1
|
Nussinov R, Zhang W, Liu Y, Jang H. Mitogen signaling strength and duration can control cell cycle decisions. SCIENCE ADVANCES 2024; 10:eadm9211. [PMID: 38968359 DOI: 10.1126/sciadv.adm9211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Decades ago, mitogen-promoted signaling duration and strength were observed to be sensed by the cell and to be critical for its decisions: to proliferate or differentiate. Landmark publications established the importance of mitogen signaling not only in the G1 cell cycle phase but also through the S and the G2/M transition. Despite these early milestones, how mitogen signal duration and strength, short and strong or weaker and sustained, control cell fate has been largely unheeded. Here, we center on cardinal signaling-related questions, including (i) how fluctuating mitogenic signals are converted into cell proliferation-differentiation decisions and (ii) why extended duration of weak signaling is associated with differentiation, while bursts of strong and short induce proliferation but, if too strong and long, induce irreversible senescence. Our innovative broad outlook harnesses cell biology and protein conformational ensembles, helping us to define signaling strength, clarify cell cycle decisions, and thus cell fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
2
|
Marin JJG, Macias RIR, Asensio M, Romero MR, Temprano AG, Pereira OR, Jimenez S, Mauriz JL, Di Giacomo S, Avila MA, Efferth T, Briz O. Strategies to enhance the response of liver cancer to pharmacological treatments. Am J Physiol Cell Physiol 2024; 327:C11-C33. [PMID: 38708523 DOI: 10.1152/ajpcell.00176.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
In contrast to other types of cancers, there is no available efficient pharmacological treatment to improve the outcomes of patients suffering from major primary liver cancers, i.e., hepatocellular carcinoma and cholangiocarcinoma. This dismal situation is partly due to the existence in these tumors of many different and synergistic mechanisms of resistance, accounting for the lack of response of these patients, not only to classical chemotherapy but also to more modern pharmacological agents based on the inhibition of tyrosine kinase receptors (TKIs) and the stimulation of the immune response against the tumor using immune checkpoint inhibitors (ICIs). This review summarizes the efforts to develop strategies to overcome this severe limitation, including searching for novel drugs derived from synthetic, semisynthetic, or natural products with vectorial properties against therapeutic targets to increase drug uptake or reduce drug export from cancer cells. Besides, immunotherapy is a promising line of research that is already starting to be implemented in clinical practice. Although less successful than in other cancers, the foreseen future for this strategy in treating liver cancers is considerable. Similarly, the pharmacological inhibition of epigenetic targets is highly promising. Many novel "epidrugs," able to act on "writer," "reader," and "eraser" epigenetic players, are currently being evaluated in preclinical and clinical studies. Finally, gene therapy is a broad field of research in the fight against liver cancer chemoresistance, based on the impressive advances recently achieved in gene manipulation. In sum, although the present is still dismal, there is reason for hope in the non-too-distant future.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Alvaro G Temprano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Olívia R Pereira
- Centro de Investigação de Montanha (CIMO), Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Silvia Jimenez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Servicio de Farmacia Hospitalaria, Hospital de Salamanca, Salamanca, Spain
| | - Jose L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of Leon, Leon, Spain
| | - Silvia Di Giacomo
- Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, Rome, Italy
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Hepatology Laboratory, Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Instituto de Investigaciones Sanitarias de Navarra (IdisNA), Pamplona, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Nussinov R, Yavuz BR, Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol Sci 2024; 45:503-519. [PMID: 38782689 PMCID: PMC11162304 DOI: 10.1016/j.tips.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Wilkinson AN, Chen R, Coleborn E, Neilson T, Le K, Bhavsar C, Wang Y, Atluri S, Irgam G, Wong K, Yang D, Steptoe R, Wu SY. Let-7i enhances anti-tumour immunity and suppresses ovarian tumour growth. Cancer Immunol Immunother 2024; 73:80. [PMID: 38554167 PMCID: PMC10981620 DOI: 10.1007/s00262-024-03674-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
Cancer immunotherapy has seen significant success in the last decade for cancer management by enhancing endogenous cancer immunity. However, immunotherapies developed thus far have seen limited success in the majority of high-grade serous carcinoma (HGSC) ovarian cancer patients. This is largely due to the highly immunosuppressive tumour microenvironment of HGSC and late-stage identification. Thus, novel treatment interventions are needed to overcome this immunosuppression and complement existing immunotherapies. Here, we have identified through analysis of > 600 human HGSC tumours a critical role for Let-7i in modulating the tumoural immune network. Tumoural expression of Let-7i had high positive correlation with anti-cancer immune signatures in HGSC patients. Confirming this role, enforced Let-7i expression in murine HGSC tumours resulted in a significant decrease in tumour burden with a significant increase in tumour T cell numbers in tumours. In concert with the improved tumoural immunity, Let-7i treatment also significantly increased CD86 expression in antigen presenting cells (APCs) in the draining lymph nodes, indicating enhanced APC activity. Collectively, our findings highlight an important role of Let-7i in anti-tumour immunity and its potential use for inducing an anti-tumour effect in HGSC.
Collapse
Affiliation(s)
- Andrew N Wilkinson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Chen
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elaina Coleborn
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Trent Neilson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Khang Le
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sharat Atluri
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gowri Irgam
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kiefer Wong
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Raymond Steptoe
- Frazer Institute, University of Queensland, Brisbane, QLD, 4102, Australia
| | - Sherry Y Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
5
|
Anas E, Hoover E, Ille AL, Ille AM, Amico-Ruvio S. Towards multi-target glioblastoma therapy: Structural, distribution, and functional insights into protein target candidates. Brain Res 2024; 1822:148623. [PMID: 37820848 DOI: 10.1016/j.brainres.2023.148623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Glioblastoma is the most commonly occurring and most lethal primary brain tumor. Treatment options are limited in number and therapeutic development remains a major challenge. However, substantial progress has been made in better understanding the underlying biology of the disease. A recent proteomic meta-analysis revealed that 270 proteins were commonly dysregulated in glioblastoma, highlighting the complexity of the disease. This motivated us to explore potential protein targets which may be collectively inhibited, based on common upregulation, as part of a multi-target therapeutic strategy. Herein, we identify and characterize structural attributes relevant to the druggability of six protein target candidates. Computational analysis of crystal structures revealed druggable cavities in each of these proteins, and various parameters of these cavities were determined. For proteins with inhibitor-bound structures available, inhibitor compounds were found to overlap with the computationally determined cavities upon structural alignment. We also performed bioinformatic analysis for normal transcriptional expression distribution of these proteins across various brain regions and various tissues, as well as gene ontology curation to gain functional insights, as this information is useful for understanding the potential for off-target adverse effects. Our findings represent initial steps towards the development of multi-target glioblastoma therapy and may aid future work exploring similar therapeutic strategies.
Collapse
Affiliation(s)
- Emily Anas
- STEM Biomedical, Kitchener, Ontario, Canada
| | | | - Anetta L Ille
- STEM Biomedical, Kitchener, Ontario, Canada; Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexander M Ille
- STEM Biomedical, Kitchener, Ontario, Canada; School of Graduate Studies, Rutgers University, Newark, NJ, USA
| | - Stacy Amico-Ruvio
- Department of Natural Sciences and Mathematics, D'Youville University, Buffalo, NY, USA.
| |
Collapse
|
6
|
Paul I, Roy A, Ray S. Molecular Design of Novel Inhibitor by Targeting IL-6Rα using Combined Pharmacophore and Experimentally Verified Plant Products with Scaffold-Hopping Techniques: A Dual Therapeutic Strategy for COVID-19 and Cancer. Chem Biodivers 2023; 20:e202300806. [PMID: 37967248 DOI: 10.1002/cbdv.202300806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
The IL-6/IL-6R/gp130 complex serves as a significant indicator of cytokine release syndrome in COVID-19 and chronic inflammation, increasing the risk of cancer. Therefore, we identified IL-6Rα as a potential target to block gp130 interaction. Notably, there has been no reception of approval for an orally available drug to serve this purpose, to date. In this study, we targeted IL-6Rα to inhibit IL-6Rα/gp130 interaction. The selection of the lead candidate L821 involved the amalgamation of three drug discovery approaches. This library was screened employing tertiary structure-based pharmacophore models followed by molecular docking models, scaffold-hopping, MM/PBSA as well as MM/GBSA analysis, and assessments of pKi and ADMET properties. After evaluating the binding interactions with key amino acids, 15 potential ligands were chosen, with the top ligand undergoing further investigation by means of molecular dynamics simulations. Considering the stability of the complexes, the strong interactions observed between ligand and residues of IL-6Rα/gp130, and the favorable binding free energy calculations, L821 emerged as the prime candidate for inhibiting IL-6Rα. Notably, L821 exhibited a docking-based binding affinity of -9.5 kcal/mol. Our study presents L821 as a promising inhibitor for future in vitro analysis, potentially combatting SARS-CoV-2-related cytokine storms and serving as an oncogenic drug therapy.
Collapse
Affiliation(s)
- Ishani Paul
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Alankar Roy
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
7
|
Xu Y, Baylink DJ, Chen CS, Tan L, Xiao J, Park B, Valladares I, Reeves ME, Cao H. Transient TKI-resistant CD44+pBAD+ blasts undergo intrinsic homeostatic adaptation to promote the survival of acute myeloid leukemia in vitro. Front Oncol 2023; 13:1286863. [PMID: 38023123 PMCID: PMC10664142 DOI: 10.3389/fonc.2023.1286863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
Acute myeloid leukemia (AML) patients have frequent mutations in FMS-like receptor tyrosine kinase 3 (FLT3-mut AML), who respond poorly to salvage chemotherapies and targeted therapies such as tyrosine kinase inhibitors (TKIs). Disease relapse is a common reason of treatment failures in FLT3-mut AML patients, but its intracellular refractory mechanism remains to be discovered. In this study, we designed serial in vitro time-course studies to investigate the biomarkers of TKI-resistant blasts and their survival mechanism. First, we found that a group of transient TKI-resistant blasts were CD44+Phosphorylated-BAD (pBAD)+ and that they could initiate the regrowth of blast clusters in vitro. Notably, TKI-treatments upregulated the compensation pathways to promote PIM2/3-mediated phosphorylation of BAD to initiate the blast survival. Next, we discovered a novel process of intracellular adaptive responses in these transient TKI-resistant blasts, including upregulated JAK/STAT signaling pathways for PIM2/3 expressions and activated SOCS1/SOCS3/PIAS2 inhibitory pathways to down-regulate redundant signal transduction and kinase phosphorylation to regain intracellular homeostasis. Finally, we found that the combination of TKIs with TYK2/STAT4 pathways-driven inhibitors could effectively treat FLT3-mut AML in vitro. In summary, our findings reveal that TKI-treatment can activate a JAK/STAT-PIM2/3 axis-mediated signaling pathways to promote the survival of CD44+pBAD+blasts in vitro. Disrupting these TKIs-activated redundant pathways and blast homeostasis could be a novel therapeutic strategy to treat FLT3-mut AML and prevent disease relapse in vivo.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Laren Tan
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
- Department of Pulmonary, Critical Care, Hyperbaric and Sleep Medicine, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brandon Park
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ismael Valladares
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E. Reeves
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Loma Linda University Medical Center and Loma Linda University Cancer Center, Loma Linda University Health, Loma Linda, CA, United States
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda University Health, Loma Linda, CA, United States
| |
Collapse
|
8
|
Vales S, Kryukova J, Chandra S, Smagurauskaite G, Payne M, Clark CJ, Hafner K, Mburu P, Denisov S, Davies G, Outeiral C, Deane CM, Morris GM, Bhattacharya S. Discovery and pharmacophoric characterization of chemokine network inhibitors using phage-display, saturation mutagenesis and computational modelling. Nat Commun 2023; 14:5763. [PMID: 37717048 PMCID: PMC10505172 DOI: 10.1038/s41467-023-41488-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
CC and CXC-chemokines are the primary drivers of chemotaxis in inflammation, but chemokine network redundancy thwarts pharmacological intervention. Tick evasins promiscuously bind CC and CXC-chemokines, overcoming redundancy. Here we show that short peptides that promiscuously bind both chemokine classes can be identified from evasins by phage-display screening performed with multiple chemokines in parallel. We identify two conserved motifs within these peptides and show using saturation-mutagenesis phage-display and chemotaxis studies of an exemplar peptide that an anionic patch in the first motif and hydrophobic, aromatic and cysteine residues in the second are functionally necessary. AlphaFold2-Multimer modelling suggests that the peptide occludes distinct receptor-binding regions in CC and in CXC-chemokines, with the first and second motifs contributing ionic and hydrophobic interactions respectively. Our results indicate that peptides with broad-spectrum anti-chemokine activity and therapeutic potential may be identified from evasins, and the pharmacophore characterised by phage display, saturation mutagenesis and computational modelling.
Collapse
Affiliation(s)
- Serena Vales
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Jhanna Kryukova
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Soumyanetra Chandra
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Gintare Smagurauskaite
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Megan Payne
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Charlie J Clark
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Katrin Hafner
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Philomena Mburu
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Stepan Denisov
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Graham Davies
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Carlos Outeiral
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Charlotte M Deane
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Garrett M Morris
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - Shoumo Bhattacharya
- Wellcome Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
9
|
Serra M, Rubes D, Schinelli S, Paolillo M. Small Molecules against Metastatic Tumors: Concrete Perspectives and Shattered Dreams. Cancers (Basel) 2023; 15:4173. [PMID: 37627201 PMCID: PMC10453213 DOI: 10.3390/cancers15164173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Metastasis is the main cause of anti-cancer therapy failure, leading to unfavorable prognosis for patients. The true challenge to increase cancer patient life expectancy by making cancer a chronic disease with periodic but manageable relapses relies on the development of efficient therapeutic strategies specifically directed against key targets in the metastatic process. Traditional chemotherapy with classical alkylating agents, microtubule inhibitors, and antimetabolites has demonstrated its limited efficacy against metastatic cells due to their capacity to select chemo-resistant cell populations that undergo epithelial-to-mesenchymal transition (EMT), thus promoting the colonization of distant sites that, in turn, sustain the initial metastatic process. This scenario has prompted efforts aimed at discovering a wide variety of small molecules and biologics as potential anti-metastatic drugs directed against more specific targets known to be involved in the various stages of metastasis. In this short review, we give an overview of the most recent advances related to important families of antimetastatic small molecules: intracellular tyrosine kinase inhibitors, cyclin-dependent kinase inhibitors, KRAS inhibitors, and integrin antagonists. Although the majority of these small molecules are not yet approved and not available in the drug market, any information related to their stage of development could represent a precious and valuable tool to identify new targets in the endless fight against metastasis.
Collapse
Affiliation(s)
- Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.R.); (S.S.); (M.P.)
| | | | | | | |
Collapse
|
10
|
Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2202400. [PMID: 36453542 PMCID: PMC10023350 DOI: 10.1002/adhm.202202400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Combination therapy targeting multiple therapeutic targets is a favorable strategy to achieve better therapeutic outcomes in cancer and inflammatory diseases. Codelivery is a subfield of drug delivery that aims to achieve combined delivery of diverse therapeutic cargoes within the same delivery system, thereby ensuring delivery to the same site and providing an opportunity to tailor the release kinetics as desired. Among the wide range of materials being investigated in the design of codelivery systems, lipids have stood out on account of their low toxicity, biocompatibility, and ease of formulation scale-up. This review highlights the advances of the last decade in lipid-based codelivery systems focusing on the codelivery of drug-drug, drug-nucleic acid, nucleic acid-nucleic acid, and protein therapeutic-based combinations for targeted therapy in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chinmay M. Jogdeo
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sudipta Panja
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shrey Kanvinde
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ekta Kapoor
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
11
|
Ginsberg SD, Sharma S, Norton L, Chiosis G. Targeting stressor-induced dysfunctions in protein-protein interaction networks via epichaperomes. Trends Pharmacol Sci 2023; 44:20-33. [PMID: 36414432 PMCID: PMC9789192 DOI: 10.1016/j.tips.2022.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
Diseases are manifestations of complex changes in protein-protein interaction (PPI) networks whereby stressors, genetic, environmental, and combinations thereof, alter molecular interactions and perturb the individual from the level of cells and tissues to the entire organism. Targeting stressor-induced dysfunctions in PPI networks has therefore become a promising but technically challenging frontier in therapeutics discovery. This opinion provides a new framework based upon disrupting epichaperomes - pathological entities that enable dysfunctional rewiring of PPI networks - as a mechanism to revert context-specific PPI network dysfunction to a normative state. We speculate on the implications of recent research in this area for a precision medicine approach to detecting and treating complex diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sahil Sharma
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Larry Norton
- Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA; Breast Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
12
|
The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers (Basel) 2022; 14:cancers14246151. [PMID: 36551635 PMCID: PMC9776867 DOI: 10.3390/cancers14246151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
HCC, the most prevalent form of primary liver cancer, is prototypically an inflammation-driven cancer developing after years of inflammatory insults. Consequently, the hepatic microenvironment is a site of complex immunological activities. Moreover, the tolerogenic nature of the liver can act as a barrier to anti-tumor immunity, fostering cancer progression and resistance to immunotherapies based on immune checkpoint inhibitors (ICB). In addition to being a site of primary carcinogenesis, many cancer types have high tropism for the liver, and patients diagnosed with liver metastasis have a dismal prognosis. Therefore, understanding the immunological networks characterizing the tumor microenvironment (TME) of HCC will deepen our understanding of liver immunity, and it will underpin the dominant mechanisms controlling both spontaneous and therapy-induced anti-tumor immune responses. Herein, we discuss the contributions of the cellular and molecular components of the liver immune contexture during HCC onset and progression by underscoring how the balance between antagonistic immune responses can recast the properties of the TME and the response to ICB.
Collapse
|
13
|
Huang Q, Liu X, Zhang P, Wu Z, Zhao Z. A DNA Nano-train Carrying a Predefined Drug Combination for Cancer Therapy. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cao H, Tadros V, Hiramoto B, Leeper K, Hino C, Xiao J, Pham B, Kim DH, Reeves ME, Chen CS, Zhong JF, Zhang KK, Xie L, Wasnik S, Baylink DJ, Xu Y. Targeting TKI-Activated NFKB2-MIF/CXCLs-CXCR2 Signaling Pathways in FLT3 Mutated Acute Myeloid Leukemia Reduced Blast Viability. Biomedicines 2022; 10:biomedicines10051038. [PMID: 35625776 PMCID: PMC9138861 DOI: 10.3390/biomedicines10051038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls. Additionally, the GILT-treated blasts that survived were found to exhibit higher expressions of the CXCR2 gene and protein, a common receptor for MIF and pro-inflammatory cytokines. The supplementation of exogenous MIF to GILT-treated blasts revealed a group of CD44High+ cells that might be responsible for the relapse. Furthermore, we identified the highly activated non-classical NFKB2 pathway after GILT-treatment. The siRNA transient knockdown of NFKB2 significantly reduced the gene expressions of MIF, CXCR2, and CXCL5. Finally, treatments of AML patient samples ex vivo demonstrated that the combination of a pharmaceutical inhibitor of the NFKB family and GILT can effectively suppress primary blasts’ secretion of tumor-promoting cytokines, such as CXCL1/5/8. In summary, we provide the first evidence that targeting treatment-activated compensatory pathways, such as the NFKB2-MIF/CXCLs-CXCR2 axis could be a novel therapeutic strategy to overcome TKI-resistance and effectively treat AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Verena Tadros
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Benjamin Hiramoto
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Kevin Leeper
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Christopher Hino
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Bryan Pham
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
| | - Do Hyun Kim
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
| | - Jiang F. Zhong
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA;
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA; (K.K.Z.); (L.X.)
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (H.C.); (C.H.); (B.P.); (M.E.R.); (C.-S.C.)
- Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (V.T.); (B.H.); (K.L.); (J.X.); (D.H.K.); (S.W.); (D.J.B.)
- Correspondence: ; Tel.: +1-9096515887
| |
Collapse
|
15
|
Hu CW, Chang YC, Liu CH, Yu YA, Mou KY. Development of a TNF-α-mediated Trojan Horse for Bacteria-based Cancer Therapy. Mol Ther 2022; 30:2522-2536. [PMID: 35440418 DOI: 10.1016/j.ymthe.2022.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
TNF-α is up-regulated in a chronic inflammatory environment, including tumors, and has been recognized as a pro-tumor factor in many cancers. Applying the traditional TNF-α antibodies that neutralize the TNF-α activity, however, only exerts modest anti-tumor efficacy in the clinical studies. Here, we develop an innovative approach to target TNF-α that is distinct from the neutralization mechanism. We employed phage display and yeast display to select non-neutralizing antibodies that can piggyback on TNF-α and co-internalize into cells through the receptor ligation. When conjugating with toxins, the antibody exhibited cytotoxicity to cancer cells in a TNF-α-dependent manner. We further implemented the immunotoxin to an E. coli vehicle specially engineered for a high secretion level. In a syngeneic murine melanoma model, the bacteria stimulated the TNF-α expression that synergized with the secreted immunotoxin and greatly inhibited the tumor growth. The treatment also dramatically remodeled the tumor microenvironment in favor of several anti-tumor immune cells, including the N1 neutrophils, the M1 macrophages, and the activated CD4+ and CD8+ lymphocytes. We anticipate that our new piggyback strategy is generalizable to target other soluble ligands and/or conjugate with different drugs for managing a diverse set of diseases.
Collapse
Affiliation(s)
- Che-Wei Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Chemical Biology and Molecular Biophysics, National Taiwan University and Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Yao-An Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan; Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
16
|
Ton AT, Foo J, Singh K, Lee J, Kalyta A, Morin H, Perez C, Ban F, Leblanc E, Lallous N, Cherkasov A. Development of VPC-70619, a Small-Molecule N-Myc Inhibitor as a Potential Therapy for Neuroendocrine Prostate Cancer. Int J Mol Sci 2022; 23:ijms23052588. [PMID: 35269731 PMCID: PMC8910697 DOI: 10.3390/ijms23052588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023] Open
Abstract
The Myc family of transcription factors are involved in the development and progression of numerous cancers, including prostate cancer (PCa). Under the pressure of androgen receptor (AR)-directed therapies resistance can occur, leading to the lethal form of PCa known as neuroendocrine prostate cancer (NEPC), characterized among other features by N-Myc overexpression. There are no clinically approved treatments for NEPC, translating into poor patient prognosis and survival. Therefore, there is a pressing need to develop novel therapeutic avenues to treat NEPC patients. In this study, we investigate the N-Myc-Max DNA binding domain (DBD) as a potential target for small molecule inhibitors and utilize computer-aided drug design (CADD) approaches to discover prospective hits. Through further exploration and optimization, a compound, VPC-70619, was identified with notable anti-N-Myc potency and strong antiproliferative activity against numerous N-Myc expressing cell lines, including those representing NEPC.
Collapse
|
17
|
Hunter P. Understanding redundancy and resilience: Redundancy in life is provided by distributing functions across networks rather than back-up systems: Redundancy in life is provided by distributing functions across networks rather than back-up systems. EMBO Rep 2022; 23:e54742. [PMID: 35156768 PMCID: PMC8892264 DOI: 10.15252/embr.202254742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding how evolution generates and maintains redundancy to cope with damage and loss of function in living systems could inspire applications from new therapies to resilient computer networks.
Collapse
|
18
|
Joshi S, Gomes ED, Wang T, Corben A, Taldone T, Gandu S, Xu C, Sharma S, Buddaseth S, Yan P, Chan LYL, Gokce A, Rajasekhar VK, Shrestha L, Panchal P, Almodovar J, Digwal CS, Rodina A, Merugu S, Pillarsetty N, Miclea V, Peter RI, Wang W, Ginsberg SD, Tang L, Mattar M, de Stanchina E, Yu KH, Lowery M, Grbovic-Huezo O, O'Reilly EM, Janjigian Y, Healey JH, Jarnagin WR, Allen PJ, Sander C, Erdjument-Bromage H, Neubert TA, Leach SD, Chiosis G. Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun Biol 2021; 4:1333. [PMID: 34824367 PMCID: PMC8617294 DOI: 10.1038/s42003-021-02842-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/03/2021] [Indexed: 12/03/2022] Open
Abstract
Cancer cell plasticity due to the dynamic architecture of interactome networks provides a vexing outlet for therapy evasion. Here, through chemical biology approaches for systems level exploration of protein connectivity changes applied to pancreatic cancer cell lines, patient biospecimens, and cell- and patient-derived xenografts in mice, we demonstrate interactomes can be re-engineered for vulnerability. By manipulating epichaperomes pharmacologically, we control and anticipate how thousands of proteins interact in real-time within tumours. Further, we can essentially force tumours into interactome hyperconnectivity and maximal protein-protein interaction capacity, a state whereby no rebound pathways can be deployed and where alternative signalling is supressed. This approach therefore primes interactomes to enhance vulnerability and improve treatment efficacy, enabling therapeutics with traditionally poor performance to become highly efficacious. These findings provide proof-of-principle for a paradigm to overcome drug resistance through pharmacologic manipulation of proteome-wide protein-protein interaction networks.
Collapse
Affiliation(s)
- Suhasini Joshi
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Erica DaGama Gomes
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tai Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Adriana Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tony Taldone
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chao Xu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sahil Sharma
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Salma Buddaseth
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Pengrong Yan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lon Yin L Chan
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Askan Gokce
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Vinagolu K Rajasekhar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lisa Shrestha
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Palak Panchal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Justina Almodovar
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chander S Digwal
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Anna Rodina
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Swathi Merugu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Vlad Miclea
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Radu I Peter
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, CJ, 400114, Romania
| | - Wanyan Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA
- Departments of Psychiatry, Neuroscience & Physiology, and the NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Laura Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marissa Mattar
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elisa de Stanchina
- Antitumour Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maeve Lowery
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eileen M O'Reilly
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yelena Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - William R Jarnagin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Kimmel Center for Biology and Medicine at the Skirball Institute, NYU School of Medicine, New York, NY, 10016, USA
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Lebanon, NH, 03766, USA
| | - Gabriela Chiosis
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Parrish PCR, Thomas JD, Gabel AM, Kamlapurkar S, Bradley RK, Berger AH. Discovery of synthetic lethal and tumor suppressor paralog pairs in the human genome. Cell Rep 2021; 36:109597. [PMID: 34469736 PMCID: PMC8534300 DOI: 10.1016/j.celrep.2021.109597] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 01/26/2023] Open
Abstract
CRISPR screens have accelerated the discovery of important cancer vulnerabilities. However, single-gene knockout phenotypes can be masked by redundancy among related genes. Paralogs constitute two-thirds of the human protein-coding genome, so existing methods are likely inadequate for assaying a large portion of gene function. Here, we develop paired guide RNAs for paralog genetic interaction mapping (pgPEN), a pooled CRISPR-Cas9 single- and double-knockout approach targeting more than 2,000 human paralogs. We apply pgPEN to two cell types and discover that 12% of human paralogs exhibit synthetic lethality in at least one context. We recover known synthetic lethal paralogs MEK1/MEK2, important drug targets CDK4/CDK6, and other synthetic lethal pairs including CCNL1/CCNL2. Additionally, we identify ten tumor suppressor paralog pairs whose compound loss promotes cell proliferation. These findings nominate drug targets and suggest that paralog genetic interactions could shape the landscape of positive and negative selection in cancer.
Collapse
Affiliation(s)
- Phoebe C R Parrish
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Shriya Kamlapurkar
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alice H Berger
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
Gallage S, García-Beccaria M, Szydlowska M, Rahbari M, Mohr R, Tacke F, Heikenwalder M. The therapeutic landscape of hepatocellular carcinoma. MED 2021; 2:505-552. [PMID: 35590232 DOI: 10.1016/j.medj.2021.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
|
21
|
Shao C, Lu W, Du Y, Yan W, Bao Q, Tian Y, Wang G, Ye H, Hao H. Cytosolic ME1 integrated with mitochondrial IDH2 supports tumor growth and metastasis. Redox Biol 2020; 36:101685. [PMID: 32853879 PMCID: PMC7452056 DOI: 10.1016/j.redox.2020.101685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
NADPH is a pivotal cofactor that maintains redox homeostasis and lipogenesis in cancer cells and interference with NADPH production is a promising approach for treating cancer. However, how normal and cancer cells differentially exploit NADPH-producing pathways is unclear, and selective approaches to targeting NADPH are lacking. Here, we show that the assayed cancer cell lines preferentially depend on ME1-mediated NADPH production. ME1 knockdown increases intracellular ROS levels and impairs lipogenesis in cancer cells, leading to retarded proliferation and increased anoikis, while sparing normal cells. Notably, ME1 interference ultimately resulted in adaptive upregulation of mitochondrial IDH2 dependent of AMPK-FoxO1 activation to replenish the NADPH pool and mitigate cytosolic ROS. Combining ME1 ablation and IDH2 inhibition drastically reduces intracellular NADPH and prevents resistance to ME1 interference, resulting in increased apoptosis and impeded tumor growth and metastasis. This study demonstrates that cytosolic ME1 integrated with mitochondrial IDH2 is essential for tumor growth and metastasis, thereby highlighting the blockade of metabolic compensation by disrupting mitochondrial-cytosol NADPH transport as a promising approach to selectively targeting NADPH in cancer cells that rely on NADPH-driven antioxidant systems. NADPH is vital in mitigating ROS stress and supporting lipogenesis in cancer cells. Certain cancer cells preferentially depend on ME1-mediated NADPH production route. ME1 knockdown adaptively upregulates IDH2 dependent of AMPK-FoxO1 axis. Compensatory IDH2 contributes to replenish the NADPH pool and mitigates ROS. Combined targeting ME1 and IDH2 depletes NADPH and inhibits tumor growth and metastasis.
Collapse
Affiliation(s)
- Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenchao Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China.
| |
Collapse
|
22
|
Tan SY, Kelkar Y, Hadjipanayis A, Shipstone A, Wynn TA, Hall JP. Metformin and 2-Deoxyglucose Collaboratively Suppress Human CD4 + T Cell Effector Functions and Activation-Induced Metabolic Reprogramming. THE JOURNAL OF IMMUNOLOGY 2020; 205:957-967. [PMID: 32641388 DOI: 10.4049/jimmunol.2000137] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Metabolic reprogramming plays a central role in T cell activation and differentiation, and the inhibition of key metabolic pathways in activated T cells represents a logical approach for the development of new therapeutic agents for treating autoimmune diseases. The widely prescribed antidiabetic drug metformin and the glycolytic inhibitor 2-deoxyglucose (2-DG) have been used to study the inhibition of oxidative phosphorylation and glycolysis, respectively, in murine immune cells. Published studies have demonstrated that combination treatment with metformin and 2-DG was efficacious in dampening mouse T cell activation-induced effector processes, relative to treatments with either metformin or 2-DG alone. In this study, we report that metformin + 2-DG treatment more potently suppressed IFN-γ production and cell proliferation in activated primary human CD4+ T cells than either metformin or 2-DG treatment alone. The effects of metformin + 2-DG on human T cells were accompanied by significant remodeling of activation-induced metabolic transcriptional programs, in part because of suppression of key transcriptional regulators MYC and HIF-1A. Accordingly, metformin + 2-DG treatment significantly suppressed MYC-dependent metabolic genes and processes, but this effect was found to be independent of mTORC1 signaling. These findings reveal significant insights into the effects of metabolic inhibition by metformin + 2-DG treatment on primary human T cells and provide a basis for future work aimed at developing new combination therapy regimens that target multiple pathways within the metabolic networks of activated human T cells.
Collapse
Affiliation(s)
- Stefanie Y Tan
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139
| | - Yogeshwar Kelkar
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139
| | | | - Arun Shipstone
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139
| | - Thomas A Wynn
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139
| | - J Perry Hall
- Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139
| |
Collapse
|
23
|
Choi PJ, Park TI, Cooper E, Dragunow M, Denny WA, Jose J. Heptamethine Cyanine Dye Mediated Drug Delivery: Hype or Hope. Bioconjug Chem 2020; 31:1724-1739. [DOI: 10.1021/acs.bioconjchem.0c00302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Peter J. Choi
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Thomas I−H. Park
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Elizabeth Cooper
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - Mike Dragunow
- Department of Pharmacology & The Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Neurosurgical Research Unit, The Centre for Brain Research, University of Auckland, Private Bag
92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jiney Jose
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Are Parallel Proliferation Pathways Redundant? Trends Biochem Sci 2020; 45:554-563. [PMID: 32345469 DOI: 10.1016/j.tibs.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Are the receptor tyrosine kinase (RTK) and JAK-STAT-driven proliferation pathways 'parallel' or 'redundant'? And what about those of K-Ras4B versus N-Ras? 'Parallel' proliferation pathways accomplish a similar drug resistance outcome. Thus, are they 'redundant'? In this paper, it is argued that there is a fundamental distinction between 'parallel' and 'redundant'. Cellular proliferation pathways are influenced by the genome sequence, 3D organization and chromatin accessibility, and determined by protein availability prior to cancer emergence. In the opinion presented, if they operate the same downstream protein families, they are redundant; if evolutionary-independent, they are parallel. Thus, RTK and JAK-STAT-driven proliferation pathways are parallel; those of Ras isoforms are redundant. Our Precision Medicine Call to map cancer proliferation pathways is vastly important since it can expedite effective therapeutics.
Collapse
|
25
|
|
26
|
Kreuzaler P, Panina Y, Segal J, Yuneva M. Adapt and conquer: Metabolic flexibility in cancer growth, invasion and evasion. Mol Metab 2020; 33:83-101. [PMID: 31668988 PMCID: PMC7056924 DOI: 10.1016/j.molmet.2019.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND It has been known for close to a century that, on average, tumors have a metabolism that is different from those found in healthy tissues. Typically, tumors show a biosynthetic metabolism that distinguishes itself by engaging in large scale aerobic glycolysis, heightened flux through the pentose phosphate pathway, and increased glutaminolysis among other means. However, it is becoming equally clear that non tumorous tissues at times can engage in similar metabolism, while tumors show a high degree of metabolic flexibility reacting to cues, and stresses in their local environment. SCOPE OF THE REVIEW In this review, we want to scrutinize historic and recent research on metabolism, comparing and contrasting oncogenic and physiological metabolic states. This will allow us to better define states of bona fide tumor metabolism. We will further contextualize the stress response and the metabolic evolutionary trajectory seen in tumors, and how these contribute to tumor progression. Lastly, we will analyze the implications of these characteristics with respect to therapy response. MAJOR CONCLUSIONS In our review, we argue that there is not one single oncogenic state, but rather a diverse set of oncogenic states. These are grounded on a physiological proliferative/wound healing program but distinguish themselves due to their large scale of proliferation, mutations, and transcriptional changes in key metabolic pathways, and the adaptations to widespread stress signals within tumors. We find evidence for the necessity of metabolic flexibility and stress responses in tumor progression and how these responses in turn shape oncogenic progression. Lastly, we find evidence for the notion that the metabolic adaptability of tumors frequently frustrates therapeutic interventions.
Collapse
|
27
|
NPY Gene Methylation as a Universal, Longitudinal Plasma Marker for Evaluating the Clinical Benefit from Last-Line Treatment with Regorafenib in Metastatic Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11111649. [PMID: 31731482 PMCID: PMC6896074 DOI: 10.3390/cancers11111649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022] Open
Abstract
There is a need for biomarkers to improve the clinical benefit from systemic treatment of colorectal cancer. We designed a prospective, clinical study where patients receiving regorafenib as last-line treatment had sequential blood samples drawn. Effect and toxicity was monitored. The primary clinical endpoint was progression free survival (PFS). Cell-free circulating tumor (ct) DNA was measured as either the fraction with Neuropeptide Y (NPY) methylated DNA or KRAS/NRAS/BRAF mutated ctDNA. One hundred patients were included from three Danish centers. Among 95 patients who received regorafenib for at least two weeks, the median PFS was 2.1 months (95% confidence interval (CI) 1.8–3.3) and the median overall survival (OS) was 5.2 months (95% CI 4.3–6.5). Grade 3–4 toxicities were reported 51 times, most frequently hypertension, hand-food syndrome, and skin rash. In the biomarker population of 91 patients, 49 could be monitored using mutated DNA and 90 using methylated DNA. There was a strong correlation between mutated and methylated DNA. The median survival for patients with a level of methylated ctDNA above the median was 4.3 months compared to 7.6 months with ctDNA below the median, p < 0.001. The median time from increasing methylated ctDNA to disease progression was 1.64 months (range 0.46–8.38 months). In conclusion, NPY methylated ctDNA was a universal liquid biopsy marker in colorectal cancer patients treated with regorafenib. High baseline levels correlated with short survival and changes during treatment may predict early effect and later progression. We suggest plasma NPY methylation analysis as an easy and universally applicable method for longitudinal monitoring of ctDNA in metastatic colorectal cancer patients.
Collapse
|
28
|
Dandage R, Landry CR. Paralog dependency indirectly affects the robustness of human cells. Mol Syst Biol 2019; 15:e8871. [PMID: 31556487 PMCID: PMC6757259 DOI: 10.15252/msb.20198871] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
The protective redundancy of paralogous genes partly relies on the fact that they carry their functions independently. However, a significant fraction of paralogous proteins may form functionally dependent pairs, for instance, through heteromerization. As a consequence, one could expect these heteromeric paralogs to be less protective against deleterious mutations. To test this hypothesis, we examined the robustness landscape of gene loss-of-function by CRISPR-Cas9 in more than 450 human cell lines. This landscape shows regions of greater deleteriousness to gene inactivation as a function of key paralog properties. Heteromeric paralogs are more likely to occupy such regions owing to their high expression and large number of protein-protein interaction partners. Further investigation revealed that heteromers may also be under stricter dosage balance, which may also contribute to the higher deleteriousness upon gene inactivation. Finally, we suggest that physical dependency may contribute to the deleteriousness upon loss-of-function as revealed by the correlation between the strength of interactions between paralogs and their higher deleteriousness upon loss of function.
Collapse
Affiliation(s)
- Rohan Dandage
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| | - Christian R Landry
- Département de BiologieUniversité LavalQuébecQCCanada
- Département de Biochimie, Microbiologie et Bio‐InformatiqueUniversité LavalQuébecQCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- The Québec Network for Research on Protein Function, Engineering, and Applications (PROTEO)Université LavalQuébecQCCanada
- Centre de Recherche en Données Massives (CRDM)Université LavalQuébecQCCanada
| |
Collapse
|
29
|
Zhou F, Wang P, Peng Y, Zhang P, Huang Q, Sun W, He N, Fu T, Zhao Z, Fang X, Tan W. Molecular Engineering‐Based Aptamer–Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Targeted Cancer Therapy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fang Zhou
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics National Demonstration Center for Experimental Biomedical Engineering Education School of Biological Science and Medical Engineering Southeast University Nanjing 210096 P. R. China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory for Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of Life Sciences Aptamer Engineering Center of Hunan Province Hunan University Changsha 410082 P. R. China
- Department of Chemistry, Department of Physiology and Functional Genomics Center for Research at Bio/Nano Interface UF Health Cancer Center UF Genetics Institute and McKnight Brain Institute University of Florida Gainesville FL 32611-7200 USA
| |
Collapse
|
30
|
Zhou F, Wang P, Peng Y, Zhang P, Huang Q, Sun W, He N, Fu T, Zhao Z, Fang X, Tan W. Molecular Engineering-Based Aptamer-Drug Conjugates with Accurate Tunability of Drug Ratios for Drug Combination Targeted Cancer Therapy. Angew Chem Int Ed Engl 2019; 58:11661-11665. [PMID: 31125154 DOI: 10.1002/anie.201903807] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Polytherapy (or drug combination cancer therapy (DCCT)), targeting multiple mechanisms associated with tumor proliferation, can efficiently maximize therapeutic efficacy, decrease drug dosage, and reduce drug resistance. However, most DCCT strategies cannot coordinate the specific delivery of a drug combination in an accurately tuned ratio into cancer cells. To address these limitations, the present work reports the engineering of circular bivalent aptamer-drug conjugates (cb-ApDCs). The cb-ApDCs exhibit high stability, specific recognition, excellent cellular uptake, and esterase-triggered release. Furthermore, the drug ratios in cb-ApDCs can be tuned for an enhanced synergistic effect without the need for complex chemistry. Therefore, cb-ApDCs provide a promising platform for the development of DCCT strategies for different drug combinations and ratios.
Collapse
Affiliation(s)
- Fang Zhou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Peng Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Qin Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Weidi Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, P. R. China.,Department of Chemistry, Department of Physiology and Functional Genomics, Center for Research at Bio/Nano Interface, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute University of Florida, Gainesville, FL, 32611-7200, USA
| |
Collapse
|
31
|
The SR-B1 Receptor as a Potential Target for Treating Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:1805841. [PMID: 31275377 PMCID: PMC6583082 DOI: 10.1155/2019/1805841] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
Abstract
Purpose The goal of these studies was to provide proof of concept for a novel targeted therapy for Glioblastoma Multiforme (GBM). Methods. These studies involve the evaluation of reconstituted high density lipoprotein (rHDL) nanoparticles (NPs) as delivery agents for the drug, mammalian Target of Rapamycin (mTOR) inhibitor Everolimus (EVR) to GBM cells. Cytotoxicity studies and assessment of downstream effects, including apoptosis, migration, and cell cycle events, were probed, in relation to the expression of scavenger receptor B type 1 (SR-B1) by GBM cells. Results Findings from cytotoxicity studies indicate that the rHDL/EVR formulation was 185 times more potent than free EVR against high SR-B1 expressing cell line (LN 229). Cell cycle analysis revealed that rHDL/EVR treated LN229 cells had a 5.8 times higher apoptotic cell population than those treated with EVR. The sensitivity of GBM cells to EVR treatment was strongly correlated with SR-B1 expression. Conclusions These studies present strong proof of concept regarding the efficacy of delivering EVR and likely other agents, via a biocompatible transport system, targeted to the SR-B1 receptor that is upregulated in most cancers, including GBM. Targeting the SR-B1 receptor could thus lead to effective personalized therapy of GBM.
Collapse
|
32
|
Chokeshaiusaha K, Puthier D, Nguyen C, Sudjaidee P, Sananmuang T. Factor Analysis for Bicluster Acquisition (FABIA) revealed vincristine-sensitive transcript pattern of canine transmissible venereal tumors. Heliyon 2019; 5:e01558. [PMID: 31193204 PMCID: PMC6520609 DOI: 10.1016/j.heliyon.2019.e01558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotherapeutic treatment for Canine transmissible venereal tumor (CTVT) commonly relies on vincristine administration. Since the treatment outcomes can vary among CTVT cases, gaining insight into the tumor cell mechanisms influencing vincristine's potency should render veterinarians novel knowledge to enhance its therapeutic effect. This study aimed to attain such knowledge from a meta-analysis of CTVT mRNA sequencing (mRNA-seq) transcriptome data using Factor Analysis for Bicluster Acquisition (FABIA) biclustering. FABIA biclustering identified 459 genes consistently expressed among mRNA-seq transcription profiling of CTVT samples regressed by vincristine. These genes were also differentially expressed from those of progressive CTVT (FDR ≤ 0.001). Enrichment analysis illustrated the affiliation of these genes with "Antigen presentation" and "Lysosome" GO terms (FDR ≤ 0.05). Several genes in "Lysosome" term involved 5 cell mechanisms-antigen presentation, autophagy, cell-adhesion, lysosomal membrane permeabilization (LMP), and PI3K/mTOR signaling. This study integrated FABIA biclustering in CTVT transcriptome analysis to gain insight into cell mechanisms responsible for vincristine-sensitive characteristics of the tumor, in order to identify new molecular targets augmenting therapeutic effect of vincristine. Interestingly, the analysis indicated LMP targeting by lysosome destabilizing agent-siramesine as the promising vincristine's enhancer for future study. As far as we know, this is the first canine tumor transcriptomic meta-analysis applying FABIA biclustering for the betterment of future CTVT therapy. This study hereby provided an interesting manifestation to acquire such knowledge in other canine neoplasia.
Collapse
Affiliation(s)
- K. Chokeshaiusaha
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - D. Puthier
- Aix Marseille Univ, TAGC INSERM UMR 1090, Marseille, France
| | - C. Nguyen
- Aix Marseille Univ, TAGC INSERM UMR 1090, Marseille, France
| | - P. Sudjaidee
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
| | - T. Sananmuang
- Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand
- Corresponding author.
| |
Collapse
|
33
|
Capobianco E. Next Generation Networks: Featuring the Potential Role of Emerging Applications in Translational Oncology. J Clin Med 2019; 8:jcm8050664. [PMID: 31083565 PMCID: PMC6572295 DOI: 10.3390/jcm8050664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023] Open
Abstract
Nowadays, networks are pervasively used as examples of models suitable to mathematically represent and visualize the complexity of systems associated with many diseases, including cancer. In the cancer context, the concept of network entropy has guided many studies focused on comparing equilibrium to disequilibrium (i.e., perturbed) conditions. Since these conditions reflect both structural and dynamic properties of network interaction maps, the derived topological characterizations offer precious support to conduct cancer inference. Recent innovative directions have emerged in network medicine addressing especially experimental omics approaches integrated with a variety of other data, from molecular to clinical and also electronic records, bioimaging etc. This work considers a few theoretically relevant concepts likely to impact the future of applications in personalized/precision/translational oncology. The focus goes to specific properties of networks that are still not commonly utilized or studied in the oncological domain, and they are: controllability, synchronization and symmetry. The examples here provided take inspiration from the consideration of metastatic processes, especially their progression through stages and their hallmark characteristics. Casting these processes into computational frameworks and identifying network states with specific modular configurations may be extremely useful to interpret or even understand dysregulation patterns underlying cancer, and associated events (onset, progression) and disease phenotypes.
Collapse
Affiliation(s)
- Enrico Capobianco
- Center for Computational Science, University of Miami, Miami, FL 33146, USA.
| |
Collapse
|
34
|
Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers. PLoS Comput Biol 2019; 15:e1006658. [PMID: 30921324 PMCID: PMC6438456 DOI: 10.1371/journal.pcbi.1006658] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
At the root of the so-called precision medicine or precision oncology, which is our focus here, is the hypothesis that cancer treatment would be considerably better if therapies were guided by a tumor’s genomic alterations. This hypothesis has sparked major initiatives focusing on whole-genome and/or exome sequencing, creation of large databases, and developing tools for their statistical analyses—all aspiring to identify actionable alterations, and thus molecular targets, in a patient. At the center of the massive amount of collected sequence data is their interpretations that largely rest on statistical analysis and phenotypic observations. Statistics is vital, because it guides identification of cancer-driving alterations. However, statistics of mutations do not identify a change in protein conformation; therefore, it may not define sufficiently accurate actionable mutations, neglecting those that are rare. Among the many thematic overviews of precision oncology, this review innovates by further comprehensively including precision pharmacology, and within this framework, articulating its protein structural landscape and consequences to cellular signaling pathways. It provides the underlying physicochemical basis, thereby also opening the door to a broader community.
Collapse
|
35
|
Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights into Their Mechanisms of Action. Int J Mol Sci 2018; 19:ijms19102852. [PMID: 30241344 PMCID: PMC6213935 DOI: 10.3390/ijms19102852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, the TFCP2 (transcription factor cellular promoter 2)/TFCP2L1 (TFCP2-like 1)/UBP1 (upstream binding protein 1) subfamily of transcription factors has been attracting increasing attention in the scientific community. These factors are very important in cancer, Alzheimer’s disease, and other human conditions, and they can be attractive targets for drug development. However, the interpretation of experimental results is complicated, as in principle, any of these factors could substitute for the lack of another. Thus, studying their hitherto little known functions should enhance our understanding of mechanisms of their functioning, and analogous mechanisms might govern their functioning in medically relevant contexts. For example, there are numerous parallels between placental development and cancer growth; therefore, investigating the roles of TFCP2, TFCP2L1, and UBP1 in the placenta may help us better understand their functioning in cancer, as is evidenced by the studies of various other proteins and pathways. Our review article aims to call the attention of the scientific community to these neglected functions, and encourage further research in this field. Here, we present a systematic review of current knowledge of the TFCP2/TFCP2L1/UBP1 subfamily in reproduction, embryonic development, renal function, blood-pressure regulation, brain function, and other processes, where their involvement has not been studied much until now.
Collapse
|
36
|
Hubert JN, Zerjal T, Hospital F. Cancer- and behavior-related genes are targeted by selection in the Tasmanian devil (Sarcophilus harrisii). PLoS One 2018; 13:e0201838. [PMID: 30102725 PMCID: PMC6089428 DOI: 10.1371/journal.pone.0201838] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022] Open
Abstract
Devil Facial Tumor Disease (DFTD) is an aggressive cancer notorious for its rare etiology and its impact on Tasmanian devil populations. Two regions underlying an evolutionary response to this cancer were recently identified using genomic time-series pre- and post-DTFD arrival. Here, we support that DFTD shaped the genome of the Tasmanian devil in an even more extensive way than previously reported. We detected 97 signatures of selection, including 148 protein coding genes having a human orthologue, linked to DFTD. Most candidate genes are associated with cancer progression, and an important subset of candidate genes has additional influence on social behavior. This confirms the influence of cancer on the ecology and evolution of the Tasmanian devil. Our work also demonstrates the possibility to detect highly polygenic footprints of short-term selection in very small populations.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- * E-mail:
| | - Tatiana Zerjal
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Frédéric Hospital
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
37
|
Truchetet ME, Pradeu T. Re-thinking our understanding of immunity: Robustness in the tissue reconstruction system. Semin Immunol 2018; 36:45-55. [PMID: 29550156 DOI: 10.1016/j.smim.2018.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/26/2022]
Abstract
Robustness, understood as the maintenance of specific functionalities of a given system against internal and external perturbations, is pervasive in today's biology. Yet precise applications of this notion to the immune system have been scarce. Here we show that the concept of robustness sheds light on tissue repair, and particularly on the crucial role the immune system plays in this process. We describe the specific mechanisms, including plasticity and redundancy, by which robustness is achieved in the tissue reconstruction system (TRS). In turn, tissue repair offers a very important test case for assessing the usefulness of the concept of robustness, and identifying different varieties of robustness.
Collapse
Affiliation(s)
- Marie-Elise Truchetet
- Department of Rheumatology, CHU Bordeaux Hospital, Bordeaux, France; ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, UMR5164, Immunology, CNRS, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
38
|
Kotarba G, Krzywinska E, Grabowska AI, Taracha A, Wilanowski T. TFCP2/TFCP2L1/UBP1 transcription factors in cancer. Cancer Lett 2018; 420:72-79. [PMID: 29410248 DOI: 10.1016/j.canlet.2018.01.078] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022]
Abstract
The TFCP2/Grainyhead family of transcription factors is divided into two distinct subfamilies, one of which includes the Grainyhead-like 1-3 (GRHL1-3) proteins and the other consists of TFCP2 (synonyms: CP2, LSF, LBP-1c), TFCP2L1 (synonyms: CRTR-1, LBP-9) and UBP1 (synonyms: LBP-1a, NF2d9). Transcription factors from the TFCP2/TFCP2L1/UBP1 subfamily are involved in various aspects of cancer development. TFCP2 is a pro-oncogenic factor in hepatocellular carcinoma, pancreatic cancer and breast cancer, may be important in cervical carcinogenesis and in colorectal cancer. TFCP2 can also act as a tumor suppressor, for example, it inhibits melanoma growth. Furthermore, TFCP2 is involved in epithelial-mesenchymal transition and enhances angiogenesis. TFCP2L1 maintains pluripotency and self-renewal of embryonic stem cells and was implicated in a wide variety of cancers, including clear cell renal cell carcinoma, breast cancer and thyroid cancer. Here we present a systematic review of current knowledge of this protein subfamily in the context of cancer. We also discuss potential challenges in investigating this family of transcription factors. These challenges include redundancies between these factors as well as their interactions with each other and their ability to modulate each other's activity.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Ewa Krzywinska
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna I Grabowska
- Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Agnieszka Taracha
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
39
|
Kikulska A, Rausch T, Krzywinska E, Pawlak M, Wilczynski B, Benes V, Rutkowski P, Wilanowski T. Coordinated expression and genetic polymorphisms in Grainyhead-like genes in human non-melanoma skin cancers. BMC Cancer 2018; 18:23. [PMID: 29301499 PMCID: PMC5755140 DOI: 10.1186/s12885-017-3943-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Grainyhead-like (GRHL) transcription factors have been linked to many different types of cancer. However, no previous study has attempted to investigate potential correlations in expression of different GRHL genes in this context. Furthermore, there is very little information concerning damaging mutations and/or single nucleotide polymorphisms in GRHL genes that may be linked to cancer. METHODS DNA and RNA were extracted from human non-melanoma skin cancers (NMSC) and adjacent normal tissues (n = 33 pairs of samples). The expression of GRHL genes was measured by quantitative real time PCR. Regulation of GRHL expression by miRNA was studied using cell transfection methods and dual-luciferase reporter system. Targeted deep sequencing of GRHL genes in tumor samples and control tissues were employed to search for mutations and single nucleotide polymorphisms. Single marker rs141193530 was genotyped with pyrosequencing in additional NMSC replication cohort (n = 176). Appropriate statistical and bioinformatic methods were used to analyze and interpret results. RESULTS We discovered that the expression of two genes - GRHL1 and GRHL3 - is reduced in a coordinated manner in tumor samples, in comparison to the control healthy skin samples obtained from the same individuals. It is possible that both GRHL1 and GRHL3 are regulated, at least to some extent, by different strands of the same oncogenic microRNA - miR-21, what would at least partially explain observed correlation. No de novo mutations in the GRHL genes were detected in the examined tumor samples. However, some single nucleotide polymorphisms in the GRHL genes occur at significantly altered frequencies in the examined group of NMSC patients. CONCLUSIONS Non-melanoma skin cancer growth is accompanied by coordinated reduced expression of epidermal differentiation genes: GRHL1 and GRHL3, which may be regulated by miR-21-3p and -5p, respectively. Some potentially damaging single nucleotide polymorphisms in GRHL genes occur with altered frequencies in NMSC patients, and they may in particular impair the expression of GRHL3 gene or functioning of encoded protein. The presence of these polymorphisms may indicate an increased risk of NMSC development in affected people.
Collapse
Affiliation(s)
- Agnieszka Kikulska
- Department of Cell Biology, Laboratory of Signal Transduction, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Tobias Rausch
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraβe 1, 69117 Heidelberg, Germany
| | - Ewa Krzywinska
- Department of Cell Biology, Laboratory of Signal Transduction, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Magdalena Pawlak
- Department of Cell Biology, Laboratory of Signal Transduction, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Bartek Wilczynski
- Computational Biology Group, Institute of Informatics, University of Warsaw, 2 Banacha St, 02-097 Warsaw, Poland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraβe 1, 69117 Heidelberg, Germany
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 5 Roentgena St, 02-781 Warsaw, Poland
| | - Tomasz Wilanowski
- Department of Cell Biology, Laboratory of Signal Transduction, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| |
Collapse
|
40
|
Pawlak M, Kikulska A, Wrzesinski T, Rausch T, Kwias Z, Wilczynski B, Benes V, Wesoly J, Wilanowski T. Potential protective role of Grainyhead-like genes in the development of clear cell renal cell carcinoma. Mol Carcinog 2017; 56:2414-2423. [DOI: 10.1002/mc.22682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Magdalena Pawlak
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Agnieszka Kikulska
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| | - Tomasz Wrzesinski
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tobias Rausch
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology; Poznan University of Medical Sciences; Poznan Poland
| | - Bartek Wilczynski
- Faculty of Mathematics, Informatics and Mechanics; Institute of Informatics; University of Warsaw; Warsaw Poland
| | - Vladimir Benes
- Genomics Core Facility; European Molecular Biology Laboratory; Heidelberg Germany
| | - Joanna Wesoly
- Faculty of Biology; Laboratory of High Throughput Technologies; Institute of Molecular Biology and Biotechnology; Adam Mickiewicz University; Poznan Poland
| | - Tomasz Wilanowski
- Laboratory of Signal Transduction; Department of Cell Biology; Nencki Institute of Experimental Biology of Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
41
|
Sonowal H, Pal PB, Wen JJ, Awasthi S, Ramana KV, Srivastava SK. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci Rep 2017; 7:3182. [PMID: 28600556 PMCID: PMC5466629 DOI: 10.1038/s41598-017-03284-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Anthracycline drugs such as doxorubicin (DOX) and daunorubicin remain some of the most active wide-spectrum and cost-effective drugs in cancer therapy. However, colorectal cancer (CRC) cells are inherently resistant to anthracyclines which at higher doses cause cardiotoxicity. Our recent studies indicate that aldose reductase (AR) inhibitors such as fidarestat inhibit CRC growth in vitro and in vivo. Here, we show that treatment of CRC cells with fidarestat increases the efficacy of DOX-induced death in HT-29 and SW480 cells and in nude mice xenografts. AR inhibition also results in higher intracellular accumulation of DOX and decreases the expression of drug transporter proteins MDR1, MRP1, and ABCG2. Further, fidarestat also inhibits DOX-induced increase in troponin-I and various inflammatory markers in the serum and heart and restores cardiac function in mice. These results suggest that fidarestat could be used as adjuvant therapy to enhance DOX sensitivity of CRC cells and to reduce DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Pabitra B Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX-79430, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA.
| |
Collapse
|
42
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
43
|
Omar HA, Tolba MF, Hung JH, Al-Tel TH. OSU-2S/Sorafenib Synergistic Antitumor Combination against Hepatocellular Carcinoma: The Role of PKCδ/p53. Front Pharmacol 2016; 7:463. [PMID: 27965580 PMCID: PMC5127788 DOI: 10.3389/fphar.2016.00463] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/16/2016] [Indexed: 12/19/2022] Open
Abstract
Background: Sorafenib (Nexavar®) is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices <1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and inhibition of HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusion: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity toward both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.
Collapse
Affiliation(s)
- Hany A Omar
- Sharjah Institute for Medical Research and College of Pharmacy, University of SharjahSharjah, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef UniversityBeni-Suef, Egypt
| | - Mai F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams UniversityCairo, Egypt; School of Pharmacy, Chapman University, IrvineCA, USA
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science Tainan, Taiwan
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research and College of Pharmacy, University of Sharjah Sharjah, United Arab Emirates
| |
Collapse
|
44
|
Subedi A, Futamura Y, Nishi M, Ryo A, Watanabe N, Osada H. High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolism. Biochem Biophys Res Commun 2016; 477:737-742. [DOI: 10.1016/j.bbrc.2016.06.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/25/2016] [Indexed: 12/20/2022]
|
45
|
Min HY, Lee SC, Woo JK, Jung HJ, Park KH, Jeong HM, Hyun SY, Cho J, Lee W, Park JE, Kwon SJ, Lee HJ, Ni X, Shin YK, Johnson FM, Duvic M, Lee HY. Essential Role of DNA Methyltransferase 1-mediated Transcription of Insulin-like Growth Factor 2 in Resistance to Histone Deacetylase Inhibitors. Clin Cancer Res 2016; 23:1299-1311. [PMID: 27582487 DOI: 10.1158/1078-0432.ccr-16-0534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/06/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Purpose: Histone deacetylase inhibitors (HDI) are promising anticancer therapies; however, drug resistance limits their efficacy. Here, we investigated the molecular mechanisms underlying HDI resistance, focusing on the mechanism of HDI-mediated induction of insulin-like growth factor 2 (IGF2) based on our previous study.Experimental Design: The methylation status of CCCTC-binding factor (CTCF)-binding sites in the IGF2/H19 imprinting control region (ICR) were determined by methylation-specific PCR and bisulfite sequencing. The effectiveness of single or combinatorial blockade of DNA methyltransferase 1 (DNMT1) and histone deacetylase (HDAC) was evaluated using cell viability assay and patient-derived tumor xenograft (PDX) model.Results: HDAC inhibition by vorinostat increased acetylated STAT3 (K685), resulting in transcriptional upregulation of DNMT1 DNMT1-mediated hypermethylation of CTCF-binding sites in the IGF2/H19 ICR decreased CTCF insulator activity, leading to a transcriptional upregulation of IGF2 and activation of the insulin-like growth factor 1 receptor (IGF-1R) pathway in cells with acquired or de novo vorinostat resistance. Strategies targeting DNMT1 diminished the IGF2 expression and potentiated vorinostat sensitivity in preclinical models of lung cancer with hypermethylation in the H19/IGF2 ICR. The degree of ICR hypermethylation correlated with vorinostat resistance in patient-derived lung tumors and in patients with hematologic malignancies.Conclusions: DNMT1-mediated transcriptional upregulation of IGF2 is a novel mechanism of resistance to HDIs, highlighting the role of epigenetic deregulation of IGF2 in HDI resistance and the potential value of the H19/IGF2 ICR hypermethylation and DNMT1 expression as predictive biomarkers in HDI-based anticancer therapies. Clin Cancer Res; 23(5); 1299-311. ©2016 AACR.
Collapse
Affiliation(s)
- Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi 16229, Republic of Korea
| | - Su-Chan Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong Kyu Woo
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jin Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwan Hee Park
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hae Min Jeong
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeob Hyun
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaebeom Cho
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooin Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Eun Park
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - So Jung Kwon
- College of Pharmacy, Inje University, Gimhae, Gyungnam 50834, Republic of Korea
| | - Hyo-Jong Lee
- College of Pharmacy, Inje University, Gimhae, Gyungnam 50834, Republic of Korea
| | - Xiao Ni
- Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Young Kee Shin
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Faye M Johnson
- Department of Thoracic Head & Neck Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Madeleine Duvic
- Department of Dermatology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi 16229, Republic of Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea.,College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Nussinov R, Tsai CJ, Jang H, Korcsmáros T, Csermely P. Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation. Semin Cell Dev Biol 2016; 58:79-85. [PMID: 27058752 DOI: 10.1016/j.semcdb.2016.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/01/2016] [Indexed: 12/19/2022]
Abstract
Why are YAP1 and c-Myc often overexpressed (or activated) in KRAS-driven cancers and drug resistance? Here, we propose that there are two independent pathways in tumor proliferation: one includes MAPK/ERK and PI3K/A kt/mTOR; and the other consists of pathways leading to the expression (or activation) of YAP1 and c-Myc. KRAS contributes through the first. MYC is regulated by e.g. β-catenin, Notch and Hedgehog. We propose that YAP1 and ERK accomplish similar roles in cell cycle control, as do β-catenin and PI3K. This point is compelling, since the question of how YAP1 rescues K-Ras or B-Raf ablation has recently captured much attention, as well as the mechanism of resistance to PI3K inhibitors. The similarity in cell cycle actions of β-catenin and PI3K can also clarify the increased aggressiveness of lung cancer when both K-Ras and β-catenin operate. Thus, we propose that the two pathways can substitute one another - or together amplify each other - in promoting proliferation. This new understanding of the independence and correspondence of the two pathways in cancer - MAPK/ERK and PI3K/Akt/mTOR; and YAP1 and c-Myc - provide a coherent and significant picture of signaling-driven oncogenic proliferation and may help in judicious, pathway-based drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Tamás Korcsmáros
- Gut Health and Food Safety Programme, Institute of Food Research, and TGAC, Norwich Research Park, Norwich NR4 7UA, UK; TGAC, The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Peter Csermely
- Department of Medical Chemistry, Semmelweis University, P.O. Box 2, H-1428 Budapest, Hungary
| |
Collapse
|
47
|
Hsu C, Lin LI, Cheng YC, Feng ZR, Shao YY, Cheng AL, Ou DL. Cyclin E1 Inhibition can Overcome Sorafenib Resistance in Hepatocellular Carcinoma Cells Through Mcl-1 Suppression. Clin Cancer Res 2015; 22:2555-64. [PMID: 26603262 DOI: 10.1158/1078-0432.ccr-15-0499] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/27/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE To clarify the effects of cyclin E1 suppression on antitumor efficacy of sorafenib in hepatocellular carcinoma cells and to explore the potential of combining sorafenib with cyclin-dependent kinase (CDK) inhibition in therapy. EXPERIMENTAL DESIGN The effects of cyclin E1 suppression on sorafenib-induced apoptosis were tested in both sorafenib-sensitive (Huh-7 and HepG2, IC50 5-6 μmol/L) and sorafenib-resistant (Huh-7R and HepG2R, IC50 14-15 μmol/L) hepatocellular carcinoma cells. The activity of pertinent signaling pathways and the expression of cell cycle and apoptosis-related proteins were measured using Western blotting. Efficacy of sorafenib combined with the pan-CDK inhibitor flavopiridol was tested both in vitro and in xenograft experiments. The pertinent downstream mediators of antitumor efficacy were tested in transient transfection and RNA interference experiments. RESULTS Cyclin E1 mRNA and protein expressions were suppressed after sorafenib treatment in sorafenib-sensitive but not in sorafenib-resistant hepatocellular carcinoma cells. Changes in cyclin E2 or D1 were not correlated with sorafenib sensitivity. The knockdown of cyclin E1 expression reversed the resistance of hepatocellular carcinoma cells to sorafenib in terms of cell growth and apoptosis induction, whereas the overexpression of cyclin E1 increased the resistance to sorafenib. The growth-inhibitory and apoptosis-inducing effects of sorafenib were enhanced by flavopiridol, and Mcl-1 suppression was determined to play a critical role in mediating this enhancing effect. CONCLUSIONS The cyclin E1 suppression in hepatocellular carcinoma cells may serve as a pharmacodynamic biomarker for predicting sorafenib efficacy. The combination of sorafenib and CDK inhibitors may improve the efficacy of sorafenib in hepatocellular carcinoma. Clin Cancer Res; 22(10); 2555-64. ©2015 AACR.
Collapse
Affiliation(s)
- Chiun Hsu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Che Cheng
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zi-Rui Feng
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Yun Shao
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan. National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
48
|
Nascimento AV, Singh A, Bousbaa H, Ferreira D, Sarmento B, Amiji MM. Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells. Mol Pharm 2015; 12:4466-77. [PMID: 26523837 DOI: 10.1021/acs.molpharmaceut.5b00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development of efficient and versatile drug delivery platforms to overcome the physical and biological challenges in cancer therapeutics is an area of great interest, and novel materials are actively sought for such applications. Recent strides in polymer science have led to a combinatorial approach for generating a library of materials with different functional identities that can be "mixed and matched" to attain desired characteristics of a delivery vector. We have applied the combinatorial design to chitosan (CS), where the polymer backbone has been modified with polyethylene glycol, epidermal growth factor receptor-binding peptide, and lipid derivatives of varying chain length to encapsulate hydrophobic drugs. Cisplatin, cis-([PtCl2(NH3)2]), is one of the most potent chemotherapy drugs broadly administered for cancer treatment. Cisplatin is a hydrophilic drug, and in order for it to be encapsulated in the developed nanosystems, it was modified with lipids of varying chain length. The library of four CS derivatives and six platinum derivatives was self-assembled in aqueous medium and evaluated for physicochemical characteristics and cytotoxic effects in platinum-sensitive and -resistant lung cancer cells. The results show that the lipid-modified platinate encapsulation into CS nanoparticles significantly improved cellular cytotoxicity of the drug. In this work, we have also reinforced the idea that CS is a multifaceted system that can be as successful in delivering small molecules as it has been as a nucleic acids carrier.
Collapse
Affiliation(s)
- Ana Vanessa Nascimento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| | - Amit Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| | - Hassan Bousbaa
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto , Rua do Campo Alegre 823, 4050-313 Porto, Portugal
| | - Domingos Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , R. Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Universitário de Ciências da Saúde , R. Central da Gandra 1317, 4585-116 Gandra, Portugal.,I3S, Instituto de Investigação e Inovação em Saúde and INEB - Instituto de Engenharia Biomédica, Universidade do Porto , Rua do Campo Alegre 823, 4150 Porto, Portugal
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University , Boston, Massachusetts 02115-5000, United States
| |
Collapse
|
49
|
Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annu Rev Pharmacol Toxicol 2015; 56:85-102. [PMID: 26514196 DOI: 10.1146/annurev-pharmtox-010715-103111] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resistance to anticancer drugs is a complex process that results from alterations in drug targets; development of alternative pathways for growth activation; changes in cellular pharmacology, including increased drug efflux; regulatory changes that alter differentiation pathways or pathways for response to environmental adversity; and/or changes in the local physiology of the cancer, such as blood supply, tissue hydrodynamics, behavior of neighboring cells, and immune system response. All of these specific mechanisms are facilitated by the intrinsic hallmarks of cancer, such as tumor cell heterogeneity, redundancy of growth-promoting pathways, increased mutation rate and/or epigenetic alterations, and the dynamic variation of tumor behavior in time and space. Understanding the relative contribution of each of these factors is further complicated by the lack of adequate in vitro models that mimic clinical cancers. Several strategies to use current knowledge of drug resistance to improve treatment of cancer are suggested.
Collapse
Affiliation(s)
- Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Orit Lavi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892; , ,
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit-URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, B-5000 Namur, Belgium;
| |
Collapse
|
50
|
Musso L, Dallavalle S, Zunino F. Perspectives in the development of hybrid bifunctional antitumour agents. Biochem Pharmacol 2015; 96:297-305. [DOI: 10.1016/j.bcp.2015.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/05/2015] [Indexed: 01/04/2023]
|