1
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
2
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
3
|
Characterization of spatially mapped volumetric molecular ultrasound signals for predicting response to anti-vascular therapy. Sci Rep 2023; 13:1686. [PMID: 36717575 PMCID: PMC9886917 DOI: 10.1038/s41598-022-26273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 12/13/2022] [Indexed: 01/31/2023] Open
Abstract
Quantitative three-dimensional molecular ultrasound is a promising technology for longitudinal imaging applications such as therapy monitoring; the risk profile is favorable compared to positron emission tomography and computed tomography. However, clinical translation of quantitative methods for this technology are limited in that they assume that tumor tissues are homogeneous, and often depend on contrast-destruction events that can produce unintended bioeffects. Here, we develop quantitative features (henceforth image features) that capture tumor spatial information, and that are extracted without contrast destruction. We compare these techniques with the contrast-destruction derived differential targeted enhancement parameter (dTE) in predicting response to therapy. We found thirty-three reproducible image features that predict response to antiangiogenic therapy, without the need for a contrast agent disruption pulse. Multiparametric analysis shows that several of these image features can differentiate treated versus control animals with comparable performance to post-destruction measurements, suggesting that these can potentially replace parameters such as the dTE. The highest performing pre-destruction image features showed strong linear correlations with conventional dTE parameters with less overall variance. Thus, our study suggests that image features obtained during the wash in of the molecular agent, pre-destruction, may replace conventional post-destruction image features or the dTE parameter.
Collapse
|
4
|
Kierski TM, Walmer RW, Tsuruta JK, Yin J, Chérin E, Foster FS, Demore CEM, Newsome IG, Pinton GF, Dayton PA. Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:237-249. [PMID: 38125957 PMCID: PMC10732349 DOI: 10.1109/ojuffc.2022.3212342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 μm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
Collapse
Affiliation(s)
- Thomas M Kierski
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Rachel W Walmer
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Jianhua Yin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - F Stuart Foster
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Christine E M Demore
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Isabel G Newsome
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| |
Collapse
|
5
|
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, Simberg D, Westerly DC, Griffin L, Mason RP. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res 2021; 81:1189-1200. [PMID: 33262127 PMCID: PMC8026542 DOI: 10.1158/0008-5472.can-20-0373] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/10/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
In animal models of cancer, oncologic imaging has evolved from a simple assessment of tumor location and size to sophisticated multimodality exploration of molecular, physiologic, genetic, immunologic, and biochemical events at microscopic to macroscopic levels, performed noninvasively and sometimes in real time. Here, we briefly review animal imaging technology and molecular imaging probes together with selected applications from recent literature. Fast and sensitive optical imaging is primarily used to track luciferase-expressing tumor cells, image molecular targets with fluorescence probes, and to report on metabolic and physiologic phenotypes using smart switchable luminescent probes. MicroPET/single-photon emission CT have proven to be two of the most translational modalities for molecular and metabolic imaging of cancers: immuno-PET is a promising and rapidly evolving area of imaging research. Sophisticated MRI techniques provide high-resolution images of small metastases, tumor inflammation, perfusion, oxygenation, and acidity. Disseminated tumors to the bone and lung are easily detected by microCT, while ultrasound provides real-time visualization of tumor vasculature and perfusion. Recently available photoacoustic imaging provides real-time evaluation of vascular patency, oxygenation, and nanoparticle distributions. New hybrid instruments, such as PET-MRI, promise more convenient combination of the capabilities of each modality, enabling enhanced research efficacy and throughput.
Collapse
Affiliation(s)
- Natalie J Serkova
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology, and the Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois
| | | | | | | | - Dmitri Simberg
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David C Westerly
- Animal Imaging Shared Resource, University of Colorado Cancer Center, Aurora, Colorado
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Griffin
- Department of Radiology, Veterinary Teaching Hospital, Colorado State University, Fort Collins, Colorado
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
6
|
|
7
|
Ultrasound. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Lu SL, Liu WW, Cheng JCH, Lin LC, Wang CRC, Li PC. Enhanced Radiosensitization for Cancer Treatment with Gold Nanoparticles through Sonoporation. Int J Mol Sci 2020; 21:ijms21218370. [PMID: 33171604 PMCID: PMC7664670 DOI: 10.3390/ijms21218370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
We demonstrate the megavoltage (MV) radiosensitization of a human liver cancer line by combining gold-nanoparticle-encapsulated microbubbles (AuMBs) with ultrasound. Microbubbles-mediated sonoporation was administered for 5 min, at 2 h prior to applying radiotherapy. The intracellular concentration of gold nanoparticles (AuNPs) increased with the inertial cavitation of AuMBs in a dose-dependent manner. A higher inertial cavitation dose was also associated with more DNA damage, higher levels of apoptosis markers, and inferior cell surviving fractions after MV X-ray irradiation. The dose-modifying ratio in a clonogenic assay was 1.56 ± 0.45 for a 10% surviving fraction. In a xenograft mouse model, combining vascular endothelial growth factor receptor 2 (VEGFR2)-targeted AuMBs with sonoporation significantly delayed tumor regrowth. A strategy involving the spatially and temporally controlled release of AuNPs followed by clinically utilized MV irradiation shows promising results that make it worthy of further translational investigations.
Collapse
Affiliation(s)
- Shao-Lun Lu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
| | - Wei-Wen Liu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Jason Chia-Hsien Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Division of Radiation Oncology, National Taiwan University Hospital, Taipei 100229, Taiwan
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 100229, Taiwan
| | - Lien-Chieh Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
| | - Churng-Ren Chris Wang
- Department of Chemistry and Biochemistry, National Chung-Cheng University, Chia-Yi 621301, Taiwan;
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; (S.-L.L.); (W.-W.L.); (J.C.-H.C.); (L.-C.L.)
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-3551
| |
Collapse
|
9
|
Antitumor effect of VEGFR2-targeted microbubble destruction with gemcitabine using an endoscopic ultrasound probe: In vivo mouse pancreatic ductal adenocarcinoma model. Hepatobiliary Pancreat Dis Int 2020; 19:478-485. [PMID: 32265136 DOI: 10.1016/j.hbpd.2020.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ultrasound-targeted microbubble destruction (UTMD) induces cellular inflow of drugs at low intensity, while high intensity eradicates tumor vessels. Since vascular endothelial growth factor receptor 2 (VEGFR2) is highly expressed in pancreatic ductal adenocarcinoma (PDAC), VEGFR2-targeted microbubble (MB) might additionally increase the tissue specificity of drugs and thus improve antitumor effects. In addition, fixing the dual pulse intensity could maximize MB properties. This study evaluated the one-off (experiment 1) and cumulative (experiment 2) treatment effect of UTMD by regulating the dual pulse output applied to PDAC using VEGFR2-targeted MB. METHODS C57BL/6 mice inoculated with Pan-02 cells were allocated to five groups: VEGFR2-targeted MB+ gemcitabine (GEM), VEGFR2-targeted MB, non-targeted MB+GEM, GEM, and control groups. After injection of GEM or GEM and either VEGFR2-targeted or non-targeted MB, UTMD was applied for several minutes at low intensity followed by high intensity application. In experiment 1, mice were treated by the protocol described above and then euthanized immediately or at the tumor diameter doubling time (TDT). In experiment 2, the same protocol was repeated weekly and mice were euthanized at TDT regardless of protocol completion. Histological analysis by CD31 and VEGFR2 staining provided microvascular density (MVD) and VEGFR2 expression along vessels (VEGFR2v) or intra/peripheral cells (VEGFR2c). RESULTS In experiment 1, TDT was significantly longer in the VEGFR2-targeted MB+GEM group compared to the non-targeted MB+GEM, GEM, and control groups, while the VEGFR2-targeted MB group showed no statistical significance. MVD and VEGFR2v in the immediate euthanasia was significantly lower in the VEGFR2-targeted MB+GEM and VEGFR2-targeted MB groups than other conditions. In experiment 2, the VEGFR2-targeted MB+GEM group produced significantly longer TDT than the GEM or control groups, whereas the VEGFR2-targeted MB group showed no significant difference. Histology revealed significantly reduced VEGFR2v and VEGFR2c in the VEGFR2-targeted and non-targeted MB+GEM groups, while only VEGFR2v was significantly less in the VEGFR2-targeted MB group. CONCLUSIONS UTMD-mediated GEM therapy with the dual pulse application using VEGFR2-targeted MB substantially suppresses PDCA growth.
Collapse
|
10
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
11
|
Turco S, El Kaffas A, Zhou J, Lutz AM, Wijkstra H, Willmann JK, Mischi M. Pharmacokinetic Modeling of Targeted Ultrasound Contrast Agents for Quantitative Assessment of Anti-Angiogenic Therapy: a Longitudinal Case-Control Study in Colon Cancer. Mol Imaging Biol 2020; 21:633-643. [PMID: 30225758 PMCID: PMC6616210 DOI: 10.1007/s11307-018-1274-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate quantitative and semi-quantitative ultrasound molecular imaging (USMI) for antiangiogenic therapy monitoring in human colon cancer xenografts in mice. PROCEDURES Colon cancer was established in 17 mice by injection of LS174T (Nr = 9) or CT26 (Nn = 8) cancer cells to simulate clinical responders and non-responders, respectively. Antiangiogenic treatment (bevacizumab; Nrt = Nnt = 5) or control treatment (saline; Nrc = 4, Nnc = 3) was administered at days 0, 3, and 7. Three-dimensional USMI was performed by injection at days 0, 1, 3, 7, and 10 of microbubbles targeted to the vascular endothelial growth factor receptor 2 (VEGFR2). Microbubble binding rate (kb), estimated by first-pass binding model fitting, and semi-quantitative parameters late enhancement (LE) and differential targeted enhancement (dTE) were compared at each day to evaluate their ability to assess and predict the response to therapy. Correlation analysis with the ex-vivo immunohistological quantification of VEGFR2 expression and the percentage blood vessel area was also performed. RESULTS Significant changes in the USMI parameters during treatment were observed only in the responders treated with bevacizumab (p-value < 0.05). Prediction of the response to therapy as early as 1 day after treatment was achieved by the quantitative parameter kb (p-value < 0.01), earlier than possible by tumor volume quantification. USMI parameters could significantly distinguish between clinical responders and non-responders (p-value << 0.01) and correlated well with the ex-vivo quantification of VEGFR2 expression and the percentage blood vessels area (p-value << 0.01). CONCLUSION USMI (semi)quantitative parameters provide earlier assessment of the response to therapy compared to tumor volume, permit early prediction of non-responders, and correlate well with ex-vivo angiogenesis biomarkers.
Collapse
Affiliation(s)
- Simona Turco
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AZ, Eindhoven, The Netherlands.
| | - Ahmed El Kaffas
- Department of Radiology, Stanford Medicine, Stanford, CA, 94305, USA
| | - Jianhua Zhou
- Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Amelie M Lutz
- Department of Radiology, Stanford Medicine, Stanford, CA, 94305, USA
| | - Hessel Wijkstra
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AZ, Eindhoven, The Netherlands
- Department of Urology, Academic Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Jürgen K Willmann
- Department of Radiology, Stanford Medicine, Stanford, CA, 94305, USA
| | - Massimo Mischi
- Department of Electrical Engineering, Eindhoven University of Technology, Groene Loper 19, 5612 AZ, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Ultrasound Molecular Imaging of Renal Cell Carcinoma: VEGFR targeted therapy monitored with VEGFR1 and FSHR targeted microbubbles. Sci Rep 2020; 10:7308. [PMID: 32355171 PMCID: PMC7193565 DOI: 10.1038/s41598-020-64433-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Recent treatment developments for metastatic renal cell carcinoma offer combinations of immunotherapies or immunotherapy associated with tyrosine kinase inhibitors (TKI). There is currently no argument to choose one solution or another. Easy-to-use markers to assess longitudinal responses to TKI are necessary to determine when to switch to immunotherapies. These new markers will enable an earlier adaptation of therapeutic strategy in order to prevent tumor development, unnecessary toxicity and financial costs. This study evaluates the potential of ultrasound molecular imaging to track the response to sunitinib in a clear cell renal carcinoma model (ccRCC). We used a patient-derived xenograft model for this imaging study. Mice harboring human ccRCC were randomized for sunitinib treatment vs. control. The tumors were imaged at days 0, 7, 14 and 28 with ultrasound molecular imaging. Signal enhancement was quantified and compared between the two groups after injections of non-targeted microbubbles and microbubbles targeting VEGFR1 and FSHR. The tumor growth of the sunitinib group was significantly slower. There was a significantly lower expression of both VEGFR-1 and FSHR molecular ultrasound imaging signals in the sunitinib group at all times of treatment (Days 7, 14 and 28). These results confirm the study hypothesis. There was no significant difference between the 2 groups for the non-targeted microbubble ultrasound signal. This study demonstrated for the first time the potential of VEGFR1 and FSHR, by ultrasound-based molecular imaging, to follow-up the longitudinal response to sunitinib in ccRCC. These results should trigger developments for clinical applications.
Collapse
|
13
|
Ultrasound Molecular Imaging With BR55, a Predictive Tool of Antiangiogenic Treatment Efficacy in a Chemo-Induced Mammary Tumor Model. Invest Radiol 2020; 55:657-665. [DOI: 10.1097/rli.0000000000000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Abstract
Contrast-enhanced ultrasound (CEUS) imaging is a valuable tool for preclinical and clinical diagnostics. The most frequently used ultrasound contrast agents are microbubbles. Besides them, novel nano-sized materials are under investigation, which are briefly discussed in this chapter. For molecular CEUS, the ultrasound contrast agents are modified to actively target disease-associated molecular markers with a site-specific ligand. The most common markers for tumor imaging are related to neoangiogenesis, like the vascular endothelial growth factor receptor-2 (VEGFR2) and αvβ3 integrin. In this chapter, applications of molecular ultrasound to longitudinally monitor receptor expression during tumor growth, to detect neovascularization, and to evaluate therapy responses are described. Furthermore, we report on first clinical trials of molecular CEUS with VEGFR2-targeted phospholipid microbubbles showing promising results regarding patient safety and its ability to detect tumors of prostate, breast, and ovary. The chapter closes with an outlook on ultrasound theranostics, where (targeted) ultrasound contrast agents are used to increase the permeability of tumor tissues and to support drug delivery.
Collapse
Affiliation(s)
- Jasmin Baier
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Lau C, Rivas M, Dinalo J, King K, Duddalwar V. Scoping Review of Targeted Ultrasound Contrast Agents in the Detection of Angiogenesis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:19-28. [PMID: 31237009 DOI: 10.1002/jum.15072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
A systematic search was conducted to categorize targeted ultrasound contrast agents (UCAs) used in cancer-related angiogenesis detection. We identified 15 unique contrast agents from 2008 to March 2018. Most primary research articles studied UCAs targeted to vascular endothelial growth factor receptor or αv β3 -integrin. Breast cancer and colon cancer are the most common neoplastic processes in which these agents were studied. BR55 (Bracco Research SA, Geneva, Switzerland), a vascular endothelial growth factor receptor-targeting UCA, is the first targeted UCA that has completed phase 0 trials. Our review identifies a gap in the literature regarding the application of targeted UCAs in cancer models beyond breast and colon cancers and identifies other promising UCAs.
Collapse
Affiliation(s)
- Christopher Lau
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Marielena Rivas
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Jennifer Dinalo
- Norris Medical Library, Keck School of Medicine, California, Los Angeles, USA
| | - Kevin King
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| | - Vinay Duddalwar
- Department of Radiology, Keck School of Medicine, California, Los Angeles, USA
| |
Collapse
|
16
|
Ruan SM, Zheng Q, Wang Z, Hu HT, Chen LD, Guo HL, Xie XY, Lu MD, Li W, Wang W. Comparison of Real-Time Two-Dimensional and Three-Dimensional Contrast-Enhanced Ultrasound to Quantify Flow in an In Vitro Model: A Feasibility Study. Med Sci Monit 2019; 25:10029-10035. [PMID: 31879414 PMCID: PMC6946046 DOI: 10.12659/msm.919160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This feasibility study aimed to compare real-time two-dimensional contrast-enhanced ultrasound (2D-CEUS) and three-dimensional contrast-enhanced ultrasound (3D-CEUS) to quantify flow in an in vitro model. MATERIAL AND METHODS Five polyvinyl chloride (PVC) tubes were used for the perfusion models and used SonoVue ultrasound contrast agent with a perfusion volume ratio of 1: 2: 4: 8: 16. The contrast was injected at a constant speed to compare the raw quantitative data of 2D-CEUS and 3D-CEUS at angles of 0°, 45°, and 90°. The coefficient of variation (CV) of the peak intensity (PI) in the model were compared and the correlations between weighted PI and perfusion volume were analyzed. RESULTS In the three angles used, real-time 3D-CEUS resulted in a more comprehensive view of the spatial relationships in the perfusion model. Using real-time 2D-CEUS, the mean CV was 0.92±0.36, and the mean CV in the real-time 3D-CEUS model was significantly less at 0.48±0.32 (p<0.001). Quantitative 3D-CEUS parameters showed a good correlation with those of 2D-CEUS with an r-value of 0.93 (p=0.02). The r-value of weighted PI and the perfusion ratio using 2D-CEUS was 0.66 (p=0.23) compared with values in 3D-CEUS of 0.84 (p=0.08). CONCLUSIONS The combination of real-time 3D-CEUS and quantitative analysis identified the spatial distribution of the changes in angle in the model, which was less influenced by sectional planes, and was more representative of the perfusion volume when compared with 2D-CEUS. Quantitative real-time 3D-CEUS requires in vivo studies to evaluate the potential role in the clinical evaluation of vascular perfusion of malignant tumors.
Collapse
Affiliation(s)
- Si-Min Ruan
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Qiao Zheng
- Department of Medical Ultrasonics, Fetal Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Zhu Wang
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Hang-Tong Hu
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Li-Da Chen
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Huan-Ling Guo
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Ming-De Lu
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland).,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Wei Li
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Wei Wang
- Department of Medical Ultrasonics, Ultrasonics Artificial Intelligence X-Lab, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
17
|
Deng M, Zhao H, Chen Q, Zhao J, Shi Y, Yu L, Fang Z, Xu B. CS2164 suppresses acute myeloid leukemia cell growth via inhibiting VEGFR2 signaling in preclinical models. Eur J Pharmacol 2019; 853:193-200. [PMID: 30928630 DOI: 10.1016/j.ejphar.2019.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) arises from neoplastic transformation of hematopoietic stem and progenitor cells, and resistance to conventional chemotherapy remains one of the greatest challenges in treating the disease. Extensive data have demonstrated that angiogenesis is associated with AML progression and chemotherapy resistance. Thus, targeting angiogenesis may be a promising approach for AML treatment. In this study, we investigated the effectiveness of CS2164 (named as Chiauranib), a novel receptor tyrosine kinase inhibitor, in AML cells. Our results illustrated that CS2164 significantly suppressed cell proliferation and abolished clonogenicity in AML cells in a dose- and time-dependent manner. Meanwhile, CS2164 markedly induced apoptosis of AML cell lines and primary AML cells from 42 adult patients. Furthermore, we found that CS2164 has a comprehensive activity against AML irrespective of disease status and genetic mutations. Also, CS2164 suppressed AML growth in xenograft models in vivo. Mechanistically, CS2164-induced cytotoxicity was closely associated with inhibition of VEGFR2 and its downstream signaling cascades, including Src/Fyn/p38 and Erk/MEK. In conclusion, our study indicates that CS2164 exerts anti-leukemia effect by inducing apoptosis through suppressing the VEGFR2 pathway, supporting a potential role for CS2164 in the treatment of AML.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Jintao Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Yuanfei Shi
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, PR China.
| | - Zhihong Fang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
18
|
Rojas JD, Dayton PA. In Vivo Molecular Imaging Using Low-Boiling-Point Phase-Change Contrast Agents: A Proof of Concept Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:177-191. [PMID: 30318123 DOI: 10.1016/j.ultrasmedbio.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Sub-micron phase-change contrast agents (PCCAs) have been proposed as a tool for ultrasound molecular imaging based on their potential to extravasate and target extravascular markers and also because of the potential to image these contrast agents with a high contrast-to-tissue ratio. We compare in vivo ultrasound molecular imaging with targeted low-boiling-point PCCAs and targeted microbubble contrast agents. Both agents were targeted to the intravascular (endothelial) integrin αvß3via a cyclic RGD peptide (cyclo-Arg-Gly-Asp-D-Tyr-Cys) mechanism and imaged in vivo in a rodent fibrosarcoma model, which exhibits angiogenic microvasculature. Signal intensity was measured using two different techniques, conventional contrast-specific imaging (amplitude/phase modulation) and a droplet vaporization imaging sequence, which detects the unique signature of vaporizing PCCAs. Data indicate that PCCA-specific imaging is more sensitive to small numbers of bound agents than conventional contrast imaging. However, data also revealed that contrast from targeted microbubbles was greater than that provided by PCCAs. Both control and targeted PCCAs were observed to be retained in tissue post-vaporization, which was expected for targeted agents but not expected for control agents. The exact mechanism underlying this observation remains unknown.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
19
|
Vishal TMD, Ji-Bin LMD, John EP. Applications in Molecular Ultrasound Imaging: Present and Future. ADVANCED ULTRASOUND IN DIAGNOSIS AND THERAPY 2019. [DOI: 10.37015/audt.2019.190812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
21
|
Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang YC, Chong DC, Bautch VL, Rathmell WK, Aylward S, Gessner RC, Dayton PA. Ultrasound Measurement of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma. IEEE Trans Biomed Eng 2018; 66:873-880. [PMID: 30059292 DOI: 10.1109/tbme.2018.2860932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Functional and molecular changes often precede gross anatomical changes, so early assessment of a tumor's functional and molecular response to therapy can help reduce a patient's exposure to the side effects of ineffective chemotherapeutics or other treatment strategies. OBJECTIVE Our intent was to test the hypothesis that an ultrasound microvascular imaging approach might provide indications of response to therapy prior to assessment of tumor size. METHODS Mice bearing clear-cell renal cell carcinoma xenograft tumors were treated with antiangiogenic and Notch inhibition therapies. An ultrasound measurement of microvascular density was used to serially track the tumor response to therapy. RESULTS Data indicated that ultrasound-derived microvascular density can indicate response to therapy a week prior to changes in tumor volume and is strongly correlated with physiological characteristics of the tumors as measured by histology ([Formula: see text]). Furthermore, data demonstrated that ultrasound measurements of vascular density can determine response to therapy and classify between-treatment groups with high sensitivity and specificity. CONCLUSION/SIGNIFICANCE Results suggests that future applications utilizing ultrasound imaging to monitor tumor response to therapy may be able to provide earlier insight into tumor behavior from metrics of microvascular density rather than anatomical tumor size measurements.
Collapse
|
22
|
Yuan HX, Wang WP, Wen JX, Lin LW, Exner AA, Guan PS, Chen XJ. Dual-Targeted Microbubbles Specific to Integrin αVβ3 and Vascular Endothelial Growth Factor Receptor 2 for Ultrasonography Evaluation of Tumor Angiogenesis. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1460-1467. [PMID: 29706409 DOI: 10.1016/j.ultrasmedbio.2018.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/19/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Aggressive tumors are characterized by angiogenesis that promotes the migration and dissemination of tumor cells. Our aim was to develop a dual-targeted microbubble system for non-invasive evaluation of tumor angiogenesis in ultrasound. Avidinylated microbubbles were conjugated with biotinylated arginylglycylaspartic acid and vascular endothelial growth factor receptor 2 (VEGFR2) antibodies. Subcutaneous MHCC-97H liver carcinoma models were established. Non-targeted, αvβ3-targeted, VEGFR2-targeted and dual-targeted microbubbles was intravenously injected in series while acquiring ultrasound images of the tumor. The microbubbles were destroyed by a high-mechanical-index pulse 4 min after the injection. Peak intensity (PI) before and after the destructive pulse was recorded to compare contrast enhancement by different microbubbles. The targeting rates of the integrin-targeted, VEGFR2-targeted and dual-targeted groups were 95.02%, 96.04% and 94.23%, respectively, with no significant differences. Tumors in all groups were significantly enhanced. The time-intensity curve indicated no significant differences in arrival time, PI, area under the curve, amplitude and mean transit time. The difference in ultrasound signal intensity before and after the destructive pulse (⊿PI) for all targeted microbubble groups was significantly greater than that for the non-targeted microbubble group (all p values < 0.05), and the difference for the dual-targeted microbubble group was significantly greater than those of both mono-targeted groups (p <0.05).
Collapse
Affiliation(s)
- Hai-Xia Yuan
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Ultrasound, Xiamen Branch, Zhongshan Hospital of Fudan University, Xiamen, Fujian Province, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Jie-Xian Wen
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Le-Wu Lin
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Ultrasound, Xiamen Branch, Zhongshan Hospital of Fudan University, Xiamen, Fujian Province, China
| | - Agata A Exner
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pei-Shan Guan
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Ultrasound, Xiamen Branch, Zhongshan Hospital of Fudan University, Xiamen, Fujian Province, China
| | - Xue-Jun Chen
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai, China; Department of Ultrasound, Xiamen Branch, Zhongshan Hospital of Fudan University, Xiamen, Fujian Province, China
| |
Collapse
|
23
|
Czernuszewicz TJ, Papadopoulou V, Rojas JD, Rajamahendiran RM, Perdomo J, Butler J, Harlacher M, O’Connell G, Zukić D, Aylward SR, Dayton PA, Gessner RC. A new preclinical ultrasound platform for widefield 3D imaging of rodents. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:075107. [PMID: 30068108 PMCID: PMC6045495 DOI: 10.1063/1.5026430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Noninvasive in vivo imaging technologies enable researchers and clinicians to detect the presence of disease and longitudinally study its progression. By revealing anatomical, functional, or molecular changes, imaging tools can provide a near real-time assessment of important biological events. At the preclinical research level, imaging plays an important role by allowing disease mechanisms and potential therapies to be evaluated noninvasively. Because functional and molecular changes often precede gross anatomical changes, there has been a significant amount of research exploring the ability of different imaging modalities to track these aspects of various diseases. Herein, we present a novel robotic preclinical contrast-enhanced ultrasound system and demonstrate its use in evaluating tumors in a rodent model. By leveraging recent advances in ultrasound, this system favorably compares with other modalities, as it can perform anatomical, functional, and molecular imaging and is cost-effective, portable, and high throughput, without using ionizing radiation. Furthermore, this system circumvents many of the limitations of conventional preclinical ultrasound systems, including a limited field-of-view, low throughput, and large user variability.
Collapse
Affiliation(s)
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Juan D. Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | - Jonathan Perdomo
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - James Butler
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Max Harlacher
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Graeme O’Connell
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Dženan Zukić
- Kitware, Inc., Carrboro, North Carolina 27510, USA
| | | | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Ryan C. Gessner
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
- Author to whom correspondence should be addressed: . Current address: First Flight Venture Center, 2 Davis Dr., Research Triangle Park, NC 27709-3169. Telephone: 844-766-6865 x707
| |
Collapse
|
24
|
Durot I, Wilson SR, Willmann JK. Contrast-enhanced ultrasound of malignant liver lesions. Abdom Radiol (NY) 2018; 43:819-847. [PMID: 29094174 DOI: 10.1007/s00261-017-1360-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) is a safe, relatively inexpensive, and widely available imaging technique using dedicated imaging ultrasound sequences and FDA-approved contrast microbubbles that allow detection and characterization of malignant focal liver lesions with high diagnostic accuracy. CEUS provides dynamic real-time imaging with high spatial and temporal capability, allowing for unique contributions to the already established protocols for diagnosing focal liver lesions using CT and MR imaging. In patients with lesions indeterminate on CT and MRI, CEUS is a helpful problem-solving complementary tool that improves patient management. Furthermore, CEUS assists guidance of liver biopsies and local treatment. Variations of CEUS such as DCE-US and ultrasound molecular imaging are emerging for quantitative monitoring of treatment effects and possible earlier detection of cancer. In this review, basic principles of CEUS techniques and ultrasound contrast agents along with a description of the enhancement patterns of malignant liver lesions are summarized. Also, a discussion of the role of CEUS for treatment guidance and monitoring, intraoperative CEUS, and an outlook on emerging applications is provided.
Collapse
|
25
|
Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY) 2018; 43:762-772. [PMID: 29508011 DOI: 10.1007/s00261-018-1516-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbubble ultrasound contrast agents (UCAs) were recently approved by the Food and Drug administration for non-cardiac imaging. The physical principles of UCAs, methods of administration, dosage, adverse effects, and imaging techniques both current and future are described. UCAs consist of microbubbles in suspension which strongly interact with the ultrasound beam and are readily detectable by ultrasound imaging systems. They are confined to the blood pool when administered intravenously, unlike iodinated and gadolinium contrast agents. UCAs have a proven safety record based on over two decades of use, during which they have been used in echocardiography in the U.S. and for non-cardiac imaging in the rest of the world. Adverse effects are less common with UCAs than CT/MR contrast agents. Compared to CT and MR, contrast-enhanced ultrasound has the advantages of real-time imaging, portability, and reduced susceptibility to metal and motion artifact. UCAs are not nephrotoxic and can be used in renal failure. High acoustic amplitudes can cause microbubbles to fragment in a manner that can result in short-term increases in capillary permeability or capillary rupture. These bioeffects can be beneficial and have been used to enhance drug delivery under appropriate conditions. Imaging with a mechanical index of < 0.4 preserves the microbubbles and is not typically associated with substantial bioeffects. Molecularly targeted ultrasound contrast agents are created by conjugating the microbubble shell with a peptide, antibody, or other ligand designed to target an endothelial biomarker associated with tumor angiogenesis or inflammation. These microbubbles then accumulate in the microvasculature at target sites where they can be imaged. Ultrasound contrast agents are a valuable addition to the diagnostic imaging toolkit. They will facilitate cross-sectional abdominal imaging in situations where contrast-enhanced CT and MR are contraindicated or impractical.
Collapse
Affiliation(s)
- Wui K Chong
- Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Unit 1473 | FCT15.5092, 1400 Pressler Street, Houston, TX, 77030, USA.
| | - Virginie Papadopoulou
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| | - Paul A Dayton
- UNC Biomedical Research Imaging Center, Chapel Hill, NC, 27599, USA
- UNC-NC State Joint Department of Biomedical Engineering, Chapel Hill, NC, 27599, USA
| |
Collapse
|
26
|
Wang B, Shen J, Wang Z, Liu J, Ning Z, Hu M. Isomangiferin, a Novel Potent Vascular Endothelial Growth Factor Receptor 2 Kinase Inhibitor, Suppresses Breast Cancer Growth, Metastasis and Angiogenesis. J Breast Cancer 2018; 21:11-20. [PMID: 29628979 PMCID: PMC5880961 DOI: 10.4048/jbc.2018.21.1.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/20/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) signal transduction mainly depends on its binding to VEGF receptor 2 (VEGFR-2). VEGF downstream signaling proteins mediate several of its effects in cancer progression, including those on tumor growth, metastasis, and blood vessel formation. The activation of VEGFR-2 signaling is a hallmark of and is considered a therapeutic target for breast cancer. Here, we report a study of the regulation of the VEGFR-2 signaling pathway by a small molecule, isomangiferin. Methods A human breast cancer xenograft mouse model was used to investigate the efficacy of isomangiferin in vivo. The inhibitory effect of isomangiferin on breast cancer cells and the underlying mechanism were examined in vitro. Results Isomangiferin suppressed tumor growth in xenografts. In vitro, isomangiferin treatment inhibited cancer cell proliferation, migration, invasion, and adhesion. The effect of isomangiferin on breast cancer growth was well coordinated with its suppression of angiogenesis. A rat aortic ring assay revealed that isomangiferin significantly inhibited blood vessel formation during VEGF-induced microvessel sprouting. Furthermore, isomangiferin treatment inhibited VEGF-induced proliferation of human umbilical vein endothelial cells and the formation of capillary-like structures. Mechanistically, isomangiferin induced caspase-dependent apoptosis of breast cancer cells. Furthermore, VEGF-induced activation of the VEGFR-2 kinase pathway was down-regulated by isomangiferin. Conclusion Our findings demonstrate that isomangiferin exerts anti-breast cancer effects via the functional inhibition of VEGFR-2. Pharmaceutically targeting VEGFR-2 by isomangiferin could be an effective therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Banghua Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jia Shen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Zexia Wang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jianxia Liu
- Department of Optoelectronic Engineering, School of Electrical and Information Engineering, Hubei University of Science and Technology, Xianning, China
| | - Zhifeng Ning
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
27
|
Kasoji SK, Rivera JN, Gessner RC, Chang SX, Dayton PA. Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging. Am J Cancer Res 2018; 8:156-168. [PMID: 29290799 PMCID: PMC5743466 DOI: 10.7150/thno.19703] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 12/18/2022] Open
Abstract
Measuring changes in tumor volume using anatomical imaging weeks to months post radiation therapy (RT) is currently the clinical standard for indicating treatment response to RT. For patients whose tumors do not respond successfully to treatment, this approach is suboptimal as timely modification of the treatment approach may lead to better clinical outcomes. We propose to use tumor microvasculature as a biomarker for early assessment of tumor response to RT. Acoustic angiography is a novel contrast ultrasound imaging technique that enables high-resolution microvascular imaging and has been shown to detect changes in microvascular structure due to cancer growth. Data suggest that acoustic angiography can detect longitudinal changes in the tumor microvascular environment that correlate with RT response. Methods: Three cohorts of Fisher 344 rats were implanted with rat fibrosarcoma tumors and were treated with a single fraction of RT at three dose levels (15 Gy, 20 Gy, and 25 Gy) at a dose rate of 300 MU/min. A simple treatment condition was chosen for testing the feasibility of our imaging technique. All tumors were longitudinally imaged immediately prior to and after treatment and then every 3 days after treatment for a total of 30 days. Both acoustic angiography (using in-house produced microbubble contrast agents) and standard b-mode imaging was performed at each imaging time point using a pre-clinical Vevo770 scanner and a custom modified dual-frequency transducer. Results: Results show that all treated tumors in each dose group initially responded to treatment between days 3-15 as indicated by decreased tumor growth accompanied with decreased vascular density. Untreated tumors continued to increase in both volume and vascular density until they reached the maximum allowable size of 2 cm in diameter. Tumors that displayed complete control (no tumor recurrence) continued to decrease in size and vascular density, while tumors that progressed after the initial response presented an increase in tumor volume and volumetric vascular density. The increase in tumor volumetric vascular density in recurring tumors can be detected 10.25 ± 1.5 days, 6 ± 0 days, and 4 ± 1.4 days earlier than the measurable increase in tumor volume in the 15, 20, and 25 Gy dose groups, respectively. A dose-dependent growth rate for tumor recurrence was also observed. Conclusions: In this feasibility study we have demonstrated the ability of acoustic angiography to detect longitudinal changes in vascular density, which was shown to be a potential biomarker for tumor response to RT.
Collapse
|
28
|
Rojas JD, Lin F, Chiang YC, Chytil A, Chong DC, Bautch VL, Rathmell WK, Dayton PA. Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics 2018; 8:141-155. [PMID: 29290798 PMCID: PMC5743465 DOI: 10.7150/thno.19658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Metastatic clear-cell renal cell carcinoma (ccRCC) affects thousands of patients worldwide each year. Antiangiogenic therapy has been shown to have beneficial effects initially, but resistance is eventually developed. Therefore, it is important to accurately track the response of cancer to different therapeutics in order to appropriately adjust the therapy to maximize efficacy. Change in tumor volume is the current gold standard for determining efficacy of treatment. However, functional variations can occur much earlier than measurable volume changes. Contrast-enhanced ultrasound (CEUS) is an important tool for assessing tumor progression and response to therapy, since it can monitor functional changes in the physiology. In this study, we demonstrate how ultrasound molecular imaging (USMI) can accurately track the evolution of the disease and molecular response to treatment. Methods A cohort of NSG (NOD/scid/gamma) mice was injected with ccRCC cells and treated with either the VEGF inhibitor SU (Sunitinib malate, Selleckchem, TX, USA) or the Notch pathway inhibitor GSI (Gamma secretase inhibitor, PF-03084014, Pfizer, New York, NY, USA), or started on SU and later switched to GSI (Switch group). The therapies used in the study focus on disrupting angiogenesis and proper vessel development. SU inhibits signaling of vascular endothelial growth factor (VEGF), which is responsible for the sprouting of new vasculature, and GSI inhibits the Notch pathway, which is a key factor in the correct maturation of newly formed vasculature. Microbubble contrast agents targeted to VEGFR-2 (VEGF Receptor) were delivered as a bolus, and the bound agents were imaged in 3D after the free-flowing contrast was cleared from the body. Additionally, the tumors were harvested at the end of the study and stained for CD31. Results The results show that MI can detect changes in VEGFR-2 expression in the group treated with SU within a week of the start of treatment, while differences in volume only become apparent after the mice have been treated for three weeks. Furthermore, USMI can detect response to therapy in 92% of cases after 1 week of treatment, while the detection rate is only 40% for volume measurements. The amount of targeting for the GSI and Control groups was high throughout the duration of the study, while that of the SU and Switch groups remained low. However, the amount of targeting in the Switch group increased to levels similar to those of the Control group after the treatment was switched to GSI. CD31 staining indicates significantly lower levels of patent vasculature for the SU group compared to the Control and GSI groups. Therefore, the results parallel the expected physiological changes in the tumor, since GSI promotes angiogenesis through the VEGF pathway, while SU inhibits it. Conclusion This study demonstrates that MI can track disease progression and assess functional changes in tumors before changes in volume are apparent, and thus, CEUS can be a valuable tool for assessing response to therapy in disease. Future work is required to determine whether levels of VEGFR-2 targeting correlate with eventual survival outcomes.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Fanglue Lin
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Yun-Chen Chiang
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| | - Anna Chytil
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Diana C Chong
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - Victoria L Bautch
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
- Curriculum in Genetics and Molecular Biology, The University of North Carolina, Chapel Hill, North Carolina
- Department of Biology, The University of North Carolina, Chapel Hill, North Carolina
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
29
|
Kaffas AE, Sigrist RMS, Fisher G, Bachawal S, Liau J, Wang H, Karanany A, Durot I, Rosenberg J, Hristov D, Willmann JK. Quantitative Three-Dimensional Dynamic Contrast-Enhanced Ultrasound Imaging: First-In-Human Pilot Study in Patients with Liver Metastases. Theranostics 2017; 7:3745-3758. [PMID: 29109773 PMCID: PMC5667345 DOI: 10.7150/thno.20329] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/01/2017] [Indexed: 02/06/2023] Open
Abstract
Purpose: To perform a clinical assessment of quantitative three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) feasibility and repeatability in patients with liver metastasis, and to evaluate the extent of quantitative perfusion parameter sampling errors in 2D compared to 3D DCE-US imaging. Materials and Methods: Twenty consecutive 3D DCE-US scans of liver metastases were performed in 11 patients (45% women; mean age, 54.5 years; range, 48-60 years; 55% men; mean age, 57.6 years; range, 47-68 years). Pairs of repeated disruption-replenishment and bolus DCE-US images were acquired to determine repeatability of parameters. Disruption-replenishment was carried out by infusing 0.9 mL of microbubbles (Definity; Latheus Medical Imaging) diluted in 35.1 mL of saline over 8 min. Bolus consisted of intravenous injection of 0.2 mL microbubbles. Volumes-of-interest (VOI) and regions-or-interest (ROI) were segmented by two different readers in images to extract 3D and 2D perfusion parameters, respectively. Disruption-replenishment parameters were: relative blood volume (rBV), relative blood flow (rBF). Bolus parameters included: time-to-peak (TP), peak enhancement (PE), area-under-the-curve (AUC), and mean-transit-time (MTT). Results: Clinical feasibility and repeatability of 3D DCE-US using both the destruction-replenishment and bolus technique was demonstrated. The repeatability of 3D measurements between pairs of repeated acquisitions was assessed with the concordance correlation coefficient (CCC), and found to be excellent for all parameters (CCC > 0.80), except for the TP (0.74) and MTT (0.30) parameters. The CCC between readers was found to be excellent (CCC > 0.80) for all parameters except for TP (0.71) and MTT (0.52). There was a large Coefficient of Variation (COV) in intra-tumor measurements for 2D parameters (0.18-0.52). Same-tumor measurements made in 3D were significantly different (P = 0.001) than measurements made in 2D; a percent difference of up to 86% was observed between measurements made in 2D compared to 3D in the same tumor. Conclusions: 3D DCE-US imaging of liver metastases with a matrix array transducer is feasible and repeatable in the clinic. Results support 3D instead of 2D DCE US imaging to minimize sampling errors due to tumor heterogeneity.
Collapse
|
30
|
Early prediction of tumor response to bevacizumab treatment in murine colon cancer models using three-dimensional dynamic contrast-enhanced ultrasound imaging. Angiogenesis 2017; 20:547-555. [PMID: 28721500 DOI: 10.1007/s10456-017-9566-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022]
Abstract
Due to spatial tumor heterogeneity and consecutive sampling errors, it is critically important to assess treatment response following antiangiogenic therapy in three dimensions as two-dimensional assessment has been shown to substantially over- and underestimate treatment response. In this study, we evaluated whether three-dimensional (3D) dynamic contrast-enhanced ultrasound (DCE-US) imaging allows assessing early changes in tumor perfusion following antiangiogenic treatment (bevacizumab administered at a dose of 10 mg/kg b.w.), and whether these changes could predict treatment response in colon cancer tumors that either are responsive (LS174T tumors) or none responsive (CT26) to the proposed treatment. Our results showed that the perfusion parameters of 3D DCE-US including peak enhancement (PE) and area under curve (AUC) significantly decreased by up to 69 and 77%, respectively, in LS174T tumors within 1 day after antiangiogenic treatment (P = 0.005), but not in CT26 tumors (P > 0.05). Similarly, the percentage area of neovasculature significantly decreased in treated versus control LS174T tumors (P < 0.001), but not in treated versus control CT26 tumors (P = 0.796). Early decrease in both PE and AUC by 45-50% was predictive of treatment response in 100% (95% CI 69.2, 100%) of responding tumors, and in 100% (95% CI 88.4, 100%) and 86.7% (95% CI 69.3, 96.2%), respectively, of nonresponding tumors. In conclusion, 3D DCE-US provides clinically relevant information on the variability of tumor response to antiangiogenic therapy and may be further developed as biomarker for predicting treatment outcomes.
Collapse
|
31
|
Wischhusen J, Padilla F. Microbubble Enzyme-Linked Immunosorbent Assay for the Detection of Targeted Microbubbles in in Vitro Static Binding Assays. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1506-1519. [PMID: 28450034 DOI: 10.1016/j.ultrasmedbio.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Targeted microbubbles (MBs) are ultrasound contrast agents that are functionalized with a ligand for ultrasound molecular imaging of endothelial markers. Novel targeted MBs are characterized in vitro by incubation in protein-coated wells, followed by binding quantification by microscopy or ultrasound imaging. Both methods provide operator-dependent results: Between 3 and 20 fields of view from a heterogeneous sample are typically selected for analysis by microscopy, and in ultrasound imaging, different acoustic settings affect signal intensities. This study proposes a new method to reproducibly quantify MB binding based on enzyme-linked immunosorbent assay (ELISA), in which bound MBs are revealed with an enzyme-linked antibody. MB-ELISA was adapted to in vitro static binding assays, incubating the MBs in inverted position or by agitation, and compared with microscopy. The specificity and sensitivity of MB-ELISA enable the reliable quantification of MB binding in a rapid, high-throughput and whole-well analysis, facilitating the characterization of new targeted contrast agents.
Collapse
Affiliation(s)
| | - Frederic Padilla
- INSERM, U1032, LabTAU, Lyon, France; Université de Lyon, Lyon, France.
| |
Collapse
|
32
|
Willmann JK, Bonomo L, Testa AC, Rinaldi P, Rindi G, Valluru KS, Petrone G, Martini M, Lutz AM, Gambhir SS. Ultrasound Molecular Imaging With BR55 in Patients With Breast and Ovarian Lesions: First-in-Human Results. J Clin Oncol 2017; 35:2133-2140. [PMID: 28291391 DOI: 10.1200/jco.2016.70.8594] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We performed a first-in-human clinical trial on ultrasound molecular imaging (USMI) in patients with breast and ovarian lesions using a clinical-grade contrast agent (kinase insert domain receptor [KDR] -targeted contrast microbubble [MBKDR]) that is targeted at the KDR, one of the key regulators of neoangiogenesis in cancer. The aim of this study was to assess whether USMI using MBKDR is safe and allows assessment of KDR expression using immunohistochemistry (IHC) as the gold standard. Methods Twenty-four women (age 48 to 79 years) with focal ovarian lesions and 21 women (age 34 to 66 years) with focal breast lesions were injected intravenously with MBKDR (0.03 to 0.08 mL/kg of body weight), and USMI of the lesions was performed starting 5 minutes after injection up to 29 minutes. Blood pressure, ECG, oxygen levels, heart rate, CBC, and metabolic panel were obtained before and after MBKDR administration. Persistent focal MBKDR binding on USMI was assessed. Patients underwent surgical resection of the target lesions, and tissues were stained for CD31 and KDR by IHC. Results USMI with MBKDR was well tolerated by all patients without safety concerns. Among the 40 patients included in the analysis, KDR expression on IHC matched well with imaging signal on USMI in 93% of breast and 85% of ovarian malignant lesions. Strong KDR-targeted USMI signal was present in 77% of malignant ovarian lesions, with no targeted signal seen in 78% of benign ovarian lesions. Similarly, strong targeted signal was seen in 93% of malignant breast lesions with no targeted signal present in 67% of benign breast lesions. Conclusion USMI with MBKDR is clinically feasible and safe, and KDR-targeted USMI signal matches well with KDR expression on IHC. This study lays the foundation for a new field of clinical USMI in cancer.
Collapse
Affiliation(s)
- Jürgen K Willmann
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Lorenzo Bonomo
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Antonia Carla Testa
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Pierluigi Rinaldi
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Guido Rindi
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Keerthi S Valluru
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Gianluigi Petrone
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Maurizio Martini
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Amelie M Lutz
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| | - Sanjiv S Gambhir
- Jürgen K. Willmann, Keerthi S. Valluru, Amelie M. Lutz, and Sanjiv S. Gambhir, Stanford University, Stanford, CA; and Lorenzo Bonomo, Antonia Carla Testa, Pierluigi Rinaldi, Guido Rindi, Gianluigi Petrone, and Maurizio Martini, Universitary Policlinic A. Gemelli-Foundation, Catholic University, Rome, Italy
| |
Collapse
|
33
|
Zhang H, Ingham ES, Gagnon MKJ, Mahakian LM, Liu J, Foiret JL, Willmann JK, Ferrara KW. In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials 2017; 118:63-73. [PMID: 27940383 PMCID: PMC5279957 DOI: 10.1016/j.biomaterials.2016.11.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/11/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022]
Abstract
Nucleolin (NCL) plays an important role in tumor vascular development. An increased endothelial expression level of NCL has been related to cancer aggressiveness and prognosis and has been detected clinically in advanced tumors. Here, with a peptide targeted to NCL (F3 peptide), we created an NCL-targeted microbubble (MB) and compared the performance of F3-conjugated MBs with non-targeted (NT) MBs both in vitro and in vivo. In an in vitro study, F3-conjugated MBs bound 433 times more than NT MBs to an NCL-expressing cell line, while pretreating cells with 0.5 mM free F3 peptide reduced the binding of F3-conjugated MBs by 84%, n = 4, p < 0.001. We then set out to create a method to extract both the tumor wash-in and wash-out kinetics and tumor accumulation following a single injection of targeted MBs. In order to accomplish this, a series of ultrasound frames (a clip) was recorded at the time of injection and subsequent time points. Each pixel within this clip was analyzed for the minimum intensity projection (MinIP) and average intensity projection (AvgIP). We found that the MinIP robustly demonstrates enhanced accumulation of F3-conjugated MBs over the range of tumor diameters evaluated here (2-8 mm), and the difference between the AvgIP and the MinIP quantifies inflow and kinetics. The inflow and clearance were similar for unbound F3-conjugated MBs, control (non-targeted) and scrambled control agents. Targeted agent accumulation was confirmed by a high amplitude pulse and by a two-dimensional Fourier Transform technique. In summary, F3-conjugated MBs provide a new imaging agent for ultrasound molecular imaging of cancer vasculature, and we have validated metrics to assess performance using low mechanical index strategies that have potential for use in human molecular imaging studies.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Elizabeth S Ingham
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - M Karen J Gagnon
- Department of Environmental Health and Safety, University of California, Davis, CA, 95616, USA
| | - Lisa M Mahakian
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Jingfei Liu
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | - Josquin L Foiret
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA
| | | | - Katherine W Ferrara
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
34
|
Suero-Abreu GA, Aristizábal O, Bartelle BB, Volkova E, Rodríguez JJ, Turnbull DH. Multimodal Genetic Approach for Molecular Imaging of Vasculature in a Mouse Model of Melanoma. Mol Imaging Biol 2016; 19:203-214. [PMID: 27677887 DOI: 10.1007/s11307-016-1006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE In this study, we evaluated a genetic approach for in vivo multimodal molecular imaging of vasculature in a mouse model of melanoma. PROCEDURES We used a novel transgenic mouse, Ts-Biotag, that genetically biotinylates vascular endothelial cells. After inoculating these mice with B16 melanoma cells, we selectively targeted endothelial cells with (strept)avidinated contrast agents to achieve multimodal contrast enhancement of Tie2-expressing blood vessels during tumor progression. RESULTS This genetic targeting system provided selective labeling of tumor vasculature and showed in vivo binding of avidinated probes with high specificity and sensitivity using microscopy, near infrared, ultrasound, and magnetic resonance imaging. We further demonstrated the feasibility of conducting longitudinal three-dimensional (3D) targeted imaging studies to dynamically assess changes in vascular Tie2 from early to advanced tumor stages. CONCLUSIONS Our results validated the Ts-Biotag mouse as a multimodal targeted imaging system with the potential to provide spatio-temporal information about dynamic changes in vasculature during tumor progression.
Collapse
Affiliation(s)
- Giselle A Suero-Abreu
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA
- Department of Radiology, NYUSoM, New York, NY, USA
| | - Orlando Aristizábal
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Benjamin B Bartelle
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eugenia Volkova
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Joe J Rodríguez
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine (NYUSoM), 540 First Ave, New York, NY, 10016, USA.
- Biomedical Imaging Graduate Program, NYUSoM, New York, NY, USA.
- Department of Radiology, NYUSoM, New York, NY, USA.
- Department of Pathology, NYUSoM, New York, NY, USA.
| |
Collapse
|