1
|
Zhou B, Fu HF, Niu JF, Deng W, Deng FM, Zhou ZD, Zhou W, Xiong Q, Li C. The Ubiquitin Ligase HERC2 Promotes Ang II-Induced Cardiac Hypertrophy Through Destabilization of MeCP2 to Enhance Lin28a Expression. J Cardiovasc Pharmacol 2025; 85:145-155. [PMID: 39499120 DOI: 10.1097/fjc.0000000000001647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/19/2024] [Indexed: 11/07/2024]
Abstract
ABSTRACT Homologous to the E6-AP carboxy terminus-type E3 ubiquitin ligases participate in the progression of cardiovascular diseases. HERC2 has been reported to play critical roles in many pathologic processes, but its role in cardiac hypertrophy remains unclear. In this study, we observed that the expression and activity of HERC2 were significantly upregulated in hypertrophic hearts and angiotensin II (Ang II)-stimulated primary cardiomyocytes. Knockdown of HERC2 in cardiomyocytes significantly alleviated the myocardial hypertrophy induced by Ang II. Conversely, cardiac-specific overexpression of HERC2 aggravated Ang II-induced cardiac hypertrophy in vitro and in vivo. Furthermore, we demonstrated that HERC2 promoted cardiac hypertrophy through increasing the expression of lin-28 homologue A (Lin28a), an RNA-binding protein that regulates pathologic cardiac hypertrophic. Knocking down Lin28a attenuated Ang II-induced myocardial hypertrophy and abolished the increase in myocardial hypertrophy by overexpression of HERC2. Further investigation indicated that HERC2 promoted the expression level of Lin28a by reducing methyl-CpG binding protein 2 (MeCP2), a transcriptional suppressor of Lin28a. We also showed that the prohypertrophic effect of HERC2 was partially dependent on MeCP2 inhibition. Mechanistically, HERC2 directly bound with MeCP2, and promotes its K48-linked polyubiquitination and degradation. Combined, these findings demonstrate that HERC2 plays a crucial role in pathologic cardiac hypertrophy, thereby indicating that targeting the HERC2/MeCP2/Lin28a axis is a potential strategy for heart failure therapy.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Hui-Fan Fu
- Department of Anaesthesiology, The Third Hospital of Nanchang, Nanchang, Jiangxi Province, China ; and
| | - Jiang-Feng Niu
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fu-Mou Deng
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhi-Dong Zhou
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Zhou
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qinggen Xiong
- Department of Vascular and Interventional Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Chang Li
- Department of Anaesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
2
|
He S, Bai J, Zhang L, Yuan H, Ma C, Wang X, Guan X, Mei J, Zhu X, Xin W, Zhu D. Superenhancer-driven circRNA Myst4 involves in pulmonary artery smooth muscle cell ferroptosis in pulmonary hypertension. iScience 2024; 27:110900. [PMID: 39351203 PMCID: PMC11440257 DOI: 10.1016/j.isci.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
The abnormal expression of circular RNAs (circRNAs) is emerging as a critical cause in regulation of pathological changes of hypoxic pulmonary hypertension (PH), in which ferroptosis is a new pathological change reported recently. However, how circRNAs regulate ferroptosis remains unclear. Here, we proved a significant decrease in circMyst4 expression in hypoxia. In vitro assays revealed that circMyst4 alleviated hypoxic pulmonary artery smooth muscle cell (PASMC) ferroptosis through directly combing with DDX5 in the nucleus to promote GPX4 mRNA processing and inhibiting the formation of the Eef1a1/ACSL4 complex in the cytoplasm. Additionally, superenhancer (SE) was verified to drive the generation of circMyst4. In vivo assays revealed that circMyst4 inhibited the progression of hypoxic PH. Overall, SE-driven circMyst4 may be a new potential therapeutic target for mediating PASMC ferroptosis through promoting DDX5-regulated GPX4 mRNA processing and inhibiting the binding between Eef1a1 and ACSL4.
Collapse
Affiliation(s)
- Siyu He
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Hao Yuan
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiaoying Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiaoyu Guan
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
| | - Jian Mei
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Xiangrui Zhu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing 163319, P.R. China
| | - Wei Xin
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200031, P.R. China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing 163319, P.R. China
- College of Pharmacy, Harbin Medical University, Harbin 150081, P.R. China
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin 150081, P.R. China
| |
Collapse
|
3
|
Zhao J, Huo Q, Zhang J, Sun K, Guo J, Cheng F, Hu X, Xu Q. UCHL3 promotes hepatocellular carcinoma progression by stabilizing EEF1A1 through deubiquitination. Biol Direct 2024; 19:53. [PMID: 38965582 PMCID: PMC11225194 DOI: 10.1186/s13062-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the second leading cause of global cancer-related deaths and is characterized by a poor prognosis. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) have been proved to play important roles in various human cancers, whereas the deubiquitination of EEF1A1 was poorly understood. METHODS The binding and regulatory relationship between Ubiquitin carboxyl-terminal hydrolase L3 (UCHL3) and EEF1A1 was validated using clinical tissue samples, reverse transcription quantitative real-time fluorescence quantitative PCR (RT-qPCR), Western blotting, co-immunoprecipitation, and immunofluorescence, as well as ubiquitin detection and cyclohexamide tracking experiments. Finally, the impact of the UCHL3/EEF1A1 axis on HCC malignant behavior was analyzed through functional experiments and nude mouse models. RESULTS UCHL3 was found to have a high expression level in HCC tissues. Tissue samples from 60 HCC patients were used to evaluate the correlation between UCHL3 and EEF1A1. UCHL3 binds to EEF1A1 through the lysine site, which reduces the ubiquitination level of EEF1A1. Functional experiments and nude mouse models have demonstrated that the UCHL3/EEF1A1 axis promotes the migration, stemness, and drug resistance of HCC cells. Reducing the expression of EEF1A1 can reverse the effect of UCHL3 on the malignant behavior of HCC cells. CONCLUSION Our findings revealed that UCHL3 binds and stabilizes EEF1A1 through deubiquitination. UCHL3 and EEF1A1 formed a functional axis in facilitating the malignant progression of HCC, proving new insights for the anti-tumor targeted therapy for HCC.
Collapse
Affiliation(s)
- Jie Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Huo
- Department of General Surgery, Zhoushan Dinghai Central Hospital (Dinghai District of Zhejiang Provincial People's Hospital), Zhoushan, China
| | - Ji Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Kexiang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Guo
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feng Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Xiaoge Hu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
4
|
Zhang Y, Li Z, Chen X, Huang Y, Zou B, Xu Y. Prognostic significance of FAT10 expression in malignant tumors: a systematic review and meta-analysis. Future Oncol 2024; 20:1505-1514. [PMID: 38864667 PMCID: PMC11441062 DOI: 10.1080/14796694.2024.2357531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
Aim: FAT10, a ubiquitin-like modifier protein, influences apoptosis, DNA damage response and tumor growth, with unclear effects on cancer prognosis.Methods: We reviewed FAT10 expression's impact on malignancy prognosis through a systematic review and meta-analysis, including studies up to September 2023 from PubMed, EMBASE and Web of Science.Results: From 18 studies involving 2513 patients, FAT10 overexpression significantly reduced overall and disease-free survival across various tumors, indicating correlations with advanced disease stage, poor differentiation, lymph node metastasis and larger tumor size.Conclusion: FAT10's overexpression suggests a negative prognostic value in cancer, meriting further investigation.PROSPERO Registration Number: CRD42023431287.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, 611130, P.R. China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| |
Collapse
|
5
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
6
|
Chen L, Zhang L, He H, Shao F, Yu Z, Gao Y, He J. Ubiquitin-specific protease 54 regulates GLUT1-mediated aerobic glycolysis to inhibit lung adenocarcinoma progression by modifying p53 degradation. Oncogene 2024; 43:2025-2037. [PMID: 38744954 DOI: 10.1038/s41388-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent types of cancer. Ubiquitination is crucial in modulating cell proliferation and aerobic glycolysis in cancer. The frequency of TP53 mutations in LUAD is approximately 50%. Currently, therapeutic targets for wild-type (WT) p53-expressing LUAD are limited. In the present study, we systemically explored the expression of ubiquitin-specific protease genes using public datasets. Then, we focused on ubiquitin-specific protease 54 (USP54), and explored its prognostic significance in LUAD patients using public datasets, analyses, and an independent cohort from our center. We found that the expression of USP54 was lower in LUAD tissues compared with that in the paracancerous tissues. Low USP54 expression levels were linked to a malignant phenotype and worse survival in patients with LUAD. The results of functional experiments revealed that up-regulation of USP54 suppressed LUAD cell proliferation in vivo and in vitro. USP54 directly interacted with p53 protein and the levels of ubiquitinated p53 were inversely related to USP54 levels, consistent with a role of USP54 in deubiquitinating p53 in p53-WT LUAD cells. Moreover, up-regulation of the USP54 expression inhibited aerobic glycolysis in LUAD cells. Importantly, we confirmed that USP54 inhibited aerobic glycolysis and the growth of tumor cells by a p53-mediated decrease in glucose transporter 1 (GLUT1) expression in p53-WT LUAD cells. Altogether, we determined a novel mechanism of survival in the p53-WT LUAD cells to endure the malnourished tumor microenvironment and provided insights into the role of USP54 in the adaptation of p53-WT LUAD cells to metabolic stress.
Collapse
Affiliation(s)
- Leifeng Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haihua He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Fei Shao
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhentao Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yibo Gao
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Laboratory of Thoracic Oncology & Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- Translational Medicine Platform, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
7
|
Qiu Y, Che B, Zhang W, Zhang A, Ge J, Du D, Li J, Peng X, Shao J. The ubiquitin-like protein FAT10 in hepatocellular carcinoma cells limits the efficacy of anti-VEGF therapy. J Adv Res 2024; 59:97-109. [PMID: 37328057 PMCID: PMC11081941 DOI: 10.1016/j.jare.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Ben Che
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - A.V. Zhang
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Dongnian Du
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | - Jiajuan Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| | | | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Jiangxi Province Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Liver Cancer Institute, Nanchang University, Nanchang 330000, China
| |
Collapse
|
8
|
Liu W, Wang W, Wang Z, Fan X, Li W, Huang Y, Yang X, Tang Z. CRISPR Screen Identifies the RNA-Binding Protein Eef1a1 as a Key Regulator of Myogenesis. Int J Mol Sci 2024; 25:4816. [PMID: 38732031 PMCID: PMC11084334 DOI: 10.3390/ijms25094816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
| | - Wei Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zishuai Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Wangchang Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuxin Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
| | - Zhonglin Tang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
9
|
Clavreul L, Bernard L, Cotte AK, Hennuyer N, Bourouh C, Devos C, Helleboid A, Haas JT, Verrijken A, Gheeraert C, Derudas B, Guille L, Chevalier J, Eeckhoute J, Vallez E, Dorchies E, Van Gaal L, Lassailly G, Francque S, Staels B, Paumelle R. The ubiquitin-like modifier FAT10 is induced in MASLD and impairs the lipid-regulatory activity of PPARα. Metabolism 2024; 151:155720. [PMID: 37926201 DOI: 10.1016/j.metabol.2023.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND AIMS Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.
Collapse
Affiliation(s)
- Ludivine Clavreul
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Lucie Bernard
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Alexia K Cotte
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Nathalie Hennuyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Cyril Bourouh
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Claire Devos
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Audrey Helleboid
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - An Verrijken
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Loïc Guille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Julie Chevalier
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Jérôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Emilie Dorchies
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium
| | - Guillaume Lassailly
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, 1 place de Verdun, 59000 Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 1 B-2610 Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, 1 B-2610 Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France
| | - Réjane Paumelle
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011, EGID, Boulevard du Professeur Jules Leclercq, 59045 Lille, France.
| |
Collapse
|
10
|
Chen J, Ning D, Du P, Liu Q, Mo J, Liang H, Zhang W, Zhang M, Jiang L, Zhang B, Chen X. USP11 potentiates HGF/AKT signaling and drives metastasis in hepatocellular carcinoma. Oncogene 2024; 43:123-135. [PMID: 37973952 DOI: 10.1038/s41388-023-02847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Deng Ning
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Pengcheng Du
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Jie Mo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China
| | - Mingzhi Zhang
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Li Jiang
- Department of Biliary and Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
11
|
Yang K, Xu L, Xu Y, Shen Q, Qin T, Yu Y, Nie Y, Yao H, Xu X. Nanoparticles (NPs)-mediated lncBCMA silencing to promote eEF1A1 ubiquitination and suppress breast cancer growth and metastasis. Acta Pharm Sin B 2023; 13:3489-3502. [PMID: 37655325 PMCID: PMC10465873 DOI: 10.1016/j.apsb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/15/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in cancer metastasis. Exploring metastasis-associated lncRNAs and developing effective strategy for targeted regulation of lncRNA function in vivo are of utmost importance for the treatment of metastatic cancer, which however remains a big challenge. Herein, we identified a new functional lncRNA (denoted lncBCMA), which could stabilize the expression of eukaryotic translation elongation factor 1A1 (eEF1A1) via antagonizing its ubiquitination to promote triple-negative breast cancer (TNBC) growth and metastasis. Based on this regulatory mechanism, an endosomal pH-responsive nanoparticle (NP) platform was engineered for systemic lncBCMA siRNA (siBCMA) delivery. This NPs-mediated siBCMA delivery could effectively silence lncBCMA expression and promote eEF1A1 ubiquitination, thereby leading to a significant inhibition of TNBC tumor growth and metastasis. These findings show that lncBCMA could be used as a potential biomarker to predict the prognosis of TNBC patients and NPs-mediated lncBCMA silencing could be an effective strategy for metastatic TNBC treatment.
Collapse
Affiliation(s)
- Ke Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Ying Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
- Department of Clinical Pharmacology, the Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
12
|
Chen C, Zhu X, Xie J, Li X, Wan R, Hong K. Human leukocyte antigen F-associated transcript 10 regulates the IKs potassium channel by competing for Kv7.1 ubiquitination. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220167. [PMID: 37122222 PMCID: PMC10150200 DOI: 10.1098/rstb.2022.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/28/2022] [Indexed: 05/02/2023] Open
Abstract
The protein expression and function changes from the slow-delayed rectifying K+ current, IKs, are tightly associated with ventricular cardiac arrhythmias. Human leukocyte antigen F-associated transcript 10 (FAT10), a member of the ubiquitin-like-modifier family, exerts a protective effect against myocardial ischaemia. However, whether or how FAT10 influences the function of IKs remains unclear. Here, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Fat10 knockout HEK293 (Fat10-/-) cells through CRISPR-Cas9 technology were used to evaluate the novel modulation of FAT10 in IKs function. Patch-clamp studies showed that the overexpression of FAT10 significantly enhanced the current density of IKs both in hiPSC-CMs and HEK293-Fat10-/- cells. In addition, a shortened action potential duration (APD) was seen from hiPSC-CMs transfected with the ad-Fat10 virus. Then, a series of molecular approaches from neonatal rat cardiomyocytes, H9C2 cells and HEK293 cells were used to determine the regulatory mechanism of FAT10 in IKs. First, western blot assays indicated that the expression of Kv7.1, the alpha-subunit of IKs, was increased when FAT10 was overexpressed. Furthermore, immunofluorescence and co-immunoprecipitation assays demonstrated that FAT10 could interact with Kv7.1. Notably, FAT10 impedes Kv7.1 ubiquitination and degradation, thereby stabilizing its expression. Finally, a hypoxia model of hiPSC-CMs was established, and the overexpression of FAT10 showed a protective effect against hypoxia-induced decreases in the current density of IKs. Taken together, these findings revealed a novel role of FAT10 in the regulation of the IKs potassium channel by competing for Kv7.1 ubiquitination, which provides a new electrophysiological insight that FAT10 could modulate Kv7.1. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Xin Zhu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Xiaoqing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Department of Genetic Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi 330006, People's Republic of China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi 330006, People's Republic of China
| |
Collapse
|
13
|
Jiao Y, Kang G, Pan P, Fan H, Li Q, Li X, Li J, Wang Y, Jia Y, Zhang L, Sun H, Ma X. Acetylcholine promotes chronic stress-induced lung adenocarcinoma progression via α5-nAChR/FHIT pathway. Cell Mol Life Sci 2023; 80:119. [PMID: 37029227 PMCID: PMC11072774 DOI: 10.1007/s00018-023-04742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 04/09/2023]
Abstract
Chronic stress significantly elevates the expression levels of various neurotransmitters in the tumour microenvironment, thereby promoting the cell growth and metastasis of lung adenocarcinoma (LUAD). However, the role of chronic stress in the progression of LUAD remains unclear. In this study, we found that chronic restraint stress increases the levels of the neurotransmitter acetylcholine (ACh), and the α5-nicotinic acetylcholine receptor (α5-nAChR) and decreased fragile histidine triad (FHIT) expression in vivo. Crucially, the increased ACh levels promoted LUAD cell migration and invasion via modulation of the α5-nAChR/DNA methyltransferase 1 (DNMT1)/FHIT axis. In a chronic unpredictable stress (CUMS) mouse model, chronic stress promotes tumour development, accompanied by changes in α5-nAChR, DNMT1, FHIT, and vimentin. Together, these findings reveal a novel chronic stress-mediated LUAD signalling pathway: chronic stress enforces lung adenocarcinoma cell invasion and migration via the ACh/α5-nAChR/FHIT axis, which could be a potential therapeutic target for chronic stress-related LUAD.
Collapse
Affiliation(s)
- Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Guiyu Kang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China
| | - Pan Pan
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Huiping Fan
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Qiang Li
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China
| | - Xiangying Li
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Jingtan Li
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Yan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Shandong, 250014, People's Republic of China
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, People's Republic of China.
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, People's Republic of China.
- Shandong Intelligent Technology Innovation Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
14
|
Um H, Jeong H, Lee B, Kim Y, Lee J, Roh JS, Lee SG, Park HR, Robinson WH, Sohn DH. FAT10 Induces cancer cell migration by stabilizing phosphorylated ABI3/NESH. Anim Cells Syst (Seoul) 2023; 27:53-60. [PMID: 36926204 PMCID: PMC10013321 DOI: 10.1080/19768354.2023.2186486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.
Collapse
Affiliation(s)
- Hyojin Um
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yerin Kim
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jihyeon Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| |
Collapse
|
15
|
Ma J, Wu Y, Cheng S, Yang W, Zhong L, Li Q, Fang L. FBXO22 Accelerates Pancreatic Cancer Growth by Deactivation of the Hippo Pathway via Destabilizing LATS2. Dig Dis Sci 2022; 68:1913-1922. [PMID: 36515852 DOI: 10.1007/s10620-022-07780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dysregulation of ubiquitin ligases plays a crucial role in the development and progression of various human tumors. F-box only protein 22 (FBXO22), an F-box E3 ubiquitin ligase, has been reported to participate in diverse aspects of cancer progression. However, the clinical significance and biological function of FBXO22 in pancreatic cancer remain poorly understood. AIMS This study aimed to investigate the role of FBXO22 in promoting pancreatic cancer growth. METHODS FBXO22 expression was detected in pancreatic cancer and adjacent normal tissues using qRT-PCR, western blotting, and immunohistochemistry. Ectopic expression and knockdown of FBXO22 were performed to measure the impact on pancreatic cancer cells growth by CCK-8, colony formation, and tumorigenicity assay. Bioinformatics analysis uncovered the potential correlation between FBXO22 and various signaling pathways. Western blotting and immunoprecipitation were performed to identify FBXO22-interacting proteins. RESULTS We observed that FBXO22 was upregulated in samples obtained from patients with pancreatic cancer compared with its levels in the adjacent normal tissues, and an elevated FBXO22 level was obviously associated with poor prognosis among patients with pancreatic cancer. FBXO22 knockdown impaired pancreatic cancer cell growth both in vitro and in vivo, whereas FBXO22 overexpression accelerated pancreatic cancer cell growth. Furthermore, we found that FBXO22 contributed to pancreatic cancer cell growth by deactivating the Hippo pathway. Mechanistically, FBXO22 directly interacts with and destabilizes the large tumor suppressor 2 (LATS2), which is a critical regulator of the Hippo pathway. Blocking LATS2 leads to the loss of FBXO22-mediated oncogenic effect in pancreatic cancer. CONCLUSIONS These findings provide new insights into the upstream regulation of the Hippo pathway inactivation in pancreatic cancer growth and identify FBXO22 as a potential therapeutic target for this lethal malignant tumor.
Collapse
Affiliation(s)
- Jingsheng Ma
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Yajun Wu
- School of Medical Laboratory, Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Shibao Cheng
- Surgery of Hepatobiliary and Pancreatic, The Third Hospital of Nanchang, Nanchang, 330008, Jiangxi, China
| | - Wentao Yang
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Lin Zhong
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Qigen Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Lu Fang
- Surgery of Hepatobiliary and Pancreatic, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
16
|
Shao Y, Zhang W, Du D, Yu Y, Li Q, Peng X. Ubiquitin-like protein FAT10 promotes renal fibrosis by stabilizing USP7 to prolong CHK1-mediated G2/M arrest in renal tubular epithelial cells. Aging (Albany NY) 2022; 14:7527-7546. [PMID: 36152057 PMCID: PMC9550257 DOI: 10.18632/aging.204301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022]
Abstract
Renal fibrosis is the pathological hallmark of chronic kidney disease that is influenced by numerous factors. Arrest of renal tubular epithelial cells (RTECs) in G2/M phase is closely correlated with the progression of renal fibrosis; however, the mechanisms mediating these responses remain poorly defined. In this study, we observed that human leukocyte antigen-F adjacent transcript 10 (FAT10) deficiency abolished hypoxia-induced upregulation of checkpoint kinase 1 (CHK1) expression in RTECs derived from FAT10+/+ and FAT10−/− mice. Further investigations revealed that FAT10 contributes to CHK1-mediated G2/M arrest and production of pro-fibrotic cytokines in RTECs exposed to hypoxia. Mechanistically, FAT10 directly interacted with and stabilized the deubiquitylating enzyme ubiquitin specific protease 7 (USP7) to mediate CHK1 upregulation, thereby promoting CHK1-mediated G2/M arrest in RTECs. In animal model, FAT10 expression was upregulated in the obstructed kidneys of mice induced by unilateral ureteric obstruction injury, and FAT10−/− mice exhibited reduced unilateral ureteric obstruction injury induced-renal fibrosis compared with FAT10+/+ mice. Furthermore, in a cohort of patients with calculi-related chronic kidney disease, upregulated FAT10 expression was positively correlated with renal fibrosis and the USP7/CHK1 axis. These novel findings indicate that FAT10 prolongs CHK1-mediated G2/M arrest via USP7 to promote renal fibrosis, and inhibition of the FAT10/USP7/CHK1 axis might be a plausible therapeutic approach to alleviate renal fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Ying Shao
- Queen Mary School, Nanchang University Jiangxi Medical College, Nanchang 330006, Jiangxi Province, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China.,Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yi Yu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
17
|
Zhu J, Zhao J, Luo C, Zhu Z, Peng X, Zhu X, Lin K, Bu F, Zhang W, Li Q, Wang K, Hu Z, Yu X, Chen L, Yuan R. FAT10 promotes chemotherapeutic resistance in pancreatic cancer by inducing epithelial-mesenchymal transition via stabilization of FOXM1 expression. Cell Death Dis 2022; 13:497. [PMID: 35614040 PMCID: PMC9132907 DOI: 10.1038/s41419-022-04960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PC) is one of the deadliest malignant tumors, and its resistance to gemcitabine chemotherapy is the primary reason for poor prognosis in patients. Ubiquitin-like protein FAT10 has recently been reported to promote tumor chemotherapy resistance. In this study, the expression of FAT10 in PC was significantly higher than that in adjacent noncancerous tissues. Increased expression of FAT10 in PC was related to a late TNM stage and decreased overall survival. Functional experiments revealed that downregulating the expression of FAT10 inhibits the proliferation and epithelial-mesenchymal transition (EMT) of PC cells, promotes the apoptosis of PC cells, and enhances sensitivity to gemcitabine chemotherapy. In addition, upregulation of FAT10 increased the expression of FOXM1 protein. The effect of downregulating FAT10 was reversed by FOXM1 overexpression, and FOXM1 knockdown inhibited EMT driven by FAT10 overexpression. Mechanistically, FAT10 stabilized the expression of FOXM1 by competing with ubiquitin to bind FOXM1 and inhibiting the ubiquitination-mediated degradation of FOXM1. In conclusion, the FAT10-FOXM1 axis is a pivotal driver of PC proliferation and gemcitabine resistance, and the results provide novel insights into chemotherapy resistance in PC.
Collapse
Affiliation(s)
- Jinfeng Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Jiefeng Zhao
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Chen Luo
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Zhengming Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xingyu Peng
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaojian Zhu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kang Lin
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fanqin Bu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Wenjun Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Qing Li
- Department of Pathology, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Kai Wang
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China
| | - Zhigang Hu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xin Yu
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China
| | - Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Rongfa Yuan
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
18
|
Fan A, Zhao X, Liu H, Li D, Guo T, Zhang J, Duan L, Cheng H, Nie Y, Fan D, Zhao X, Lu Y. eEF1A1 promotes colorectal cancer progression and predicts poor prognosis of patients. Cancer Med 2022; 12:513-524. [PMID: 35607944 PMCID: PMC9844609 DOI: 10.1002/cam4.4848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer (CRC) is a major leading cause of cancer mortality worldwide in which dysregulated protein synthesis plays an etiologic role. The eukaryotic elongation factor 1 A1 (eEF1A1) exerts significant effects on protein synthesis by contributing to peptide chain extension. Whereas its role in CRC remains to be investigated. In this study, we found that the mRNA and protein levels of eEF1A1 were significantly upregulated in CRC cell lines and tissues. Elevated expression of eEF1A1 was correlated with shorter overall survival in 94 CRC patients. The inhibition of proliferation and cell cycle block were observed in CRC cells after eEF1A1 downregulation. Mechanistically, weighted gene correlation network analysis and further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that mitogen-activated protein kinases (MAPKs) signaling pathways were significantly enriched in high-eEF1A1 expression group, and the levels of phosphorylated p38/JNK/ERK MAPK were dramatically decreased after eEF1A1 downregulation. Overexpression of eEF1A1 in CRC correlated with a poor prognosis. Collectively, this study determined the oncogenic role of eEF1A1 in CRC proliferation and tumorigenesis. eEF1A1 might be a promising therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- A‐hui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaojuan Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Hao Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Danxiu Li
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Tongtong Guo
- Department of Cell Biology, College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiehao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Hao Cheng
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
19
|
Bosutti A, Dapas B, Grassi G, Bussani R, Zanconati F, Giudici F, Bottin C, Pavan N, Trombetta C, Scaggiante B. High eEF1A1 Protein Levels Mark Aggressive Prostate Cancers and the In Vitro Targeting of eEF1A1 Reveals the eEF1A1-actin Complex as a New Potential Target for Therapy. Int J Mol Sci 2022; 23:ijms23084143. [PMID: 35456960 PMCID: PMC9027132 DOI: 10.3390/ijms23084143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7-8 compared with 4-6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1-actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabiola Giudici
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Nicola Pavan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Carlo Trombetta
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| |
Collapse
|
20
|
Wei C, Wang B, Chen ZH, Xiao H, Tang L, Guan JF, Yuan RF, Yu X, Hu ZG, Wu HJ, Dai Z, Wang K. Validating RRP12 Expression and Its Prognostic Significance in HCC Based on Data Mining and Bioinformatics Methods. Front Oncol 2022; 12:812009. [PMID: 35178347 PMCID: PMC8844371 DOI: 10.3389/fonc.2022.812009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
RRP12 (ribosomal RNA processing 12 homolog) is a nucleolar protein involved in the maturation and transport of eukaryotic ribosomal subunits and is a type of RNA binding protein. In recent years, considerable research has indicated that RRP12 is associated with the occurrence and development of multiple cancers. However, there is no research on RRP12 in hepatocellular carcinoma. Herein, we aimed to explore the role and significance of RRP12 in hepatocellular carcinoma.We used the TIMER and GEPIA databases to perform pan-cancer analyses of RRP12. The impact of RRP12 on the prognosis was analyzed through the GEPIA database. The relationship between RRP12 and immune cell infiltration was investigated by TIMER and GEPIA databases. Moreover, the expression of RRP12 in various liver cancer cells was evaluated by Western Blot to determine the cell line for the next experiment. Scratch test, Transwell test, and Edu tests were applied to validate the effects of RRP12 on the function of liver cancer cells. And the data were statistically analyzed.Pan-cancer analysis found that RPP12 was significantly upregulated in many cancers. Moreover, the prognostic analysis revealed that the difference in the expression of RRP12 has statistical significance for the overall survival rate and disease-free survival rate of liver cancer patients. In order to analyze the correlation between the expression level of RRP12 and clinical parameters, it was found that there was a significant negative correlation with tumor stage, tumor grade and tumor size. Univariate and multivariate analysis showed that RRP12 could be used as an independent prognostic factor for patients with hepatocellular carcinoma. Cellular experiments have proved that knocking down RRP12 can inhibit the proliferation, invasion, and metastasis of liver cancer cells.Therefore, RRP12 significantly affects the occurrence and development of HCC. Hence, RRP12 can become a potential target and prognostic biomarker for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chao Wei
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Ben Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Zhong-Huo Chen
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Han Xiao
- Department of Hepato-Biliary-Pancreatic Surgery, Jiujiang First People's Hospital, Jiujiang, China
| | - Lei Tang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Jia-Fu Guan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Rong-Fa Yuan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Xin Yu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Zhi-Gang Hu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Hua-Jun Wu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Second Affiliated Hospital of Nanchang University, Jiangxi Provincial Clinical Research Center for General Surgery Disease, Nanchang, China
| |
Collapse
|
21
|
Screening Gene Expression-Related Alternative Splicing Event Signature for Colon Cancer Prognostic Prediction. JOURNAL OF ONCOLOGY 2022; 2022:9952438. [PMID: 35126520 PMCID: PMC8813276 DOI: 10.1155/2022/9952438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/24/2021] [Accepted: 12/18/2021] [Indexed: 12/09/2022]
Abstract
Colon cancer is a kind of common intestinal disease, and early diagnosis of colon cancer is crucial for patient's prognosis. RNA alternative splicing (AS) is an RNA modification that affects cancer occurrence. RNA AS detection is promising to improve the in-depth understanding of the pathological mechanisms in colon cancer. In this study, differential analysis was performed to determine colon cancer-related AS events and the corresponding parental genes. Subsequently, GO functional annotation analysis was carried out on the parental genes, which revealed that these AS events might affect cell adhesion and cell growth. Besides, protein-protein interaction (PPI) network was established with the parental genes, in which MCODE was utilized to identify major functional modules. Enrichment analysis for the major functional module was implemented again, which demonstrated that these genes were mainly concentrated in the ribosome, protein ubiquitination, cell adhesion molecule binding, and other relevant biological functions. Next, differentially expressed genes (DEGs) were screened from colon cancer and normal tissues and overlapped with the parental genes, by which 55 gene expression-associated AS and the corresponding 45 genes were obtained. Moreover, a correlation analysis between splicing factors (SFs) and AS was done to identify interactions. On this basis, an SF-AS network was constructed. The univariate Cox regression analysis was employed to screen prognostic AS signature and establish a risk model. To assess the model, K-M and ROC analyses were done for model assessment, indicating the effective prediction performance. Combined with common clinicopathological features, the multivariate Cox regression analysis was conducted to confirm whether the risk model could be considered as an independent prognostic indicator. Finally, the expression status of the parental genes for the prognostic AS was evaluated between normal and colon cancer cells using qRT-PCR. In summary, TCGA SpliceSeq data were comprehensively analyzed, and a 5-AS prognostic model was constructed for colon cancer.
Collapse
|
22
|
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|
23
|
Gong T, Shuang Y. Expression and Clinical Value of Eukaryotic Translation Elongation Factor 1A1 (EEF1A1) in Diffuse Large B Cell Lymphoma. Int J Gen Med 2021; 14:7247-7258. [PMID: 34737619 PMCID: PMC8559353 DOI: 10.2147/ijgm.s324645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background The eukaryotic translation elongation factor 1A1 (EEF1A1) participates in protein translation and has been reported to be involved in tumor progression such as hepatocellular carcinoma. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. In the present study, we aimed to detect the expression of EEF1A1 in DLBCL and to analyze its relationship with prognosis. Methods We reviewed medical records of DLBCL patients in our hospital and evaluated their expression level of EEF1A1 in tumor tissues using immunohistochemical (IHC) assay. The Chi-square method was used for correlation analysis. The Kaplan–Meier method with Log rank test was used for univariate analysis. Cox proportional hazards model was used for multivariate analysis. Cellular and mice models were introduced to validate its oncogenic role. Results EEF1A1 expression in tumor cells was higher in certain DLBCL cases. Patients with higher EEF1A1 expression were more likely to have advanced tumor stage and poorer 5-year overall survival (OS) rates. EEF1A1 expression in tumor cells was an independent risk predictor for OS (P < 0.05). Cellular assays demonstrated that EEF1A1-shRNA significantly inhibited lymphoma cell proliferation. The study of xenografts further verified the effect of EEF1A1-shRNA on suppressing tumor growth in vivo. Conclusion EEF1A1 positivity predicts short survival in DLBCL patients. For patients with higher EEF1A1 expression, more strategy such as anti-EEF1A1 antibody treatment should be developed.
Collapse
Affiliation(s)
- Tiejun Gong
- Institute of Hematology and Oncology, Harbin the First Hospital, Harbin, 150010, People's Republic of China
| | - Yuerong Shuang
- Department of Lymphatic Hematology and Oncology, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| |
Collapse
|
24
|
Zhang Y, Zuo Z, Liu B, Yang P, Wu J, Han L, Han T, Chen T. FAT10 promotes hepatocellular carcinoma (HCC) carcinogenesis by mediating P53 degradation and acts as a prognostic indicator of HCC. J Gastrointest Oncol 2021; 12:1823-1837. [PMID: 34532131 DOI: 10.21037/jgo-21-374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/05/2021] [Indexed: 11/06/2022] Open
Abstract
Background With the advancement of hepatocellular carcinoma (HCC) treatment technology, the treatment options for HCC patients have increased. However, due to high heterogeneity, among other reasons, the five-year survival rate of patients is still very low. Currently, gene expression prognostic models can suggest more appropriate strategies for the treatment of HCC. This study investigates the role of FAT10 in hepatocarcinogenesis and its underlying mechanism. Methods The expression of FAT10 was detected by immunohistochemical method using tissue arrays containing 4 specimens of patients with digestive cancer. The expression of FAT10 was determined by a tissue microarray which included 286 pairs of HCC samples and corresponding normal mucosae and was further confirmed by real-time polymerase chain reaction (PCR) and western blot. The Kaplan-Meier survival curve was used to determine the correlation of FAT10 expression with patients' recurrence and overall survival (OS) rate. In vivo, liver fibrosis, cirrhosis, and HCC models were established to assess the FAT10 expression. Moreover, FAT10 over-expressing cell lines were used to determine the molecular mechanism underlying the FAT10-induced cell proliferation and hepatocarcinogenesis by reporter gene measure, real-time PCR, and western blot. Based on TCGA database, signal pathways associated with FAT10 and HCC invasion and metastasis were analyzed by KEGG enrichment analyze. Results Overexpression of FAT10 in HCC was observed in this study compared with its expression in other digestive tumors. Clinicopathological analysis revealed that FAT10 expression levels were closely associated with tumor diameters and poor prognosis of HCC. This study also confirmed through in vivo experiments that the expression of FAT10 in liver fibrosis, cirrhosis, and HCC gradually increases. Further study revealed that forced FAT10 expression enhanced the growth ability of HCC cells and mediated the degradation of the critical anti-cancer protein p53, which led to carcinogenesis. Finally, 9 signal pathways related to HCC metastasis were obtained through bioinformatics analysis. Conclusions FAT10 may act as a proto-oncogene that facilitates HCC carcinogenesis by mediating p53 degradation, and the expression of FAT10 is negatively correlated with the prognosis of HCC patients. FAT10 is expected to become a potential combined target and prognostic warning marker for HCC treatment.
Collapse
Affiliation(s)
- Yue Zhang
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhifan Zuo
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Bo Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pinghua Yang
- The Fourth Department of Biliary Tract, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Wu
- China Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingsong Chen
- The Second Department of Oncology, the Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Arshad M, Abdul Hamid N, Chan MC, Ismail F, Tan GC, Pezzella F, Tan KL. NUB1 and FAT10 Proteins as Potential Novel Biomarkers in Cancer: A Translational Perspective. Cells 2021; 10:2176. [PMID: 34571823 PMCID: PMC8468723 DOI: 10.3390/cells10092176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cancer increases the global disease burden substantially, but it remains a challenge to manage it. The search for novel biomarkers is essential for risk assessment, diagnosis, prognosis, prediction of treatment response, and cancer monitoring. This paper examined NEDD8 ultimate buster-1 (NUB1) and F-adjacent transcript 10 (FAT10) proteins as novel biomarkers in cancer. This literature review is based on the search of the electronic database, PubMed. NUB1 is an interferon-inducible protein that mediates apoptotic and anti-proliferative actions in cancer, while FAT10 is a ubiquitin-like modifier that promotes cancer. The upregulated expression of both NUB1 and FAT10 has been observed in various cancers. NUB1 protein binds to FAT10 non-covalently to promote FAT10 degradation. An overexpressed FAT10 stimulates nuclear factor-kappa β, activates the inflammatory pathways, and induces the proliferation of cancer. The FAT10 protein interacts with the mitotic arrest deficient 2 protein, causing chromosomal instability and breast tumourigenesis. FAT10 binds to the proliferating cell nuclear antigen protein and inhibits the DNA damage repair response. In addition, FAT10 involves epithelial-mesenchymal transition, invasion, apoptosis, and multiplication in hepatocellular carcinoma. Our knowledge about them is still limited. There is a need to further develop NUB1 and FAT10 as novel biomarkers.
Collapse
Affiliation(s)
- Maria Arshad
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Nazefah Abdul Hamid
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Fuad Ismail
- Department of Radiotherapy & Oncology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Francesco Pezzella
- Tumour Pathology Laboratory, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK;
| | - Ka-Liong Tan
- Faculty of Medicine & Health Sciences, Universiti Sains Islam Malaysia (USIM), Persiaran Ilmu, Putra Nilai, Nilai 71800, Malaysia; (M.A.); (N.A.H.)
| |
Collapse
|
26
|
Xiang S, Shao X, Cao J, Yang B, He Q, Ying M. FAT10: Function and Relationship with Cancer. Curr Mol Pharmacol 2021; 13:182-191. [PMID: 31729307 DOI: 10.2174/1874467212666191113130312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Posttranslational protein modifications are known to be extensively involved in cancer, and a growing number of studies have revealed that the ubiquitin-like modifier FAT10 is directly involved in cancer development. FAT10 was found to be highly upregulated in various cancer types, such as glioma, hepatocellular carcinoma, breast cancer and gastrointestinal cancer. Protein FAT10ylation and interactions with FAT10 lead to the functional change of proteins, including proteasomal degradation, subcellular delocalization and stabilization, eventually having significant effects on cancer cell proliferation, invasion, metastasis and even tumorigenesis. In this review, we summarized the current knowledge on FAT10 and discussed its biological functions in cancer, as well as potential therapeutic strategies based on the FAT10 pathway.
Collapse
Affiliation(s)
- Senfeng Xiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xuejing Shao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Sopko B, Tejral G, Bitti G, Abate M, Medvedikova M, Hajduch M, Chloupek J, Fajmonova J, Skoric M, Amler E, Erban T. Glyphosate Interaction with eEF1α1 Indicates Altered Protein Synthesis: Evidence for Reduced Spermatogenesis and Cytostatic Effect. ACS OMEGA 2021; 6:14848-14857. [PMID: 34151066 PMCID: PMC8209799 DOI: 10.1021/acsomega.1c00449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
The broad-spectrum herbicide, glyphosate, is considered safe for animals because it selectively affects the shikimate pathway that is specific to plants and microorganisms. We sought a previously unknown mechanism to explain the concerns that glyphosate exposure can negatively affect animals, including humans. Computer modeling showed a probable interaction between glyphosate and eukaryotic translation elongation factor 1 subunit alpha 1 (eEF1α1), which was confirmed by microcalorimetry. Only restricted, nondisrupted spermatogenesis in rats was observed after chronic glyphosate treatments (0.7 and 7 mg/L). Cytostatic and antiproliferative effects of glyphosate in GC-1 and SUP-B15 cells were indicated. Meta-analysis of public health data suggested a possible effect of glyphosate use on sperm count. The in silico, in vitro, and in vivo experimental results as well as the metastatistics indicate side effects of chronic glyphosate exposure. Together, these findings indicate that glyphosate delays protein synthesis through an interaction with eEF1α1, thereby suppressing spermatogenesis and cell growth.
Collapse
Affiliation(s)
- Bruno Sopko
- Crop
Research Institute, Prague 161 06, Czechia
- Department
of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague 150 06, Czechia
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Gracian Tejral
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Guissepe Bitti
- Laboratory
of Tissue Engineering, Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, Prague 142 20, Czechia
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
| | - Marianna Abate
- Department
of Precision Medicine, University of Campania
“Luigi Vanvitelli”, Naples 80131, Italy
| | - Martina Medvedikova
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Marian Hajduch
- Institute
of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc 779 00, Czechia
| | - Jan Chloupek
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Jolana Fajmonova
- Department
of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences
Brno, Brno 612 42, Czechia
| | - Misa Skoric
- Department
of Pathological Morphology and Parasitology, Faculty of Veterinary
Medicine, University of Veterinary and Pharmaceutical
Sciences Brno, Brno 612 42, Czechia
| | - Evzen Amler
- Biomedicine
and Advanced Biomaterials Department, University Center for Energy
Efficient Buildings, The Czech Technical
University in Prague, Prague, Bustehrad 273 43, Czechia
- Department
of Biophysics, 2nd Faculty of Medicine, Charles University, Prague 150 06, Czechia
| | - Tomas Erban
- Crop
Research Institute, Prague 161 06, Czechia
| |
Collapse
|
28
|
Wang B, Lan T, Xiao H, Chen ZH, Wei C, Chen LF, Guan JF, Yuan RF, Yu X, Hu ZG, Wu HJ, Dai Z, Wang K. The expression profiles and prognostic values of HSP70s in hepatocellular carcinoma. Cancer Cell Int 2021; 21:286. [PMID: 34059060 PMCID: PMC8165812 DOI: 10.1186/s12935-021-01987-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background The HSP70 family of heat shock protein plays a critical role in protein synthesis and transport to maintain protein homeostasis. Several studies have indicated that HSP70s are related to the development and occurrence of various cancers. Methods The relationship between the overall survival rate of hepatocellular carcinoma patients and the expression of 14 HSP70s from multiple databases, such as TCGA, ONCOMINE, cBioPortal was investigated. Western Blot and PCR were used to evaluate HSPA4 and HSPA14 expressions in various HCC cells to identify suitable cell lines for further experiments .Wound-healing assays, Transwell assays and EdU assays were used to verify the effects of HSPA4 and HSPA14 on the function of hepatocellular carcinoma cells, and statistical analysis was performed. Results Hepatocellular carcinoma tissues significantly expressed the 14 HSP70s compared to the normal samples. Besides, the high HSPA1A, HSPA1B, HSPA4, HSPA5, HSPA8, HSPA13, and HSPA14 expressions were inversely associated with the overall survival rate of patients, tumor grade, and cancer stage. A PPI regulatory network was constructed using the 14 HSP70s proteins with HSPA5 and HSPA8 at the network center. Univariate and multivariate analyses showed that HSPA4 and HSPA14 could be independent risk factors for the prognosis of hepatocellular carcinoma patients. Cell experiments have also confirmed that reducing HSPA4 and HSPA14 expressions can inhibit the invasion, metastasis, and proliferation of hepatocellular carcinoma cells. Conclusions Therefore, the HSP70s significantly influence the occurrence and development of hepatocellular carcinoma. For instance, HSPA4 and HSPA14 can be novel therapeutic targets and prognostic biomarkers for hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01987-9.
Collapse
Affiliation(s)
- Ben Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Tian Lan
- Department of Health Care Management and Medical Education, The School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, 710032, China.,Department of Health Care Management, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Han Xiao
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Zhong-Huo Chen
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Chao Wei
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Lei-Feng Chen
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Jia-Fu Guan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Rong-Fa Yuan
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Xin Yu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Zhi-Gang Hu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Hua-Jun Wu
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China
| | - Zhi Dai
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Wang
- Hepato-Biliary-Pancreatic Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, China. .,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, 330006, China.
| |
Collapse
|
29
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
30
|
FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis 2021; 12:25. [PMID: 33414395 PMCID: PMC7790828 DOI: 10.1038/s41419-020-03290-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023]
Abstract
The human leukocyte antigen F-associated transcript 10 (FAT10) is a member of the small ubiquitin-like protein family that binds to its target proteins and subjects them to degradation by the ubiquitin-proteasome system (UPS). In the heart, FAT10 plays a cardioprotective role and affects predisposition to cardiac arrhythmias after myocardial ischemia (MI). However, whether and how FAT10 influences cardiac arrhythmias is unknown. We investigated the role of FAT10 in regulating the sodium channel Nav1.5, a major regulator of cardiac arrhythmias. Fat10 was conditionally deleted in cardiac myocytes using Myh6-Cre and Fat10F/F mice (cFat10-/-). Compared with their wild-type littermates, cFat10-/- mice showed prolonged RR, PR, and corrected QT (QTc) intervals, were more likely to develop ventricular arrhythmia, and had increased mortality after MI. Patch-clamp studies showed that the peak Na+ current was reduced, and the late Na+ current was significantly augmented, resulting in a decreased action potential amplitude and delayed depolarization. Immunoblot and immunofluorescence analyses showed that the expression of the membrane protein Nav1.5 was decreased. Coimmunoprecipitation experiments demonstrated that FAT10 stabilized Nav1.5 expression by antagonizing Nav1.5 ubiquitination and degradation. Specifically, FAT10 bound to the lysine residues in the C-terminal fragments of Nav1.5 and decreased the binding of Nav1.5 to the Nedd4-2 protein, a ubiquitin E3 ligase, preventing degradation of the Nav1.5 protein. Collectively, our findings showed that deletion of the Fat10 in cardiac myocytes led to increased cardiac arrhythmias and increased mortality after MI. Thus, FAT10 protects against ischemia-induced ventricular arrhythmia by binding to Nav1.5 and preventing its Neddylation and degradation by the UPS after MI.
Collapse
|
31
|
Wan R, Yuan P, Guo L, Shao J, Liu X, Lai W, Kong Q, Chen L, Ge J, Xu Z, Xie J, Shen Y, Hu J, Zhou Q, Yu J, Jiang Z, Jiang X, Hong K. Ubiquitin-like protein FAT10 suppresses SIRT1-mediated autophagy to protect against ischemic myocardial injury. J Mol Cell Cardiol 2020; 153:1-13. [PMID: 33307094 DOI: 10.1016/j.yjmcc.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Autophagy plays a deleterious role in ischemic myocardial injury. The deacetylase SIRT1 is a well-established regulator of autophagy that can be modified by the ubiquitin-like protein SUMO1. Our previous work demonstrated that another ubiquitin-like protein, FAT10, exerts cardioprotective effects against myocardial ischemia by stabilizing the caveolin-3 protein; however, the effects of FAT10 on autophagy through SIRT1 are unclear. Here, we constructed a Fat10-knockout rat model to evaluate the role of FAT10 in autophagy. In vivo and in vitro assays confirmed that FAT10 suppressed autophagy to protect the heart from ischemic myocardial injury. Mechanistically, FAT10 was mainly involved in the regulation of the autophagosome formation process. FAT10 affected autophagy through modulating SIRT1 degradation, which resulted in reduced SIRT1 nuclear translocation and inhibited SIRT1 activity via its C-terminal glycine residues. Notably, FAT10 competed with SUMO1 at the K734 modification site of SIRT1, which further reduced LC3 deacetylation and suppressed autophagy. Our findings suggest that FAT10 inhibits autophagy by antagonizing SIRT1 SUMOylation to protect the heart from ischemic myocardial injury. This is a novel mechanism through which FAT10 regulates autophagy as a cardiac protector.
Collapse
Affiliation(s)
- Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Ping Yuan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Linjuan Guo
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianghua Shao
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Xiao Liu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Lai
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiling Kong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Jin Ge
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenyan Xu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinghua Jiang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kui Hong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
32
|
FAT10 promotes the progression of bladder cancer by upregulating HK2 through the EGFR/AKT pathway. Exp Cell Res 2020; 398:112401. [PMID: 33253711 DOI: 10.1016/j.yexcr.2020.112401] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-like protein FAT10 and the hexokinase protein HK2 play vital regulatory roles in several cellular processes. However, the relationship between these two proteins and their role in the pathogenesis of bladder cancer are not well understood. Here, we found that FAT10 and HK2 protein levels were markedly higher in bladder cancer tissues than in normal adjacent tissues. In addition, RNAi-mediated silencing of FAT10 led to reduced HK2 levels and suppressed bladder cancer progression in vivo and in vitro. The results of our in vivo and in vitro experiments revealed that HK2 is critical for FAT10-mediated progression of bladder cancer. The current study demonstrated that FAT10 enhanced the progression of bladder cancer by positively regulating HK2 via the EGFR/AKT pathway. Based on our findings, FAT10 is believed to stabilize EGFR expression by modulating its degradation and ubiquitination. The results of the current study indicate that there is a correlation between FAT10 and HK2 in the progression of bladder cancer. In addition, we identified a new pathway that may be involved in the regulation of HK2. These findings implicate dysfunction of the FAT10, EGFR/AKT, and HK2 regulatory circuit in the progression of bladder cancer.
Collapse
|
33
|
Zhang K, Chen L, Zhang Z, Cao J, He L, Li L. Ubiquitin-like protein FAT10: A potential cardioprotective factor and novel therapeutic target in cancer. Clin Chim Acta 2020; 510:802-811. [DOI: 10.1016/j.cca.2020.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
34
|
Feng L, Wang K, Tang P, Chen S, Liu T, Lei J, Yuan R, Hu Z, Li W, Yu X. Deubiquitinase USP18 promotes the progression of pancreatic cancer via enhancing the Notch1-c-Myc axis. Aging (Albany NY) 2020; 12:19273-19292. [PMID: 33051403 PMCID: PMC7732327 DOI: 10.18632/aging.103760] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
The dysregulation of deubiquitinating enzymes (DUBs), which regulate the stability of most cellular proteins, has been implicated in many human diseases, including cancers. Thus, DUBs can be considered potential therapeutic targets for many cancers. However, the role of deubiquitinase ubiquitin-specific protease 18 (USP18) in pancreatic cancer remains unknown. Here, we found that the deubiquitinase ubiquitin-specific protease 18 (USP18) is significantly upregulated in pancreatic cancer and is correlated with a shorter median overall and relapse-free survival. A functional assay demonstrated that overexpression of USP18 resulted in increased proliferation of pancreatic cancer cells. Conversely, these phenomena were reversed after USP18 was silenced in pancreatic cancer cells. Further investigation revealed that USP18 promoted cell progression by increasing c-Myc expression, which has been reported to control pancreatic cancer progression, and our data demonstrated that c-Myc is key for USP18-mediated pancreatic cancer cell progression in vitro and in vivo. Moreover, we found that USP18 promoted pancreatic cancer progression via upregulation of Notch-1-dependent c-Myc. Mechanistically, USP18 interacts with and removes K48-linked ubiquitin chains from Notch1, thereby stabilizing Notch1 and promoting the Notch1-c-Myc pathway. Our work identifies and validates USP18 as a pancreatic cancer oncogene and provides a potential druggable target for this intractable disease.
Collapse
Affiliation(s)
- Long Feng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Kai Wang
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Ping Tang
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China,Department of General Surgery, Hunan Youxian People's Hospital, Youxian, China
| | - Suyun Chen
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Tiande Liu
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jun Lei
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Zhigang Hu
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wen Li
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xin Yu
- Hepatopancreatobiliary Surgery Division, Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
36
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
37
|
TAB3 upregulates PIM1 expression by directly activating the TAK1-STAT3 complex to promote colorectal cancer growth. Exp Cell Res 2020; 391:111975. [PMID: 32229191 DOI: 10.1016/j.yexcr.2020.111975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/03/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1)-binding protein 3 (TAB3) and the proviral integration site for Moloney murine leukaemia virus 1 (PIM1) are implicated in cancer development. In this study, we investigated the relationship between TAB3 and PIM1 in colorectal cancer (CRC) and determined the potential role and molecular mechanism of TAB3 in PIM1-mediated CRC growth. We found that TAB3 and PIM1 expression levels were positively correlated in CRC tissues. The knockdown of TAB3 significantly decreased PIM1 expression and inhibited CRC proliferation in vitro and in vivo. The upregulation of PIM1 rescued the decreased cell proliferation induced by TAB3 knockdown, whereas PIM1 knockdown decreased TAB3-enhanced CRC proliferation. Additionally, TAB3 regulates PIM1 expression through the STAT3 signalling pathway and confirmed a positive correlation between TAB3 and phosphorylated-STAT3 expression in CRC tissues. Patients with high expression of TAB3 and phosphorylated-STAT3 had the worst prognosis. Mechanistically, TAB3 regulates PIM1 expression by promoting STAT3 phosphorylation and activation through the formation of the TAB3-TAK1-STAT3 complex. Overall, a novel CRC regulatory circuit involving the TAB3-TAK1-STAT3 complex and PIM1 was identified, the dysfunction of which may contribute to CRC tumorigenesis.
Collapse
|
38
|
Cai Q, Kang J, Yu T. Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior. BAYESIAN ANALYSIS 2020; 15:79-102. [PMID: 32802246 PMCID: PMC7428197 DOI: 10.1214/18-ba1142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Selecting informative nodes over large-scale networks becomes increasingly important in many research areas. Most existing methods focus on the local network structure and incur heavy computational costs for the large-scale problem. In this work, we propose a novel prior model for Bayesian network marker selection in the generalized linear model (GLM) framework: the Thresholded Graph Laplacian Gaussian (TGLG) prior, which adopts the graph Laplacian matrix to characterize the conditional dependence between neighboring markers accounting for the global network structure. Under mild conditions, we show the proposed model enjoys the posterior consistency with a diverging number of edges and nodes in the network. We also develop a Metropolis-adjusted Langevin algorithm (MALA) for efficient posterior computation, which is scalable to large-scale networks. We illustrate the superiorities of the proposed method compared with existing alternatives via extensive simulation studies and an analysis of the breast cancer gene expression dataset in the Cancer Genome Atlas (TCGA).
Collapse
Affiliation(s)
- Qingpo Cai
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Ricker CA, Berlow NE, Crawford KA, Georgopapadakos T, Huelskamp AN, Woods AD, Dhimolea E, Ramkissoon SH, Spunt SL, Rudzinski ER, Keller C. Undifferentiated small round cell sarcoma in a young male: a case report. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a004812. [PMID: 32014859 PMCID: PMC6996518 DOI: 10.1101/mcs.a004812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
CIC-rearranged sarcomas (CRSs) have recently been characterized as a distinct sarcoma subgroup with a less favorable prognosis compared to other small round cell sarcomas. CRSs share morphologic features with Ewing's sarcoma and prior to 2013 were grouped under undifferentiated sarcomas with round cell phenotype by the WHO classification. In this report, whole-genome sequencing and RNA sequencing were performed for an adolescent male patient with CRS who was diagnosed with undifferentiated pleomorphic sarcoma (UPS) by three contemporary institutions. Somatic mutation analysis identified mutations in IQGAP1, CCNC, and ATXN1L in pre- and post-treatment tissue samples, as well as a CIC–DUX4 fusion that was confirmed by qPCR and DUX4 immunohistochemistry. Of particular interest was the overexpression of the translation factor eEF1A1, which has oncogenic properties and has recently been identified as a target of the investigational agent plitidepsin. This case may provide a valuable waypoint in the understanding and classification of CRSs and may provide a rationale for targeting eEF1A1 in similar soft tissue sarcoma cases.
Collapse
Affiliation(s)
- Cora A Ricker
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Kenneth A Crawford
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | | | - Audrey N Huelskamp
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| | - Eugen Dhimolea
- Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | - Sheri L Spunt
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | | | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, Oregon 97005, USA
| |
Collapse
|
40
|
Wang F, Zhao B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int J Mol Sci 2019; 20:ijms20092250. [PMID: 31067743 PMCID: PMC6539292 DOI: 10.3390/ijms20092250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Questions have been raised since the discovery of UBA6 and its significant coexistence with UBE1 in the ubiquitin–proteasome system (UPS). The facts that UBA6 has the dedicated E2 enzyme USE1 and the E1–E2 cascade can activate and transfer both ubiquitin and ubiquitin-like protein FAT10 have attracted a great deal of attention to the regulational mechanisms of the UBA6–USE1 cascade and to how FAT10 and ubiquitin differentiate with each other. This review recapitulates the latest advances in UBA6 and its bispecific UBA6–USE1 pathways for both ubiquitin and FAT10. The intricate networks of UBA6 and its interplays with ubiquitin and FAT10 are briefly reviewed, as are their individual and collective functions in diverse physiological conditions.
Collapse
Affiliation(s)
- Fengting Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Ao N, Dai Y, Chen Q, Feng Y, Yu J, Wang C, Liu F, Li M, Liu G. Genome-Wide Profiling of the Toxic Effect of Bortezomib on Human Esophageal Carcinoma Epithelial Cells. Technol Cancer Res Treat 2019; 18:1533033819842546. [PMID: 30961474 PMCID: PMC6457034 DOI: 10.1177/1533033819842546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives: Bortezomib has been widely used to treat multiple myeloma and other hematological
malignancies. However, not much is known about its effect on solid tumors. The aim of
this study was to study the effect of Bortezomib on human esophageal cancer cell lines
and investigate the potential target pathways. Methods: Two human esophageal cancer cell lines, TE-1 and KYSE-150, were used in this study.
Cell viability, cell cycle distribution, and apoptosis after Bortezomib treatment was
detected by Cell Counting Kit-8, flow cytometry, and Annexin V/propidium iodide
staining, respectively. The genes targeted by Bortezomib were analyzed at the messenger
RNA level by microarray chips and quantitative real-time polymerase chain reaction. Results: The proliferation of human esophageal cancer cell lines was inhibited by Bortezomib in
a dose- and time-dependent manner. Bortezomib treatment led to G2/M arrest
and apoptosis. Microarray chips revealed multiple signaling pathways targeted by
Bortezomib, including proteasome, endoplasmic reticulum, Wnt-, and calcium-mediated
pathway. The expression patterns of 4 representative genes UBD, CUL3, HDAC6, and GADD45A
were verified by quantitative real-time polymerase chain reaction and showed consistency
with the microarray assay. Conclusion: Bortezomib could suppress cell viability, cause G2/M arrest, and induce
apoptosis in human esophageal cancer cells, with possible targets including UBD, CUL3,
HDAC6, and GADD45A.
Collapse
Affiliation(s)
- Nannan Ao
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China.,2 Department of Radiation Oncology, Zhengzhou Yihe Hospital Affiliated to Henan University, Zhengzhou, Henan Province, People's Republic of China
| | - Yingchu Dai
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Qianping Chen
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Yang Feng
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Jingping Yu
- 3 Department of Radiation Oncology, Changzhou Second Hospital-Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People's Republic of China
| | - Chang Wang
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Fenju Liu
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Ming Li
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| | - Geng Liu
- 1 State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
42
|
Yan J, Lei J, Chen L, Deng H, Dong D, Jin T, Liu X, Yuan R, Qiu Y, Ge J, Peng X, Shao J. Human Leukocyte Antigen F Locus Adjacent Transcript 10 Overexpression Disturbs WISP1 Protein and mRNA Expression to Promote Hepatocellular Carcinoma Progression. Hepatology 2018; 68:2268-2284. [PMID: 29790184 DOI: 10.1002/hep.30105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Abstract
Recently, studies on transcriptome-proteome relationships have revealed mRNA/protein expression discordance for certain genes and speculated that protein posttranslational modification (PTM) may be involved. However, there is currently no evidence to support this hypothesis. Wnt-induced secreted protein-1 (WISP1) is the downstream target gene of β-catenin and plays an important role in tumorigenesis and progression, but the expression and role of WISP1 in different tumor types are controversial. Here, we first confirmed that WISP1 protein expression was significantly down-regulated in hepatocellular carcinoma (HCC) tissue and could be an independent predictor of poor prognosis for patients with HCC. In vivo and in vitro evidence was provided that WISP1 can suppress HCC cell proliferation. Further studies have found that low WISP1 protein expression was related to expression of human leukocyte antigen F locus adjacent transcript 10 (FAT10), a specific ubiquitin-like protein with both degradation and stabilization functions, which plays an important role in PTM. FAT10 overexpression facilitated WISP1 degradation by FAT10ylation to decrease WISP1 protein expression, thus promoting HCC proliferation. Interestingly, we found and demonstrated that FAT10 overexpression could result in WISP1 protein/mRNA expression discordance, with protein expression decreasing while mRNA expression increased. The underlying mechanism is that FAT10 exerts substrate stabilization and degradation functions simultaneously, while FAT10 overexpression promotes WISP1 mRNA expression by stabilizing β-catenin and directly degrades WISP1 protein. Conclusion: Our study demonstrated that overexpression of FAT10 results in expression discordance between WISP1 protein and mRNA, thereby promoting HCC progression by down-regulating WISP1 protein expression.
Collapse
Affiliation(s)
- Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Huan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dingxiang Dong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Tao Jin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Xiuxia Liu
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jin Ge
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| |
Collapse
|
43
|
Zou Y, Ouyang Q, Wei W, Yang S, Zhang Y, Yang W. FAT10 promotes the invasion and migration of breast cancer cell through stabilization of ZEB2. Biochem Biophys Res Commun 2018; 506:563-570. [PMID: 30361097 DOI: 10.1016/j.bbrc.2018.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023]
Abstract
FAT10, an ubiquitin-like protein, functions as a potential tumor promoter in several caners. However, the function and clinical significance of FAT10 in breast cancer (BC) remains unclear. Here, we found that high FAT10 expression was detected frequently in primary BC tissues, and was closely associated with malignant phenotype and shorter survival among the BC patients. Multivariate analyses also revealed that FAT10 overexpression was independent prognostic factors for poor outcome of patients with BC. Function assay demonstrated that FAT10 knockdown significantly inhibited the metastasis abilities and the epithelial-mesenchymal transition (EMT) of breast cancer cell. Further investigation revealed that FAT10 directly bound ZEB2 and decreased its ubiquitination to enhance the protein stability of ZEB2 in BC cells. Moreover, our data shown that the pro-metastasis effect of FAT10 in BC is partially dependent on ZEB2 enhancement. Collectively, our data suggest that FAT10 plays a crucial oncogenic role in BC metastasis, and we provide a novel evidence that FAT10 may be serve as a prognostic and therapeutic target for BC patients.
Collapse
Affiliation(s)
- Yufeng Zou
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Qianwen Ouyang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Wensong Wei
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Shixin Yang
- Department of Breast Surgery, The Third Hospital of Nanchang, Jiangxi Provincial-Key-Laboratory for Breast Diseases, Jiangxi Province, 330006, China
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
44
|
Zhang W, Xiang M, Zheng C, Chen L, Ge J, Yan C, Liu X. [Eukaryotic translation elongation factor 1A1 positively regulates NOB1 expression to promote invasion and metastasis of hepatocellular carcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1195-1202. [PMID: 30377124 DOI: 10.3969/j.issn.1673-4254.2018.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To explore the role of eukaryotic translation elongation factor 1A1 (eEF1A1) in regulating the invasion and metastasis of hepatocellular carcinoma (HCC) cells and the possible mechanism. METHODS qRT-PCR and Western blotting were used to detect the mRNA and protein expression of eEF1A1 and NOB1 in different HCC cell lines and normal liver cells. The invasion and migration abilities of HCC cells with eEF1A1 knockdown or overexpression were examined using Transwell chamber assay and RTCA assay, and the changes in NOB1 mRNA and protein expressions in the cells were detected. The effects of increasing NOB1 expression in HCCLM3-sheEF1A1 cells and decreasing NOB1 expression in eEF1A1-overexpressing MHCC97h cells on eEF1A1 expression and cell invasion and migration abilities were analyzed using Western blotting, Transwell chamber assay and RTCA assay. RESULTS The expressions of eEF1A1 and NOB1 were significantly increased in positive correlation in HCC cells as compared with normal hepatocytes. Knockdown of eEF1A1 significantly decreased the invasion and migration of HCC cells and reduced the mRNA and protein expression of NOB1 (P < 0.01). Overexpression of eEF1A1 significantly enhanced invasion and migration of HCC cells and increased NOB1 mRNA and protein expressions (P < 0.01). Increasing NOB1 expression in HCCLM3-sheEF1A1 cells led to the restoration of NOB1 expression and cell invasion and migration abilities (P < 0.01), whereas decreasing NOB1 in MHCC97h-eEF1A1 cells resulted in inhibition of NOB1 expression and cell invasion and migration (P < 0.01). CONCLUSIONS eEF1A1 positively regulates the expression of NOB1 to promote the invasion and migration of HCC cells in vitro.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Mingfeng Xiang
- Department of Urology, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chuqian Zheng
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jin Ge
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China.,Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Chen Yan
- Department of Rheumatology, 4Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine, Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| |
Collapse
|
45
|
Contradictory mRNA and protein misexpression of EEF1A1 in ductal breast carcinoma due to cell cycle regulation and cellular stress. Sci Rep 2018; 8:13904. [PMID: 30224719 PMCID: PMC6141510 DOI: 10.1038/s41598-018-32272-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 02/08/2023] Open
Abstract
Encoded by EEF1A1, the eukaryotic translation elongation factor eEF1α1 strongly promotes the heat shock response, which protects cancer cells from proteotoxic stress, following for instance oxidative stress, hypoxia or aneuploidy. Unexpectedly, therefore, we find that EEF1A1 mRNA levels are reduced in virtually all breast cancers, in particular in ductal carcinomas. Univariate and multivariate analyses indicate that EEF1A1 mRNA underexpression independently predicts poor patient prognosis for estrogen receptor-positive (ER+) cancers. EEF1A1 mRNA levels are lowest in the most invasive, lymph node-positive, advanced stage and postmenopausal tumors. In sharp contrast, immunohistochemistry on 100 ductal breast carcinomas revealed that at the protein level eEF1α1 is ubiquitously overexpressed, especially in ER+ , progesterone receptor-positive and lymph node-negative tumors. Explaining this paradox, we find that EEF1A1 mRNA levels in breast carcinomas are low due to EEF1A1 allelic copy number loss, found in 27% of tumors, and cell cycle-specific expression, because mRNA levels are high in G1 and low in proliferating cells. This also links estrogen-induced cell proliferation to clinical observations. In contrast, high eEF1α1 protein levels protect tumor cells from stress-induced cell death. These observations suggest that, by obviating EEF1A1 transcription, cancer cells can rapidly induce the heat shock response following proteotoxic stress, and survive.
Collapse
|
46
|
Li C, Wang Z, Feng N, Dong J, Deng X, Yue Y, Guo Y, Hou J. Human HLA‑F adjacent transcript 10 promotes the formation of cancer initiating cells and cisplatin resistance in bladder cancer. Mol Med Rep 2018; 18:308-314. [PMID: 29749526 PMCID: PMC6059684 DOI: 10.3892/mmr.2018.9005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) serves important roles in tumor invasion, metastasis, formation of cancer initiating cells (CICs) and drug resistance. HLA‑F adjacent transcript 10 (FAT10) has been proposed as an oncogene in bladder cancer. However, the functional contribution of FAT10 to EMT and the formation of CICs remains unclear in bladder cancer. The present study reports that FAT10 protein expression is upregulated in bladder cancer cell lines, and the overexpression of FAT10 promotes EMT and the formation of CICs in bladder cancer UMUC‑3 cells. In addition, increased expression of FAT10 in tumor tissue was associated with shorter overall survival and progression free survival in Chinese patients with bladder cancer. Overexpression of FAT10 promotes cisplatin‑resistant bladder cancer formation. These results indicated FAT10 may be a novel target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Chen Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Zhenfan Wang
- Department of Urology, The First Hospital of Wujiang, Suzhou, Jiangsu 215200, P.R. China
| | - Ninghan Feng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jian Dong
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Xiaoyan Deng
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yin Yue
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Yuehong Guo
- Department of Urology, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
47
|
Zhou Q, Peng X, Liu X, Chen L, Xiong Q, Shen Y, Xie J, Xu Z, Huang L, Hu J, Wan R, Hong K. FAT10 attenuates hypoxia-induced cardiomyocyte apoptosis by stabilizing caveolin-3. J Mol Cell Cardiol 2018; 116:115-124. [DOI: 10.1016/j.yjmcc.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
|
48
|
Ubiquitin-like protein FAT10 promotes bladder cancer progression by stabilizing survivin. Oncotarget 2018; 7:81463-81473. [PMID: 27806337 PMCID: PMC5348406 DOI: 10.18632/oncotarget.12976] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Human HLA-F adjacent transcript 10 (FAT10) is a member of the ubiquitin-like-modifier family of proteins, which have been implicated in cancer development. In addition, the Survivin protein promotes proliferation in bladder cancer (BC). In this study, we explored the link between FAT10 and Survivin. FAT10 expression was dramatically up-regulated in BC tissue samples, and Kaplan-Meier survival analysis revealed that BC patients with high FAT10 expression had shorter overall survival than those with low FAT10 expression. Moreover, RNAi-mediated FAT10 knockdown decreased Survivin protein levels and inhibited BC proliferation both in vitro and in vivo. FAT10 directly bound to and stabilized Survivin protein, thereby promoting cancer cell proliferation by inhibiting ubiquitin-mediated degradation. These results reveal a novel mechanism by which FAT10 promotes tumor proliferation by directly stabilizing Survivin protein in BC.
Collapse
|
49
|
GRP78 Promotes Hepatocellular Carcinoma proliferation by increasing FAT10 expression through the NF-κB pathway. Exp Cell Res 2018; 365:1-11. [PMID: 29458176 DOI: 10.1016/j.yexcr.2018.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Glucose-regulated protein 78(GRP78) and the ubiquitin-like protein FAT10 each promote proliferation in hepatocellular carcinoma(HCC). However, the relationship of GRP78 and FAT10 in HCC proliferation are still not known. In this study, we found that GRP78 and FAT10 were significantly overexpressed in HCC tissues compare with adjacent non-cancerous tissues, and a positive correlation was found between their expression and associated proliferation characteristics. High expression of GRP78 and FAT10 were positively correlated with tumor proliferation and poor prognosis in HCC. Moreover, GRP78 knockdown reduced FAT10 expression and suppressed HCC proliferation in vitro and in vivo. The effects of GRP78 knockdown were rescued by FAT10 up-regulation, whereas FAT10 knockdown reduced HCC proliferation enhanced by GRP78 up-regulation. Furthermore, GRP78 modulated FAT10 expression by regulating the NF-κB pathway, direct activation of the NF-κB pathway increased the expression of FAT10, a gene counteracting the tumor suppressor p53. Taken together, these results suggest that this newly identified GRP78-NF-κB-FAT10 axis will provide novel insight into the understanding of the regulatory mechanisms of proliferation in human HCC.
Collapse
|
50
|
Liu F, Liu X, Xu Z, Yuan P, Zhou Q, Jin J, Yan X, Xu Z, Cao Q, Yu J, Cheng Y, Wan R, Hong K. Molecular mechanisms of Ellis‑van Creveld gene variations in ventricular septal defect. Mol Med Rep 2017; 17:1527-1536. [PMID: 29257216 PMCID: PMC5780092 DOI: 10.3892/mmr.2017.8088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
The Ellis-van Creveld (EVC) gene is associated with various congenital heart diseases. However, studies on EVC gene variations in ventricular septal defect (VSD) and the underlying molecular mechanisms are sparse. The present study detected 11 single-nucleotide polymorphisms (SNPs) in 65 patients with VSD and 210 control patients from the Chinese Han population. Of the identified SNPs only the c.1727G>A SNP site was positively associated with the development of VSD (P<0.007). A known mutation, c.343C>G, was also identified, which causes a leucine to valine substitution at amino acid 115 of the EVC protein (p.L115V). The results of functional prediction indicated that c.343C>G may be a pathogenic mutation. In addition, in NIH3T3 mouse embryonic fibroblast cells, the EVC c.343C>G mutation significantly decreased cell proliferation and increased apoptosis. Further investigation demonstrated that in NIH3T3 cells, overexpression of EVC c.343C>G mutation reduced the binding between EVC and smoothened, which further downregulated the activity of the hedgehog (Hh) signaling pathway and the expression of downstream cyclin D1 and B-cell lymphoma 2 proteins with SAG. The c.1727G>A SNP of the EVC gene increased VSD susceptibility in patients from the Chinese Han population. The molecular mechanism underlying the development of VSD induced by the EVC c.343C>G mutation may be due to a reduction in the anti-apoptotic and proliferative abilities of cardiomyocytes via downregulation of Hh pathway activity. The results of the present study may provide novel targets for the diagnosis and treatment of patients with VSD.
Collapse
Affiliation(s)
- Fadi Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhenyan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ping Yuan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zixuan Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Cao
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yingzhang Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|