1
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
2
|
Ye Q, Zhu Y, Shi M, Lv L, Gong Y, Zhang L, Yang L, Zhao H, Zhao C, Xu H. Repurposing diacerein to suppress colorectal cancer growth by inhibiting the DCLK1/STAT3 signaling pathway. Chin J Nat Med 2024; 22:318-328. [PMID: 38658095 DOI: 10.1016/s1875-5364(24)60621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 04/26/2024]
Abstract
Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1β inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.
Collapse
Affiliation(s)
- Qiaobei Ye
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China
| | - Yu Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China; The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Meng Shi
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China; The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Linxi Lv
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China; The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyan Gong
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China; The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyao Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China
| | - Lehe Yang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China; The Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huanhai Xu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325600, China.
| |
Collapse
|
3
|
Chen XY, Kao C, Peng SW, Chang JH, Lee YL, Laiman V, Chung KF, Bhavsar PK, Heriyanto DS, Chuang KJ, Chuang HC. Role of DCLK1/Hippo pathway in type II alveolar epithelial cells differentiation in acute respiratory distress syndrome. Mol Med 2023; 29:159. [PMID: 37996782 PMCID: PMC10668445 DOI: 10.1186/s10020-023-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS AECII MLE-12 cells were exposed to 0, 0.1, or 1 μg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ching Kao
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Syue-Wei Peng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Didik Setyo Heriyanto
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- National Heart and Lung Institute, Imperial College London, London, UK.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Inhalation Toxicology Research Lab (ITRL), School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Yang AY, Liu HL, Yang YF. Study on the mechanism of action of Scutellaria barbata on hepatocellular carcinoma based on network pharmacology and bioinformatics. Front Pharmacol 2023; 13:1072547. [PMID: 36699068 PMCID: PMC9869961 DOI: 10.3389/fphar.2022.1072547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Hepatocellular carcinoma is one of the most common cancers with the characteristics of invasion and high mortality. Current forms of prevention remain severe. Scutellaria barbata is widely used in traditional Chinese medicine treatment of various tumors. This study explored the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma by network pharmacology and bioinformatics. Methods: The active ingredients of Scutellaria barbata and potential targets for the treatment of hepatocellular carcinoma were collected by network pharmacology. The protein interaction network was constructed to screen the core targets, and the association between the core targets and diseases was further verified by bioinformatics methods. Finally, the active ingredients corresponding to the targets closely related to the disease were screened for AMDE characteristics analysis. Molecular docking of drug-like ingredients with corresponding targets was performed. We used CCK-8 kit to determine the effect of active ingredients on cell proliferation. Results: 29 candidate active ingredients and 461 related targets of Scutellaria barbata were screened. A total of 8238 potential therapeutic targets for hepatocellular carcinoma were indentified. Finally, 373 potential targets for the treatment of HCC were obtained. The active ingredients: wogonin, Rhamnazin, eriodictyol, quercetin, baicalein, and luteolin, etc. The core targets were CDK1, CDK4, SRC, and E2F1. A total of 3056 GO enrichment entries were obtained, and 180 enrichment results were obtained by KEGG pathway analysis. Genes were mainly enriched in PI3K-Akt signaling pathway, IL-17 signaling pathway, TNF signaling pathway, apoptosis pathway, and hepatocellular carcinoma pathway. Molecular docking results showed that the screened compounds had strong binding ability with the corresponding target proteins. CCK8 assays showed that Rhamnazin and Luteolin suppressed the proliferation of HCC cells significantly compared with controls. Conclusion: This study revealed that the mechanism of Scutellaria barbata in the treatment of hepatocellular carcinoma may be that the active ingredients inhibit the expression of core genes and block the PI3K-AKT signaling pathway to inhibit the proliferation, and migration and induce apoptosis of cancer cells.
Collapse
Affiliation(s)
- An-Yin Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Li Liu
- Medical College of Southeast University, Nanjing, China
| | - Yong-Feng Yang
- Department of Liver Disease, Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China,*Correspondence: Yong-Feng Yang,
| |
Collapse
|
5
|
Zaabalawi A, Renshall L, Beards F, Lightfoot AP, Degens H, Alexander Y, Hasan R, Bilal H, Graf BA, Harris LK, Azzawi M. Internal Mammary Arteries as a Model to Demonstrate Restoration of the Impaired Vasodilation in Hypertension, Using Liposomal Delivery of the CYP1B1 Inhibitor, 2,3',4,5'-Tetramethoxystilbene. Pharmaceutics 2022; 14:2046. [PMID: 36297480 PMCID: PMC9611804 DOI: 10.3390/pharmaceutics14102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
A significant number of patients with severe cardiovascular disease, undergoing coronary artery bypass grafting (CABG), present with hypertension. While internal mammary arteries (IMAs) may be a better alternative to vein grafts, their impaired vasodilator function affects their patency. Our objectives were to (1) determine if inhibition of the cytochrome P450 enzyme CYP1B1, using liposome-encapsulated 2,3′,4,5′-tetramethoxystilbene (TMS), can potentiate vasodilation of IMAs from CABG patients, and (2) assess mechanisms involved using coronary arteries from normal rats, in an ex vivo model of hypertension. PEGylated liposomes were synthesized and loaded with TMS (mean diameter 141 ± 0.9 nm). Liposomal delivery of TMS improved its bioavailability Compared to TMS solution (0.129 ± 0.02 ng/mL vs. 0.086 ± 0.01 ng/mL at 4 h; p < 0.05). TMS-loaded liposomes alleviated attenuated endothelial-dependent acetylcholine (ACh)-induced dilation in diseased IMAs (@ACh 10−4 M: 56.9 ± 5.1%; n = 8 vs. 12.7 ± 7.8%; n = 6; p < 0.01) for TMS-loaded liposomes vs. blank liposomes, respectively. The alleviation in dilation may be due to the potent inhibition of CYP1B1 by TMS, and subsequent reduction in reactive oxygen species (ROS) moieties and stimulation of nitric oxide synthesis. In isolated rat coronary arteries exposed to a hypertensive environment, TMS-loaded liposomes potentiated nitric oxide and endothelium-derived hyperpolarization pathways via AMPK. Our findings are promising for the future development of TMS-loaded liposomes as a promising therapeutic strategy to enhance TMS bioavailability and potentiate vasodilator function in hypertension, with relevance for early and long-term treatment of CABG patients, via the sustained and localized TMS release within IMAs.
Collapse
Affiliation(s)
- Azziza Zaabalawi
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lewis Renshall
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PL, UK
- Maternal & Fetal Health Research Centre, University of Manchester, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Frances Beards
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PL, UK
- Maternal & Fetal Health Research Centre, University of Manchester, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Adam P. Lightfoot
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AP, UK
| | - Hans Degens
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Ragheb Hasan
- Department of Cardiothoracic Surgery, Manchester Foundation Trust, Manchester M13 9WL, UK
| | - Haris Bilal
- Department of Cardiothoracic Surgery, Manchester Foundation Trust, Manchester M13 9WL, UK
| | - Brigitte A. Graf
- Faculty of Health and Education, Manchester Metropolitan University, Manchester M15 6BG, UK
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PL, UK
- Maternal & Fetal Health Research Centre, University of Manchester, Manchester M13 9WL, UK
- Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - May Azzawi
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
6
|
Molecular docking and in vitro experiments verified that kaempferol induced apoptosis and inhibited human HepG2 cell proliferation by targeting BAX, CDK1, and JUN. Mol Cell Biochem 2022; 478:767-780. [PMID: 36083512 DOI: 10.1007/s11010-022-04546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Hepatocellular carcinoma, as a common liver cirrhosis complication, has become the sixth most common cancer worldwide, and its increasing incidence has resulted in considerable medical and economic burdens. As a natural polyphenolic compound, kaempferol has exhibits a wide range of antitumor activities against multiple cancer targets. In this study, the Autodock software was used for molecular docking to simulate the interaction process between kaempferol and HCC targets and the PyMOL software was used for visualization. Proliferation of kaempferol HepG2 cells under the effect of kaempferol was detected using Cell Counting Kit-8 (CCK-8) assay, and the apoptosis rate of HepG2 cells was detected using flow cytometry. The expressions of proteins BAX, CDK1, and JUN protein expressions were detected by Western blot. Molecular docking found that the kaempferol ligand has 3 rotatable bonds, 6 nonpolar hydrogen atoms, and 12 aromatic carbon atoms, and can form complexes with the kaempferol targets P53, BAX, AR, CDK1, and JUN through electrostatic energy. GO (Gene Ontology) enrichment analysis suggests that kaempferol regulates the biological function of hepatocellular carcinoma cells and is related to apoptosis. Cell Counting Kit-8 assay suggested that Kaempferol can significantly inhibited HepG2 cell proliferation, and the inhibition rate increased with the increase in drug concentration and incubation time. Moreover, kaempferol can promoted HepG2 cell apoptosis in a dose-dependent manner. This compound upregulated BAX and JUN expression and downregulated CDK1 expression. Thus, Kaempferol can promote HepG2 cell apoptosis, and the regulatory mechanism may be related to the regulation of the expression levels of the apoptosis-related proteins BAX, CDK1, and JUN.
Collapse
|
7
|
Targeting Doublecortin-Like Kinase 1 (DCLK1)-Regulated SARS-CoV-2 Pathogenesis in COVID-19. J Virol 2022; 96:e0096722. [PMID: 35943255 PMCID: PMC9472619 DOI: 10.1128/jvi.00967-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Host factors play critical roles in SARS-CoV-2 infection-associated pathology and the severity of COVID-19. In this study, we systematically analyzed the roles of SARS-CoV-2-induced host factors, doublecortin-like kinase 1 (DCLK1), and S100A9 in viral pathogenesis. In autopsied subjects with COVID-19 and pre-existing chronic liver disease, we observed high levels of DCLK1 and S100A9 expression and immunosuppressive (DCLK1+S100A9+CD206+) M2-like macrophages and N2-like neutrophils in lungs and livers. DCLK1 and S100A9 expression were rarely observed in normal controls, COVID-19-negative subjects with chronic lung disease, or COVID-19 subjects without chronic liver disease. In hospitalized patients with COVID-19, we detected 2 to 3-fold increased levels of circulating DCLK1+S100A9+ mononuclear cells that correlated with disease severity. We validated the SARS-CoV-2-dependent generation of these double-positive immune cells in coculture. SARS-CoV-2-induced DCLK1 expression correlated with the activation of β-catenin, a known regulator of the DCLK1 promoter. Gain and loss of function studies showed that DCLK1 kinase amplified live virus production and promoted cytokine, chemokine, and growth factor secretion by peripheral blood mononuclear cells. Inhibition of DCLK1 kinase blocked pro-inflammatory caspase-1/interleukin-1β signaling in infected cells. Treatment of SARS-CoV-2-infected cells with inhibitors of DCLK1 kinase and S100A9 normalized cytokine/chemokine profiles and attenuated DCLK1 expression and β-catenin activation. In conclusion, we report previously unidentified roles of DCLK1 in augmenting SARS-CoV-2 viremia, inflammatory cytokine expression, and dysregulation of immune cells involved in innate immunity. DCLK1 could be a potential therapeutic target for COVID-19, especially in patients with underlying comorbid diseases associated with DCLK1 expression. IMPORTANCE High mortality in COVID-19 is associated with underlying comorbidities such as chronic liver diseases. Successful treatment of severe/critical COVID-19 remains challenging. Herein, we report a targetable host factor, DCLK1, that amplifies SARS-CoV-2 production, cytokine secretion, and inflammatory pathways via activation of β-catenin(p65)/DCLK1/S100A9/NF-κB signaling. Furthermore, we observed in the lung, liver, and blood an increased prevalence of immune cells coexpressing DCLK1 and S100A9, a myeloid-derived proinflammatory protein. These cells were associated with increased disease severity in COVID-19 patients. Finally, we used a novel small-molecule inhibitor of DCLK1 kinase (DCLK1-IN-1) and S100A9 inhibitor (tasquinimod) to decrease virus production in vitro and normalize hyperinflammatory responses known to contribute to disease severity in COVID-19.
Collapse
|
8
|
Zhao B, Li H, Su Y, Tian K, Zou Z, Wang W. Synthesis and Anticancer Activity of Bagasse Xylan/Resveratrol Graft-Esterified Composite Nanoderivative. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5166. [PMID: 35897598 PMCID: PMC9330801 DOI: 10.3390/ma15155166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022]
Abstract
Biomass materials are high-quality raw materials for the preparation of natural, green and highly active functional materials due to their rich active groups, wide sources and low toxicity. Bagasse xylan (BX) and resveratrol (Res) were used as raw materials to introduce ethylene glycol dimethacrylate (EGDMA) via grafting reaction to obtain the intermediate product BX/Res-g-EGDMA. The intermediate was esterified with 3-carboxyphenylboronic acid (3-CBA) to obtain the target product 3-CBA-BX/Res-g-EGDMA. The BX/Res-composite-modified nanoderivative with antitumor activity was synthesized with the nanoprecipitation method. The effects of the reaction conditions on the grafting rate (G) of BX/Res-g-EGDMA and the degree of substitution (DS) of 3-CBA-BX/Res-g-EGDMA were investigated using single-factor experiments. The results showed that under the optimized process conditions, G and DS reached 142.44% and 0.485, respectively. The product was characterized with FTIR, XRD, TG-FTC, 1H NMR and SEM, and its anticancer activity was simulated and tested. The results showed that 3-CBA-BX/Res-g-EGDMA had a spherical structure with an average particle size of about 100 nm and that its crystalline structure and thermal stability were different from those of the raw materials. In addition, 3-CBA-BX/Res-g-EGDMA showed the best docking activity with 2HE7 with a binding free energy of -6.3 kJ/mol. The inhibition rate of 3-CBA-BX/Res-g-EGDMA on MGC80-3 (gastric cancer cells) reached 36.71 ± 4.93%, which was 18 times higher than that of BX. Therefore, this material could be a potential candidate for biomedical applications.
Collapse
Affiliation(s)
- Bin Zhao
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Heping Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Yue Su
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Kexin Tian
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Zhiming Zou
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; (B.Z.); (Y.S.); (K.T.); (Z.Z.)
| | - Wenli Wang
- College of Textile and Clothing Engineering, China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022; 61:e202203390. [PMID: 35510306 PMCID: PMC9400970 DOI: 10.1002/anie.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 12/04/2022]
Abstract
A Ru(bpy)3Cl2 photocatalyst is applied to the rapid trans to cis isomerization of a range of alkene‐containing pharmacological agents, including combretastatin A‐4 (CA‐4), a clinical candidate in oncology, and resveratrol derivatives, switching their configuration from inactive substances to potent cytotoxic agents. Selective in cellulo activation of the CA‐4 analog Res‐3M is demonstrated, along with its potent cytotoxicity and inhibition of microtubule dynamics.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
10
|
Watson EE, Russo F, Moreau D, Winssinger N. Optochemical Control of Therapeutic Agents through Photocatalyzed Isomerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma E. Watson
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Francesco Russo
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Dimitri Moreau
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry NCCR Chemical Biology Faculty of Sciences University of Geneva 1211 Geneva Switzerland
| |
Collapse
|
11
|
Teka T, Zhang L, Ge X, Li Y, Han L, Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. PHYTOCHEMISTRY 2022; 197:113128. [PMID: 35183567 DOI: 10.1016/j.phytochem.2022.113128] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Stilbenes are some of the important phenolic compounds originating from plant families like Vitaceae, Leguminaceae, Gnetaceae, and Dipterocarpaceae. Structurally, they have a C6-C2-C6 skeleton, usually with two isomeric forms. Stilbenes are biosynthesized due to biotic and abiotic stresses such as microbial infections, high temperatures, and oxidation. This review aims to provide a comprehensive overview of stilbenes' botanical sources, chemistry, biosynthetic pathways, pharmacology, and clinical applications and challenges based on up-to-date data. All included studies were collected from PubMed, ScienceDirect, Google Scholar, and CNKI, and the presented data from these indexed studies were analyzed and summarized. A total of 459 natural stilbene compounds from 45 plant families and 196 plant species were identified. Pharmacological studies also show that stilbenes have various activities such as anticancer, antimicrobial, antioxidant, anti-inflammatory, anti-degenerative diseases, anti-diabetic, neuroprotective, anti-aging, and cardioprotective effects. Stilbene synthase (STS) is the key enzyme involved in stilbene biosynthetic pathways. Studies on the therapeutic application of stilbenes pinpoint that challenges such as low bioavailability and isomerization are the major bottlenecks for their development as therapeutic drugs. Although the medicinal uses of several stilbenes have been demonstrated in vivo and in vitro, studies on the development of stilbenes deserve more attention in the future.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiaoyan Ge
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Yanjie Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
12
|
Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic fatty liver disease. Metabolism 2022; 128:155115. [PMID: 34974078 DOI: 10.1016/j.metabol.2021.155115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Due to its extremely high prevalence and severity, non-alcoholic fatty liver disease (NALFD) is a serious health and economic concern worldwide. Developing effective methods of diagnosis and therapy demands a deeper understanding of its molecular basis. One of the strategies in such an endeavor is the analysis of alterations in the morphology of liver cells. Such alterations, widely reported in NAFLD patients and disease models, are related to the cytoskeleton. Therefore, the fate of the cytoskeleton components is useful to uncover the molecular basis of NAFLD, to further design innovative approaches for its diagnosis and therapy. MAIN FINDINGS Several cytoskeleton proteins are up-regulated in liver cells of NAFLD patients. Under pathological conditions, keratin 18 is released from hepatocytes and its detection in the blood emerges as a non-invasive diagnosis tool. α-Smooth muscle actin is up-regulated in hepatic stellate cells and its down-regulation has been widely tested as a potential NALFD therapeutic approach. Other cytoskeleton proteins, such as vimentin, are also up-regulated. CONCLUSIONS NAFLD progression involves alterations in expression levels of proteins that build the liver cytoskeleton or associate with it. These findings provide a timely opportunity of developing novel approaches for NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- João Pessoa
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - José Teixeira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Huang Y, Ge W, Ding Y, Zhang L, Zhou J, Kong Y, Cui B, Gao B, Qian X, Wang W. The circular RNA circSLC7A11 functions as a mir-330-3p sponge to accelerate hepatocellular carcinoma progression by regulating cyclin-dependent kinase 1 expression. Cancer Cell Int 2021; 21:636. [PMID: 34844614 PMCID: PMC8628421 DOI: 10.1186/s12935-021-02351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs), which are endogenous non-coding RNAs, are associated with various biological processes including development, homeostatic maintenance, and pathological responses. Accumulating evidence has implicated non-coding RNAs in cancer progression, and the role of circRNAs in particular has drawn wide attention. However, circRNA expression patterns and functions in hepatocellular carcinoma (HCC) remain poorly understood. Methods CircRNA sequencing was performed to screen differentially expressed circRNAs in HCC. Northern blotting, quantitative real-time polymerase chain reaction, nucleocytoplasmic fractionation, and fluorescence in situ hybridization analyses were conducted to evaluate the expression and localization of circSLC7A11 in HCC tissues and cells. CircSLC7A11 expression levels were modified in cultured HCC cell lines to explore the association between the expression of circSLC7A11 and the malignant behavior of these cells using several cell-based assays. The modified cells were implanted into immunocompetent nude mice to assess tumor growth and metastasis in vivo. We applied bioinformatics methods, RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays to explore the mechanisms of circSLC7A11 in HCC. Results CircSLC7A11 (hsa_circ_0070975) was conserved and dramatically overexpressed in HCC tissues and cells. HCC patients showing high circSLC7A11 expression had worse prognoses. Our in vitro and in vivo experiments showed that circSLC7A11 markedly accelerated HCC progression and metastasis through the circSLC7A11/miR-330-3p/CDK1 axis. Conclusions The acceleration of HCC progression and metastasis by circSLC7A11 through the circSLC7A11/miR-330-3p/CDK1 axis suggests that circSLC7A11 is a potential novel diagnostic and therapeutic target for HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02351-7.
Collapse
Affiliation(s)
- Yu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Wenhao Ge
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Jiarong Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Yang Kong
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Bijun Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Bingqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Xiaohui Qian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China.,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang.,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China.,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China.,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, Zhejiang, China. .,Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, 310009, Hangzhou, China, Zhejiang. .,Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic, Disease of Zhejiang University, Hangzhou, 310009, Zhejiang, China. .,Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Zhejiang, Hangzhou, 310009, China. .,Zhejiang University Cancer Center, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
14
|
Japanese Encephalitis Virus NS1' Protein Interacts with Host CDK1 Protein to Regulate Antiviral Response. Microbiol Spectr 2021; 9:e0166121. [PMID: 34756071 PMCID: PMC8579942 DOI: 10.1128/spectrum.01661-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Type I interferon (IFN-I) is a key component of the host innate immune system. To establish efficient replication, viruses have developed several strategies to escape from the host IFN response. Japanese encephalitis virus (JEV) NS1', a larger NS1-related protein, is known to inhibit the mitochondrial antiviral signaling (MAVS)-mediated IFN-β induction by increasing the binding of transcription factors (CREB and c-Rel) to the microRNA 22 (miRNA-22) promoter. However, the mechanism by which NS1' induces the recruitment of CREB and c-Rel onto the miRNA-22 promoter is unknown. Here, we found that JEV NS1' protein interacts with the host cyclin-dependent kinase 1 (CDK1) protein. Mechanistically, NS1' interrupts the CDC25C phosphatase-mediated dephosphorylation of CDK1, which prolongs the phosphorylation status of CDK1 and leads to the inhibition of MAVS-mediated IFN-β induction. Furthermore, the CREB phosphorylation and c-Rel activation through the IκBα phosphorylation were observed to be enhanced upon the augmentation of CDK1 phosphorylation by NS1'. The abrogation of CDK1 activity by a small-molecule inhibitor significantly suppressed the JEV replication in vitro and in vivo. Moreover, the administration of CDK1 inhibitor protected the wild-type mice from JEV-induced lethality but showed no effect on the MAVS-/- mice challenged with JEV. In conclusion, our study provides new insight into the mechanism of JEV immune evasion, which may lead to the development of novel therapeutic options to treat JEV infection. IMPORTANCE Japanese encephalitis virus (JEV) is the main cause of acute human encephalitis in Asia. The unavailability of specific treatment for Japanese encephalitis demands a better understanding of the basic cellular mechanisms that contribute to the onset of disease. The present study identifies a novel interaction between the JEV NS1' protein and the cellular CDK1 protein, which facilitates the JEV replication by dampening the cellular antiviral response. This study sheds light on a novel mechanism of JEV replication, and thus our findings could be employed for developing new therapies against JEV infection.
Collapse
|
15
|
Yin S, Yang S, Luo Y, Lu J, Hu G, Wang K, Shao Y, Zhou S, Koo S, Qiu Y, Wang T, Yu H. Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem Pharmacol 2021; 193:114806. [PMID: 34673013 DOI: 10.1016/j.bcp.2021.114806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The pathological changes and possible underlying molecular mechanisms of hepatocellular carcinoma (HCC) are currently unclear. Effective treatment of this pathological state remains a challenge. The purpose of this study is to obtain some key genes with diagnostic and prognostic meaning and to identify potential therapeutic agents for HCC treatment. Here, CDK1, CCNB1 and CCNB2 were found to be highly expressed in HCC patients and accompanied by poor prognosis, and knockdown of them by siRNA drastically induced autophagy and senescence in hepatoma cells. Simultaneously, the anti-HCC effect of lycorine was comparable to that of interfering with these three genes, and lycorine significantly promoted the decrease both in protein and mRNA expression of CDK1. Molecular validation mechanistically demonstrated that lycorine might attenuate the degradation rate of CDK1 via interaction with it, which had been confirmed by cellular thermal shift assay and drug affinity responsive targets stability assay. Taken together, these findings suggested that CDK1, CCNB1 and CCNB2 could be regarded as potential diagnostic and prognostic biomarkers for HCC, and CDK1 might serve as a promising therapeutic target for lycorine against HCC.
Collapse
Affiliation(s)
- Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shenshen Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yanming Luo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jia Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Gaoyong Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kailong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Sangho Koo
- Department of Chemistry, Myongji University, Yongin, Gyeonggi-Do 17058, South Korea
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
16
|
Gonçalves NDS, Mello TMSPD, Mizuno CS, Haider S, Santos RAD. Cis-trimethoxystilbene, exhibits higher genotoxic and antiproliferative effects than its isomer trans-trimethoxystilbene in MCF-7 and MCF-10A cell lines. Genet Mol Biol 2021; 44:e20200477. [PMID: 34555143 PMCID: PMC8459827 DOI: 10.1590/1678-4685-gmb-2020-0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Stilbenes are a class of natural compounds with a wide variety of biological effects, such as antitumor activity. The best-known stilbene is resveratrol, whose clinical application is limited due to its low bioavailability. Methoxylated derivatives of this stilbene, including cis-trimethoxystilbene (cis-TMS) and trans-trimethoxystilbene (trans-TMS) have demonstrated more pronounced cytotoxic and anti-proliferative effects than resveratrol. Thus, the objective of this study is to evaluate and compare the cytotoxicity and antiproliferative effects of cis- and trans-TMS in MCF-7 and its normal counterpart MCF-10A. Both compounds were cytotoxic, genotoxic, and induced G2-M accumulation and cell death in the two cell lines. These results suggested that the genotoxicity of cis- and trans-TMS is involved in the reduction of cellular proliferation of MCF-7 and MCF-10A cells, but notably, such antiproliferative effects are more pronounced for cis- than trans-TMS.
Collapse
Affiliation(s)
| | | | - Cássia Suemi Mizuno
- University of New England, Westbrook College of Health Professions, School of Pharmacy, Department of Pharmaceutical and Social Administrative Sciences, Portland, ME, USA
| | - Saqlain Haider
- University of Mississippi, School of Pharmacy, National Center for Natural Products Research, MS, USA
| | | |
Collapse
|
17
|
Yang WQ, Zhao WJ, Zhu LL, Xu SJ, Zhang XL, Liang Y, Ding XF, Kiselyov A, Chen G. XMD-17-51 Inhibits DCLK1 Kinase and Prevents Lung Cancer Progression. Front Pharmacol 2021; 12:603453. [PMID: 33762936 PMCID: PMC7982674 DOI: 10.3389/fphar.2021.603453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1) is a cancer stem cell marker that is highly expressed in various types of human cancer, and a protein kinase target for cancer therapy that is attracting increasing interest. However, no drug candidates targeting DCLK1 kinase have been developed in clinical trials to date. XMD-17-51 was found herein to possess DCLK1 kinase inhibitory activities by cell-free enzymatic assay. In non-small cell lung carcinoma (NSCLC) cells, XMD-17-51 inhibited DCLK1 and cell proliferation, while DCLK1 overexpression impaired the anti-proliferative activity of XMD-17-51 in A549 cell lines. Consequently, XMD-17-51 decreased Snail-1 and zinc-finger-enhancer binding protein 1 protein levels, but increased those of E-cadherin, indicating that XMD-17-51 reduces epithelial-mesenchymal transition (EMT). Furthermore, sphere formation efficiency was significantly decreased upon XMD-17-51 treatment, and XMD-17-51 reduced the expression of stemness markers such as β-catenin, and pluripotency factors such as SOX2, NANOG and OCT4. However, the percentage of ALDH+ cells was increased significantly following treatment with XMD-17-51 in A549 cells, possibly due to EMT inhibition. In combination, the present data indicated that XMD-17-51 inhibited DCLK1 kinase activity in a cell-free assay with an IC50 of 14.64 nM, and decreased DCLK1 protein levels, cell proliferation, EMT and stemness in NSCLC cell lines. XMD-17-51 has the potential to be a candidate drug for lung cancer therapy.
Collapse
Affiliation(s)
- Wei-Qiang Yang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China.,Graduate School of Medicine, Hebei North University, Zhangjiakou, China
| | - Wei-Jun Zhao
- Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China.,Graduate School of Medicine, Hebei North University, Zhangjiakou, China
| | - Liu-Lian Zhu
- Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China.,Graduate School of Medicine, Hebei North University, Zhangjiakou, China
| | - Shuai-Jun Xu
- Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China.,Graduate School of Medicine, Hebei North University, Zhangjiakou, China
| | | | - Yong Liang
- Department of Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Xiao-Fei Ding
- Department of Experimental and Clinical Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Alexander Kiselyov
- Department of Pharmaceutical Engineering, School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Taizhou, China
| | - Guang Chen
- Department of Pharmacology, School of Medicine, Taizhou University, Taizhou, China
| |
Collapse
|
18
|
Panneerselvam J, Mohandoss P, Patel R, Gillan H, Li M, Kumar K, Nguyen D, Weygant N, Qu D, Pitts K, Lightfoot S, Rao C, Houchen C, Bronze M, Chandrakesan P. DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4. Mol Ther Oncolytics 2020; 18:24-36. [PMID: 32637578 PMCID: PMC7321820 DOI: 10.1016/j.omto.2020.05.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Chemoresistance cells have features similar to cancer stem cells. Elimination of these cells is an effective therapeutic strategy to clinically combat chemoresistance non-small cell lung cancer (NSCLC). Here, we demonstrate that Doublecortin-like kinase1 (DCLK1) is the key to developing chemoresistance and associated stemness in NSCLC. DCLK1 is highly expressed in human lung adenocarcinoma and strongly correlated with stemness. Silencing DCLK1 inhibits NSCLC cell primary and secondary spheroid formation, which is the prerequisite feature of tumor stem cells. DCLK1 inhibition reduced NSCLC cell migration/invasion in vitro and induced tumor growth inhibition in vivo. NSCLC cells responded differently to cisplatin treatment; indeed, the clonogenic ability of all NSCLC cells was reduced. We found that the cisplatin-resistant NSCLC cells gain the expression of DCLK1 compared with their parental control. However, DCLK1 inhibition in cisplatin-resistance NSCLC cells reverses the tumor cell resistance to cisplatin and reduced tumor self-renewal ability. Specifically, we found that DCLK1-mediated cisplatin resistance in NSCLC is via an ABC subfamily member 4 (ABCD4)-dependent mechanism. Our data demonstrate that increased expression of DCLK1 is associated with chemoresistance and enhanced cancer stem cell-like features in NSCLC. Targeting DCLK1 using gene knockdown/knockout strategies alone or in combination with cisplatin may represent a novel therapeutic strategy to treat NSCLC.
Collapse
Affiliation(s)
- Janani Panneerselvam
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Ravi Patel
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hamza Gillan
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael Li
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kirtana Kumar
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - DangHuy Nguyen
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Weygant
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kamille Pitts
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stanley Lightfoot
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally Rao
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Courtney Houchen
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael Bronze
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
19
|
Mattio LM, Catinella G, Pinto A, Dallavalle S. Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 2020; 202:112541. [PMID: 32652408 PMCID: PMC7335248 DOI: 10.1016/j.ejmech.2020.112541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Viruses continue to be a major threat to human health. In the last century, pandemics occurred and resulted in significant mortality and morbidity. Natural products have been largely screened as source of inspiration for new antiviral agents. Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids present a wide structural diversity and mediate a great number of biological responses relevant for human health. However, whilst the antiviral activity of resveratrol has been extensively studied, little is known about the efficacy of its monomeric and oligomeric derivatives. The purpose of this review is to provide an overview of the achievements in this field, with particular emphasis on the source, chemical structures and the mechanism of action of resveratrol-derived stilbenoids against the most challenging viruses. The collected results highlight the therapeutic versatility of stilbene-containing compounds and provide a prospective insight into their potential development as antiviral agents.
Collapse
Affiliation(s)
- Luce M Mattio
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Giorgia Catinella
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
20
|
Doublecortin-like kinase 1 promotes hepatocyte clonogenicity and oncogenic programming via non-canonical β-catenin-dependent mechanism. Sci Rep 2020; 10:10578. [PMID: 32601309 PMCID: PMC7324569 DOI: 10.1038/s41598-020-67401-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic liver injury is a risk factor for cirrhosis and hepatocellular carcinoma (HCC). The molecular mechanisms that regulate the decision between normal injury repair and neoplastic initiation are unclear. Doublecortin-like kinase 1 (DCLK1), a tumor stem cell marker, is induced during cirrhosis and HCC. Here, we demonstrate that DCLK1-overexpressing primary human hepatocytes formed spheroids in suspension cultures. Spheroids derived from DCLK1-overexpressing hepatoma cells showed high level expression of active β-catenin, α-fetoprotein, and SOX9, suggesting that DCLK1 overexpression induces clonogenicity and dedifferentiated phenotypes in hepatoma cells. DCLK1 overexpression in hepatoma cells also increased phosphorylation of GSK-3β at Ser9. This was associated with an induction of a 48-kDa active β-catenin with a preserved hypophosphorylated N-terminus that interacted with nuclear TCF-4 resulting in luciferase reporter activity and cyclin D1 expression. DCLK1 downregulation inhibited 48-kDa β-catenin expression. The proteasome inhibitor bortezomib did not block the 48-kDa β-catenin, instead, caused a threefold accumulation, suggesting a proteasome-independent mechanism. Liver tissues from patients with cirrhosis and HCC revealed epithelial co-staining of DCLK1 and active β-catenin, and cleaved E-cadherin. Repopulated DCLK1-overexpressing primary human hepatocytes in humanized FRG mouse livers demonstrated active β-catenin. In conclusion, DCLK1 regulates oncogenic signaling and clonogenicity of hepatocytes by a novel non-canonical/atypical β-catenin-dependent mechanism.
Collapse
|
21
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
22
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|
23
|
Naveen SV, Kalaivani K. Cancer stem cells and evolving novel therapies: a paradigm shift. Stem Cell Investig 2018; 5:4. [PMID: 29430460 DOI: 10.21037/sci.2018.01.03] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022]
Abstract
Accumulating evidence of stem-like cells/cancer stem cells (CSCs) has been gaining attention of cancer researchers over the last decade. Though many tumors harbor CSCs in their dedicated niches, identifying and exterminating those cells has proved to be difficult, due to their heterogenous nature, as the CSC phenotype vary substantially and may undergo reversible phenotypic changes. As a tumor propagation initiator, CSCs are considered as an exciting novel therapy for a better therapeutic outcome. This review discusses the major advances in the development of CSC-based therapies of most common cancers which includes lung, cervix and liver cancers.
Collapse
|
24
|
Therapeutic Versatility of Resveratrol Derivatives. Nutrients 2017; 9:nu9111188. [PMID: 29109374 PMCID: PMC5707660 DOI: 10.3390/nu9111188] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Resveratrol, a natural phytoalexin, exhibits a remarkable range of biological activities, such as anticancer, cardioprotective, neuroprotective and antioxidant properties. However, the therapeutic application of resveratrol was encumbered for its low bioavailability. Therefore, many researchers focused on designing and synthesizing the derivatives of resveratrol to enhance the bioavailability and the pharmacological activity of resveratrol. During the past decades, a large number of natural and synthetic resveratrol derivatives were extensively studied, and the methoxylated, hydroxylated and halogenated derivatives of resveratrol received particular more attention for their beneficial bioactivity. So, in this review, we will summarize the chemical structure and the therapeutic versatility of resveratrol derivatives, and thus provide the related structure activity relationship reference for their practical applications.
Collapse
|
25
|
Traversi G, Fiore M, Percario Z, Degrassi F, Cozzi R. The resveratrol analogue trimethoxystilbene inhibits cancer cell growth by inducing multipolar cell mitosis. Mol Carcinog 2016; 56:1117-1126. [DOI: 10.1002/mc.22578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Mario Fiore
- Istituto di Biologia e Patologia Molecolari CNR; Via degli Apuli 4 Roma Italy
| | - Zulema Percario
- Dipartimento di Scienze; Università “Roma TRE”; Viale G. Marconi Roma Italy
| | - Francesca Degrassi
- Istituto di Biologia e Patologia Molecolari CNR; Via degli Apuli 4 Roma Italy
| | - Renata Cozzi
- Dipartimento di Scienze; Università “Roma TRE”; Viale G. Marconi Roma Italy
| |
Collapse
|
26
|
Nguyen CB, Houchen CW, Ali N. APSA Awardee Submission: Tumor/cancer stem cell marker doublecortin-like kinase 1 in liver diseases. Exp Biol Med (Maywood) 2016; 242:242-249. [PMID: 27694285 DOI: 10.1177/1535370216672746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Liver diseases are the fourth leading cause of mortality among adults in the United States. Patients with chronic liver diseases such as viral hepatitis, fibrosis, and cirrhosis have significantly higher risks of developing hepatocellular carcinoma (HCC). With a dismal five-year survival rate of 11%, HCC is the third most common cause of cancer-related deaths worldwide. Regardless of the underlying cause, late presentation and a lack of effective therapy are the major impediments for successful treatment of HCC. Therefore, there is a considerable interest in developing new strategies for the prevention and treatment of chronic liver diseases at the early stages. Cancer stem cells (CSCs), a small cell subpopulation in a tumor, exhibit unlimited self-renewal and differentiation capacity. These cells are believed to play pivotal roles in the initiation, growth, metastasis, and drug-resistance of tumors. In this review, we will briefly discuss pivotal roles of the CSC marker doublecortin-like kinase 1 (DCLK1) in hepatic tumorigenesis. Recent evidence suggests that anti-DCLK1 strategies hold promising clinical potential for the treatment of cancers of the liver, pancreas, and colon.
Collapse
Affiliation(s)
- Charles B Nguyen
- 1 College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney W Houchen
- 2 Section of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,3 Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,4 Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- 2 Section of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,3 Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK 73104, USA.,4 Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|