1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutierrez-Uzquiza A, Fuster G, Bragado P. Role of semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co-receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutierrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028, Barcelona, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500, Vic, Catalonia, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500, Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Peng S, Xie Z, Jiang H, Zhang G, Chen N. Revealing the characteristics of SETD2-mutated clear cell renal cell carcinoma through tumor heterogeneity analysis. Front Genet 2024; 15:1447139. [PMID: 39119581 PMCID: PMC11306021 DOI: 10.3389/fgene.2024.1447139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Renal cell carcinoma (RCC) is the most prevalent type of malignant kidney tumor in adults, with clear cell renal cell carcinoma (ccRCC) comprising about 75% of all cases. The SETD2 gene, which is involved in the modification of histone proteins, is often found to have alterations in ccRCC. Yet, our understanding of how these SETD2 mutations affect ccRCC characteristics and behavior within the tumor microenvironment is still not fully understood. Methods We conducted a detailed analysis of single-cell RNA sequencing (scRNA-seq) data from ccRCC. First, the data was preprocessed using the Python package, "scanpy." High variability genes were pinpointed through Pearson's correlation coefficient. Dimensionality reduction and clustering identification were performed using Principal Component Analysis (PCA) and the Leiden algorithm. Malignant cell identification was conducted with the "InferCNV" R package, while cell trajectories and intercellular communication were depicted using the Python packages "VIA" and "cellphoneDB." We then employed the R package "Deseq2" to determine differentially expressed genes (DEGs) between groups. Using high-dimensional weighted gene correlation network analysis (hdWGCNA), co-expression modules were identified. We intersected these modules with DEGs to establish prognostic models through univariate Cox and the least absolute shrinkage and selection operator (LASSO) method. Results We identified 69 and 53 distinctive cell clusters, respectively. These were classified further into 12 unique cell types. This analysis highlighted the presence of an abnormal tumor sub-cluster (MT + group), identified by high mitochondrial-encoded protein gene expression and an indication of unfavorable prognosis. Investigation of cellular interactions spotlighted significant interactions between the MT + group and endothelial cells, macrophaes. In addition, we developed a prognostic model based on six characteristic genes. Notably, risk scores derived from these genes correlated significantly with various clinical features. Finally, a nomogram model was established to facilitate more accurate outcome prediction, incorporating four independent risk factors. Conclusion Our findings provide insight into the crucial transcriptomic characteristics of ccRCC associated with SETD2 mutation. We discovered that this mutation-induced subcluster could stimulate M2 polarization in macrophages, suggesting a heightened propensity for metastasis. Moreover, our prognostic model demonstrated effectiveness in forecasting overall survival for ccRCC patients, thus presenting a valuable clinical tool.
Collapse
Affiliation(s)
- Shansen Peng
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Zhouzhou Xie
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Huiming Jiang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Guihao Zhang
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Nanhui Chen
- Meizhou Clinical Institute of Shantou University Medical College, Meizhou, China
- Department of Urology, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
3
|
Wu Z, Wang Y, Liu W, Lu M, Shi J. The role of neuropilin in bone/cartilage diseases. Life Sci 2024; 346:122630. [PMID: 38614296 DOI: 10.1016/j.lfs.2024.122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Bone remodeling is the balance between osteoblasts and osteoclasts. Bone diseases such as osteoporosis and osteoarthritis are associated with imbalanced bone remodeling. Skeletal injury leads to limited motor function and pain. Neurophilin was initially identified in axons, and its various ligands and roles in bone remodeling, angiogenesis, neuropathic pain and immune regulation were later discovered. Neurophilin promotes osteoblast mineralization and inhibits osteoclast differentiation and its function. Neuropolin-1 provides channels for immune cell chemotaxis and cytokine diffusion and leads to pain. Neuropolin-1 regulates the proportion of T helper type 17 (Th17) and regulatory T cells (Treg cells), and affects bone immunity. Vascular endothelial growth factors (VEGF) combine with neuropilin and promote angiogenesis. Class 3 semaphorins (Sema3a) compete with VEGF to bind neuropilin, which reduces angiogenesis and rejects sympathetic nerves. This review elaborates on the structure and general physiological functions of neuropilin and summarizes the role of neuropilin and its ligands in bone and cartilage diseases. Finally, treatment strategies and future research directions based on neuropilin are proposed.
Collapse
Affiliation(s)
- Zuping Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Wei Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Mingcheng Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
4
|
Yao X, Zhang L, Sun S, Fu A, Ge Y. Progress of research on the relationship between efferocytosis and tumor. Front Oncol 2024; 14:1361327. [PMID: 38655133 PMCID: PMC11035832 DOI: 10.3389/fonc.2024.1361327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are genetic changes that develop in an organism as a result of many internal and external causes. They affect the biological behavior of cells, cause them to grow independently, and give rise to new, perpetually proliferating organisms. Recent research has supported the critical function of tumor-associated macrophages in the development, progression, and metastasis of tumors through efferocytosis. Yet, there is still much to learn about the mechanisms behind their contribution to tumor pathological processes. As a result, it's critical to actively investigate how cytosolic processes contribute to the growth of tumors and to create novel therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Yanlei Ge
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| |
Collapse
|
5
|
Ahn MH, Kim JH, Choi SJ, Kim HJ, Park DG, Oh KY, Yoon HJ, Hong SD, Lee JI, Shin JA, Cho SD. Neuropilin-2 acts a critical determinant for epithelial-to-mesenchymal transition and aggressive behaviors of human head and neck cancer. Cell Oncol (Dordr) 2024; 47:497-511. [PMID: 37787967 DOI: 10.1007/s13402-023-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2023] [Indexed: 10/04/2023] Open
Abstract
PURPOSE Neuropilin-2 (NRP2) is a multifunctional single-pass transmembrane receptor that binds to two disparate ligands, namely, vascular endothelial growth factors (VEGFs) and semaphorins (SEMAs). It is reportedly involved in neuronal and vascular development. In this study, we uncovered the exact functional role of NRP2 and its molecular mechanism during aggressive behaviors and lymph node (LN) metastasis in human head and neck cancer (HNC) and identified algal methanol extract as a potential novel NRP2 inhibitor. METHODS In silico analyses and immunohistochemistry were used to investigate the relationship between NRP2 expression and the prognosis of HNC patients. The functional role of NRP2 on the proliferation, migration, invasion, and cancer stem cell (CSC) properties of HNC cells was examined by MTS, soft agar, clonogenic, transwell migration and invasion assays, and sphere formation assays. Signaling explorer antibody array, western blot, and qPCR were performed toward the investigation of a molecular mechanism that is related to NRP2. RESULTS NRP2 was highly expressed in HNC and positively correlated with LN metastasis and advanced tumor stage and size in patients. Using loss- or gain-of-function approaches, we found that NRP2 promoted the proliferative, migratory, and invasive capacities of human HNC cells. Furthermore, NRP2 regulated Sox2 expression to exhibit aggressiveness and CSC properties of human HNC cells. We demonstrated that p90 ribosomal S6 kinase 1 (RSK1) elevates the aggressiveness and CSC properties of human HNC cells, possibly by mediating NRP2 and Sox2. Zeb1 was necessary for executing the NRP2/RSK1/Sox2 signaling pathway during the induction of epithelial-to-mesenchymal transition (EMT) and aggressive behaviors of human HNC cells. Moreover, the methanol extract of Codium fragile (MECF) repressed NRP2 expression, inhibiting the RSK1/Sox2/Zeb1 axis, which contributed to the reduction of aggressive behaviors of human HNC cells. CONCLUSIONS These findings suggest that NRP2 is a critical determinant in provoking EMT and aggressive behaviors in human HNC through the RSK1/Sox2/Zeb1 axis, and MECF may have the potential to be a novel NRP2 inhibitor for treating metastasis in HNC patients.
Collapse
Affiliation(s)
- Min-Hye Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, 28116, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun-Ji Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Dong-Guk Park
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hye-Jung Yoon
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae-Il Lee
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| |
Collapse
|
6
|
Dhupar R, Powers AA, Eisenberg SH, Gemmill RM, Bardawil CE, Udoh HM, Cubitt A, Nangle LA, Soloff AC. Orchestrating Resilience: How Neuropilin-2 and Macrophages Contribute to Cardiothoracic Disease. J Clin Med 2024; 13:1446. [PMID: 38592275 PMCID: PMC10934188 DOI: 10.3390/jcm13051446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Immunity has evolved to balance the destructive nature of inflammation with wound healing to overcome trauma, infection, environmental insults, and rogue malignant cells. The inflammatory response is marked by overlapping phases of initiation, resolution, and post-resolution remodeling. However, the disruption of these events can lead to prolonged tissue damage and organ dysfunction, resulting long-term disease states. Macrophages are the archetypic phagocytes present within all tissues and are important contributors to these processes. Pleiotropic and highly plastic in their responses, macrophages support tissue homeostasis, repair, and regeneration, all while balancing immunologic self-tolerance with the clearance of noxious stimuli, pathogens, and malignant threats. Neuropilin-2 (Nrp2), a promiscuous co-receptor for growth factors, semaphorins, and integrins, has increasingly been recognized for its unique role in tissue homeostasis and immune regulation. Notably, recent studies have begun to elucidate the role of Nrp2 in both non-hematopoietic cells and macrophages with cardiothoracic disease. Herein, we describe the unique role of Nrp2 in diseases of the heart and lung, with an emphasis on Nrp2 in macrophages, and explore the potential to target Nrp2 as a therapeutic intervention.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Amy A. Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Seth H. Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Robert M. Gemmill
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Charles E. Bardawil
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Hannah M. Udoh
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
| | - Andrea Cubitt
- aTyr Pharma, San Diego, CA 92121, USA; (A.C.); (L.A.N.)
| | | | - Adam C. Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (R.D.); (H.M.U.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Surgical and Research Services, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| |
Collapse
|
7
|
Li T, Ran J, Miao Z, Yang M, Mou D, Jiang Y, Xu X, Xie Q, Jin K. Deficiency of inflammation-sensing protein neuropilin-2 in myeloid-derived macrophages exacerbates colitis via NF-κB activation. J Pathol 2024; 262:175-188. [PMID: 37946610 DOI: 10.1002/path.6221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Neuropilin-2 (NRP2) is a multifunctional protein engaged in the regulation of angiogenesis, lymphangiogenesis, axon guidance, and tumor metastasis, but its function in colitis remains unclear. Here, we found that NRP2 was an inflammation-sensing protein rapidly and dramatically induced in myeloid cells, especially in macrophages, under inflammatory contexts. NRP2 deficiency in myeloid cells exacerbated dextran sulfate sodium salt-induced experimental colitis by promoting polarization of M1 macrophages and colon injury. Mechanistically, NRP2 could be induced via NF-κB activation by TNF-α in macrophages, but exerted an inhibitory effect on NF-κB signaling, forming a negative feedback loop with NF-κB to sense and alleviate inflammation. Deletion of NRP2 in macrophages broke this negative feedback circuit, leading to NF-κB overactivation, inflammatory exacerbation, and more severe colitis. Collectively, these findings reveal inflammation restriction as a role for NRP2 in macrophages under inflammation contexts and suggest that NRP2 in macrophages may relieve inflammation in inflammatory bowel disease. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, PR China
- West China Medical Publishers, West China Hospital of Sichuan University, Chengdu, PR China
| | - Jingjing Ran
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Min Yang
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Dachao Mou
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xiaoqiu Xu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital of Sichuan University, Chengdu, PR China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, PR China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
8
|
Förster S, Chong YE, Siefker D, Becker Y, Bao R, Escobedo E, Qing Y, Rauch K, Burman L, Burkart C, Kainz P, Cubitt A, Muders M, Nangle LA. Development and Characterization of a Novel Neuropilin-2 Antibody for Immunohistochemical Staining of Cancer and Sarcoidosis Tissue Samples. Monoclon Antib Immunodiagn Immunother 2023; 42:157-165. [PMID: 37902990 DOI: 10.1089/mab.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023] Open
Abstract
Neuropilin-2 (NRP2) is a cell surface receptor that plays key roles in lymphangiogenesis, but also in pathophysiological conditions such as cancer and inflammation. NRP2 targeting by efzofitimod, a novel immunomodulatory molecule, is currently being tested for the treatment of pulmonary sarcoidosis. To date, no anti-NRP2 antibodies are available for companion diagnostics. Here we describe the development and characterization of a novel NRP2 antibody. Using a variety of research techniques, that is, enzyme-linked immunoassay, Western blot, biolayer interferometry, and immunohistochemistry, we demonstrate that our antibody detects all major NRP2 isoforms and does not cross-react with NRP1. Using this antibody, we show high NRP2 expression in granulomas from sarcoidosis patient skin and lung biopsies. Our novel anti-NRP2 antibody could prove to be a useful clinical tool for sarcoidosis and other indications where NRP2 has been implicated. Clinical Trial Registration: clinicaltrials.gov NCT05415137.
Collapse
Affiliation(s)
- Sarah Förster
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | | | - Yvonne Becker
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Ruizhi Bao
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Yang Qing
- aTyr Pharma, San Diego, California, USA
| | | | | | | | | | | | - Michael Muders
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
- MVZ Pathologie Bethesda GmbH, Duisburg, Germany
| | | |
Collapse
|
9
|
Li H, Ma T, Hao M, Guo W, Gu J, Zhang X, Wei L. Decoding functional cell-cell communication events by multi-view graph learning on spatial transcriptomics. Brief Bioinform 2023; 24:bbad359. [PMID: 37824741 DOI: 10.1093/bib/bbad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Cell-cell communication events (CEs) are mediated by multiple ligand-receptor (LR) pairs. Usually only a particular subset of CEs directly works for a specific downstream response in a particular microenvironment. We name them as functional communication events (FCEs) of the target responses. Decoding FCE-target gene relations is: important for understanding the mechanisms of many biological processes, but has been intractable due to the mixing of multiple factors and the lack of direct observations. We developed a method HoloNet for decoding FCEs using spatial transcriptomic data by integrating LR pairs, cell-type spatial distribution and downstream gene expression into a deep learning model. We modeled CEs as a multi-view network, developed an attention-based graph learning method to train the model for generating target gene expression with the CE networks, and decoded the FCEs for specific downstream genes by interpreting trained models. We applied HoloNet on three Visium datasets of breast cancer and liver cancer. The results detangled the multiple factors of FCEs by revealing how LR signals and cell types affect specific biological processes, and specified FCE-induced effects in each single cell. We conducted simulation experiments and showed that HoloNet is more reliable on LR prioritization in comparison with existing methods. HoloNet is a powerful tool to illustrate cell-cell communication landscapes and reveal vital FCEs that shape cellular phenotypes. HoloNet is available as a Python package at https://github.com/lhc17/HoloNet.
Collapse
Affiliation(s)
- Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tianxing Ma
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Minsheng Hao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wenbo Guo
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Jin Gu
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Mei Y, Wang X, Zhang J, Liu D, He J, Huang C, Liao J, Wang Y, Feng Y, Li H, Liu X, Chen L, Yi W, Chen X, Bai HM, Wang X, Li Y, Wang L, Liang Z, Ren X, Qiu L, Hui Y, Zhang Q, Leng Q, Chen J, Jia G. Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. NATURE CANCER 2023; 4:1273-1291. [PMID: 37460871 DOI: 10.1038/s43018-023-00598-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023]
Abstract
Neoadjuvant immune-checkpoint blockade therapy only benefits a limited fraction of patients with glioblastoma multiforme (GBM). Thus, targeting other immunomodulators on myeloid cells is an attractive therapeutic option. Here, we performed single-cell RNA sequencing and spatial transcriptomics of patients with GBM treated with neoadjuvant anti-PD-1 therapy. We identified unique monocyte-derived tumor-associated macrophage subpopulations with functional plasticity that highly expressed the immunosuppressive SIGLEC9 gene and preferentially accumulated in the nonresponders to anti-PD-1 treatment. Deletion of Siglece (murine homolog) resulted in dramatically restrained tumor development and prolonged survival in mouse models. Mechanistically, targeting Siglece directly activated both CD4+ T cells and CD8+ T cells through antigen presentation, secreted chemokines and co-stimulatory factor interactions. Furthermore, Siglece deletion synergized with anti-PD-1/PD-L1 treatment to improve antitumor efficacy. Our data demonstrated that Siglec-9 is an immune-checkpoint molecule on macrophages that can be targeted to enhance anti-PD-1/PD-L1 therapeutic efficacy for GBM treatment.
Collapse
Affiliation(s)
- Yan Mei
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xiumei Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ji Zhang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junjie He
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Chunliu Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yingzhao Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongyi Feng
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Lingdan Chen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hong-Min Bai
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xinyu Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiyi Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Liang
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | | | - Li Qiu
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Yuan Hui
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Qibin Leng
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Jinfeng Laboratory, Chongqing, China.
| | - Guangshuai Jia
- GMU-GIBH Joint School of Life Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, China.
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
11
|
Khan NA, Asim M, Biswas KH, Alansari AN, Saman H, Sarwar MZ, Osmonaliev K, Uddin S. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: recent advances and emerging concepts. J Exp Clin Cancer Res 2023; 42:221. [PMID: 37641132 PMCID: PMC10463467 DOI: 10.1186/s13046-023-02753-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/08/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths globally, and the survival rate remains low despite advances in diagnosis and treatment. The progression of lung cancer is a multifaceted and dynamic phenomenon that encompasses interplays among cancerous cells and their microenvironment, which incorporates immune cells. Exosomes, which are small membrane-bound vesicles, are released by numerous cell types in normal and stressful situations to allow communication between cells. Tumor-derived exosomes (TEXs) possess diverse neo-antigens and cargoes such as proteins, RNA, and DNA and have a unique molecular makeup reflecting tumor genetic complexity. TEXs contain both immunosuppressive and immunostimulatory factors and may play a role in immunomodulation by influencing innate and adaptive immune components. Moreover, they transmit signals that contribute to the progression of lung cancer by promoting metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and immunosuppression. This makes them a valuable resource for investigating the immune environment of tumors, which could pave the way for the development of non-invasive biomarkers that could aid in the prognosis, diagnosis, and immunotherapy of lung cancer. While immune checkpoint inhibitor (ICI) immunotherapy has shown promising results in treating initial-stage cancers, most patients eventually develop adaptive resistance over time. Emerging evidence demonstrates that TEXs could serve as a prognostic biomarker for immunotherapeutic response and have a significant impact on both systemic immune suppression and tumor advancement. Therefore, understanding TEXs and their role in lung cancer tumorigenesis and their response to immunotherapies is an exciting research area and needs further investigation. This review highlights the role of TEXs as key contributors to the advancement of lung cancer and their clinical significance in lung immune-oncology, including their possible use as biomarkers for monitoring disease progression and prognosis, as well as emerging shreds of evidence regarding the possibility of using exosomes as targets to improve lung cancer therapy.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar.
- Faculty of Medical Sciences, Ala-Too International University, Bishkek, Kyrgyzstan.
| | - Mohammad Asim
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Amani N Alansari
- Department of Surgery, Trauma and Vascular Surgery Clinical Research, Hamad General Hospital, 3050, Doha, Qatar
| | - Harman Saman
- Department of Medicine, Hazm Maubrairek Hospital, Al-Rayyan, Doha, 3050, Qatar
| | | | | | - Shahab Uddin
- Translational Research Institute & Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.
- Department of Biosciences, Integral University, Lucknow, 226026, UP, India.
| |
Collapse
|
12
|
Li J, Han T. Comprehensive analysis of the oncogenic roles of vascular endothelial growth factors and their receptors in stomach adenocarcinoma. Heliyon 2023; 9:e17687. [PMID: 37449140 PMCID: PMC10336736 DOI: 10.1016/j.heliyon.2023.e17687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Background Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) play complicated oncogenic roles in multiple tumors by initiating and promoting tumor angiogenesis and lymphangiogenesis. The main goal of our study was to comprehensively investigate the oncogenic roles of VEGFs and VEGFRs in stomach adenocarcinoma (STAD). Methods The present study applied multiple bioinformatic tools to comprehensively explore the expression levels, prognostic values, genetic alterations and immune infiltrations of VEGFs and VEGFRs in STAD patients. Results We found that VEGFA, VEGFC, placenta growth factor, FLT1, KDR, FLT4, and Neuropilin 1 were overexpressed in STAD, while the expression of VEGFB and VEGFD were decreased. Survival analysis revealed that higher transcription levels of VEGF/VEGFRs were obviously correlated with worse clinical outcome in STAD patients. Additionally, high alteration frequencies of VEGFs and VEGFRs (27%) were observed in STAD patients, and alterations of VEGFs and VEGFRs improved their prognosis. The expression of VEGFs and VEGFRs was remarkably associated with immune cell infiltration and immune checkpoint expression in STAD patients. Conclusion Our study systematically explored the transcriptome profiles and distinct prognostic values of VEGFs and their receptors in STAD and contributed to a better understanding of the oncogenic roles of VEGF/VEGFR members in STAD.
Collapse
Affiliation(s)
| | - Ting Han
- Corresponding author. Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
13
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
14
|
Xu K, Liu Y, Luo H, Wang T. Efferocytosis signatures as prognostic markers for revealing immune landscape and predicting immunotherapy response in hepatocellular carcinoma. Front Pharmacol 2023; 14:1218244. [PMID: 37383726 PMCID: PMC10294713 DOI: 10.3389/fphar.2023.1218244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly lethal liver cancer with late diagnosis; therefore, the identification of new early biomarkers could help reduce mortality. Efferocytosis, a process in which one cell engulfs another cell, including macrophages, dendritic cells, NK cells, etc., plays a complex role in tumorigenesis, sometimes promoting and sometimes inhibiting tumor development. However, the role of efferocytosis-related genes (ERGs) in HCC progression has been poorly studied, and their regulatory effects in HCC immunotherapy and drug targeting have not been reported. Methods: We downloaded efferocytosis-related genes from the Genecards database and screened for ERGs that showed significant expression changes between HCC and normal tissues and were associated with HCC prognosis. Machine learning algorithms were used to study prognostic gene features. CIBERSORT and pRRophetic R packages were used to evaluate the immune environment of HCC subtypes and predict treatment response. CCK-8 experiments conducted on HCC cells were used to assess the reliability of drug sensitivity prediction. Results: We constructed a prognostic prediction model composed of six genes, and the ROC curve showed good predictive accuracy of the risk model. In addition, two ERG-related subgroups in HCC showed significant differences in tumor immune landscape, immune response, and prognostic stratification. The CCK-8 experiment conducted on HCC cells confirmed the reliability of drug sensitivity prediction. Conclusion: Our study emphasizes the importance of efferocytosis in HCC progression. The risk model based on efferocytosis-related genes developed in our study provides a novel precision medicine approach for HCC patients, allowing clinicians to customize treatment plans based on unique patient characteristics. The results of our investigation carry noteworthy implications for the development of individualized treatment approaches involving immunotherapy and chemotherapy, thereby potentially facilitating the realization of personalized and more efficacious therapeutic interventions for HCC.
Collapse
Affiliation(s)
- Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Yu Liu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing, China
| | - Tengfei Wang
- Department of Equipment, Bishan Hospital of Chongqing, Chongqing, China
| |
Collapse
|
15
|
Zhai X, Pu D, Wang R, Zhang J, Lin Y, Wang Y, Zhai N, Peng X, Zhou Q, Li L. Gas6/AXL pathway: immunological landscape and therapeutic potential. Front Oncol 2023; 13:1121130. [PMID: 37265798 PMCID: PMC10231434 DOI: 10.3389/fonc.2023.1121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
Cancer is a disease with ecological and evolutionary unity, which seriously affects the survival and quality of human beings. Currently, many reports have suggested Gas6 plays an important role in cancer. Binding of gas6 to TAM receptors is associated with the carcinogenetic mechanisms of multiple malignancies, such as in breast cancer, chronic lymphocytic leukemia, non-small cell lung cancer, melanoma, prostate cancer, etc., and shortened overall survival. It is accepted that the Gas6/TAM pathway can promote the malignant transformation of various types of cancer cells. Gas6 has the highest affinity for Axl, an important member of the TAM receptor family. Knockdown of the TAM receptors Axl significantly affects cell cycle progression in tumor cells. Interestingly, Gas6 also has an essential function in the tumor microenvironment. The Gas6/AXL pathway regulates angiogenesis, immune-related molecular markers and the secretion of certain cytokines in the tumor microenvironment, and also modulates the functions of a variety of immune cells. In addition, evidence suggests that the Gas6/AXL pathway is involved in tumor therapy resistance. Recently, multiple studies have begun to explore in depth the importance of the Gas6/AXL pathway as a potential tumor therapeutic target as well as its broad promise in immunotherapy; therefore, a timely review of the characteristics of the Gas6/AXL pathway and its value in tumor treatment strategies is warranted. This comprehensive review assessed the roles of Gas6 and AXL receptors and their associated pathways in carcinogenesis and cancer progression, summarized the impact of Gas6/AXL on the tumor microenvironment, and highlighted the recent research progress on the relationship between Gas6/AXL and cancer drug resistance.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rulan Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiabi Zhang
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, United States
| | - Yiyun Lin
- Graduate School of Biomedical Sciences, MD Anderson Cancer Center UT Health, Houston, TX, United States
| | - Yuqing Wang
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Ni Zhai
- Neurosurgery Intensive Care Unit, The 987th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Baoji, Shanxi, China
| | - Xuan Peng
- Department of Pathophysiology, Hubei Minzu University, Enshi, Hubei, China
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Hautz T, Salcher S, Fodor M, Sturm G, Ebner S, Mair A, Trebo M, Untergasser G, Sopper S, Cardini B, Martowicz A, Hofmann J, Daum S, Kalb M, Resch T, Krendl F, Weissenbacher A, Otarashvili G, Obrist P, Zelger B, Öfner D, Trajanoski Z, Troppmair J, Oberhuber R, Pircher A, Wolf D, Schneeberger S. Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine perfusion of the liver. Nat Commun 2023; 14:2285. [PMID: 37085477 PMCID: PMC10121614 DOI: 10.1038/s41467-023-37674-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Normothermic machine perfusion (NMP) has emerged as an innovative organ preservation technique. Developing an understanding for the donor organ immune cell composition and its dynamic changes during NMP is essential. We aimed for a comprehensive characterization of immune cell (sub)populations, cell trafficking and cytokine release during liver NMP. Single-cell transcriptome profiling of human donor livers prior to, during NMP and after transplantation shows an abundance of CXC chemokine receptor 1+/2+ (CXCR1+/CXCR2+) neutrophils, which significantly decreased during NMP. This is paralleled by a large efflux of passenger leukocytes with neutrophil predominance in the perfusate. During NMP, neutrophils shift from a pro-inflammatory state towards an aged/chronically activated/exhausted phenotype, while anti-inflammatory/tolerogenic monocytes/macrophages are increased. We herein describe the dynamics of the immune cell repertoire, phenotypic immune cell shifts and a dominance of neutrophils during liver NMP, which potentially contribute to the inflammatory response. Our findings may serve as resource to initiate future immune-interventional studies.
Collapse
Affiliation(s)
- T Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Sturm
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - S Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Trebo
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - G Untergasser
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - S Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - B Cardini
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Martowicz
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - J Hofmann
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S Daum
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - M Kalb
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - T Resch
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - F Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - G Otarashvili
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - P Obrist
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - B Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - D Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - J Troppmair
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - R Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria
| | - D Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck, Innsbruck, Austria.
| | - S Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory and D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
17
|
He LH, Zhang XZ, Lao MY, Zhang HJ, Yang HS, Bai XL. Immune Checkpoint Neuropilins as Novel Biomarkers and Therapeutic Targets for Pancreatic Cancer. Cancers (Basel) 2023; 15:cancers15082225. [PMID: 37190154 DOI: 10.3390/cancers15082225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The traditional immune checkpoint blockade therapy benefits some patients with cancer, but elicits no response in certain cancers, such as pancreatic adenocarcinoma (PAAD); thus, novel checkpoints and effective targets are required. Here, we found that there was a higher Neuropilin (NRP) expression in tumor tissues as novel immune checkpoints, which was associated with poor prognosis and pessimistic responses to immune checkpoint blockade therapy. In the tumor microenvironment of PAAD samples, NRPs were widely expressed in tumor, immune and stromal cells. The relationship of NRPs with tumor immunological features in PAAD and pan-cancer was evaluated using bioinformatics methods; it was positively correlated with the infiltration of myeloid immune cells and the expression of most immune checkpoint genes. Bioinformatics analysis, in vitro and in vivo experiments suggested that NRPs exhibit potential immune-related and immune-independent pro-tumor effects. NRPs, especially NRP1, are attractive biomarkers and therapeutic targets for cancers, particularly PAAD.
Collapse
Affiliation(s)
- Li-Hong He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Zhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Meng-Yi Lao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Han-Jia Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Han-Shen Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Diseases, Hangzhou 310009, China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic Diseases, Hangzhou 310009, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Fernández-Palanca P, Payo-Serafín T, Méndez-Blanco C, San-Miguel B, Tuñón MJ, González-Gallego J, Mauriz JL. Neuropilins as potential biomarkers in hepatocellular carcinoma: a systematic review of basic and clinical implications. Clin Mol Hepatol 2023; 29:293-319. [PMID: 36726054 PMCID: PMC10121286 DOI: 10.3350/cmh.2022.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapies for solid tumours. Nat Rev Immunol 2023; 23:106-120. [PMID: 35697799 DOI: 10.1038/s41577-022-00737-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/04/2023]
Abstract
Myeloid cells are the most abundant immune components of the tumour microenvironment, where they have a variety of functions, ranging from immunosuppressive to immunostimulatory roles. The myeloid cell compartment comprises many different cell types, including monocytes, macrophages, dendritic cells and granulocytes, that are highly plastic and can differentiate into diverse phenotypes depending on cues received from their microenvironment. In the past few decades, we have gained a better appreciation of the complexity of myeloid cell subsets and how they are involved in tumour progression and resistance to cancer therapies, including immunotherapy. In this Review, we highlight key features of monocyte and macrophage biology that are being explored as potential targets for cancer therapies and what aspects of myeloid cells need a deeper understanding to identify rational combinatorial strategies to improve clinical outcomes of patients with cancer. We discuss therapies that aim to modulate the functional activities of myeloid cell populations, impacting their recruitment, survival and activity in the tumour microenvironment, acting at the level of cell surface receptors, signalling pathways, epigenetic machinery and metabolic regulators. We also describe advances in the development of genetically engineered myeloid cells for cancer therapy.
Collapse
Affiliation(s)
- Sangeeta Goswami
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swetha Anandhan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson UT Health Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deblina Raychaudhuri
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The Immunotherapy Platform, The University of Texas MD Anderson Cancer, Center, Houston, TX, USA.
| |
Collapse
|
20
|
Lang C, Roy S, Wang Y, Graves D, Xu Y, Serezani CH, Korrer M, Kim YJ. Efferocytosis drives myeloid NLRP3 dependent inflammasome signaling secretion of IL-1β to promote tumor growth. Front Immunol 2022; 13:993771. [PMID: 36439171 PMCID: PMC9681818 DOI: 10.3389/fimmu.2022.993771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Caspase-1 signaling in myeloid suppressor cells can promote T-cell independent cancer progression, but the regulation of inflammasome signaling within the highly heterogeneous myeloid population in the tumor milieu remains elusive. To resolve this complexity, single cell transcriptomic profile of Head and Neck Squamous Cell Carcinoma (HNSCC) identified distinct inflammasome-associated genes within specific clusters of tumor-infiltrating myeloid cells. Among these myeloid cells, the sensor protein, NLRP3, and downstream effector IL-1β transcripts were enriched in discreet monocytic and macrophage subtypes in the TME. We showed that deletion of NLRP3, but not AIM2, phenocopied caspase-1/IL-1β dependent tumor progression in vivo. Paradoxically, we found myeloid-intrinsic caspase-1 signaling increased myeloid survival contrary to what would be predicted from the canonical pyroptotic function of caspase-1. This myeloid NLRP3/IL-1β signaling axis promotion of tumor growth was found to be gasdermin D independent. Mechanistically, we found that phagocyte-mediated efferocytosis of dying tumor cells in the TME directly activated NLRP3-dependent inflammasome signaling to drive IL-1β secretion. Subsequently we showed that NLRP3-mediated IL-1β production drives tumor growth in vivo. Dynamic RNA velocity analysis showed a robust directional flow from efferocytosis gene-set high macrophages to an inflammasome gene-set high macrophage population. We provide a novel efferocytosis-dependent inflammasome signaling pathway which mediates homeostatic tumor cell apoptosis that characterizes chronic inflammation-induced malignancy.
Collapse
Affiliation(s)
- Cara Lang
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, United States
| | - Sohini Roy
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Diana Graves
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, United States
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - C. Henrique Serezani
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael Korrer
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Young J. Kim
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Young J. Kim,
| |
Collapse
|
21
|
Wang Y, Deng W, Liu J, Yang Q, Chen Z, Su J, Xu J, Liang Q, Li T, Liu L, Li X. IKKβ increases neuropilin-2 and promotes the inhibitory function of CD9+ Bregs to control allergic diseases. Pharmacol Res 2022; 185:106517. [DOI: 10.1016/j.phrs.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 10/31/2022]
|
22
|
Tian XM, Xiang B, Jin LM, Mi T, Wang JK, Zhanghuang C, Zhang ZX, Chen ML, Shi QL, Liu F, Lin T, Wei GH. Immune-related gene signature associates with immune landscape and predicts prognosis accurately in patients with Wilms tumour. Front Immunol 2022; 13:920666. [PMID: 36172369 PMCID: PMC9510599 DOI: 10.3389/fimmu.2022.920666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Wilms tumour (WT) is the most common kidney malignancy in children. Chemoresistance is the leading cause of tumour recurrence and poses a substantial therapeutic challenge. Increasing evidence has underscored the role of the tumour immune microenvironment (TIM) in cancers and the potential for immunotherapy to improve prognosis. There remain no reliable molecular markers for reflecting the immune landscape and predicting patient survival in WT. Here, we examine differences in gene expression by high-throughput RNA sequencing, focused on differentially expressed immune-related genes (IRGs) based on the ImmPort database. Via univariate Cox regression analysis and Lasso-penalized Cox regression analysis, IRGs were screened out to establish an immune signature. Kaplan-Meier curves, time-related ROC analysis, univariate and multivariate Cox regression studies, and nomograms were used to evaluate the accuracy and prognostic significance of this signature. Furthermore, we found that the immune signature could reflect the immune status and the immune cell infiltration character played in the tumour microenvironment (TME) and showed significant association with immune checkpoint molecules, suggesting that the poor outcome may be partially explained by its immunosuppressive TME. Remarkably, TIDE, a computational method to model tumour immune evasion mechanisms, showed that this signature holds great potential for predicting immunotherapy responses in the TARGET-wt cohort. To decipher the underlying mechanism, GSEA was applied to explore enriched pathways and biological processes associated with immunophenotyping and Connectivity map (CMap) along with DeSigN analysis for drug exploration. Finally, four candidate immune genes were selected, and their expression levels in WT cell lines were monitored via qRT-PCR. Meanwhile, we validated the function of a critical gene, NRP2. Taken together, we established a novel immune signature that may serve as an effective prognostic signature and predictive biomarker for immunotherapy response in WT patients. This study may give light on therapeutic strategies for WT patients from an immunological viewpoint.
Collapse
Affiliation(s)
- Xiao-Mao Tian
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Bin Xiang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Li-Ming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Jin-Kui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Chenghao Zhanghuang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Zhao-Xia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Mei-Ling Chen
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Qin-Lin Shi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| | - Feng Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
- *Correspondence: Feng Liu,
| | - Tao Lin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guang-Hui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China
| |
Collapse
|
23
|
Flavonoids regulate tumor-associated macrophages - From structure-activity relationship to clinical potential (Review). Pharmacol Res 2022; 184:106419. [PMID: 36041653 DOI: 10.1016/j.phrs.2022.106419] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/13/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
In recent years, the strategy for tumor therapy has changed from focusing on the direct killing effect of different types of therapeutic agents on cancer cells to the new mainstream of multi-mode and -pathway combined interventions in the microenvironment of the developing tumor. Flavonoids, with unique tricyclic structures, have diverse and extensive immunomodulatory and anti-cancer activities in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immunosuppressive cells in the TME. The regulation of macrophages to fight cancer is a promising immunotherapeutic strategy. This study covers the most comprehensive cognition of flavonoids in regulating TAMs so far. Far more than a simple list of studies, we try to dig out evidence of crosstalk at the molecular level between flavonoids and TAMs from literature, in order to discuss the most relevant chemical structure and its possible relationship with the multimodal pharmacological activity, as well as systematically build a structure-activity relationship between flavonoids and TAMs. Additionally, we point out the advantages of the macro-control of flavonoids in the TME and discuss the potential clinical implications as well as areas for future research of flavonoids in regulating TAMs. These results will provide hopeful directions for the research of antitumor drugs, while providing new ideas for the pharmaceutical industry to develop more effective forms of flavonoids.
Collapse
|
24
|
Peng H, Hu B, Xie LQ, Su T, Li CJ, Liu Y, Yang M, Xiao Y, Feng X, Zhou R, Guo Q, Zhou HY, Huang Y, Jiang TJ, Luo XH. A mechanosensitive lipolytic factor in the bone marrow promotes osteogenesis and lymphopoiesis. Cell Metab 2022; 34:1168-1182.e6. [PMID: 35705079 DOI: 10.1016/j.cmet.2022.05.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
Exercise can prevent osteoporosis and improve immune function, but the mechanism remains unclear. Here, we show that exercise promotes reticulocalbin-2 secretion from the bone marrow macrophages to initiate bone marrow fat lipolysis. Given the crucial role of lipolysis in exercise-stimulated osteogenesis and lymphopoiesis, these findings suggest that reticulocalbin-2 is a pivotal regulator of a local adipose-osteogenic/immune axis. Mechanistically, reticulocalbin-2 binds to a functional receptor complex, which is composed of neuronilin-2 and integrin beta-1, to activate a cAMP-PKA signaling pathway that mobilizes bone marrow fat via lipolysis to fuel the differentiation and function of mesenchymal and hematopoietic stem cells. Notably, the administration of recombinant reticulocalbin-2 in tail-suspended and old mice remarkably decreases bone marrow fat accumulation and promotes osteogenesis and lymphopoiesis. These findings identify reticulocalbin-2 as a novel mechanosensitive lipolytic factor in maintaining energy homeostasis in bone resident cells, and it provides a promising target for skeletal and immune health.
Collapse
Affiliation(s)
- Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ling-Qi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan 410008, China.
| |
Collapse
|
25
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
26
|
Islam R, Mishra J, Polavaram NS, Bhattacharya S, Hong Z, Bodas S, Sharma S, Bouska A, Gilbreath T, Said AM, Smith LM, Teply BA, Muders MH, Batra SK, Datta K, Dutta S. Neuropilin-2 axis in regulating secretory phenotype of neuroendocrine-like prostate cancer cells and its implication in therapy resistance. Cell Rep 2022; 40:111097. [PMID: 35858551 PMCID: PMC9362995 DOI: 10.1016/j.celrep.2022.111097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Navatha Shree Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Zhengdong Hong
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sanika Bodas
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Alyssa Bouska
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Tyler Gilbreath
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Ahmed M Said
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo, Egypt
| | - Lynette M Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Benjamin A Teply
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Michael H Muders
- Department of Prostate Cancer Research, Center for Pathology, University of Bonn Medical Center, Bonn, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, BCC, Omaha, NE 68198, USA.
| |
Collapse
|
27
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis 2022; 13:512. [PMID: 35641492 PMCID: PMC9156694 DOI: 10.1038/s41419-022-04966-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a maladaptive chronic inflammatory disease, which remains the leading cause of death worldwide. The NLRP3 inflammasome constitutes a major driver of atherosclerosis, yet the mechanism of action is poorly understood. Mitochondrial dysfunction is essential for NLRP3 inflammasome activation. However, whether activated NLRP3 inflammasome exacerbates mitochondrial dysfunction remains to be further elucidated. Herein, we sought to address these issues applying VX765, a well-established inhibitor of caspase 1. VX765 robustly restrains caspase 1-mediated interleukin-1β production and gasdermin D processing. Our study assigned VX765 a novel role in antagonizing NLRP3 inflammasome assembly and activation. VX765 mitigates mitochondrial damage induced by activated NLRP3 inflammasome, as evidenced by decreased mitochondrial ROS production and cytosolic release of mitochondrial DNA. VX765 blunts caspase 1-dependent cleavage and promotes mitochondrial recruitment and phosphorylation of Parkin, a key mitophagy regulator. Functionally, VX765 facilitates mitophagy, efferocytosis and M2 polarization of macrophages. It also impedes foam cell formation, migration and pyroptosis of macrophages. VX765 boosts autophagy, promotes efferocytosis, and alleviates vascular inflammation and atherosclerosis in both ApoE-/- and Ldlr-/- mice. However, these effects of VX765 were abrogated upon ablation of Nlrp3 in ApoE-/- mice. This work provides mechanistic insights into NLRP3 inflammasome assembly and this inflammasome in dictating atherosclerosis. This study highlights that manipulation of caspase 1 paves a new avenue to treatment of atherosclerotic cardiovascular disease.
Collapse
|
29
|
Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC. Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Front Immunol 2022; 13:830169. [PMID: 35651620 PMCID: PMC9149656 DOI: 10.3389/fimmu.2022.830169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Katherine E Jones
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amy A Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Seth H Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Fangyuan Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Cecile Nasarre
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Zhanpeng Cen
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yi-Nan Gong
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C LaRue
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Simon Cancer Center, Indianapolis, IN, United States
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert M Gemmill
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| |
Collapse
|
30
|
Wang B, Guo W, Qiu C, Sun Y, Zhao C, Wu C, Lai X, Feng X. Alveolar macrophage‐derived NRP2 curtails lung injury while boosting host defense in bacterial pneumonia. J Leukoc Biol 2022; 112:499-512. [PMID: 35435271 DOI: 10.1002/jlb.4a1221-770r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Bing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Wei Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Chen Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Yunyan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Chunxiao Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Caihong Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University Yunnan Cancer Center Kunming China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Disease Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
- Central Laboratory Fujian Medical University Union Hospital Fuzhou China
| |
Collapse
|
31
|
Immormino RM, Jania CM, Tilley SL, Moran TP. Neuropilin‐2 regulates airway inflammation in a neutrophilic asthma model. Immun Inflamm Dis 2022; 10:e575. [PMID: 34861108 PMCID: PMC8926497 DOI: 10.1002/iid3.575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 01/22/2023] Open
Abstract
Background Asthma is a heterogenous disease that can be classified into eosinophilic (type 2‐high) and noneosinophilic (type 2‐low) endotypes. The type 2‐low endotype of asthma can be characterized by the presence of neutrophilic airway inflammation that is poorly responsive to corticosteroids. Dysregulated innate immune responses to microbial products including Toll‐like receptor (TLR) ligands have been associated with the pathogenesis of neutrophilic asthma. The key molecules that regulate inflammatory responses in individuals with neutrophilic asthma remain unclear. We previously reported that the immunoregulatory receptor neuropilin‐2 (NRP2) is expressed by murine and human alveolar macrophage (AM) and suppresses lipopolysaccharide (LPS)‐induced neutrophilic airway inflammation. Methods Here, we investigated the immunoregulatory role of NRP2 in a mouse model of neutrophilic asthma. Results We found that TLR ligands, but not T helper 2 (Th2)‐promoting adjuvants, induced NRP2 expression by AM. Using an LPS‐mediated model of neutrophilic asthma, we demonstrate that NRP2 was increased in AM and other lung antigen‐presenting cells following airway challenge with antigen. Conditional deletion of NRP2 in myeloid cells exacerbated airway inflammation in a neutrophilic asthma model. In contrast, myeloid‐specific ablation of NRP2 did not affect airway inflammation in a Th2‐mediated eosinophilic asthma model. Myeloid‐specific ablation of NRP2 did not affect Th1/Th17 responses to inhaled antigens or expression of neutrophil chemokines but rather resulted in impaired efferocytosis by AM, which is necessary for effective resolution of airway inflammation. Conclusion Our findings suggest that NRP2 is a negative regulator of airway inflammation associated with neutrophilic asthma.
Collapse
Affiliation(s)
- Robert M. Immormino
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
| | - Corey M. Jania
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Stephen L. Tilley
- Department of Medicine University of North Carolina Chapel Hill North Carolina USA
| | - Timothy P. Moran
- Center for Environmental Medicine, Asthma and Lung Biology University of North Carolina Chapel Hill North Carolina USA
- Department of Pediatrics University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|
32
|
Zheng X, Xiao J, Jiang Q, Zheng L, Liu C, Dong C, Zheng Y, Ni P, Zhang C, Zhang F, Zhong R, Ding H, Wang Q, Qiu Y, Gao M, Ding J, Shen N, Wei B, Wang H. AKT2 reduces IFNβ1 production to modulate antiviral responses and systemic lupus erythematosus. EMBO J 2022; 41:e108016. [PMID: 35191555 PMCID: PMC8922272 DOI: 10.15252/embj.2021108016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Interferon regulatory factor 3 (IRF3)-induced type I interferon (I-IFN) production plays key roles in both antiviral and autoimmune responses. IRF3 phosphorylation, dimerization, and nuclear localization are needed for its activation and function, but the precise regulatory mechanisms remain to be explored. Here, we show that the serine/threonine kinase AKT2 interacts with IRF3 and phosphorylates it on Thr207, thereby attenuating IRF3 nuclear translocation in a 14-3-3ε-dependent manner and reducing I-IFN production. We further find that AKT2 expression is downregulated in viral-infected macrophages or in monocytes and tissue samples from systemic lupus erythematosus (SLE) patients and mouse models. Akt2-deficient mice exhibit increased I-IFN induction and reduced mortality in response to viral infection, but aggravated severity of SLE. Overexpression of AKT2 kinase-inactive or IRF3-T207A mutants in zebrafish supports that AKT2 negatively regulates I-IFN production and antiviral response in a kinase-dependent manner. This negative role of AKT2 in IRF3-induced I-IFN production suggests that AKT2 may be therapeutically targeted to differentially regulate antiviral infection and SLE.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jun Xiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qi Jiang
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingming Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chang Liu
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chen Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuxiao Zheng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Peili Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fang Zhang
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruiyue Zhong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Qiong Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minxia Gao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Bin Wei
- Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
33
|
Jiang J, Zhang F, Wan Y, Fang K, Yan ZD, Ren XL, Zhang R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front Oncol 2022; 12:793805. [PMID: 35155237 PMCID: PMC8830438 DOI: 10.3389/fonc.2022.793805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
Semaphorins are a large class of secreted or membrane-bound molecules. It has been reported that semaphorins play important roles in regulating several hallmarks of cancer, including angiogenesis, metastasis, and immune evasion. Semaphorins and their receptors are widely expressed on tumor cells and immune cells. However, the biological role of semaphorins in tumor immune microenvironment is intricate. The dysregulation of semaphorins influences the recruitment and infiltration of immune cells, leading to abnormal anti-tumor effect. Although the underlying mechanisms of semaphorins on regulating tumor-infiltrating immune cell activation and functions are not fully understood, semaphorins can notably be promising immunotherapy targets for cancer.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Health Service, Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Fang Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Wan
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ke Fang
- Department of Health Service, Fourth Military Medical University, Xi'an, China
| | - Ze-Dong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xin-Ling Ren
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pulmonary Medicine, Shenzhen General Hospital, Shenzhen University, Shenzhen, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
34
|
Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth. Oncogene 2022; 41:1752-1766. [PMID: 35124697 PMCID: PMC8933280 DOI: 10.1038/s41388-022-02203-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
Abstract
AbstractEGLN3 is critically important for growth of various cancers including lung cancer. However, virtually nothing is known about the role and mechanism for EGLN3 hydroxylase activity in cancers. EGLN3 catalyzes the hydroxylation of extracellular signal-regulated kinase 3 (Erk3), a potent driver of cancers. The role and mechanism for EGLN3-induced stabilization of Erk3 remain to be defined. Here, we show that Erk3 interacts with heat shock cognate protein of 70 kDa (HSC70) and lysosome-associated membrane protein type 2 A (LAMP2A), two core components of chaperone-mediated autophagy (CMA). As a consequence, Erk3 is degraded by the CMA-lysosome pathway. EGLN3-catalyzed hydroxylation antagonizes CMA-dependent destruction of Erk3. Mechanistically, hydroxylation blunts the interaction of Erk3 with LAMP2A, thereby blocking lysosomal decay of Erk3. EGLN3 inactivation inhibits macrophage migration, efferocytosis, and M2 polarization. Studies using EGLN3 catalytically inactive knock-in mice indicate that inactivation of EGLN3 hydroxylase in host cells ameliorates LLC cancer growth through reprogramming the tumor microenvironment (TME). Adoptive transfer of macrophages with inactivated EGLN3 restrains tumor growth by mounting anti-tumor immunity and restricting angiogenesis. Administration of EGLN3 hydroxylase pharmacologic inhibitor to mice bearing LLC carcinoma impedes cancer growth by targeting the TME. LLC cells harboring inactivated EGLN3 exhibit reduced tumor burden via mitigating immunosuppressive milieu and inducing cancer senescence. This study provides novel insights into the role of CMA in regulating Erk3 stability and the mechanism behind EGLN3-enhanced stability of Erk3. This work demonstrates that inactivation of EGLN3 in malignant and stromal cells suppresses tumor by orchestrating reciprocal interplays between cancer cells and the TME. This work sheds new light on the role and mechanism for EGLN3 catalytic activity in regulating cancer growth. Manipulating EGLN3 activity holds promise for cancer treatment.
Collapse
|
35
|
Luo S, Wang F, Chen S, Chen A, Wang Z, Gao X, Kong X, Zuo G, Zhou W, Gu Y, Ge Z, Zhang J. NRP2 promotes atherosclerosis by upregulating PARP1 expression and enhancing low shear stress-induced endothelial cell apoptosis. FASEB J 2022; 36:e22079. [PMID: 35028975 DOI: 10.1096/fj.202101250rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
Atherosclerosis-related cardiovascular diseases are leading causes of mortality worldwide, characterized by the development of endothelial cell dysfunction, increased oxidized low-density lipoprotein uptake by macrophages, and the ensuing formation of atherosclerotic plaque. Local blood flow patterns cause uneven atherosclerotic lesion distribution, and endothelial dysfunction caused by disturbed flow is an early step in the development of atherosclerosis. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin 2 (NRP2) under low shear stress (LSS) in the atheroprone phenotype of endothelial cells. We observed that NRP2 expression was significantly upregulated in LSS-stimulated human umbilical vein endothelial cells (HUVECs) and in mouse aortic endothelial cells. Knockdown of NRP2 in HUVECs significantly ameliorated cell apoptosis induced by LSS. Conversely, overexpression of NRP2 had the opposite effect on HUVEC apoptosis. Animal experiments suggest that NRP2 knockdown markedly mitigated the development of atherosclerosis in Apoe-/- mice. Mechanistically, NRP2 knockdown and overexpression regulated PARP1 protein expression in the condition of LSS, which in turn affected the expression of apoptosis-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 expression in the progression of atherosclerosis. These findings suggest that NRP2 plays an essential proatherosclerotic role through the regulation of cell apoptosis, and the results reveal that NRP2 is a promising therapeutic target for the treatment of atherosclerotic disorders.
Collapse
Affiliation(s)
- Shuai Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Aiqun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhimei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Nanjing Heart Centre, Nanjing, China
| |
Collapse
|
36
|
Extracellular HSP90α Induces MyD88-IRAK Complex-Associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 Signaling in Macrophages for Tumor-Promoting M2-Polarization. Cells 2022; 11:cells11020229. [PMID: 35053345 PMCID: PMC8774043 DOI: 10.3390/cells11020229] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
M2-polarization and the tumoricidal to tumor-promoting transition are commonly observed with tumor-infiltrating macrophages after interplay with cancer cells or/and other stroma cells. Our previous study indicated that macrophage M2-polarization can be induced by extracellular HSP90α (eHSP90α) secreted from endothelial-to-mesenchymal transition-derived cancer-associated fibroblasts. To extend the finding, we herein validated that eHSP90α-induced M2-polarized macrophages exhibited a tumor-promoting activity and the promoted tumor tissues had significant increases in microvascular density but decreases in CD4+ T-cell level. We further investigated the signaling pathways occurring in eHSP90α-stimulated macrophages. When macrophages were exposed to eHSP90α, CD91 and toll-like receptor 4 (TLR4) functioned as the receptor/co-receptor for eHSP90α binding to recruit interleukin (IL)-1 receptor-associated kinases (IRAKs) and myeloid differentiation factor 88 (MyD88), and next elicited a canonical CD91/MyD88-IRAK1/4-IκB kinase α/β (IKKα/β)-nuclear factor-κB (NF-κB)/interferon regulatory factor 3 (IRF3) signaling pathway. Despite TLR4-MyD88 complex-associated activations of IKKα/β, NF-κB and IRF3 being well-known as involved in macrophage M1-activation, our results demonstrated that the CD91-TLR4-MyD88 complex-associated IRAK1/4-IKKα/β-NF-κB/IRF3 pathway was not only directly involved in M2-associated CD163, CD204, and IL-10 gene expressions but also required for downregulation of M1 inflammatory cytokines. Additionally, Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) were recruited onto MyD88 to induce the phosphorylation and activation of the transcription factor signal transducer and activator of transcription-3 (STAT-3). The JAK2/TYK2-STAT-3 signaling is known to associate with tumor promotion. In this study, the MyD88-JAK2/TYK2-STAT-3 pathway was demonstrated to contribute to eHSP90α-induced macrophage M2-polarization by regulating the expressions of M1- and M2-related genes, proangiogenic protein vascular endothelial growth factor, and phagocytosis-interfering factor Sec22b.
Collapse
|
37
|
A widespread viral entry mechanism: The C-end Rule motif-neuropilin receptor interaction. Proc Natl Acad Sci U S A 2021; 118:2112457118. [PMID: 34772761 PMCID: PMC8670474 DOI: 10.1073/pnas.2112457118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
Many phylogenetically distant animal viruses, including the new coronavirus severe acute respiratory syndrome coronavirus 2, have surface proteins with polybasic sites that are cleaved by host furin and furin-like proteases. Other than priming certain viral surface proteins for fusion, cleavage generates a carboxy-terminal RXXR sequence. This C-end Rule (CendR) motif is known to bind to neuropilin (NRP) receptors on the cell surface. NRPs are ubiquitously expressed, pleiotropic cell surface receptors with important roles in growth factor signaling, vascular biology, and neurobiology, as well as immune homeostasis and activation. The CendR–NRP receptor interaction promotes endocytic internalization and tissue spreading of different cargo, including viral particles. We propose that the interaction between viral surface proteins and NRPs plays an underappreciated and prevalent role in the transmission and pathogenesis of diverse viruses and represents a promising broad-spectrum antiviral target.
Collapse
|
38
|
Chen Q, Li Y, Gao W, Chen L, Xu W, Zhu X. Exosome-Mediated Crosstalk Between Tumor and Tumor-Associated Macrophages. Front Mol Biosci 2021; 8:764222. [PMID: 34722637 PMCID: PMC8549832 DOI: 10.3389/fmolb.2021.764222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nanosized vesicles, derived from the endolysosomal compartment of cells and can shuttle diverse biomolecules such as nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their origin cells. Delivery of these cargoes to recipient cells enables exosomes to influence diverse cellular functions. As one of the most abundant immune cells in the tumor microenvironment, tumor-associated macrophages (TAMs) are educated by the tumor milieu, which is rich in cancer cells and stroma components, to exert functions such as the promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Herein, we focus on exosomes-mediated intercellular communication between tumor cells and TAM in the tumor microenvironment, which may provide new targets for anti-tumor treatment. In this review, we highlight the most recent studies on the effect of tumor/macrophage-derived exosomes on macrophage/tumor function in different cancer types.
Collapse
Affiliation(s)
- Qi Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Affiliated People Hospital of Jiangsu University, Zhenjiang, China
| | - Wujiang Gao
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Chen
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenlin Xu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Oncology and Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,International Genome Center, Jiangsu University, Zhenjiang, China.,Reproduction Medicine Center, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
39
|
Douyère M, Chastagner P, Boura C. Neuropilin-1: A Key Protein to Consider in the Progression of Pediatric Brain Tumors. Front Oncol 2021; 11:665634. [PMID: 34277411 PMCID: PMC8281001 DOI: 10.3389/fonc.2021.665634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropilins are transmembrane glycoproteins that play important roles in cardiovascular and neuronal development, as well as in immunological system regulations. NRP1 functions as a co-receptor, binding numerous ligands, such as SEMA 3 or VEGF and, by doing so, reinforcing their signaling pathways and can also interface with the cytoplasmic protein synectin. NRP1 is expressed in many cancers, such as brain cancers, and is associated with poor prognosis. The challenge today for patients with pediatric brain tumors is to improve their survival rate while minimizing the toxicity of current treatments. The aim of this review is to highlight the involvement of NRP1 in pediatric brain cancers, focusing essentially on the roles of NRP1 in cancer stem cells and in the regulation of the immune system. For this purpose, recent literature and tumor databases were analyzed to show correlations between NRP1 and CD15 (a stem cancer cells marker), and between NRP1 and PDL1, for various pediatric brain tumors, such as high- and low-grade gliomas, medulloblastomas, and ependymomas. Finally, this review suggests a relevant role for NRP1 in pediatric brain tumors progression and identifies it as a potential diagnostic or therapeutic target to improve survival and life quality of these young patients.
Collapse
Affiliation(s)
| | - Pascal Chastagner
- Université de Lorraine, CNRS, CRAN, Nancy, France.,Service d'Onco-Hématologie Pédiatrique, CHRU-Nancy, Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, Nancy, France
| |
Collapse
|
40
|
Polavaram NS, Dutta S, Islam R, Bag AK, Roy S, Poitz D, Karnes J, Hofbauer LC, Kohli M, Costello BA, Jimenez R, Batra SK, Teply BA, Muders MH, Datta K. Tumor- and osteoclast-derived NRP2 in prostate cancer bone metastases. Bone Res 2021; 9:24. [PMID: 33990538 PMCID: PMC8121836 DOI: 10.1038/s41413-021-00136-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/22/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023] Open
Abstract
Understanding the role of neuropilin 2 (NRP2) in prostate cancer cells as well as in the bone microenvironment is pivotal in the development of an effective targeted therapy for the treatment of prostate cancer bone metastasis. We observed a significant upregulation of NRP2 in prostate cancer cells metastasized to bone. Here, we report that targeting NRP2 in cancer cells can enhance taxane-based chemotherapy with a better therapeutic outcome in bone metastasis, implicating NRP2 as a promising therapeutic target. Since, osteoclasts present in the tumor microenvironment express NRP2, we have investigated the potential effect of targeting NRP2 in osteoclasts. Our results revealed NRP2 negatively regulates osteoclast differentiation and function in the presence of prostate cancer cells that promotes mixed bone lesions. Our study further delineated the molecular mechanisms by which NRP2 regulates osteoclast function. Interestingly, depletion of NRP2 in osteoclasts in vivo showed a decrease in the overall prostate tumor burden in the bone. These results therefore indicate that targeting NRP2 in prostate cancer cells as well as in the osteoclastic compartment can be beneficial in the treatment of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Navatha Shree Polavaram
- Department of Microbiology and Pathology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arup K Bag
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sohini Roy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Poitz
- Institute for Clinical Chemistry, University Hospital Dresden, Dresden, Germany
| | | | - Lorenz C Hofbauer
- Center for Healthy Aging and Bone Lab Dresden, Department of Medicine III, Technische Universität Dresden, Dresden, Germany
| | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Raffael Jimenez
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin A Teply
- Internal Medicine, Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael H Muders
- Rudolf- Becker Laboratory for Prostate Cancer Research, Institute of Pathology, University of Bonn Medical Center, Bonn, Germany.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
41
|
Zhou Y, Wang Y, Chen H, Xu Y, Luo Y, Deng Y, Zhang J, Shao A. Immuno-oncology: are TAM receptors in glioblastoma friends or foes? Cell Commun Signal 2021; 19:11. [PMID: 33509214 PMCID: PMC7841914 DOI: 10.1186/s12964-020-00694-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
Tyro3, Axl, and Mertk (TAM) receptors are a subfamily of receptor tyrosine kinases. TAM receptors have been implicated in mediating efferocytosis, regulation of immune cells, secretion of inflammatory factors, and epithelial-to-mesenchymal transition in the tumor microenvironment, thereby serving as a critical player in tumor development and progression. The pro-carcinogenic role of TAM receptors has been widely confirmed, overexpression of TAM receptors is tied to tumor cells growth, metastasis, invasion and treatment resistance. Nonetheless, it is surprising to detect that inhibiting TAM signaling is not all beneficial in the tumor immune microenvironment. The absence of TAM receptors also affects anti-tumor immunity under certain conditions by modulating different immune cells, as the functional diversification of TAM signaling is closely related to tumor immunotherapy. Glioblastoma is the most prevalent and lethal primary brain tumor in adults. Although research regarding the crosstalk between TAM receptors and glioblastoma remains scarce, it appears likely that TAM receptors possess potential anti-tumor effects rather than portraying a total cancer-driving role in the context of glioblastoma. Accordingly, we doubt whether TAM receptors play a double-sided role in glioblastoma, and propose the Janus-faced TAM Hypothesis as a conceptual framework for comprehending the precise underlying mechanisms of TAMs. In this study, we aim to cast a spotlight on the potential multidirectional effects of TAM receptors in glioblastoma and provide a better understanding for TAM receptor-related targeted intervention. Video Abstract
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hailong Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211126, Jiangsu, China
| | - Yi Luo
- The Second Affiliated Hospital of Zhejiang University School of Medicine (Changxing Branch), Changxing, Huzhou, 313100, Zhejiang, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
42
|
Ibrahim AM, Moss MA, Gray Z, Rojo MD, Burke CM, Schwertfeger KL, Dos Santos CO, Machado HL. Diverse Macrophage Populations Contribute to the Inflammatory Microenvironment in Premalignant Lesions During Localized Invasion. Front Oncol 2020; 10:569985. [PMID: 33072601 PMCID: PMC7541939 DOI: 10.3389/fonc.2020.569985] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Myeloid cell heterogeneity remains poorly studied in breast cancer, and particularly in premalignancy. Here, we used single cell RNA sequencing to characterize macrophage diversity in mouse pre-invasive lesions as compared to lesions undergoing localized invasion. Several subpopulations of macrophages with transcriptionally distinct profiles were identified, two of which resembled macrophages in the steady state. While all subpopulations expressed tumor-promoting genes, many of the populations expressed pro-inflammatory genes, differing from reports in tumor-associated macrophages. Gene profiles of the myeloid cells were similar between early and late stages of premalignancy, although expansion of some subpopulations occurred. These results unravel macrophage heterogeneity in early progression and may provide insight into early intervention strategies that target macrophages.
Collapse
Affiliation(s)
- Ayman M Ibrahim
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States.,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States.,Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Matthew A Moss
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Zane Gray
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States.,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States
| | - Michelle D Rojo
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States.,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States
| | - Caitlin M Burke
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States.,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, and Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, United States
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, United States.,Tulane Cancer Center, Louisiana Cancer Research Consortium, New Orleans, LA, United States
| |
Collapse
|
43
|
Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020; 11:1842. [PMID: 32983100 PMCID: PMC7492293 DOI: 10.3389/fimmu.2020.01842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/09/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor-mediated regulation of the host immune system involves an intricate signaling network that results in the tumor's inherent survival benefit. Myeloid cells are central in orchestrating the mechanisms by which tumors escape immune detection and continue their proliferative programming. Myeloid cell activation has historically been classified using a dichotomous system of classical (M1-like) and alternative (M2-like) states, defining general pro- and anti-inflammatory functions, respectively. Explosions in bioinformatics analyses have rapidly expanded the definitions of myeloid cell pro- and anti-inflammatory states with different combinations of tissue- and disease-specific phenotypic and functional markers. These new definitions have allowed researchers to target specific subsets of disease-propagating myeloid cells in order to modify or arrest the natural progression of the associated disease, especially in the context of tumor-immune interactions. Here, we discuss the myeloid cell contribution to solid tumor initiation and maintenance, and strategies to reprogram their phenotypic and functional fate, thereby disabling the network that benefits tumor survival.
Collapse
Affiliation(s)
- Vitaliy Davidov
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Garrett Jensen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Sunny Mai
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-Hsia Chen
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| | - Ping-Ying Pan
- Texas A&M College of Medicine, Bryan, TX, United States.,Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
44
|
Caponegro MD, Thompson KK, Tayyab M, Tsirka SE. A Rigorous Quantitative Approach to Analyzing Phagocytosis Assays. Bio Protoc 2020; 10:e3698. [PMID: 33209965 DOI: 10.21769/bioprotoc.3698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Studying monocytic cells in isolated systems in vitro contributes significantly to the understanding of innate immune physiology. Functional assays produce read outs which can be used to measure responses to selected stimuli, such as pathogen exposure, antigen loading, and cytokine stimulation. Integration of these results with high quality in vivo models allows for the development of therapeutics which target these cell populations. Current methodologies to quantify phagocytic function of monocytic cells in vitro either measure phagocytic activity of individual cells (average number of beads or particles/cell), or a population outcome (% cells that contain phagocytosed material). Here we address technical challenges and shortcomings of these methods and present a protocol for collecting and analyzing data derived from a functional assay which measures phagocytic activity of macrophage and macrophage-like cells. We apply this method to two different experimental conditions, and compare to existing work flows. We also provide an online tool for users to upload and analyze data using this method.
Collapse
Affiliation(s)
- Michael D Caponegro
- Molecular and Cellular Pharmacology Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Kaitlyn Koenig Thompson
- Molecular and Cellular Pharmacology Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Maryam Tayyab
- Molecular and Cellular Pharmacology Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Stella E Tsirka
- Molecular and Cellular Pharmacology Program, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
45
|
Harman JL, Sayers J, Chapman C, Pellet-Many C. Emerging Roles for Neuropilin-2 in Cardiovascular Disease. Int J Mol Sci 2020; 21:E5154. [PMID: 32708258 PMCID: PMC7404143 DOI: 10.3390/ijms21145154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease, the leading cause of death worldwide, is predominantly associated with atherosclerosis. Atherosclerosis is a chronic inflammatory disease characterised by the narrowing of large to medium-sized arteries due to a build-up of plaque. Atherosclerotic plaque is comprised of lipids, extracellular matrix, and several cell types, including endothelial, immune, and vascular smooth muscle cells. Such narrowing of the blood vessels can itself restrict blood flow to vital organs but most severe clinical complications, including heart attacks and strokes, occur when lesions rupture, triggering the blood to clot and obstructing blood flow further down the vascular tree. To circumvent such obstructions, percutaneous coronary intervention or bypass grafts are often required; however, re-occlusion of the treated artery frequently occurs. Neuropilins (NRPs), a multifunctional family of cell surface co-receptors, are expressed by endothelial, immune, and vascular smooth muscle cells and are regulators of numerous signalling pathways within the vasculature. Here, we review recent studies implicating NRP2 in the development of occlusive vascular diseases and discuss how NRP2 could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer L Harman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Jacob Sayers
- University College London, Division of Medicine, Rayne Building, University Street, London WC1E 6JF, UK
| | - Chey Chapman
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| |
Collapse
|
46
|
Dumond A, Pagès G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment. Front Cell Dev Biol 2020; 8:662. [PMID: 32766254 PMCID: PMC7380111 DOI: 10.3389/fcell.2020.00662] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is one of the key mechanisms involved in tumor growth and metastatic dissemination. The vascular endothelial growth factor (VEGF) and its receptors (VEGFR) represent one of the major signaling pathways which mediates angiogenesis. The VEGF/VEGFR axis was intensively targeted by monoclonal antibodies or by tyrosine kinase inhibitors to destroy the tumor vascular network. By inhibiting oxygen and nutrient supply, this strategy was supposed to cure cancers. However, despite a lengthening of the progression free survival in several types of tumors including colon, lung, breast, kidney, and ovarian cancers, modest improvements in overall survival were reported. Anti-angiogenic therapies targeting VEGF/VEGFR are still used in colon and ovarian cancer and remain reference treatments for renal cell carcinoma. Although the concept of inhibiting angiogenesis remains relevant, new targets need to be discovered to improve the therapeutic index of anti-VEGF/VEGFR. Neuropilin 1 and 2 (NRP1/2), initially described as neuronal receptors, stimulate angiogenesis, lymphangiogenesis and immune tolerance. Moreover, overexpression of NRPs in several tumors is synonymous of patients' shorter survival. This article aims to overview the different roles of NRPs in cells constituting the tumor microenvironment to highlight the therapeutic relevance of their targeting.
Collapse
Affiliation(s)
- Aurore Dumond
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Gilles Pagès
- Medical Biology Department, Centre Scientifique de Monaco, Monaco, Monaco.,Inserm U1081, CNRS UMR 7284, Centre Antoine Lacassagne, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Université Côte d'Azur, Nice, France
| |
Collapse
|
47
|
Cheng S, Jiang Z, Xiao J, Guo H, Wang Z, Wang Y. The prognostic value of six survival-related genes in bladder cancer. Cell Death Discov 2020; 6:58. [PMID: 32695477 PMCID: PMC7359373 DOI: 10.1038/s41420-020-00295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
This study was conducted to identify genes that are differentially expressed in paracancerous tissue and to determine the potential predictive value of selected gene panel. Gene transcriptome data of bladder tissue was downloaded from UCSC Xena browser and NCBI GEO repository, including GTEx (the Genotype-Tissue Expression project) data, TCGA (The Cancer Genome Atlas) data, and GEO (Gene Expression Omnibus) data. Differentially Expressed Genes (DEGs) analysis was performed to identify tumor-DEGs candidate genes, using the intersection of tumor-paracancerous DEGs genes and paracancerous-normal DEGs genes. The survival-related genes were screened by Kaplan-Meier (KM) survival analysis and univariable Cox regression with the cutoff criteria of KM < 0.05 and cox p-value < 0.05. The risk model was developed using Lasso regression. The clinical data were analyzed by univariate and multivariate Cox regression analysis. Gene Ontology (GO) and KEGG enrichment analysis were performed in the DEGs genes between the high-risk and low-risk subgroups. We identified six survival-related genes, EMP1, TPM1, NRP2, FGFR1, CAVIN1, and LATS2, found in the DEG analyses of both, tumor-paracancerous and paracancerous-normal differentially expressed data sets. Then, the patients were classified into two clusters, which can be distinguished by specific clinical characteristics. A three-gene risk prediction model (EMP1, FGFR1, and CAVIN1) was constructed in patients within cluster 1. The model was applied to categorize cluster 1 patients into high-risk and low-risk subgroups. The prognostic risk score was considered as an independent prognostic factor. The six identified survival-related genes can be used in molecular characterization of a specific subtype of bladder cancer. This subtype had distinct clinical features of T (topography), N (lymph node), stage, grade, and survival status, compared to the other subtype of bladder cancer. Among the six identified survival-related genes, three-genes, EMP1, FGFR1, and CAVIN1, were identified as potential independent prognostic markers for the specific bladder cancer subtype with clinical features described.
Collapse
Affiliation(s)
- Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
48
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
49
|
Dimou A, Nasarre C, Peterson YK, Pagano R, Gooz M, Nasarre P, Drabkin HA, Armeson KE, Gibney BC, Gemmill RM, Denlinger CE. Neuropilin-2b facilitates resistance to tyrosine kinase inhibitors in non-small cell lung cancer. J Thorac Cardiovasc Surg 2020; 162:463-473. [PMID: 32653291 DOI: 10.1016/j.jtcvs.2020.03.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Innate and acquired resistance is the principle factor limiting the efficacy of tyrosine kinase inhibitors in lung cancer. We have observed a dramatic upregulation of the cell surface co-receptor neuropilin-2b in lung cancers clinically treated with tyrosine kinase inhibitors correlating with acquired resistance. We hypothesize that neuropilin-2b plays a functional role in acquired tyrosine kinase inhibitor resistance. METHODS Non-small cell lung cancer proliferation and survival were determined during chronic tyrosine kinase inhibitor exposure in the presence or absence of neuropilin-2b knock-down. Interactions of neuropilin-2a and neuropilin-2b isoforms with PTEN and GSK3β were assessed by immunoprecipitation. Neuropilin-2a and neuropilin-2b mutants deleted for their cytoplasmic domains were used to identify regions responsible for neuropilin-2b-GSK3β interaction. Because GSK3β is known to phosphorylate and degrade PTEN, phospho-PTEN and total PTEN levels were assessed after transfection of neuropilin-2a and neuropilin-2b wild-type and mutant constructs. RESULTS Non-small cell lung cancer cells chronically treated with gefitinib or osimertinib developed drug resistance and exhibited logarithmic growth in the presence of endothelial growth factor receptor tyrosine kinase inhibitors. However, neuropilin-2b knockdown cells remained sensitive to gefitinib. Likewise, neuropilin-2b knockdown suppressed and neuropilin-2a knockdown enhanced cellular migration. Acquired drug resistance and cell migration correlated with neuropilin-2b-dependent AKT activation with the intermediate step of GSK3β-dependent PTEN degradation. A specific binding site for GSK3β on the cytoplasmic domain of neuropilin-2b was identified with truncated protein constructs and computer modeling. CONCLUSIONS Neuropilin-2b facilitates non-small cell lung cancer resistance to tyrosine kinase inhibitors, and this biological effect relates to AKT activation. Neuropilin-2b GSK3β interactions appear to be essential for PTEN degradation and AKT activation in lung cancer cells. Disruption of the neuropilin-2b GSK3β interaction may represent a novel treatment strategy to preserve sensitivity to tyrosine kinase inhibitors in non-small cell lung cancer.
Collapse
Affiliation(s)
- Anastasios Dimou
- Division of Medical Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Cecile Nasarre
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Rose Pagano
- Division of Medical Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Patrick Nasarre
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Harry A Drabkin
- Division of Medical Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Kent E Armeson
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Barry C Gibney
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Robert M Gemmill
- Division of Medical Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Chadrick E Denlinger
- Division of Cardiothoracic Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
50
|
Chaib M, Chauhan SC, Makowski L. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Front Cell Dev Biol 2020; 8:351. [PMID: 32509781 PMCID: PMC7249856 DOI: 10.3389/fcell.2020.00351] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex network of epithelial and stromal cells, wherein stromal components provide support to tumor cells during all stages of tumorigenesis. Among these stromal cell populations are myeloid cells, which are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC), myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN). Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by providing growth factors and metabolites, increasing angiogenesis, as well as promoting immune evasion through the creation of an immune-suppressive microenvironment. Immunosuppression in the TME is achieved by preventing critical anti-tumor immune responses by natural killer and T cells within the primary tumor and in metastatic niches. Therapeutic success in targeting myeloid cells in malignancies may prove to be an effective strategy to overcome chemotherapy and immunotherapy limitations. Current therapeutic approaches to target myeloid cells in various cancers include inhibition of their recruitment, alteration of function, or functional re-education to an antitumor phenotype to overcome immunosuppression. In this review, we describe strategies to target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted approaches and combination therapies including chemotherapy and immunotherapy. We also summarize recent molecular targets that are specific to myeloid cell populations in the TME, while providing a critical review of the limitations of current strategies aimed at targeting a single subtype of the myeloid cell compartment. The goal of this review is to provide the reader with an understanding of the critical role of myeloid cells in the TME and current therapeutic approaches including ongoing or recently completed clinical trials.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Subhash C Chauhan
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States.,Division of Hematology Oncology, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|