1
|
Liu Y, Chen H, Yan X, Zhang J, Deng Z, Huang M, Gu J, Zhang J. MyD88 in myofibroblasts enhances nonalcoholic fatty liver disease-related hepatocarcinogenesis via promoting macrophage M2 polarization. Cell Commun Signal 2024; 22:86. [PMID: 38291436 PMCID: PMC10826060 DOI: 10.1186/s12964-024-01489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major cause of chronic liver diseases and has emerged as the leading factor in the pathogenesis of hepatocellular carcinoma (HCC). MyD88 contributes to the development of HCC. However, the underlying mechanism by which MyD88 in myofibroblasts regulates NAFLD-associated liver cancer development remains unknown. RESULTS Myofibroblast MyD88-deficient (SMAMyD88-/-) mice were protected from diet-induced obesity and developed fewer and smaller liver tumors. MyD88 deficiency in myofibroblasts attenuated macrophage M2 polarization and fat accumulation in HCC tissues. Mechanistically, MyD88 signaling in myofibroblasts enhanced CCL9 secretion, thereby promoting macrophage M2 polarization. This process may depend on the CCR1 receptor and STAT6/ PPARβ pathway. Furthermore, liver tumor growth was attenuated in mice treated with a CCR1 inhibitor. CCLl5 (homologous protein CCL9 in humans) expression was increased in myofibroblasts of HCC and was associated with shorter survival of patients with HCC. Thus, our results indicate that MyD88 in myofibroblasts promotes NAFLD-related HCC progression and may be a promising therapeutic target for HCC treatment. CONCLUSION This study demonstrates that MyD88 in myofibroblasts can promote nonalcoholic fatty liver disease-related hepatocarcinogenesis by enhancing macrophage M2 polarization, which might provide a potential molecular therapeutic target for HCC.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Haiqiang Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Xuanxuan Yan
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Jie Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China
| | - Zhenzhong Deng
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P. R. China
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianchun Gu
- Department of Oncology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, No.3 Shangyuancun Road, Beijing, 100044, P.R. China.
| |
Collapse
|
2
|
Li B, Li W, Liang Y, Zhang C, Kong G, Li Z. Spleen-Derived CCL9 Recruits MDSC to Facilitate Tumor Growth in Orthotopic Hepatoma Mice. Glob Med Genet 2023; 10:348-356. [PMID: 38046278 PMCID: PMC10691915 DOI: 10.1055/s-0043-1777327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Objectives Spleen is involved in multiple diseases, the role of the spleen and spleen-derived factors in hepatocellular carcinoma (HCC) is still not clarified. Methods In the current study, a murine H22 orthotopic hepatoma model was established. Three groups were divided: normal mice, tumor-bearing mice with spleen-preserving, and tumor-bearing mice with splenectomy. Spleen and tumor weights were recorded by weeks 1 and 2. The proportion of myeloid-derived suppressor cell (MDSC) in peripheral blood and tumor tissue was detected using flow cytometry. Protein chip assay was used to compare the differential cytokines between normal liver supernatant and tumor supernatant. The common upregulated cytokines both in spleen and tumor were focused and analyzed using gene expression profiling interactive analysis (GEPIA) database. Enzyme-linked immunosorbent assay was performed to verify the chip result, and to examine CCL9 expression before and after splenectomy. Spleen MDSC was sorted using flow cytometry, and chemotaxis assay was performed to demonstrate whether CCL9 attracted spleen MDSC. Results The spleen enlarged during tumor progression, and compared with splenectomy group, there were faster tumor growth, shorter survival time, and higher proportions of MDSC in spleen-preserving group. Protein chip assay and GEPIA database revealed CCL9 was the most promising chemokine involved in HCC upregulated both in spleen and tumor tissue. CCL9 attracted MDSC in vitro, the level of CCL9 in tumor tissue was downregulated, and the percentage of MDSC was decreased after splenectomy. Conclusion The results demonstrate that CCL9 may be derived from spleen; it facilitated HCC growth via the chemotaxis of MDSC, targeting CCL9 may be a promising strategy in HCC treatment.
Collapse
Affiliation(s)
- Baohua Li
- General Surgery Department of Cadre's Ward, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Core Research Laboratory, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wenjuan Li
- Tumor Immunology Center of Precision Medical Research Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yingxue Liang
- Tumor Immunology Center of Precision Medical Research Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zongfang Li
- General Surgery Department of Cadre's Ward, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
3
|
Sebastian A, Martin KA, Peran I, Hum NR, Leon NF, Amiri B, Wilson SP, Coleman MA, Wheeler EK, Byers SW, Loots GG. Loss of Cadherin-11 in pancreatic ductal adenocarcinoma alters tumor-immune microenvironment. Front Oncol 2023; 13:1286861. [PMID: 37954069 PMCID: PMC10639148 DOI: 10.3389/fonc.2023.1286861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the top five deadliest forms of cancer with very few treatment options. The 5-year survival rate for PDAC is 10% following diagnosis. Cadherin 11 (Cdh11), a cell-to-cell adhesion molecule, has been suggested to promote tumor growth and immunosuppression in PDAC, and Cdh11 inhibition significantly extended survival in mice with PDAC. However, the mechanisms by which Cdh11 deficiency influences PDAC progression and anti-tumor immune responses have yet to be fully elucidated. To investigate Cdh11-deficiency induced changes in PDAC tumor microenvironment (TME), we crossed p48-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ (KPC) mice with Cdh11+/- mice and performed single-cell RNA sequencing (scRNA-seq) of the non-immune (CD45-) and immune (CD45+) compartment of KPC tumor-bearing Cdh11 proficient (KPC-Cdh11+/+) and Cdh11 deficient (KPC-Cdh11+/-) mice. Our analysis showed that Cdh11 is expressed primarily in cancer-associated fibroblasts (CAFs) and at low levels in epithelial cells undergoing epithelial-to-mesenchymal transition (EMT). Cdh11 deficiency altered the molecular profile of CAFs, leading to a decrease in the expression of myofibroblast markers such as Acta2 and Tagln and cytokines such as Il6, Il33 and Midkine (Mdk). We also observed a significant decrease in the presence of monocytes/macrophages and neutrophils in KPC-Cdh11+/- tumors while the proportion of T cells was increased. Additionally, myeloid lineage cells from Cdh11-deficient tumors had reduced expression of immunosuppressive cytokines that have previously been shown to play a role in immune suppression. In summary, our data suggests that Cdh11 deficiency significantly alters the fibroblast and immune microenvironments and contributes to the reduction of immunosuppressive cytokines, leading to an increase in anti-tumor immunity and enhanced survival.
Collapse
Affiliation(s)
- Aimy Sebastian
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Kelly A. Martin
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Ivana Peran
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - Nicholas R. Hum
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Nicole F. Leon
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Beheshta Amiri
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Stephen P. Wilson
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Matthew A. Coleman
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Elizabeth K. Wheeler
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
| | - Stephen W. Byers
- Georgetown-Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, United States
- University of California Davis Health, Department of Orthopaedic Surgery, Sacramento, CA, United States
| |
Collapse
|
4
|
Razi S, Haghparast A, Chodari Khameneh S, Ebrahimi Sadrabadi A, Aziziyan F, Bakhtiyari M, Nabi-Afjadi M, Tarhriz V, Jalili A, Zalpoor H. The role of tumor microenvironment on cancer stem cell fate in solid tumors. Cell Commun Signal 2023; 21:143. [PMID: 37328876 PMCID: PMC10273768 DOI: 10.1186/s12964-023-01129-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/18/2023] Open
Abstract
In the last few decades, the role of cancer stem cells in initiating tumors, metastasis, invasion, and resistance to therapies has been recognized as a potential target for tumor therapy. Understanding the mechanisms by which CSCs contribute to cancer progression can help to provide novel therapeutic approaches against solid tumors. In this line, the effects of mechanical forces on CSCs such as epithelial-mesenchymal transition, cellular plasticity, etc., the metabolism pathways of CSCs, players of the tumor microenvironment, and their influence on the regulating of CSCs can lead to cancer progression. This review focused on some of these mechanisms of CSCs, paving the way for a better understanding of their regulatory mechanisms and developing platforms for targeted therapies. While progress has been made in research, more studies will be required in the future to explore more aspects of how CSCs contribute to cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | | | | | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Cytotech and Bioinformatics Research Group, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, P.O. Box 5163639888, Tabriz, Iran.
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.
- Parvaz Research Ideas Supporter Institute, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Kramer ED, Tzetzo SL, Colligan SH, Hensen ML, Brackett CM, Clausen BE, Taketo MM, Abrams SI. β-Catenin signaling in alveolar macrophages enhances lung metastasis through a TNF-dependent mechanism. JCI Insight 2023; 8:e160978. [PMID: 37092550 PMCID: PMC10243816 DOI: 10.1172/jci.insight.160978] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
The main cause of malignancy-related mortality is metastasis. Although metastatic progression is driven by diverse tumor-intrinsic mechanisms, there is a growing appreciation for the contribution of tumor-extrinsic elements of the tumor microenvironment, especially macrophages, which correlate with poor clinical outcomes. Macrophages consist of bone marrow-derived and tissue-resident populations. In contrast to bone marrow-derived macrophages, the transcriptional pathways that govern the pro-metastatic activities of tissue-resident macrophages (TRMs) remain less clear. Alveolar macrophages (AMs) are a TRM population with critical roles in tissue homeostasis and metastasis. Wnt/β-catenin signaling is a hallmark of cancer and has been identified as a pathologic regulator of AMs in infection. We tested the hypothesis that β-catenin expression in AMs enhances metastasis in solid tumor models. Using a genetic β-catenin gain-of-function approach, we demonstrated that (a) enhanced β-catenin in AMs heightened lung metastasis; (b) β-catenin activity in AMs drove a dysregulated inflammatory program strongly associated with Tnf expression; and (c) localized TNF-α blockade abrogated this metastatic outcome. Last, β-catenin gene CTNNB1 and TNF expression levels were positively correlated in AMs of patients with lung cancer. Overall, our findings revealed a Wnt/β-catenin/TNF-α pro-metastatic axis in AMs with potential therapeutic implications against tumors refractory to the antineoplastic actions of TNF-α.
Collapse
Affiliation(s)
| | | | | | | | - Craig M. Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Makoto M. Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
6
|
Wang R, Kumar B, Bhat-Nakshatri P, Khatpe AS, Murphy MP, Wanczyk KE, Simpson E, Chen D, Gao H, Liu Y, Doud EH, Mosley AL, Nakshatri H. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 2023; 26:106541. [PMID: 37102148 PMCID: PMC10123345 DOI: 10.1016/j.isci.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Kristen E. Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Łazarczyk M, Kurzejamska E, Mickael ME, Poznański P, Skiba D, Sacharczuk M, Gaciong Z, Religa P. Mouse CCL9 Chemokine Acts as Tumor Suppressor in a Murine Model of Colon Cancer. Curr Issues Mol Biol 2023; 45:3446-3461. [PMID: 37185750 PMCID: PMC10136558 DOI: 10.3390/cimb45040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Colorectal cancer is the third most frequently diagnosed cancer in the world. Despite extensive studies and apparent progress in modern strategies for disease control, the treatment options are still not sufficient and effective, mostly due to frequently encountered resistance to immunotherapy of colon cancer patients in common clinical practice. In our study, we aimed to uncover the CCL9 chemokine action employing the murine model of colon cancer to seek new, potential molecular targets that could be promising in the development of colon cancer therapy. Mouse CT26.CL25 colon cancer cell line was used for introducing lentivirus-mediated CCL9 overexpression. The blank control cell line contained an empty vector, while the cell line marked as CCL9+ carried the CCL9-overexpressing vector. Next, cancer cells with empty vector (control) or CCL9-overexpressing cells were injected subcutaneously, and the growing tumors were measured within 2 weeks. Surprisingly, CCL9 contributed to a decline in tumor growth in vivo but had no effect on CT26.CL25 cell proliferation or migration in vitro. Microarray analysis of the collected tumor tissues revealed upregulation of the immune system-related genes in the CCL9 group. Obtained results suggest that CCL9 reveals its anti-proliferative functions by interplay with host immune cells and mediators that were absent in the isolated, in vitro system. Under specific study conditions, we determined unknown features of the murine CCL9 that have so far bee reported to be predominantly pro-oncogenic.
Collapse
Affiliation(s)
- Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Ewa Kurzejamska
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, 142 86 Stockolm, Sweden
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Piotr Poznański
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Zbigniew Gaciong
- Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
8
|
Clemente-González C, Carnero A. Role of the Hypoxic-Secretome in Seed and Soil Metastatic Preparation. Cancers (Basel) 2022; 14:5930. [PMID: 36497411 PMCID: PMC9738438 DOI: 10.3390/cancers14235930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
During tumor growth, the delivery of oxygen to cells is impaired due to aberrant or absent vasculature. This causes an adaptative response that activates the expression of genes that control several essential processes, such as glycolysis, neovascularization, immune suppression, and the cancer stemness phenotype, leading to increased metastasis and resistance to therapy. Hypoxic tumor cells also respond to an altered hypoxic microenvironment by secreting vesicles, factors, cytokines and nucleic acids that modify not only the immediate microenvironment but also organs at distant sites, allowing or facilitating the attachment and growth of tumor cells and contributing to metastasis. Hypoxia induces the release of molecules of different biochemical natures, either secreted or inside extracellular vesicles, and both tumor cells and stromal cells are involved in this process. The mechanisms by which these signals that can modify the premetastatic niche are sent from the primary tumor site include changes in the extracellular matrix, recruitment and activation of different stromal cells and immune or nonimmune cells, metabolic reprogramming, and molecular signaling network rewiring. In this review, we will discuss how hypoxia might alter the premetastatic niche through different signaling molecules.
Collapse
Affiliation(s)
- Cynthia Clemente-González
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Consejo Superior de Investigaciones Científicas, Hospital Universitario Virgen del Rocío (HUVR), Universidad de Sevilla, 41013 Seville, Spain
- CIBERONC (Centro de Investigación Biomédica en Red Cáncer), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
CXCL14 Attenuates Triple-Negative Breast Cancer Progression by Regulating Immune Profiles of the Tumor Microenvironment in a T Cell-Dependent Manner. Int J Mol Sci 2022; 23:ijms23169314. [PMID: 36012586 PMCID: PMC9409254 DOI: 10.3390/ijms23169314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, we investigated if CXCL14 plays a critical role in TNBC progression, focusing on survival rates, tumor growth and metastasis, and immune profiles in the tumor microenvironment. Analysis of human breast-cancer datasets showed that low CXCL14 expression levels were associated with poor survival rates in patients with breast cancer, particularly for TNBC subtypes. Overexpression of CXCL14 in TNBC 4T1 orthotopic mouse model significantly reduced tumor weights and inhibited lung metastasis. Furthermore, the CXCL14 overexpression altered immune profiles in the tumor microenvironment as follows: decreased F4/80+ macrophages and CD4+CD25+ Treg cells, and increased CD8+T cells in primary tumors; decreased Ly6C+ myeloid cells and CD4+CD25+ Treg cells and increased CD4+ and CD8+T cells in lung metastatic tumors. CXCL14-induced reduction of tumor growth and metastasis was diminished in T cell-deficient nude mice. Taken together, our data demonstrate that CXCL14 inhibits TNBC progression through altering immune profiles in the tumor microenvironment and it is mediated in a T cell-dependent manner. Thus, CXCL14 could be used as a biomarker for prognosis.
Collapse
|
10
|
Tyagi A, Wu SY, Watabe K. Metabolism in the progression and metastasis of brain tumors. Cancer Lett 2022; 539:215713. [PMID: 35513201 PMCID: PMC9999298 DOI: 10.1016/j.canlet.2022.215713] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
Malignant brain tumors and metastases pose significant health problems and cause substantial morbidity and mortality in children and adults. Based on epidemiological evidence, gliomas comprise 30% and 80% of primary brain tumors and malignant tumors, respectively. Brain metastases affect 15-30% of cancer patients, particularly primary tumors of the lung, breast, colon, and kidney, and melanoma. Despite advancements in multimodal molecular targeted therapy and immunotherapy that do not ensure long-term treatment, malignant brain tumors and metastases contribute significantly to cancer related mortality. Recent studies have shown that metastatic cancer cells possess distinct metabolic traits to adapt and survive in new environment that differs significantly from the primary site in both nutrient composition and availability. As metabolic regulation lies at the intersection of many research areas, concerted efforts to understand the metabolic mechanism(s) driving malignant brain tumors and metastases may reveal novel therapeutic targets to prevent or reduce metastasis and predict biomarkers for the treatment of this aggressive disease. This review focuses on various aspects of metabolic signaling, interface between metabolic regulators and cellular processes, and implications of their dysregulation in the context of brain tumors and metastases.
Collapse
Affiliation(s)
- Abhishek Tyagi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
11
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
12
|
Mahmud Z, Rahman A, Mishu ID, Kabir Y. Mechanistic insights into the interplays between neutrophils and other immune cells in cancer development and progression. Cancer Metastasis Rev 2022; 41:405-432. [PMID: 35314951 DOI: 10.1007/s10555-022-10024-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Cancer is considered a major public health concern worldwide and is characterized by an uncontrolled division of abnormal cells. The human immune system recognizes cancerous cells and induces innate immunity to destroy those cells. However, sustained tumors may protect themselves by developing immune escape mechanisms through multiple soluble and cellular mediators. Neutrophils are the most plenteous leukocytes in the human blood and are crucial for immune defense in infection and inflammation. Besides, neutrophils emancipate the antimicrobial contents, secrete different cytokines or chemokines, and interact with other immune cells to combat and successfully kill cancerous cells. Conversely, many clinical and experimental studies signpost that being a polarized and heterogeneous population with plasticity, neutrophils, particularly their subpopulations, act as a modulator of cancer development by promoting tumor metastasis, angiogenesis, and immunosuppression. Studies also suggest that tumor infiltrating macrophages, neutrophils, and other innate immune cells support tumor growth and survival. Additionally, neutrophils promote tumor cell invasion, migration and intravasation, epithelial to mesenchymal transition, survival of cancer cells in the circulation, seeding, and extravasation of tumor cells, and advanced growth and development of cancer cells to form metastases. In this manuscript, we describe and review recent studies on the mechanisms for neutrophil recruitment, activation, and their interplay with different immune cells to promote their pro-tumorigenic functions. Understanding the detailed mechanisms of neutrophil-tumor cell interactions and the concomitant roles of other immune cells will substantially improve the clinical utility of neutrophils in cancer and eventually may aid in the identification of biomarkers for cancer prognosis and the development of novel therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
13
|
Stefanescu C, Van Gogh M, Roblek M, Heikenwalder M, Borsig L. TGFβ Signaling in Myeloid Cells Promotes Lung and Liver Metastasis Through Different Mechanisms. Front Oncol 2021; 11:765151. [PMID: 34868988 PMCID: PMC8637420 DOI: 10.3389/fonc.2021.765151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
TGFβ overexpression is commonly detected in cancer patients and correlates with poor prognosis and metastasis. Cancer progression is often associated with an enhanced recruitment of myeloid-derived cells to the tumor microenvironment. Here we show that functional TGFβ-signaling in myeloid cells is required for metastasis to the lungs and the liver. Myeloid-specific deletion of Tgfbr2 resulted in reduced spontaneous lung metastasis, which was associated with a reduction of proinflammatory cytokines in the metastatic microenvironment. Notably, CD8+ T cell depletion in myeloid-specific Tgfbr2-deficient mice rescued lung metastasis. Myeloid-specific Tgfbr2-deficiency resulted in reduced liver metastasis with an almost complete absence of myeloid cells within metastatic foci. On contrary, an accumulation of Tgfβ-responsive myeloid cells was associated with an increased recruitment of monocytes and granulocytes and higher proinflammatory cytokine levels in control mice. Monocytic cells isolated from metastatic livers of Tgfbr2-deficient mice showed increased polarization towards the M1 phenotype, Tnfα and Il-1β expression, reduced levels of M2 markers and reduced production of chemokines responsible for myeloid-cell recruitment. No significant differences in Tgfβ levels were observed at metastatic sites of any model. These data demonstrate that Tgfβ signaling in monocytic myeloid cells suppresses CD8+ T cell activity during lung metastasis, while these cells actively contribute to tumor growth during liver metastasis. Thus, myeloid cells modulate metastasis through different mechanisms in a tissue-specific manner.
Collapse
Affiliation(s)
| | - Merel Van Gogh
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Marko Roblek
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Science and Technology (IST) Austria, Klosterneuburg, Austria
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Karan D. CCL23 in Balancing the Act of Endoplasmic Reticulum Stress and Antitumor Immunity in Hepatocellular Carcinoma. Front Oncol 2021; 11:727583. [PMID: 34671553 PMCID: PMC8522494 DOI: 10.3389/fonc.2021.727583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a cellular process in response to stress stimuli in protecting functional activities. However, sustained hyperactive ER stress influences tumor growth and development. Hepatocytes are enriched with ER and highly susceptible to ER perturbations and stress, which contribute to immunosuppression and the development of aggressive and drug-resistant hepatocellular carcinoma (HCC). ER stress-induced inflammation and tumor-derived chemokines influence the immune cell composition at the tumor site. Consequently, a decrease in the CCL23 chemokine in hepatic tumors is associated with poor survival of HCC patients and could be a mechanism hepatic tumor cells use to evade the immune system. This article describes the prospective role of CCL23 in alleviating ER stress and its impact on the HCC tumor microenvironment in promoting antitumor immunity. Moreover, approaches to reactivate CCL23 combined with immune checkpoint blockade or chemotherapy drugs may provide novel opportunities to target hepatocellular carcinoma.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
15
|
Trappetti V, Fazzari JM, Fernandez-Palomo C, Scheidegger M, Volarevic V, Martin OA, Djonov VG. Microbeam Radiotherapy-A Novel Therapeutic Approach to Overcome Radioresistance and Enhance Anti-Tumour Response in Melanoma. Int J Mol Sci 2021; 22:7755. [PMID: 34299373 PMCID: PMC8303317 DOI: 10.3390/ijms22147755] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest type of skin cancer, due to its invasiveness and limited treatment efficacy. The main therapy for primary melanoma and solitary organ metastases is wide excision. Adjuvant therapy, such as chemotherapy and targeted therapies are mainly used for disseminated disease. Radiotherapy (RT) is a powerful treatment option used in more than 50% of cancer patients, however, conventional RT alone is unable to eradicate melanoma. Its general radioresistance is attributed to overexpression of repair genes in combination with cascades of biochemical repair mechanisms. A novel sophisticated technique based on synchrotron-generated, spatially fractionated RT, called Microbeam Radiation Therapy (MRT), has been shown to overcome these treatment limitations by allowing increased dose delivery. With MRT, a collimator subdivides the homogeneous radiation field into an array of co-planar, high-dose microbeams that are tens of micrometres wide and spaced a few hundred micrometres apart. Different preclinical models demonstrated that MRT has the potential to completely ablate tumours, or significantly improve tumour control while dramatically reducing normal tissue toxicity. Here, we discuss the role of conventional RT-induced immunity and the potential for MRT to enhance local and systemic anti-tumour immune responses. Comparative gene expression analysis from preclinical tumour models indicated a specific gene signature for an 'MRT-induced immune effect'. This focused review highlights the potential of MRT to overcome the inherent radioresistance of melanoma which could be further enhanced for future clinical use with combined treatment strategies, in particular, immunotherapy.
Collapse
Affiliation(s)
- Verdiana Trappetti
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Jennifer M. Fazzari
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Cristian Fernandez-Palomo
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Maximilian Scheidegger
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| | - Vladislav Volarevic
- Department of Genetics, Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Olga A. Martin
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
- Peter MacCallum Cancer Centre, Division of Radiation Oncology, Melbourne, VIC 3000, Australia
- University of Melbourne, Parkville, VIC 3010, Australia
| | - Valentin G. Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (V.T.); (J.M.F.); (C.F.-P.); (M.S.); (O.A.M.)
| |
Collapse
|
16
|
Cai C, Long J, Huang Q, Han Y, Peng Y, Guo C, Liu S, Chen Y, Shen E, Long K, Wang X, Yu J, Shen H, Zeng S. M6A "Writer" Gene METTL14: A Favorable Prognostic Biomarker and Correlated With Immune Infiltrates in Rectal Cancer. Front Oncol 2021; 11:615296. [PMID: 34221955 PMCID: PMC8247640 DOI: 10.3389/fonc.2021.615296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023] Open
Abstract
Rectal cancer (RC) is the leading cause of tumor-related death among both men and women. The efficacy of immunotherapy for rectal cancer is closely related to the immune infiltration level. The N6-methyladenosine (m6A) modification may play a pivotal role in tumor-immune interactions. However, the roles of m6A-related genes in tumor-immune interactions of rectal cancer remain largely unknown. After an evaluation on the expression levels of m6A-related genes and their correlations with the prognosis of rectal cancer patients, we found that METTL14 was the only gene to be significantly correlated with prognosis in rectal cancer patients. Therefore, we further observed the impact of METTL14 expression and m6A modification on the immune infiltration in rectal cancer. Our study indicates that low expression of the m6A “writer” gene METTL14 in rectal cancer may lead to the downregulation of m6A RNA modification, thus reducing the level of immune cell infiltration and resulting in poor prognosis. METTL14 expression level is an independent prognostic factor in rectal cancer and is positively correlated with the immune infiltration level. Our study identified METTL14 as a potential target for enhancing immunotherapy efficacy in rectal cancer.
Collapse
Affiliation(s)
- Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Qiaoqiao Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yinghui Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Edward Shen
- Department of Life Science, McMaster University, Hamilton, ON, Canada
| | - Kexin Long
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Li F, Du X, Lan F, Li N, Zhang C, Zhu C, Wang X, He Y, Shao Z, Chen H, Luo M, Li W, Chen Z, Ying S, Shen H. Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. SCIENCE ADVANCES 2021; 7:7/22/eabb5943. [PMID: 34039594 PMCID: PMC8153717 DOI: 10.1126/sciadv.abb5943] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/08/2021] [Indexed: 05/30/2023]
Abstract
Compelling evidence suggests that inflammatory components contribute to cancer development. However, eosinophils, involved in several inflammatory diseases, were not fully explored in cancer metastasis. We show that airway inflammatory eosinophilia and colonic inflammation with eosinophil infiltration are both associated with increased metastasis in mice. Eosinophilia is responsible for increased bone metastasis in eosinophil-enriched Cd3δ-Il-5 transgenic (Il-5 Tg) mice. We also observe increased eosinophils in the malignant pleural effusion of cancer patients with pleural metastasis. Mechanistically, eosinophils promote tumor cell migration and metastasis formation through secreting C-C motif chemokine ligand 6 (CCL6). Genetic knockout of Ccl6 in Il-5 Tg mice remarkably attenuates bone metastasis. Moreover, inhibition of C-C chemokine receptor 1 (CCR1, the receptor of CCL6) in tumor cells reduces tumor cell migration and metastasis. Thus, our study identifies a CCL6-dependent prometastatic activity of eosinophils, which can be inhibited by targeting CCR1 and represent an approach to preventing metastatic disease.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Na Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaohui Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yicheng He
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Man Luo
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
- State Key Lab of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
18
|
Ang AD, Vissers MCM, Burgess ER, Currie MJ, Dachs GU. Gene and Protein Expression Is Altered by Ascorbate Availability in Murine Macrophages Cultured under Tumour-Like Conditions. Antioxidants (Basel) 2021; 10:antiox10030430. [PMID: 33799728 PMCID: PMC7998289 DOI: 10.3390/antiox10030430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/01/2023] Open
Abstract
Tumour-associated macrophages (TAMs) are ubiquitously present in tumours and commonly associated with poor prognosis. In immune cells, ascorbate affects epigenetic regulation, differentiation and phenotype via its co-factor activity for the 2-oxoglutarate dependent dioxygenase enzymes. Here, we determined the effect of ascorbate on TAM development in response to tumour microenvironmental cues. Naïve murine bone marrow monocytes were cultured with Lewis Lung Carcinoma conditioned media (LLCM) or macrophage colony-stimulating factor (MCSF) to encourage the development into tumour-associated macrophages. Cells were stimulated with hypoxia (1% O2), with or without ascorbate (500 µM) supplementation. Cells and media were harvested for gene, cell surface marker and protein analyses. LLCM supported bone marrow monocyte growth with >90% of cells staining CD11b+F4/80+, indicative of monocytes/macrophages. LLCM-grown cells showed increased expression of M2-like and TAM genes compared to MCSF-grown cells, which further increased with hypoxia. In LLCM-grown cells, ascorbate supplementation was associated with increased F4/80 cell surface expression, and altered gene expression and protein secretion. Our study shows that ascorbate modifies monocyte phenotype when grown under tumour microenvironmental conditions, but this was not clearly associated with either a pro- or anti-tumour phenotype, and reflects a complex and nuanced response of macrophages to ascorbate. Overall, ascorbate supplementation clearly has molecular consequences for TAMs, but functional and clinical consequences remain unknown.
Collapse
Affiliation(s)
- Abel D. Ang
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand;
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Margaret J. Currie
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology & Biomedical Science, University of Otago Christchurch, Christchurch 8140, New Zealand; (A.D.A.); (E.R.B.); (M.J.C.)
- Correspondence:
| |
Collapse
|
19
|
Li S, Liu F, Pei Y, Dong Y, Shang Y. Parathyroid hormone type 1 receptor regulates osteosarcoma K7M2 Cell growth by interacting with angiotensinogen. J Cell Mol Med 2021; 25:2841-2850. [PMID: 33511766 PMCID: PMC7957183 DOI: 10.1111/jcmm.16314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 01/11/2023] Open
Abstract
This study aimed to determine the interactions between parathyroid hormone type 1 receptor (PTHR1) and angiotensinogen (AGT) and the effects of these agents on osteosarcoma (OS). We constructed a stably transfected mouse OS K7M2 cell line (shPTHR1- K7M2) using shRNA and knocked down AGT in these cells using siRNA-AGT. The transfection efficiency and expression of AGT, chemokine C-C motif receptor 3 (CCR3), and chemokine (C-C motif) ligand 9 (CCL9) were determined using real-time quantitative PCR. Cell viability and colony formation were assessed using Cell Counting Kit-8 and crystal violet staining, respectively. Cell apoptosis and cycle phases were assessed by flow cytometry, and cell migration and invasion were evaluated using Transwell assays. Interference with PTHR1 upregulated the expression of AGT and CCR3, and downregulated that of CCL9, which was further downregulated by AGT knockdown. Cell viability, migration, invasion and colony formation were significantly decreased, while cell apoptosis was significantly increased in shPTHR1-K7M2, compared with those in K7M2 cells (P < .05 for all). However, AGT knockdown further inhibited cell viability after 72 h of culture but promoted cell migration and invasion. PTHR1 interference decreased and increased the numbers of cells in the G0/G1 and G2/M phases, respectively, compared with those in K7M2 cells. Angiotensinogen knockdown increased the number of cells in the G0/G1 phase compared with that in the shPTHR1-K7M2 cells. Therefore, PTHR1 affects cell viability, apoptosis, migration, invasion and colony formation, possibly by regulating AGT/CCL9 in OS cells.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Fei Liu
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yi Pei
- Department of Bone and Soft Tissue Tumor SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangChina
| | - Yujin Dong
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| | - Yaohua Shang
- Department of Hand and Foot SurgeryDalian Municipal Center Hospital Affiliated of Dalian Medical UniversityDalianChina
| |
Collapse
|
20
|
Wang H, Pan J, Barsky L, Jacob JC, Zheng Y, Gao C, Wang S, Zhu W, Sun H, Lu L, Jia H, Zhao Y, Bruns C, Vago R, Dong Q, Qin L. Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. MOLECULAR BIOMEDICINE 2021; 2:3. [PMID: 35006432 PMCID: PMC8607426 DOI: 10.1186/s43556-020-00022-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
Metastasis is a major contributor to cancer-associated deaths. It involves complex interactions between primary tumorigenic sites and future metastatic sites. Accumulation studies have revealed that tumour metastasis is not a disorderly spontaneous incident but the climax of a series of sequential and dynamic events including the development of a pre-metastatic niche (PMN) suitable for a subpopulation of tumour cells to colonize and develop into metastases. A deep understanding of the formation, characteristics and function of the PMN is required for developing new therapeutic strategies to treat tumour patients. It is rapidly becoming evident that therapies targeting PMN may be successful in averting tumour metastasis at an early stage. This review highlights the key components and main characteristics of the PMN and describes potential therapeutic strategies, providing a promising foundation for future studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Junjie Pan
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Livnat Barsky
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wenwei Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Haoting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Huliang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Cologne, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
| |
Collapse
|
21
|
Kang Y, Jin Y, Li Q, Yuan X. Advances in Lung Cancer Driver Genes Associated With Brain Metastasis. Front Oncol 2021; 10:606300. [PMID: 33537237 PMCID: PMC7848146 DOI: 10.3389/fonc.2020.606300] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastasis, one of the common complications of lung cancer, is an important cause of death in patients with advanced cancer, despite progress in treatment strategies. Lung cancers with positive driver genes have higher incidence and risk of brain metastases, suggesting that driver events associated with these genes might be biomarkers to detect and prevent disease progression. Common lung cancer driver genes mainly encode receptor tyrosine kinases (RTKs), which are important internal signal molecules that interact with external signals. RTKs and their downstream signal pathways are crucial for tumor cell survival, invasion, and colonization in the brain. In addition, new tumor driver genes, which also encode important molecules closely related to the RTK signaling pathway, have been found to be closely related to the brain metastases of lung cancer. In this article, we reviewed the relationship between lung cancer driver genes and brain metastasis, and summarized the mechanism of driver gene-associated pathways in brain metastasis. By understanding the molecular characteristics during brain metastasis, we can better stratify lung cancer patients and alert those at high risk of brain metastasis, which helps to promote individual therapy for lung cancer.
Collapse
Affiliation(s)
- Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Phadke M, Ozgun A, Eroglu Z, Smalley KSM. Melanoma brain metastases: Biological basis and novel therapeutic strategies. Exp Dermatol 2021; 31:31-42. [PMID: 33455008 DOI: 10.1111/exd.14286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 01/09/2023]
Abstract
The development of brain metastases is the deadliest complication of advanced melanoma and has long been associated with a dismal prognosis. The recent years have seen incredible progress in the development of therapies for melanoma brain metastases (MBM), with both targeted therapies (the BRAF-MEK inhibitor combination) and immune checkpoint inhibitors (the anti-CTLA-4, anti-PD-1 combination) showing impressive levels of activity. Despite this, durations of response for these therapies remain lower at intracranial sites of metastasis compared to extracranial metastases and it has been suggested that there are unique features of the brain microenvironment that contribute to therapeutic escape. In this review, we outline the latest research into the biology and pathophysiology of melanoma brain metastasis development and progression. We then discuss the current status of clinical trial that are open to patients with MBM and end by describing the ongoing challenges for the field.
Collapse
Affiliation(s)
- Manali Phadke
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alpaslan Ozgun
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Zeynep Eroglu
- The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Keiran S M Smalley
- The Department of Tumor Biology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA.,The Department of Cutaneous Oncology, The Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
23
|
An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods Mol Biol 2021; 2097:139-171. [PMID: 31776925 DOI: 10.1007/978-1-0716-0203-4_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors have a complex ecosystem in which behavior and fate are determined by the interaction of diverse cancerous and noncancerous cells at local and systemic levels. A number of studies indicate that various immune cells participate in tumor development (Fig. 1). In this review, we will discuss interactions among T lymphocytes (T cells), B cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, and myeloid-derived suppressor cells (MDSCs). In addition, we will touch upon attempts to either use or block subsets of immune cells to target cancer.
Collapse
|
24
|
TIME Is a Great Healer-Targeting Myeloid Cells in the Tumor Immune Microenvironment to Improve Triple-Negative Breast Cancer Outcomes. Cells 2020; 10:cells10010011. [PMID: 33374595 PMCID: PMC7822423 DOI: 10.3390/cells10010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
The word myeloid is derived from the Greek word muelós which means "marrow". Therefore, myeloid cells are described as cells that arise in the bone marrow. They can be distinguished from lymphoid cells based on their different differentiation trajectories-Lymphoid cells (B and T cells) are usually born in the bone marrow, but they need to migrate to lymphoid organs to mature and differentiate usually in response to antigens produced due to infections and diseases like cancer. On the other hand, myeloid cells do not follow this differentiation trajectory. They arise from the bone marrow, and do not need an encounter with antigens to gain their functionality. Thus, while lymphoid cells are a part of the adaptive immune system, myeloid cells are a part of the innate immune system. Hematopoiesis gives rise to two progenitor cells-the common myeloid progenitor (CMP) and the common lymphoid progenitor (CLP). The CMP can give rise to megakaryocytes, erythrocytes, mast cells and myeloblasts. Myeloblasts in turn lead to the formation of basophils, neutrophils, eosinophils and monocytes that can further differentiate into macrophages. This review will focus on macrophages as well as the phenotypes they acquire with the tumor immune microenvironment (TIME) in triple-negative breast cancer (TNBC). It will address how cancer cells in the tumor microenvironment (TME) recruit macrophages and may switch to recruiting neutrophils upon depletion of these tumor-associated macrophages (TAMs). Finally, it will also shed light on past and current treatment options that specifically target these cells and how those affect patient outcomes in TNBC.
Collapse
|
25
|
López de Andrés J, Griñán-Lisón C, Jiménez G, Marchal JA. Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. J Hematol Oncol 2020; 13:136. [PMID: 33059744 PMCID: PMC7559894 DOI: 10.1186/s13045-020-00966-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) represent a tumor subpopulation responsible for tumor metastasis and resistance to chemo- and radiotherapy, ultimately leading to tumor relapse. As a consequence, the detection and eradication of this cell subpopulation represent a current challenge in oncology medicine. CSC phenotype is dependent on the tumor microenvironment (TME), which involves stem and differentiated tumor cells, as well as different cell types, such as mesenchymal stem cells, endothelial cells, fibroblasts and cells of the immune system, in addition to the extracellular matrix (ECM), different in composition to the ECM in healthy tissues. CSCs regulate multiple cancer hallmarks through the interaction with cells and ECM in their environment by secreting extracellular vesicles including exosomes, and soluble factors such as interleukins, cytokines, growth factors and other metabolites to the TME. Through these factors, CSCs generate and activate their own tumor niche by recruiting stromal cells and modulate angiogenesis, metastasis, resistance to antitumor treatments and their own maintenance by the secretion of different factors such as IL-6, VEGF and TGF-ß. Due to the strong influence of the CSC secretome on disease development, the new antitumor therapies focus on targeting these communication networks to eradicate the tumor and prevent metastasis, tumor relapse and drug resistance. This review summarizes for the first time the main components of the CSC secretome and how they mediate different tumor processes. Lastly, the relevance of the CSC secretome in the development of more precise and personalized antitumor therapies is discussed.
Collapse
Affiliation(s)
- Julia López de Andrés
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Health Sciences, University of Jaén, 23071, Jaén, Spain.
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100, Granada, Spain. .,Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100, Granada, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain. .,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016, Granada, Spain.
| |
Collapse
|
26
|
Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun Biol 2020; 3:524. [PMID: 32963283 PMCID: PMC7508838 DOI: 10.1038/s42003-020-01246-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022] Open
Abstract
The omentum is the most common site of ovarian cancer metastasis. Immune cell clusters called milky spots are found throughout the omentum. It is however unknown if these immune cells contribute to ovarian cancer metastasis. Here we report that omental macrophages promote the migration and colonization of ovarian cancer cells to the omentum through the secretion of chemokine ligands that interact with chemokine receptor 1 (CCR1). We found that depletion of macrophages reduces ovarian cancer colonization of the omentum. RNA-sequencing of macrophages isolated from mouse omentum and mesenteric adipose tissue revealed a specific enrichment of chemokine ligand CCL6 in omental macrophages. CCL6 and the human homolog CCL23 were both necessary and sufficient to promote ovarian cancer migration by activating ERK1/2 and PI3K pathways. Importantly, inhibition of CCR1 reduced ovarian cancer colonization. These findings demonstrate a critical mechanism of omental macrophage induced colonization by ovarian cancer cells via CCR1 signaling. Krishnan et al. find that CCR1 ligands CCL6 and CCL23 secreted by murine and human macrophages, respectively, enhance metastatic colonization of ovarian cancer cells to the omentum in manner dependent on chemokine receptor 1 (CCR1). This study suggests that targeting CCR1 or CCL23 in ovarian cancer may be a therapeutic strategy.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Chemokines are a large group of low molecular weight cytokines that attract and activate leukocytes throughout the body and therefore have a key role in the framework of late-phase allergic responses. The purpose of this article is to provide an overview of the main chemokines involved in allergic conjunctivitis, their primary functions and their physiological roles, and therapies targeted at chemokines and their receptors for ocular allergic diseases. RECENT FINDINGS In recent years, there have been considerable advances in the understanding of ocular pathophysiology of ocular surface inflammatory diseases including both allergic eye diseases and dry eye syndrome. Several therapies being developed for dry eye inflammation are recognized as possible therapies for ocular allergic diseases as there are often common chemokines involved in both disease spectra. SUMMARY Chemokines represent an integral part of the late-phase cascade of ocular allergic inflammation. A deep understanding of specific chemokines and their interactions will help in targeting therapies to effectively manage ocular clinical findings and symptoms of allergic eye disease.
Collapse
|
28
|
Yang F, Feng W, Wang H, Wang L, Liu X, Wang R, Chen C, Yang X, Zhang D, Ren Q, Zheng G. Monocyte-Derived Leukemia-Associated Macrophages Facilitate Extramedullary Distribution of T-cell Acute Lymphoblastic Leukemia Cells. Cancer Res 2020; 80:3677-3691. [PMID: 32651260 DOI: 10.1158/0008-5472.can-20-0034] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
Macrophages play important roles in both physiologic and pathologic processes and arise from successive waves of embryonic and adult hematopoiesis. Monocyte-derived macrophages (MOMF) exert distinct functions under pathologic conditions, and leukemia-associated macrophages (LAM) show considerable diversities in activation and functional phenotype. However, their origin and pathologic roles have not been well elucidated. Here we used wild-type and CCR2-/- mice to study the pathologic roles of monocyte-derived LAM in extramedullary tissues in models of Notch1-induced T-cell acute lymphoblastic leukemia (T-ALL). MOMF existed in the resting liver and spleen. In the spleen, Ly6C+ monocytes gave rise to the Ly6C+ macrophage subset. Furthermore, an increase of monocyte-derived LAM, including the Ly6C+ subset, was detected in the extramedullary tissues in leukemic mice. More monocyte-derived LAM, including Ly6C+ LAM, was detected in the spleens of leukemic mice transplanted with exogeneous mononuclear cells. Moreover, Ly6C+ LAM exhibited increased M1-related characteristics and contributed to sterile inflammation. In CCR2-/- leukemic mice, reduced Ly6C+ LAM, relieved sterile inflammation, and reduced distribution of leukemia cells were detected in extramedullary tissues. In addition, monocyte-derived Ly6C+ LAM expressed high levels of CCL8 and CCL9/10. Blocking CCR1 and CCR2 relieved hepatosplenomegaly and inhibited the extramedullary distribution of leukemia cells in T-ALL mice. Collectively, our findings reveal the multifaceted pathologic roles of monocyte-derived LAM in T-ALL progression. SIGNIFICANCE: This study links monocyte-derived leukemia-associated macrophages with noninfectious inflammation and extramedullary distribution of leukemia cells during leukemia progression, providing new insight into macrophage-based immunotherapy in leukemia.
Collapse
Affiliation(s)
- Feifei Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wenli Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoli Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Rong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chong Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyue Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
29
|
Li BH, Jiang W, Zhang S, Huang N, Sun J, Yang J, Li ZF. The spleen contributes to the increase in PMN-MDSCs in orthotopic H22 hepatoma mice. Mol Immunol 2020; 125:95-103. [PMID: 32659598 DOI: 10.1016/j.molimm.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/09/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are classified into polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. The predominant subtype of MDSCs in hepatocellular carcinoma (HCC) is still elusive. The spleen is the largest immune organ in the body and is the origin of many cells. It is still unknown whether the spleen is the origin of MDSCs. In this study, we investigated the expression, origin and mobilization of the predominant MDSC subtype in H22 orthotopic hepatoma mice. Compared with M-MDSCs, PMN-MDSCs were increased and dominant in the spleen, peripheral blood and tumor tissues. Splenectomy could decrease the percentages of PMN-MDSCs in the peripheral blood and tumor tissues, increase the frequencies of NK cells in the peripheral blood and CD3+CD4+T, CD3+CD8+T, NK and NKT cells in the tumor tissues, reduce the tumor weight and the amounts of ascites, and prolong survival time in hepatoma mice. The levels of chemokine (CC motif) ligand 9 (CCL9) and chemokine (CC motif) ligand 2 (CCL2) were elevated in the peripheral blood of tumor-bearing (TB) mice, and their receptors CCR1 and CCR2 were expressed on spleen PMN-MDSCs. Migration assay showed that CCL2 and CCL9 could attract spleen PMN-MDSCs in vitro. These results indicate that PMN-MDSCs were increased and dominant in orthotopic H22 hepatoma mice, the spleen contributed to the increase of PMN-MDSCs, and PMN-MDSCs could be mobilized from the spleen to the peripheral blood by CCL9 and CCL2, thus facilitated tumor growth.
Collapse
Affiliation(s)
- Bao-Hua Li
- Core Research Laboratory, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Wei Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Shu Zhang
- Department of General Surgery, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Na Huang
- Core Research Laboratory, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Jun Yang
- Department of Pathology, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| | - Zong-Fang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, the Second Affiliated Hospital, Xi'an Jiaotong University, 157 Xi Wu Road, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
30
|
Tian S, Song X, Wang Y, Wang X, Mou Y, Chen Q, Zhao H, Ma K, Wu Z, Yu H, Han X, Wang H, Wang S, Ji X, Zhang Y. Chinese herbal medicine Baoyuan Jiedu decoction inhibits the accumulation of myeloid derived suppressor cells in pre-metastatic niche of lung via TGF-β/CCL9 pathway. Biomed Pharmacother 2020; 129:110380. [PMID: 32554250 DOI: 10.1016/j.biopha.2020.110380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/24/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Baoyuan Jiedu (BYJD for short) decoction, a traditional Chinese medicine formula, is composed of Astragalus, Ginseng, Aconite root, Honeysuckle, Angelica, Licorice, which has the functions of nourishing qi and blood, enhancing immune function, improving quality of life and prolonging survival time of tumor patients. The present study aimed to investigate the effect and mechanism of BYJD decoction on reversing the pre-metastatic niche. We showed that BYJD decoction could prolong the survival time of 4T1 tumor-bearing mice. Moreover, we found that the BYJD decoction inhibited the formation of lung pre-metastatic niche and inhibited recruitment of myeloid derived suppressor cells (MDSCs) in the lung. Mechanistically, we showed that the proteins and genes expression of TGF-β, Smad2, Smad3, p-Smad2/3, Smad4, CCL9 in the TGF-β/CCL9 signaling pathway were suppressed by BYJD decoction. In line with the above findings, our results confirm that BYJD decoction inhibits the accumulation of MDSC in pre-metastatic niche of lung via TGF-β/CCL9 pathway.
Collapse
Affiliation(s)
- Sheng Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoTong Song
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoYan Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China
| | - Yue Mou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HaiJun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - ZhiChun Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HuaYun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - XiaoChun Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - HuaXin Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - ShiJun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - XuMing Ji
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China.
| | - YaNan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong Province 250355, China; Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
31
|
Sharma T, Cotney J, Singh V, Sanjay A, Reichenberger EJ, Ueki Y, Maye P. Investigating global gene expression changes in a murine model of cherubism. Bone 2020; 135:115315. [PMID: 32165349 PMCID: PMC7305689 DOI: 10.1016/j.bone.2020.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/25/2020] [Accepted: 03/08/2020] [Indexed: 11/22/2022]
Abstract
Cherubism is a rare genetic disorder caused primarily by mutations in SH3BP2 resulting in excessive bone resorption and fibrous tissue overgrowth in the lower portions of the face. Bone marrow derived cell cultures derived from a murine model of cherubism display poor osteogenesis and spontaneous osteoclast formation. To develop a deeper understanding for the potential underlying mechanisms contributing to these phenotypes in mice, we compared global gene expression changes in hematopoietic and mesenchymal cell populations between cherubism and wild type mice. In the hematopoietic population, not surprisingly, upregulated genes were significantly enriched for functions related to osteoclastogenesis. However, these upregulated genes were also significantly enriched for functions associated with inflammation including arachidonic acid/prostaglandin signaling, regulators of coagulation and autoinflammation, extracellular matrix remodeling, and chemokine expression. In the mesenchymal population, we observed down regulation of osteoblast and adventitial reticular cell marker genes. Regulators of BMP and Wnt pathway associated genes showed numerous changes in gene expression, likely implicating the down regulation of BMP signaling and possibly the activation of certain Wnt pathways. Analyses of the cherubism derived mesenchymal population also revealed interesting changes in gene expression related to inflammation including the expression of distinct granzymes, chemokines, and sulfotransferases. These studies reveal complex changes in gene expression elicited from a cherubic mutation in Sh3bp2 that are informative to the mechanisms responding to inflammatory stimuli and repressing osteogenesis. The outcomes of this work are likely to have relevance not only to cherubism, but other inflammatory conditions impacting the skeleton.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Justin Cotney
- Department of Genetics and Genome Sciences, University of Connecticut Health, United States of America
| | - Vijender Singh
- Computational Biology Core, Institute for Systems Genomics, University of Connecticut, United States of America
| | - Archana Sanjay
- Department of Orthopedic Surgery, University of Connecticut Health, United States of America
| | - Ernst J Reichenberger
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, United States of America
| | - Peter Maye
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health, United States of America.
| |
Collapse
|
32
|
Abstract
Metastatic disease is the leading cause of death in patients with solid cancers. The progression to metastasis is a multistep process that involves detachment of tumor cells from their constraining basement membrane at the primary site, migration and intravasation into the circulation, survival in the circulation, extravasation into the secondary organ, and survival and growth at the secondary site. During these steps, tumor and immune cells interact and influence each other both within the tumor microenvironment and systemically. In particular, myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppressor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic process. These interactions open new avenues for targeting cancer metastasis, especially given the increasing interest in development of cancer immunotherapies. In this review, we describe the currently reported pathways and mechanisms involved in myeloid cell enhancement of the metastatic cascade.
Collapse
Affiliation(s)
- Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
33
|
Eftimie R. Investigation into the role of macrophages heterogeneity on solid tumour aggregations. Math Biosci 2020; 322:108325. [DOI: 10.1016/j.mbs.2020.108325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 01/01/2023]
|
34
|
Wu L, Saxena S, Singh RK. Neutrophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:1-20. [PMID: 32036601 DOI: 10.1007/978-3-030-35723-8_1] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neutrophils are the first responders to inflammation, infection, and injury. As one of the most abundant leukocytes in the immune system, neutrophils play an essential role in cancer progression, through multiple mechanisms, including promoting angiogenesis, immunosuppression, and cancer metastasis. Recent studies demonstrating elevated neutrophil to lymphocyte ratios suggest neutrophil as a potential therapeutic target and biomarker for disease status in cancer. This chapter will discuss the phenotypic and functional changes in the neutrophil in the tumor microenvironment, the underlying mechanism(s) of neutrophil facilitated cancer metastasis, and clinical potential of neutrophils as a prognostic/diagnostic marker and therapeutic target.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sugandha Saxena
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rakesh K Singh
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
35
|
Raskov H, Orhan A, Salanti A, Gögenur I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int J Cancer 2020; 146:3244-3255. [PMID: 31808150 DOI: 10.1002/ijc.32820] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The physiological stress response to surgery promotes wound healing and functional recovery and includes the activation of neural, inflammatory and proangiogenic signaling pathways. Paradoxically, the same pathways also promote metastatic spread and growth of residual cancer. Human and animal studies show that cancer surgery can increase survival, migration and proliferation of residual tumor cells. To secure the survival and growth of disseminated tumor cells, the formation of premetastatic niches in target organs involves a complex interplay between microenvironment, immune system, circulating tumor cells, as well as chemical mediators and exosomes secreted by the primary tumor. This review describes the current understanding of the early mechanisms of dissemination, as well as how surgery may facilitate disease progression.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Kim HR, Park SM, Seo SU, Jung I, Yoon HI, Gabrilovich DI, Cho BC, Seong SY, Ha SJ, Youn JI. The Ratio of Peripheral Regulatory T Cells to Lox-1 + Polymorphonuclear Myeloid-derived Suppressor Cells Predicts the Early Response to Anti-PD-1 Therapy in Patients with Non-Small Cell Lung Cancer. Am J Respir Crit Care Med 2019; 199:243-246. [PMID: 30339766 DOI: 10.1164/rccm.201808-1502le] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Hye Ryun Kim
- 1 Yonsei University College of Medicine Seoul, Korea
| | - Su-Myeong Park
- 2 Seoul National University College of Medicine Seoul, Korea
| | - Sang-Uk Seo
- 2 Seoul National University College of Medicine Seoul, Korea.,3 Seoul National University College of Medicine Hongcheon, Korea
| | - Inkyung Jung
- 1 Yonsei University College of Medicine Seoul, Korea
| | - Hong In Yoon
- 1 Yonsei University College of Medicine Seoul, Korea
| | | | - Byoung Chul Cho
- 1 Yonsei University College of Medicine Seoul, Korea.,5 JEUK Co., Ltd. Gumi City, Korea and
| | - Seung-Yong Seong
- 2 Seoul National University College of Medicine Seoul, Korea.,3 Seoul National University College of Medicine Hongcheon, Korea
| | | | - Je-In Youn
- 2 Seoul National University College of Medicine Seoul, Korea.,3 Seoul National University College of Medicine Hongcheon, Korea.,6 Yonsei University Seoul, Korea
| |
Collapse
|
37
|
Erkan EP, Ströbel T, Dorfer C, Sonntagbauer M, Weinhäusel A, Saydam N, Saydam O. Circulating Tumor Biomarkers in Meningiomas Reveal a Signature of Equilibrium Between Tumor Growth and Immune Modulation. Front Oncol 2019; 9:1031. [PMID: 31649887 PMCID: PMC6795693 DOI: 10.3389/fonc.2019.01031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are primary central nervous system (CNS) tumors that originate from the arachnoid cells of the meninges. Recurrence occurs in higher grade meningiomas and a small subset of Grade I meningiomas with benign histology. Currently, there are no established circulating tumor markers which can be used for diagnostic and prognostic purposes in a non-invasive way for meningiomas. Here, we aimed to identify potential biomarkers of meningioma in patient sera. For this purpose, we collected preoperative (n = 30) serum samples from the meningioma patients classified as Grade I (n = 23), Grade II (n = 4), or Grade III (n = 3). We used a high-throughput, multiplex immunoassay cancer panel comprising of 92 cancer-related protein biomarkers to explore the serum protein profiles of meningioma patients. We detected 14 differentially expressed proteins in the sera of the Grade I meningioma patients in comparison to the age- and gender-matched control subjects (n = 12). Compared to the control group, Grade I meningioma patients showed increased serum levels of amphiregulin (AREG), CCL24, CD69, prolactin, EGF, HB-EGF, caspase-3, and decreased levels of VEGFD, TGF-α, E-Selectin, BAFF, IL-12, CCL9, and GH. For validation studies, we utilized an independent set of meningioma tumor tissue samples (Grade I, n = 20; Grade II, n = 10; Grade III, n = 6), and found that the expressions of amphiregulin and Caspase3 are significantly increased in all grades of meningiomas either at the transcriptional or protein level, respectively. In contrast, the gene expression of VEGF-D was significantly lower in Grade I meningioma tissue samples. Taken together, our study identifies a meningioma-specific protein signature in blood circulation of meningioma patients and highlights the importance of equilibrium between tumor-promoting factors and anti-tumor immunity.
Collapse
Affiliation(s)
- Erdogan Pekcan Erkan
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Ströbel
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Markus Sonntagbauer
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Andreas Weinhäusel
- Austrian Institute of Technology, Molecular Diagnostics Center for Health and Bioresources, Vienna, Austria
| | - Nurten Saydam
- Department of Biochemistry, Molecular Biology, and Biophysics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
38
|
Leibold AT, Monaco GN, Dey M. The role of the immune system in brain metastasis. CURRENT NEUROBIOLOGY 2019; 10:33-48. [PMID: 31097897 PMCID: PMC6513348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Adam T Leibold
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Gina N Monaco
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Tumor-Associated Neutrophils in Cancer: Going Pro. Cancers (Basel) 2019; 11:cancers11040564. [PMID: 31010242 PMCID: PMC6520693 DOI: 10.3390/cancers11040564] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of cancer is not only about the tumor cell itself, but also about other involved players including cancer cell recruited immune cells, their released pro-inflammatory factors, and the extracellular matrix. These players constitute the tumor microenvironment and play vital roles in the cancer progression. Neutrophils—the most abundant white blood cells in the circulation system—constitute a significant part of the tumor microenvironment. Neutrophils play major roles linking inflammation and cancer and are actively involved in progression and metastasis. Additionally, recent data suggest that neutrophils could be considered one of the emerging targets for multiple cancer types. This review summarizes the most recent updates regarding neutrophil recruitments and functions in the tumor microenvironment as well as potential development of neutrophils-targeted putative therapeutic strategies.
Collapse
|
40
|
Mitsui Y, Tomonobu N, Watanabe M, Kinoshita R, Sumardika IW, Youyi C, Murata H, Yamamoto KI, Sadahira T, Rodrigo AGH, Takamatsu H, Araki K, Yamauchi A, Yamamura M, Fujiwara H, Inoue Y, Futami J, Saito K, Iioka H, Kondo E, Nishibori M, Toyooka S, Yamamoto Y, Nasu Y, Sakaguchi M. Upregulation of Mobility in Pancreatic Cancer Cells by Secreted S100A11 Through Activation of Surrounding Fibroblasts. Oncol Res 2019; 27:945-956. [PMID: 31046874 PMCID: PMC7848232 DOI: 10.3727/096504019x15555408784978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
S100A11, a member of the S100 family of proteins, is actively secreted from pancreatic ductal adenocarcinoma (PDAC) cells. However, the role of the extracellular S100A11 in PDAC progression remains unclear. In the present study, we investigated the extracellular role of S100A11 in crosstalking between PDAC cells and surrounding fibroblasts in PDAC progression. An abundant S100A11 secreted from pancreatic cancer cells stimulated neighboring fibroblasts through receptor for advanced glycation end products (RAGE) upon S100A11 binding and was followed by not only an enhanced cancer cell motility in vitro but also an increased number of the PDAC-derived circulating tumor cells (CTCs) in vivo. Mechanistic investigation of RAGE downstream in fibroblasts revealed a novel contribution of a mitogen-activated protein kinase kinase kinase (MAPKKK), tumor progression locus 2 (TPL2), which is required for positive regulation of PDAC cell motility through induction of cyclooxygenase 2 (COX2) and its catalyzed production of prostaglandin E2 (PGE2), a strong chemoattractive fatty acid. The extracellularly released PGE2 from fibroblasts was required for the rise in cellular migration as well as infiltration of their adjacent PDAC cells in a coculture setting. Taken together, our data reveal a novel role of the secretory S100A11 in PDAC disseminative progression through activation of surrounding fibroblasts triggered by the S100A11-RAGE-TPL2-COX2 pathway. The findings of this study will contribute to the establishment of a novel therapeutic antidote to PDACs that are difficult to treat by regulating cancer-associated fibroblasts (CAFs) through targeting the identified pathway.
Collapse
Affiliation(s)
- Yosuke Mitsui
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chen Youyi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Acosta Gonzalez Herik Rodrigo
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Takamatsu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Masahiro Yamamura
- Department of Clinical Oncology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hideyo Fujiwara
- Department of Pathology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Ken Saito
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidekazu Iioka
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
41
|
Wang Y, Ding Y, Guo N, Wang S. MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation. Front Immunol 2019; 10:172. [PMID: 30792719 PMCID: PMC6374299 DOI: 10.3389/fimmu.2019.00172] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of disseminated metastases remains the primary cause of mortality in cancer patients. Formation of the pre-metastatic niche (PMN), which precedes the establishment of tumor lesions, is critical for metastases. Bone marrow-derived myeloid cells (BMDCs) are indispensable for PMN formation. Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells that accumulate in patients with cancer and appear in the early PMN. The mechanisms by which MDSCs establish the pre-metastatic microenvironment in distant organs are largely unknown, although MDSCs play an essential role in metastasis. Here, we summarize the key factors associated with the recruitment and activation of MDSCs in the PMN and review the mechanisms by which MDSCs regulate PMN formation and evolution. Finally, we predict the potential value of MDSCs in PMN detection and therapy.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
42
|
Zhang D, Rennhack J, Andrechek ER, Rockwell CE, Liby KT. Identification of an Unfavorable Immune Signature in Advanced Lung Tumors from Nrf2-Deficient Mice. Antioxid Redox Signal 2018; 29:1535-1552. [PMID: 29634345 PMCID: PMC6421995 DOI: 10.1089/ars.2017.7201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 12/19/2022]
Abstract
AIMS Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in normal cells inhibits carcinogenesis, whereas constitutive activation of Nrf2 in cancer cells promotes tumor growth and chemoresistance. However, the effects of Nrf2 activation in immune cells during lung carcinogenesis are poorly defined and could either promote or inhibit cancer growth. Our studies were designed to evaluate tumor burden and identify immune cell populations in the lungs of Nrf2 knockout (KO) versus wild-type (WT) mice challenged with vinyl carbamate. RESULTS Nrf2 KO mice developed lung tumors earlier than the WT mice and exhibited more and larger tumors over time, even at late stages. T cell populations were lower in the lungs of Nrf2 KO mice, whereas tumor-promoting macrophages and myeloid-derived suppressor cells were elevated in the lungs and spleen, respectively, of Nrf2 KO mice relative to WT mice. Moreover, 34 immune response genes were significantly upregulated in tumors from Nrf2 KO mice, especially a series of cytokines (Cxcl1, Csf1, Ccl9, Cxcl12, etc.) and major histocompatibility complex antigens that promote tumor growth. INNOVATION Our studies discovered a novel immune signature, characterized by the infiltration of tumor-promoting immune cells, elevated cytokines, and increased expression of immune response genes in the lungs and tumors of Nrf2 KO mice. A complementary profile was also found in lung cancer patients, supporting the clinical significance of our findings. CONCLUSION Overall, our results confirmed a protective role for Nrf2 in late-stage carcinogenesis and, unexpectedly, suggest that activation of Nrf2 in immune cells may be advantageous for preventing or treating lung cancer. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Jonathan Rennhack
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Eran R. Andrechek
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Cheryl E. Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
43
|
Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2018; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
|
44
|
Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Arch Toxicol 2018; 92:2607-2627. [PMID: 29987408 DOI: 10.1007/s00204-018-2255-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. This chronic disease is characterized by excessive deposition of extracellular matrix components mainly due to transdifferentiation of quiescent hepatic stellate cell into myofibroblasts-like cells, which in turn is driven by cell death and inflammation. In the last few years, paracrine signaling through pannexin1 channels has emerged as a key player in the latter processes. The current study was set up to investigate the role of pannexin1 signaling in liver fibrosis. Wild-type and whole body pannexin1 knock-out mice were treated with carbon tetrachloride or subjected to bile duct ligation. Evaluation of the effects of pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, oxidative stress, inflammation and regenerative capacity. In parallel, to elucidate the molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. While pannexin1 knock-out mice treated with carbon tetrachloride displayed reduced collagen content, hepatic stellate cell activation, inflammation and hepatic regeneration, bile duct ligated counterparts showed increased hepatocellular injury and antioxidant enzyme activity with a predominant immune response. Gene expression profiling revealed a downregulation of fibrotic and immune responses in pannexin1 knock-out mice treated with carbon tetrachloride, whereas bile duct ligated pannexin1-deficient animals showed a pronounced inflammatory profile. This study shows for the first time an etiology-dependent role for pannexin1 signaling in experimental liver fibrosis.
Collapse
|
45
|
Ishii H, Vodnala SK, Achyut BR, So JY, Hollander MC, Greten TF, Lal A, Yang L. miR-130a and miR-145 reprogram Gr-1 +CD11b + myeloid cells and inhibit tumor metastasis through improved host immunity. Nat Commun 2018; 9:2611. [PMID: 29973593 PMCID: PMC6031699 DOI: 10.1038/s41467-018-05023-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor-derived soluble factors promote the production of Gr-1+CD11b+ immature myeloid cells, and TGFβ signaling is critical in their immune suppressive function. Here, we report that miR-130a and miR-145 directly target TGFβ receptor II (TβRII) and are down-regulated in these myeloid cells, leading to increased TβRII. Ectopic expression of miR-130a and miR-145 in the myeloid cells decreased tumor metastasis. This is mediated through a downregulation of type 2 cytokines in myeloid cells and an increase in IFNγ-producing cytotoxic CD8 T lymphocytes. miR-130a- and miR-145-targeted molecular networks including TGFβ and IGF1R pathways were correlated with higher tumor stages in cancer patients. Lastly, miR-130a and miR-145 mimics, as well as IGF1R inhibitor NT157 improved anti-tumor immunity and inhibited metastasis in preclinical mouse models. These results demonstrated that miR-130a and miR-145 can reprogram tumor-associated myeloid cells by altering the cytokine milieu and metastatic microenvironment, thus enhancing host antitumor immunity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- CD11b Antigen/genetics
- CD11b Antigen/immunology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Drug Evaluation, Preclinical
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunity, Innate/drug effects
- Injections, Intravenous
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lung Neoplasms/therapy
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/immunology
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Oligoribonucleotides/administration & dosage
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Pyrogallol/analogs & derivatives
- Pyrogallol/pharmacology
- Receptor, IGF Type 1/antagonists & inhibitors
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/immunology
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/immunology
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Signal Transduction
- Sulfonamides/pharmacology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Hiroki Ishii
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Suman K Vodnala
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Bhagelu R Achyut
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
- Tumor Angiogenesis Laboratory, Georgia Cancer Center, Augusta University, Augusta, 30912, USA
| | - Jae Young So
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - M Christine Hollander
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Ashish Lal
- Genetic Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Blair ED, Kaufmann M, Keppens M. Prediction of response to targeted and immune checkpoint therapies. Per Med 2018; 15:45-56. [PMID: 29714118 DOI: 10.2217/pme-2017-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted therapies continue to be key components of cancer treatment. New approaches to detection of acquired resistance at the genomic level, in combination with new therapies, help to overcome the challenges that are seen frequently, rapidly and broadly across tumor pathologies, and provide opportunities for cancer management. In the last several years, a new breed of modalities called immune checkpoint inhibitors have come to the forefront of clinically effective treatments. A plethora of rapid approvals and early access initiatives have seen anti-cytotoxic T-lymphocyte-associated antigen-4, and particularly anti-programmed death receptor-1 therapies, deployed in a number of tumor indications of high unmet need. With the rise of immune checkpoint inhibition, and the broader resurgence in the immuno-oncology field, we are facing challenges in the prediction of response.
Collapse
Affiliation(s)
- Edward D Blair
- Integrated Medicines Ltd, Topfield House, Ermine Street, Caxton, Cambridge, CB23 3PQ, UK
| | - Martina Kaufmann
- Martina Kaufmann Strategic Consulting, Dorfmatt 22, 79379 Müllheim, Germany
| | - Mieke Keppens
- Quest-ion, Bunschotenstraat 18, 1324PD Almere, The Netherlands
| |
Collapse
|
47
|
Jian J, Pang Y, Yan HH, Min Y, Achyut BR, Hollander MC, Lin PC, Liang X, Yang L. Platelet factor 4 is produced by subsets of myeloid cells in premetastatic lung and inhibits tumor metastasis. Oncotarget 2018; 8:27725-27739. [PMID: 27223426 PMCID: PMC5438604 DOI: 10.18632/oncotarget.9486] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/01/2016] [Indexed: 02/05/2023] Open
Abstract
Bone marrow-derived myeloid cells can form a premetastatic niche and provide a tumor-promoting microenvironment. However, subsets of myeloid cells have also been reported to have anti-tumor properties. It is not clear whether there is a transition between anti- and pro- tumor function of these myeloid cells, and if so, what are the underlying molecular mechanisms. Here we report platelet factor 4 (PF4), or CXCL4, but not the other family members CXCL9, 10, and 11, was produced at higher levels in the normal lung and early stage premetastatic lungs but decreased in later stage lungs. PF4 was mostly produced by Ly6G+CD11b+ myeloid cell subset. Although the number of Ly6G+CD11b+ cells was increased in the premetastatic lungs, the expression level of PF4 in these cells was decreased during the metastatic progression. Deletion of PF4 (PF4 knockout or KO mice) led an increased metastasis suggesting an inhibitory function of PF4. There were two underlying mechanisms: decreased blood vessel integrity in the premetastatic lungs and increased production of hematopoietic stem/progenitor cells (HSCs) and myeloid derived suppressor cells (MDSCs) in tumor-bearing PF4 KO mice. In cancer patients, PF4 expression levels were negatively correlated with tumor stage and positively correlated with patient survival. Our studies suggest that PF4 is a critical anti-tumor factor in the premetastatic site. Our finding of PF4 function in the tumor host provides new insight to the mechanistic understanding of tumor metastasis.
Collapse
Affiliation(s)
- Jiang Jian
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.,Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Yanli Pang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.,Current address: Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, P. R. China
| | - H Hannah Yan
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yongfen Min
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Bhagelu R Achyut
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA.,Tumor Angiogenesis Laboratory, Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - M Christine Hollander
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - P Charles Lin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Xinhua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
48
|
Yang L, Hu S, Tan J, Zhang X, Yuan W, Wang Q, Xu L, Liu J, Liu Z, Jia Y, Huang X. Pregnancy-specific glycoprotein 9 (PSG9), a driver for colorectal cancer, enhances angiogenesis via activation of SMAD4. Oncotarget 2018; 7:61562-61574. [PMID: 27528036 PMCID: PMC5308672 DOI: 10.18632/oncotarget.11146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
PSG9 is a member of the pregnancy-specific glycoprotein (PSG) family and has been shown to contribute to the progression of colorectal cancer (CRC) and cancer-related angiogenesis. Here, we aim to investigate abnormal PSG9 levels in patients with CRC and to emphasize the role of PSG9 in driving tumorigenesis. Serum from 140 patients with CRC and 125 healthy controls as well as 74 paired tumors and adjacent normal tissue were used to determine PSG9 levels. We discovered that PSG9 was significantly increased in serum (P<0.001) and in tumor tissues (P<0.001) from patients with CRC. Interestingly, the increased PSG9 levels correlated with poor survival (P=0.009) and microvessel density (MVD) (P=0.034). The overexpression of PSG9 strongly promoted the proliferation and migration of HCT-116 and HT-29 cells. However, PSG9 depletion inhibited the proliferation of SW-480 cells. Using a human umbilical vein endothelial cell tube-forming assay, we found that PSG9 promoted angiogenesis. The overexpression of PSG9 also increased the growth of tumor xenografts in nude mice. Co-immunoprecipitation experiments revealed that PSG9 was bound to SMAD4. The PSG9/SMAD4 complex recruited cytoplasmic SMAD2/3 to form a complex, which enhanced SMAD4 nuclear retention. The PSG9 and SMAD4 complex activated the expression of multiple angiogenesis-related genes (included IGFBP-3, PDGF-AA, GM-CSF, and VEGFA). Together, our findings illustrate the innovative mechanism by which PSG9 drives the progression of CRC and tumor angiogenesis. This occurs via nuclear translocation of PSG9/SMAD4, which activates angiogenic cytokines. Therefore, our study may provide evidence for novel treatment strategies by targeting PSG9 in antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Lei Yang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Shusheng Hu
- Clinical Laboratory Department, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Jinjing Tan
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaojing Zhang
- Oncology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Wen Yuan
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Qian Wang
- Oncology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lingling Xu
- Oncology Department, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Jian Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zheng Liu
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Yanjun Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
49
|
Yang L, Lin PC. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol 2017; 47:185-195. [PMID: 28782608 PMCID: PMC5698110 DOI: 10.1016/j.semcancer.2017.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Treatment of cancer metastasis has been largely ineffective. It is paramount to understand the mechanisms underlying the metastatic process, of which the tumor microenvironment is an indispensable participant. What are the critical cellular and molecular players at the primary tumor site where metastatic cascade initiates? How is tumor-associated inflammation regulated? How do altered vasculatures contribute to metastasis? What is the dynamic nature or heterogeneity of primary tumors and what are the challenges to catch a moving target? This review summarizes recent progress, mechanistic understanding, and options for metastasis-targeted therapy.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| | - P Charles Lin
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA.
| |
Collapse
|
50
|
Li S, Dong Y, Wang K, Wang Z, Zhang X. Transcriptomic analyses reveal the underlying pro-malignant functions of PTHR1 for osteosarcoma via activation of Wnt and angiogenesis pathways. J Orthop Surg Res 2017; 12:168. [PMID: 29121993 PMCID: PMC5679487 DOI: 10.1186/s13018-017-0664-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Increasing evidence has indicated parathyroid hormone type 1 receptor (PTHR1) plays important roles for the development and progression of osteosarcoma (OS). However, its function mechanisms remain unclear. The goal of this study was to further illuminate the roles of PTHR1 in OS using microarray data. METHODS Microarray data were available from the Gene Expression Omnibus database under the accession number GSE46861, including six tumors from mice with PTHR1 knockdown (PTHR1.358) and six tumors from mice with control knockdown (Ren.1309). Differentially expressed genes (DEGs) between PTHR1.358 and Ren.1309 were identified using the LIMMA method, and then, protein-protein interaction (PPI) network was constructed using data from STRING database to screen crucial genes associated with PTHR1. KEGG pathway enrichment analysis was performed to investigate the underlying functions of DEGs using DAVID tool. RESULTS A total of 1163 genes were identified as DEGs, including 617 downregulated (Lef1, lymphoid enhancer-binding factor 1) and 546 upregulated genes (Dkk1, Dickkopf-related protein 1). KEGG enrichment analysis indicated upregulated DEGs were involved in Renin-angiotensin system (e.g., Agt, angiotensinogen) and Wnt signaling pathway (e.g., Dkk1), while downregulated DEGs participated in Basal cell carcinoma (e.g., Lef1). A PPI network (534 nodes and 2830 edges) was constructed, in which Agt gene was demonstrated to be the hub gene and its interactive genes (e.g., CCR3, CC chemokine receptor 3; and CCL9, chemokine CC chemokine ligand 9) were inflammation related. CONCLUSIONS Our present study preliminarily reveals the pro-malignant effects of PTHR1 in OS cells may be mediated by activating Wnt, angiogenesis, and inflammation pathways via changing the expressions of the crucial enriched genes (Dkk1, Lef1, Agt-CCR3, and Agt-CCL9).
Collapse
MESH Headings
- Animals
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Gene Expression Profiling/methods
- Gene Regulatory Networks/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- Receptor, Parathyroid Hormone, Type 1/biosynthesis
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Wnt Signaling Pathway/physiology
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China
| | - Yujin Dong
- Department of Hand and Foot Surgery, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, 116033, China
| | - Ke Wang
- Molecular Pathology Testing Center, Foshan Chancheng Central Hospital, Foshan, Guangdong, 528031, China
| | - Zhe Wang
- Department of Orthopedics, Zhongshan Hospital Affiliated to Fudan University, Shanghai, 200032, China
| | - Xiaojing Zhang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, 44, Xiaoheyan Road, Dadong District, Shenyang, Liaoning, 110042, China.
| |
Collapse
|