D2HG shows no quantitatively important glucose-derived label in IDH-mutant tumors, which suggests that the synthesis of this oncometabolite may rely on alternative carbon sources. Despite a reduction in NADPH, glutathione levels are maintained. We found that genes coding for key enzymes in de novo glutathione synthesis are highly expressed in IDH-mutant gliomas and the expression of cystathionine-β-synthase (CBS) correlates with patient survival in the oligodendroglial subtype. This study provides a detailed and clinically relevant insight into the in vivo metabolism of IDH1-mutant gliomas and points to novel metabolic vulnerabilities in these tumors.
Collapse
Affiliation(s)
- Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Saverio Tardito
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | - Anais Oudin
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Liang Zheng
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Sabrina Fritah
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Anna Golebiewska
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Petr V Nazarov
- Genomics and Proteomics Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Amandine Bernard
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Ann-Christin Hau
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Olivier Keunen
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - William Leenders
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Morten Lund-Johansen
- Haukeland Hospital, University of Bergen, Bergen, Norway
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Eyal Gottlieb
- Cancer Metabolism Research Unit, Cancer Research UK, Beatson Institute, Glasgow, UK
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg
- Kristian Gerhard Jebsen Brain Tumor Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
43
|
Wang S, Wang Z, Zhou L, Shi X, Xu G. Comprehensive Analysis of Short-, Medium-, and Long-Chain Acyl-Coenzyme A by Online Two-Dimensional Liquid Chromatography/Mass Spectrometry. Anal Chem 2017; 89:12902-12908. [PMID: 29098853 DOI: 10.1021/acs.analchem.7b03659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acyl-coenzyme A (CoA) is a pivotal metabolic intermediate in numerous biological processes. However, comprehensive analysis of acyl-CoAs is still challenging as the properties of acyl-CoAs greatly vary with different carbon chains. Here, we designed a two-dimensional liquid chromatography method coupled with high-resolution mass spectrometry (2D LC/HRMS) to cover all short-, medium-, and long-chain acyl-CoAs within one analytical run. Complex acyl-CoAs were separated into two fractions according to their acyl chains by the first dimensional prefractionation. Then, two fractions containing short-chain acyl-CoAs or medium- and long-chain acyl-CoAs were further separated by the two parallel columns in the second dimension. Nineteen representative standards were chosen to optimize the analytical conditions of the 2D LC/HRMS method. Resolution and sensitivity were demonstrated to be improved greatly, and lowly abundant acyl-CoAs and acyl-CoA isomers could be detected and distinguished. By using the 2D LC/HRMS method, 90 acyl-CoAs (including 21 acyl-dephospho-CoAs) were identified from liver extracts, which indicated that our method was one of the most powerful approaches for obtaining comprehensive profiling of acyl-CoAs so far. The method was further employed in the metabolomics study of malignant glioma cells with an isocitrate dehydrogenase 1 (IDH1) mutation to explore their metabolic differences. A total of 46 acyl-CoAs (including 2 acyl-dephospho-CoAs) were detected, and 12 of them were dysregulated in glioma cells with the IDH1 mutation. These results demonstrated the practicability and the superiority of the established method. Therefore, the 2D LC/HRMS method provides a robust and reproducible approach to the comprehensive analysis of acyl-CoAs in tissues, cells, and other biological samples.
Collapse
Affiliation(s)
- Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
44
|
Wenger KJ, Hattingen E, Franz K, Steinbach J, Bähr O, Pilatus U. In vivo Metabolic Profiles as Determined by 31P and short TE 1H MR-Spectroscopy : No Difference Between Patients with IDH Wildtype and IDH Mutant Gliomas. Clin Neuroradiol 2017; 29:27-36. [PMID: 28983683 DOI: 10.1007/s00062-017-0630-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022]
Abstract
PURPOSE Previous ex vivo spectroscopic data from tissue samples revealed differences in phospholipid metabolites between isocitrate dehydrogenase mutated (IDHmut) and IDH wildtype (IDHwt) gliomas. We investigated whether these changes can be found in vivo using 1H-decoupled 31P magnetic resonance spectroscopic imaging (MRSI) with 3D chemical shift imaging (CSI) at 3 T in patients with low and high-grade gliomas. METHODS The study included 33 prospectively enrolled, mostly untreated patients who met spectral quality criteria according to the World Health Organization (WHO II n = 7, WHO III n = 17, WHO IV n = 9; 25 patients IDHmut, 8 patients IDHwt). The MRSI protocol included 1H decoupled 31P MRSI with 3D CSI (3D 31P CSI), 2D 1H CSI and a 1H single voxel spectroscopy sequence (TE 30 ms) from the tumor area. For 1H MRS, absolute metabolite concentration values were calculated (phantom replacement method). For 31P MRS, metabolite intensity ratios were calculated for the choline (C) and ethanolamine (E)-containing metabolites. RESULTS In our patient cohort we did not find significant differences for the ratio of phosphocholine (PC) and phosphoethanolamine (PE), PC/PE, (p = 0.24) for IDHmut compared to IDHwt gliomas. Furthermore, we found no elevated ratios of glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), GPC/GPE, (p = 0.68) or GPC/PE (p = 0.12) for IDHmut gliomas. Even the ratio (PC+GPC)/(PE+GPE) showed no significant differences with respect to mutation status (p = 0.16). Nonetheless, changes related to tumor grade regarding intracellular pH (pHi) and phospholipid metabolism as well as absolute metabolite concentrations of co-registered 2D 1H CSI data for tumor and control tissue showed the anticipated results. CONCLUSION Using 3D-CSI data acquisition, in vivo 31P MR spectroscopic measurement of phospholipid metabolites could not distinguish between IDHmut and IDHwt.
Collapse
Affiliation(s)
- Katharina J Wenger
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany. .,Institute of Neuroradiology, University Hospital Bonn, Sigmund-Freud Straße 25, 53127, Bonn, Germany.
| | - Kea Franz
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Joachim Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
45
|
Autry A, Phillips JJ, Maleschlijski S, Roy R, Molinaro AM, Chang SM, Cha S, Lupo JM, Nelson SJ. Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor. Transl Oncol 2017; 10:895-903. [PMID: 28942218 PMCID: PMC5612804 DOI: 10.1016/j.tranon.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although the contrast-enhancing (CE) lesion on T1-weighted MR images is widely used as a surrogate for glioblastoma (GBM), there are also non-enhancing regions of infiltrative tumor within the T2-weighted lesion, which elude radiologic detection. Because non-enhancing GBM (Enh-) challenges clinical patient management as latent disease, this study sought to characterize ex vivo metabolic profiles from Enh- and CE GBM (Enh+) samples, alongside histological and in vivo MR parameters, to assist in defining criteria for estimating total tumor burden. METHODS Fifty-six patients with newly diagnosed GBM received a multi-parametric pre-surgical MR examination. Targets for obtaining image-guided tissue samples were defined based on in vivo parameters that were suspicious for tumor. The actual location from where tissue samples were obtained was recorded, and half of each sample was analyzed for histopathology while the other half was scanned using HR-MAS spectroscopy. RESULTS The Enh+ and Enh- tumor samples demonstrated comparable mitotic activity, but also significant heterogeneity in microvascular morphology. Ex vivo spectroscopic parameters indicated similar levels of total choline and N-acetylaspartate between these contrast-based radiographic subtypes of GBM, and characteristic differences in the levels of myo-inositol, creatine/phosphocreatine, and phosphoethanolamine. Analysis of in vivo parameters at the sample locations were consistent with histological and ex vivo metabolic data. CONCLUSIONS The similarity between ex vivo levels of choline and NAA, and between in vivo levels of choline, NAA and nADC in Enh+ and Enh- tumor, indicate that these parameters can be used in defining non-invasive metrics of total tumor burden for patients with GBM.
Collapse
Affiliation(s)
- Adam Autry
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Stojan Maleschlijski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center (HDFCC) Biostatistical Core Facility, University of California, San Francisco, San Francisco, CA, USA; Computational Biology Core, University of California, San Francisco, San Francisco, CA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Biostatistics and Epidemiology, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Profiling of the metabolic transcriptome via single molecule molecular inversion probes. Sci Rep 2017; 7:11402. [PMID: 28900252 PMCID: PMC5595890 DOI: 10.1038/s41598-017-11035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-specific metabolic alterations are of high interest as therapeutic targets. These alterations vary between tumor types, and to employ metabolic targeting to its fullest potential there is a need for robust methods that identify candidate targetable metabolic pathways in individual cancers. Currently, such methods include 13C-tracing studies and mass spectrometry/ magnetic resonance spectroscopic imaging. Due to high cost and complexity, such studies are restricted to a research setting. We here present the validation of a novel technique of metabolic profiling, based on multiplex targeted next generation sequencing of RNA with single molecule molecular inversion probes (smMIPs), designed to measure activity of and mutations in genes that encode metabolic enzymes. We here profiled an isogenic pair of cell lines, differing in expression of the Von Hippel Lindau protein, an important regulator of hypoxia-inducible genes. We show that smMIP-profiling provides relevant information on active metabolic pathways. Because smMIP-based targeted RNAseq is cost-effective and can be applied in a medium high-throughput setting (200 samples can be profiled simultaneously in one next generation sequencing run) it is a highly interesting approach for profiling of the activity of genes of interest, including those regulating metabolism, in a routine patient care setting.
Collapse
|
47
|
Hujber Z, Petővári G, Szoboszlai N, Dankó T, Nagy N, Kriston C, Krencz I, Paku S, Ozohanics O, Drahos L, Jeney A, Sebestyén A. Rapamycin (mTORC1 inhibitor) reduces the production of lactate and 2-hydroxyglutarate oncometabolites in IDH1 mutant fibrosarcoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:74. [PMID: 28578659 PMCID: PMC5457553 DOI: 10.1186/s13046-017-0544-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple studies concluded that oncometabolites (e.g. D-2-hydroxyglutarate (2-HG) related to mutant isocitrate dehydrogenase 1/2 (IDH1/2) and lactate) have tumour promoting potential. Regulatory mechanisms implicated in the maintenance of oncometabolite production have great interest. mTOR (mammalian target of rapamycin) orchestrates different pathways, influences cellular growth and metabolism. Considering hyperactivation of mTOR in several malignancies, the question has been addressed whether mTOR operates through controlling of oncometabolite accumulation in metabolic reprogramming. METHODS HT-1080 cells - carrying originally endogenous IDH1 mutation - were used in vitro and in vivo. Anti-tumour effects of rapamycin were studied using different assays. The main sources and productions of the oncometabolites (2-HG and lactate) were analysed by 13C-labeled substrates. Alterations at protein and metabolite levels were followed by Western blot, flow cytometry, immunohistochemistry and liquid chromatography mass spectrometry using rapamycin, PP242 and different glutaminase inhibitors, as well. RESULTS Rapamycin (mTORC1 inhibitor) inhibited proliferation, migration and altered the metabolic activity of IDH1 mutant HT-1080 cells. Rapamycin reduced the level of 2-HG sourced mainly from glutamine and glucose derived lactate which correlated to the decreased incorporation of 13C atoms from 13C-substrates. Additionally, decreased expressions of lactate dehydrogenase A and glutaminase were also observed both in vitro and in vivo. CONCLUSIONS Considering the role of lactate and 2-HG in regulatory network and in metabolic symbiosis it could be assumed that mTOR inhibitors have additional effects besides their anti-proliferative effects in tumours with glycolytic phenotype, especially in case of IDH1 mutation (e.g. acute myeloid leukemias, gliomas, chondrosarcomas). Based on our new results, we suggest targeting mTOR activity depending on the metabolic and besides molecular genetic phenotype of tumours to increase the success of therapies.
Collapse
Affiliation(s)
- Zoltán Hujber
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Gábor Petővári
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Norbert Szoboszlai
- Laboratory of Environmental Chemistry and Bioanalytics, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1518, Budapest, Hungary
| | - Titanilla Dankó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Noémi Nagy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Csilla Kriston
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Tumor Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Olivér Ozohanics
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, MS Proteomics Research Group, 1117, Budapest, Hungary
| | - László Drahos
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, MS Proteomics Research Group, 1117, Budapest, Hungary
| | - András Jeney
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Anna Sebestyén
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary. .,Tumor Progression Research Group of Joint Research Organization of Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
48
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
49
|
Nakae S, Murayama K, Sasaki H, Kumon M, Nishiyama Y, Ohba S, Adachi K, Nagahisa S, Hayashi T, Inamasu J, Abe M, Hasegawa M, Hirose Y. Prediction of genetic subgroups in adult supra tentorial gliomas by pre- and intraoperative parameters. J Neurooncol 2016; 131:403-412. [PMID: 27837434 DOI: 10.1007/s11060-016-2313-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/07/2016] [Indexed: 12/29/2022]
Abstract
Recent progress in neuro-oncology has validated the significance of genetic diagnosis in gliomas. We previously investigated IDH1/2 and TP53 mutations via Sanger sequencing for adult supratentorial gliomas and reported that PCR-based sequence analysis classified gliomas into three genetic subgroups that have a strong association with patient prognosis: IDH mutant gliomas without TP53 mutations, IDH and TP53 mutant gliomas, and IDH wild-type gliomas. Furthermore, this analysis had a strong association with patient prognosis. To predict genetic subgroups prior to initial surgery, we retrospectively investigated preoperative radiological data using CT and MRI, including MR spectroscopy (MRS), and evaluated positive 5-aminolevulinic acid (5-ALA) fluorescence as an intraoperative factor. We subsequently compared these factors to differentiate each genetic subgroup. Multiple factors such as age at diagnosis, tumor location, gadolinium enhancement, 5-ALA fluorescence, and several tumor metabolites according to MRS, such as myo-inositol (myo-inositol/total choline) or lipid20, were statistically significant factors for differentiating IDH mutant and wild-type, suggesting that these two subtypes have totally distinct characteristics. In contrast, only calcification, laterality, and lipid13 (lipid13/total Choline) were statistically significant parameters for differentiating TP53 wild-type and mutant in IDH mutant gliomas. In this study, we detected several pre- and intraoperative factors that enabled us to predict genetic subgroups for adult supratentorial gliomas and clarified that lipid13 quantified by MRS is the key tumor metabolite that differentiates TP53 wild-type and mutant in IDH mutant gliomas. These results suggested that each genetic subtype in gliomas selects the distinct lipid synthesis pathways in the process of tumorigenesis.
Collapse
Affiliation(s)
- Shunsuke Nakae
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | | | - Hikaru Sasaki
- Department of Neurosurgery, Keio University, Tokyo, Japan
| | - Masanobu Kumon
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yuya Nishiyama
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shigeo Ohba
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhide Adachi
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Shinya Nagahisa
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takuro Hayashi
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Joji Inamasu
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Masato Abe
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Mitsuhiro Hasegawa
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yuichi Hirose
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
50
|
Wang J, Zhao YY, Li JF, Guo CC, Chen FR, Su HK, Zhao HF, Long YK, Shao JY, To SST, Chen ZP. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget 2016; 6:39651-60. [PMID: 26485760 PMCID: PMC4741852 DOI: 10.18632/oncotarget.5630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/02/2015] [Indexed: 01/03/2023] Open
Abstract
Glioma is the most frequent central nervous system tumor in adults. The overall survival of glioma patients is disappointing, mostly due to the poor prognosis of glioblastoma (Grade IV glioma). Isocitrate dehydrogenase (IDH) is a key factor in metabolism and catalyzes the oxidative decarboxylation of isocitrate. Mutations in IDH genes are observed in over 70% of low-grade gliomas and some cases of glioblastoma. As the most frequent mutation, IDH1(R132H) has been served as a predictive marker of glioma patients. The recently developed droplet digital PCR (ddPCR) technique generates a large amount of nanoliter-sized droplets, each of which carries out a PCR reaction on one template. Therefore, ddPCR provides high precision and absolute quantification of the nucleic acid target, with wide applications for both research and clinical diagnosis. In the current study, we collected 62 glioma tissue samples (Grade II to IV) and detected IDH1 mutations by Sanger direct sequencing, ddPCR, and quantitative real-time PCR (qRT-PCR). With the results from Sanger direct sequencing as the standard, the characteristics of ddPCR were compared with qRT-PCR. The data indicated that ddPCR was much more sensitive and much easier to interpret than qRT-PCR. Thus, we demonstrated that ddPCR is a reliable and sensitive method for screening the IDH mutation. Therefore, ddPCR is able to applied clinically in predicting patient prognosis and selecting effective therapeutic strategies. Our data also supported that the prognosis of Grade II and III glioma was better in patients with an IDH mutation than in those without mutation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yi-ying Zhao
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-feng Li
- Department of Neurosurgery, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, China
| | - Cheng-cheng Guo
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fu-rong Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hong-kai Su
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hua-fu Zhao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ya-kang Long
- Department of Molecular Diagnosis, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-yong Shao
- Department of Molecular Diagnosis, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shing shun Tony To
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhong-ping Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|