1
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
2
|
Wang CY, Lin SC, Chang KJ, Cheong HP, Wu SR, Lee CH, Chuang MW, Chiou SH, Hsu CH, Ko PS. Immunoediting in acute myeloid leukemia: Reappraising T cell exhaustion and the aberrant antigen processing machinery in leukemogenesis. Heliyon 2024; 10:e39731. [PMID: 39568858 PMCID: PMC11577197 DOI: 10.1016/j.heliyon.2024.e39731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Acute myeloid leukemia (AML) establishes an immunosuppressive microenvironment that favors leukemic proliferation. The immune-suppressive cytokines altered antigen processing, and presentation collectively assist AML cells in escaping cytotoxic T-cell surveillance. These CD8+ T cell dysfunction features are emerging therapeutic targets in relapsed/refractory AML patients. Besides, CD8+ T cell exhaustion is a hotspot in recent clinical oncology studies, but its pathophysiology has yet to be elucidated in AML. In this review, we summarize high-quality original studies encompassing the phenotypic and genomic characteristics of T cell exhaustion events in the leukemia progression, emphasize the surface immuno-peptidome that dynamically tunes the fate of T cells to function or dysfunction states, and revisit the biochemical and biophysical properties of type 1 MHC antigen processing mechanism (APM) that pivots in the phenomenon of leukemia antigen dampening.
Collapse
Affiliation(s)
- Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kao-Jung Chang
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Sin-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Hao Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Hsu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Po-Shen Ko
- School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Colonne CK, Kimble EL, Turtle CJ. Evolving strategies to overcome barriers in CAR-T cell therapy for acute myeloid leukemia. Expert Rev Hematol 2024; 17:797-818. [PMID: 39439295 DOI: 10.1080/17474086.2024.2420614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is a complex and heterogeneous disease characterized by an aggressive clinical course and limited efficacious treatment options in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR)-modified T (CAR-T) cell immunotherapy is an investigational treatment strategy for R/R AML that has shown some promise. However, obstacles to successful CAR-T cell immunotherapy for AML remain. AREAS COVERED In analyses of clinical trials of CAR-T cell therapy for R/R AML, complete responses without measurable residual disease have been reported, but the durability of those responses remains unclear. Significant barriers to successful CAR-T cell therapy in AML include the scarcity of suitable tumor-target antigens (TTA), inherent T cell functional deficits, and the immunoinhibitory and hostile tumor microenvironment (TME). This review will focus on these barriers to successful CAR-T cell therapy in AML, and discuss scientific advancements and evolving strategies to overcome them. EXPERT OPINION Achieving durable remissions in R/R AML will likely require a multifaceted approach that integrates advancements in TTA selection, enhancement of the intrinsic quality of CAR-T cells, and development of strategies to overcome inhibitory mechanisms in the AML TME.
Collapse
Affiliation(s)
- Chanukya K Colonne
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Erik L Kimble
- Translational Science and Therapeutic Division, Fred Hutchinson Cancer Center, Seattle, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, USA
| | - Cameron J Turtle
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
4
|
Musil J, Ptacek A, Vanikova S. OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients. Cytometry A 2024; 105:729-736. [PMID: 39192598 DOI: 10.1002/cyto.a.24892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/26/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.
Collapse
Affiliation(s)
- Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Antonin Ptacek
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University Prague, Prague, Czech Republic
| |
Collapse
|
5
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Yokose T, Szuter ES, Rosales I, Guinn MT, Liss AS, Baba T, Ruddy DA, Piquet M, Azzi J, Cosimi AB, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Dysfunction of infiltrating cytotoxic CD8+ T cells within the graft promotes murine kidney allotransplant tolerance. J Clin Invest 2024; 134:e179709. [PMID: 38888968 PMCID: PMC11324304 DOI: 10.1172/jci179709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Tolerance of mouse kidney allografts arises in grafts that develop regulatory tertiary lymphoid organs (rTLOs). Single-cell RNA-seq (scRNA-seq) data and adoptive transfer of alloreactive T cells after transplantation showed that cytotoxic CD8+ T cells are reprogrammed within the accepted graft to an exhausted/regulatory-like phenotype mediated by IFN-γ. Establishment of rTLOs was required because adoptive transfer of alloreactive T cells prior to transplantation results in kidney allograft rejection. Despite the presence of intragraft CD8+ cells with a regulatory phenotype, they were not essential for the induction and maintenance of kidney allograft tolerance since renal allotransplantation into CD8-KO recipients resulted in acceptance and not rejection. Analysis of scRNA-seq data from allograft kidneys and malignant tumors identified similar regulatory-like cell types within the T cell clusters and trajectory analysis showed that cytotoxic CD8+ T cells are reprogrammed into an exhausted/regulatory-like phenotype intratumorally. Induction of cytotoxic CD8+ T cell dysfunction of infiltrating cells appears to be a beneficial mechanistic pathway that protects the kidney allotransplant from rejection through a process we call "defensive tolerance." This pathway has implications for our understanding of allotransplant tolerance and tumor resistance to host immunity.
Collapse
Affiliation(s)
- Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Edward S. Szuter
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael T. Guinn
- Center for Transplantation Sciences, Department of Surgery and
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew S. Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Taisuke Baba
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David A. Ruddy
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Michelle Piquet
- Novartis Biomedical Research, Oncology, Cambridge, Massachusetts, USA
| | - Jamil Azzi
- Transplantation Research Center, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - A. Benedict Cosimi
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S. Russell
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B. Colvin
- Center for Transplantation Sciences, Department of Surgery and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery and
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Sun K, Wang J, Wang YZ, Shi ZY, Chang Y, Yuan XY, Liu YR, Jiang H, Jiang Q, Huang XJ, Qin YZ. Prognostic significance of the frequencies of bone marrow lymphocyte subsets in adult acute myeloid leukemia at diagnosis. Int J Lab Hematol 2024; 46:294-302. [PMID: 38069563 DOI: 10.1111/ijlh.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/24/2023] [Indexed: 03/20/2024]
Abstract
INTRODUCTION Immune microenvironment plays an important role in the occurrence and development of acute myeloid leukemia (AML). Studies assessing the prognostic significance of bone marrow (BM) lymphocyte subsets' frequencies at diagnosis in patients with AML were limited. METHODS Fresh BM samples collected from 97 adult AML patients at diagnosis were tested for lymphocyte, T, CD4+ T, CD8+ T, γδT, NK, and B cell frequencies using multi-parameter flow cytometry. RESULTS Low frequencies of lymphocytes, T, CD4+ T, and CD8+ T cells were associated with significantly lower rates of one-course complete remission (CR) (all p < 0.05). Moreover, the frequency of CD4+ T cells independently predicted one-course CR achievement (p = 0.021). Low frequencies of T and CD8+ T cells were significantly associated with lower relapse-free survival (RFS) rates (p = 0.032; 0.034), respectively, and a low frequency of CD8+ T cells was associated with a significantly lower overall survival (OS) rate (p = 0.028). Combination of frequency of CD8+ T cells and ELN risk stratification showed that patients with ELN-intermediate/adverse risk + high CD8+ T cell frequency had a similar RFS rate to those with ELN-favorable risk + high CD8+ T cell frequency and those with ELN-favorable risk + low CD8+ T cell frequency (p = 0.88; 0.76), respectively. The RFS rate of patients with ELN intermediate/adverse risk + low CD8+ T cell frequency was significantly lower than that of all aforementioned patients (p = 0.021; 0.0007; 0.028), respectively. CONCLUSION The frequencies of BM lymphocyte subsets at diagnosis predicted clinical outcomes and could help improve risk stratification in AML.
Collapse
Affiliation(s)
- Kai Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Jun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Zong-Yan Shi
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yan Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Xiao-Ying Yuan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Yan-Rong Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, People's Republic of China
| |
Collapse
|
8
|
Zhao J, Li L, Feng X, Fan X, Yin H, Lu Q. T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain as a promising immune checkpoint target for the treatment of SLE. Lupus 2024; 33:209-216. [PMID: 38291414 DOI: 10.1177/09612033241226536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Immune checkpoints (ICs) play a pivotal role in orchestrating immune regulation, crucial for the maintenance of immune tolerance and prevention of autoimmune diseases. One noteworthy example among these immune regulators is T cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT). The TIGIT pathway's inhibition or the absence of TIGIT has been linked to the hyperactivation and excessive proliferation of T cells, rendering individuals more susceptible to autoimmune diseases and exacerbating inflammatory responses. Conversely, the activation of TIGIT has exhibited promising outcomes in ameliorating autoimmune disorders, as observed in murine models of systemic lupus erythematosus (SLE). Consequently, a judicious exploration of the co-inhibitory axis appears warranted for the effective management of pathogenic immune responses in SLE. In light of compelling evidence, this review undertakes a comprehensive examination of TIGIT's characteristics within the context of autoimmunity, offering insights into its potential as a therapeutic target for SLE.
Collapse
Affiliation(s)
- Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|
9
|
Jia B, Zhao C, Minagawa K, Shike H, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Wang M, Schell TD, Prabhu KS, Paulson RF, Zhang Y, Shultz LD, Zheng H. Acute Myeloid Leukemia Causes T Cell Exhaustion and Depletion in a Humanized Graft-versus-Leukemia Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1426-1437. [PMID: 37712758 DOI: 10.4049/jimmunol.2300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.
Collapse
Affiliation(s)
- Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Edison, NJ
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| |
Collapse
|
10
|
Zhou H, Jia B, Annageldiyev C, Minagawa K, Zhao C, Mineishi S, Ehmann WC, Naik SG, Cioccio J, Wirk B, Songdej N, Rakszawski KL, Nickolich MS, Shen J, Zheng H. CD26 lowPD-1 + CD8 T cells are terminally exhausted and associated with leukemia progression in acute myeloid leukemia. Front Immunol 2023; 14:1169144. [PMID: 37457737 PMCID: PMC10338956 DOI: 10.3389/fimmu.2023.1169144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating blood cancer with poor prognosis. Novel effective treatment is an urgent unmet need. Immunotherapy targeting T cell exhaustion by blocking inhibitory pathways, such as PD-1, is promising in cancer treatment. However, results from clinical studies applying PD-1 blockade to AML patients are largely disappointing. AML is highly heterogeneous. Identification of additional immune regulatory pathways and defining predictive biomarkers for treatment response are crucial to optimize the strategy. CD26 is a marker of T cell activation and involved in multiple immune processes. Here, we performed comprehensive phenotypic and functional analyses on the blood samples collected from AML patients and discovered that CD26lowPD-1+ CD8 T cells were associated with AML progression. Specifically, the percentage of this cell fraction was significantly higher in patients with newly diagnosed AML compared to that in patients achieved completed remission or healthy controls. Our subsequent studies on CD26lowPD-1+ CD8 T cells from AML patients at initial diagnosis demonstrated that this cell population highly expressed inhibitory receptors and displayed impaired cytokine production, indicating an exhaustion status. Importantly, CD26lowPD-1+ CD8 T cells carried features of terminal exhaustion, manifested by higher frequency of TEMRA differentiation, increased expression of transcription factors that are observed in terminally exhausted T cells, and high level of intracellular expression of granzyme B and perforin. Our findings suggest a prognostic and predictive value of CD26 in AML, providing pivotal information to optimize the immunotherapy for this devastating cancer.
Collapse
Affiliation(s)
- Huarong Zhou
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Medical Center of Hematology, Fuzhou, China
| | - Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Charyguly Annageldiyev
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Seema G. Naik
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Joseph Cioccio
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Baldeep Wirk
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Natthapol Songdej
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Kevin L. Rakszawski
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Myles S. Nickolich
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Jianzhen Shen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fujian Medical Center of Hematology, Fuzhou, China
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
11
|
Romine KA, Bottomly D, Yashar W, Long N, Viehdorfer M, McWeeney SK, Tyner JW. Immune cell proportions correlate with clinicogenomic features and ex vivo drug responses in acute myeloid leukemia. Front Oncol 2023; 13:1192829. [PMID: 37361575 PMCID: PMC10285384 DOI: 10.3389/fonc.2023.1192829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction The implementation of small-molecule and immunotherapies in acute myeloid leukemia (AML) has been challenging due to genetic and epigenetic variability amongst patients. There are many potential mechanisms by which immune cells could influence small-molecule or immunotherapy responses, yet, this area remains understudied. Methods Here we performed cell type enrichment analysis from over 560 AML patient bone marrow and peripheral blood samples from the Beat AML dataset to describe the functional immune landscape of AML. Results We identify multiple cell types that significantly correlate with AML clinical and genetic features, and we also observe significant correlations of immune cell proportions with ex vivo small-molecule and immunotherapy responses. Additionally, we generated a signature of terminally exhausted T cells (Tex) and identified AML with high monocytic proportions as strongly correlating with increased proportions of these immunosuppressive T cells. Discussion Our work, which is accessible through a new "Cell Type" module in our visualization platform (Vizome; http://vizome.org/), can be leveraged to investigate potential contributions of different immune cells on many facets of the biology of AML.
Collapse
Affiliation(s)
- Kyle A. Romine
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - William Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Matthew Viehdorfer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Shannon K. McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, United States
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
12
|
Chu X, Tian W, Wang Z, Zhang J, Zhou R. Co-inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol Cancer 2023; 22:93. [PMID: 37291608 DOI: 10.1186/s12943-023-01800-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICIs) have emerged as a revolutionary cancer treatment modality, offering long-lasting responses and survival benefits for a substantial number of cancer patients. However, the response rates to ICIs vary significantly among individuals and cancer types, with a notable proportion of patients exhibiting resistance or showing no response. Therefore, dual ICI combination therapy has been proposed as a potential strategy to address these challenges. One of the targets is TIGIT, an inhibitory receptor associated with T-cell exhaustion. TIGIT has diverse immunosuppressive effects on the cancer immunity cycle, including the inhibition of natural killer cell effector function, suppression of dendritic cell maturation, promotion of macrophage polarization to the M2 phenotype, and differentiation of T cells to regulatory T cells. Furthermore, TIGIT is linked with PD-1 expression, and it can synergize with PD-1/PD-L1 blockade to enhance tumor rejection. Preclinical studies have demonstrated the potential benefits of co-inhibition of TIGIT and PD-1/PD-L1 in enhancing anti-tumor immunity and improving treatment outcomes in several cancer types. Several clinical trials are underway to evaluate the safety and efficacy of TIGIT and PD-1/PD-L1 co-inhibition in various cancer types, and the results are awaited. This review provides an overview of the mechanisms of TIGIT and PD-1/PD-L1 co-inhibition in anti-tumor treatment, summarizes the latest clinical trials investigating this combination therapy, and discusses its prospects. Overall, co-inhibition of TIGIT and PD-1/PD-L1 represents a promising therapeutic approach for cancer treatment that has the potential to improve the outcomes of cancer patients treated with ICIs.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, P.R. China.
| |
Collapse
|
13
|
Jiang X, Wu X, Xiao Y, Wang P, Zheng J, Wu X, Jin Z. The ectonucleotidases CD39 and CD73 on T cells: The new pillar of hematological malignancy. Front Immunol 2023; 14:1110325. [PMID: 36776866 PMCID: PMC9911447 DOI: 10.3389/fimmu.2023.1110325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Hematological malignancy develops and applies various mechanisms to induce immune escape, in part through an immunosuppressive microenvironment. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment (TME). Adenosine signaling through the A2A receptor expressed on immune cells, such as T cells, potently dampens immune responses. Extracellular adenosine generated by ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and ecto-5'-nucleotidase (CD73) molecules is a newly recognized 'immune checkpoint mediator' and leads to the identification of immunosuppressive adenosine as an essential regulator in hematological malignancies. In this Review, we provide an overview of the detailed distribution and function of CD39 and CD73 ectoenzymes in the TME and the effects of CD39 and CD73 inhibition on preclinical hematological malignancy data, which provides insights into the potential clinical applications for immunotherapy.
Collapse
Affiliation(s)
- Xuan Jiang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yuxi Xiao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Penglin Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiamian Zheng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiuli Wu, ; Zhenyi Jin,
| |
Collapse
|
14
|
Wang G, Sun J, Zhang J, Zhu Q, Lu J, Gao S, Wang F, Yin Q, Wan Y, Li Q. Single-cell transcriptional profiling uncovers the association between EOMES +CD8 + T cells and acquired EGFR-TKI resistance. Drug Resist Updat 2023; 66:100910. [PMID: 36571924 PMCID: PMC9852091 DOI: 10.1016/j.drup.2022.100910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) is reportedly inevitable in lung cancers harboring epidermal growth factor receptor (EGFR) mutations, emphasizing the need for novel approaches to predict EGFR-TKI resistance for clinical monitoring and patient management. This study identified a significant increase in eomesodermin (EOMES)+CD8+ T cells in the TKI-resistant patients, which was correlated with poor survival. The increase in EOMES+CD8+ T cells was further confirmed in both tissue samples and peripheral blood of patients with TKIs resistance. The integrated analysis of pseudotime and Gene set variation showed that the increase in EOMES+CD8+ T cells may be attributed to TRM T cell conversion and metabolic reprogramming. Overall, this work suggested an association between the increased number of EOMES+CD8+ T cells and acquired TKI drug resistance, supporting the utility of EOMES+CD8+ T cells as a biomarker for TKI treatment response.
Collapse
Affiliation(s)
- Guosheng Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qiping Zhu
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingjing Lu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shaoyong Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Feilong Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Qi Yin
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, United States.
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
15
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
16
|
Lu J, Zheng G, Dong A, Chang X, Cao X, Liu M, Shi X, Wang C, Yang Y, Jia X. Prognostic characteristics of immune subtypes associated with acute myeloid leukemia and their identification in cell subsets based on single-cell sequencing analysis. Front Cell Dev Biol 2022; 10:990034. [PMID: 36211454 PMCID: PMC9540204 DOI: 10.3389/fcell.2022.990034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Immune genes play an important role in the development and progression of acute myeloid leukemia (AML). However, the role of immune genes in the prognosis and microenvironment of AML remains unclear. In this study, we analyzed 151 AML patients in the TCGA database for relevant immune cell infiltration. AML patients were divided into high and low immune cell infiltration clusters based on ssGSEA results. Immune-related pathways, AML pathways and glucose metabolism pathways were enriched in the high immune cell infiltration cluster. Then we screened the differential immune genes between the two immune cell infiltration clusters. Nine prognostic immune genes were finally identified in the train set by LASSO-Cox regression. We constructed a model in the train set based on the nine prognostic immune genes and validated the predictive capability in the test set. The areas under the ROC curve of the train set and the test set for ROC at 1, 3, 5 years were 0.807, 0.813, 0.815, and 0.731, 0.745, 0.830, respectively. The areas under ROC curve of external validation set in 1, 3, and 5 years were 0.564, 0.619, and 0.614, respectively. People with high risk scores accompanied by high TMB had been detected with the worst prognosis. Single-cell sequencing analysis revealed the expression of prognostic genes in AML cell subsets and pseudo-time analysis described the differentiation trajectory of cell subsets. In conclusion, our results reveal the characteristics of immune microenvironment and cell subsets of AML, while it still needs to be confirmed in larger samples studies. The prognosis model constructed with nine key immune genes can provide a new method to assess the prognosis of AML patients.
Collapse
Affiliation(s)
- Jie Lu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Guowei Zheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ani Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinyu Chang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiting Cao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengying Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunmei Wang
- Children’s Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
18
|
Yue C, Gao S, Li S, Xing Z, Qian H, Hu Y, Wang W, Hua C. TIGIT as a Promising Therapeutic Target in Autoimmune Diseases. Front Immunol 2022; 13:911919. [PMID: 35720417 PMCID: PMC9203892 DOI: 10.3389/fimmu.2022.911919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/19/2022] Open
Abstract
Co-inhibitory receptors (IRs) are molecules that protect host against autoimmune reactions and maintain peripheral self-tolerance, playing an essential role in maintaining immune homeostasis. In view of the substantial clinical progresses of negative immune checkpoint blockade in cancer treatment, the role of IRs in autoimmune diseases is also obvious. Several advances highlighted the substantial impacts of T cell immunoglobulin and ITIM domain (TIGIT), a novel IR, in autoimmunity. Blockade of TIGIT pathway exacerbates multiple autoimmune diseases, whereas enhancement of TIGIT function has been shown to alleviate autoimmune settings in mice. These data suggested that TIGIT pathway can be manipulated to achieve durable tolerance to treat autoimmune disorders. In this review, we provide an overview of characteristics of TIGIT and its role in autoimmunity. We then discuss recent approaches and future directions to leverage our knowledge of TIGIT as therapeutic target in autoimmune diseases.
Collapse
Affiliation(s)
- Chenran Yue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Shuting Li
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhouhang Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hengrong Qian
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Hu
- School of the Second Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Menter T, Tzankov A. Tumor Microenvironment in Acute Myeloid Leukemia: Adjusting Niches. Front Immunol 2022; 13:811144. [PMID: 35273598 PMCID: PMC8901718 DOI: 10.3389/fimmu.2022.811144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) comprise a wide array of different entities, which have in common a rapid expansion of myeloid blast cells leading to displacement of normal hematopoietic cells and also disruption of the microenvironment in the bone marrow niches. Based on an insight into the complex cellular interactions in the bone marrow niches in non-neoplastic conditions in general, this review delineates the complex relationship between leukemic cells and reactive cells of the tumor microenvironment (TME) in AML. A special focus is directed on niche cells and various T-cell subsets as these also provide a potential therapeutic rationale considering e.g. immunomodulation. The TME of AML on the one hand plays a vital role for sustaining and promoting leukemogenesis but - on the other hand - it also has adverse effects on abnormal blasts developing into overt leukemia hindering their proliferation and potentially removing such cells. Thus, leukemic cells need to and develop strategies in order to manipulate the TME. Interference with those strategies might be of particular therapeutic potential since mechanisms of resistance related to tumor cell plasticity do not apply to it.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
20
|
Qiu D, Liu X, Wang W, Jiang X, Wu X, Zheng J, Zhou K, Kong X, Wu X, Jin Z. TIGIT axis: novel immune checkpoints in anti-leukemia immunity. Clin Exp Med 2022; 23:165-174. [PMID: 35419661 DOI: 10.1007/s10238-022-00817-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/01/2022]
Abstract
Hematologic malignancy evades immune-mediated recognition through upregulating various checkpoint inhibitory receptors (IRs) on several types of lymphocytes. Immunotherapies targeting IRs have provided ample evidence supporting regulating innate and adaptive immunity and obtaining clinical benefits. Newly described IRs have received considerable attention and are under investigation in cancer immunotherapy. Specifically, T cell immunoglobulin and ITIM domain is a novel inhibitory checkpoint receptor, and its immune checkpoint axis includes additional receptors such as CD96 and CD226, which are very promising targets. However, how the dynamics and functions of these receptor networks remain unknown, this review addresses the recent findings of the relevance of this complex receptor-ligand system and discusses their potential approaches in translating these preclinical findings into novel clinical agents in anti-leukemia immunotherapy.
Collapse
Affiliation(s)
- Dan Qiu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaxin Liu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Jiang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Zhou
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueting Kong
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Wang X, Wang D, Du J, Wei Y, Song R, Wang B, Qiu S, Li B, Zhang L, Zeng Y, Zhao H, Kong Y. High Levels of CD244 Rather Than CD160 Associate With CD8 + T-Cell Aging. Front Immunol 2022; 13:853522. [PMID: 35386693 PMCID: PMC8977780 DOI: 10.3389/fimmu.2022.853522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022] Open
Abstract
Aging leads to functional dysregulation of the immune system, especially T cell defects. Previous studies have shown that the accumulation of co-inhibitory molecules plays an essential role in both T cell exhaustion and aging. In the present study, we showed that CD244 and CD160 were both up-regulated on CD8+ T cells of elderly individuals. CD244+CD160- CD8+ T cells displayed the increased activity of β-GAL, higher production of cytokines, and severe metabolic disorders, which were characteristics of immune aging. Notably, the functional dysregulation associated with aging was reversed by blocking CD244 instead of CD160. Meanwhile, CD244+CD160+ CD8+ T cells exhibited features of exhaustion, including lower levels of cytokine, impaired proliferation, and intrinsic transcriptional regulation, compared to CD244+CD160- population. Collectively, our findings demonstrated that CD244 rather than CD160 acts as a prominent regulator involved in T cell aging, providing a solid therapeutic target to improve disorders and comorbidities correlated to immune system aging.
Collapse
Affiliation(s)
- Xinyue Wang
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Wei
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuang Qiu
- Department of Laboratory, Beijing Ji Shui Tan Hospital, Beijing, China
| | - Bei Li
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leidan Zhang
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongqin Zeng
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongxin Zhao
- Clinical and Research Center of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yaxian Kong
- Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Chiang EY, Mellman I. TIGIT-CD226-PVR axis: advancing immune checkpoint blockade for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004711. [PMID: 35379739 PMCID: PMC8981293 DOI: 10.1136/jitc-2022-004711] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/22/2022] Open
Abstract
Recent advances in understanding the roles of immune checkpoints in allowing tumors to circumvent the immune system have led to successful therapeutic strategies that have fundamentally changed oncology practice. Thus far, immunotherapies against only two checkpoint targets have been approved, CTLA-4 and PD-L1/PD-1. Antibody blockade of these targets enhances the function of antitumor T cells at least in part by relieving inhibition of the T cell costimulatory receptor CD28. These successes have stimulated considerable interest in identifying other pathways that may bte targeted alone or together with existing immunotherapies. One such immune checkpoint axis is comprised of members of the PVR/nectin family that includes the inhibitory receptor T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT). Interestingly, TIGIT acts to regulate the activity of a second costimulatory receptor CD226 that works in parallel to CD28. There are currently over two dozen TIGIT-directed blocking antibodies in various phases of clinical development, testament to the promise of modulating this pathway to enhance antitumor immune responses. In this review, we discuss the role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| | - Ira Mellman
- Cancer Immunology, Genentech Inc, South San Francisco, California, USA
| |
Collapse
|
23
|
Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77:103941. [PMID: 35301179 PMCID: PMC8927848 DOI: 10.1016/j.ebiom.2022.103941] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States
| | - Leo D Wang
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States; Department of Pediatrics, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
24
|
Sorrentino C, D'Antonio L, Fieni C, Ciummo SL, Di Carlo E. Colorectal Cancer-Associated Immune Exhaustion Involves T and B Lymphocytes and Conventional NK Cells and Correlates With a Shorter Overall Survival. Front Immunol 2022; 12:778329. [PMID: 34975867 PMCID: PMC8716410 DOI: 10.3389/fimmu.2021.778329] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer worldwide, with a growing impact on public health and clinical management. Immunotherapy has shown promise in the treatment of advanced cancers, but needs to be improved for CRC, since only a limited fraction of patients is eligible for treatment, and most of them develop resistance due to progressive immune exhaustion. Here, we identify the transcriptional, molecular, and cellular traits of the immune exhaustion associated with CRC and determine their relationships with the patient's clinic-pathological profile. Bioinformatic analyses of RNA-sequencing data of 594 CRCs from TCGA PanCancer collection, revealed that, in the wide range of immune exhaustion genes, those coding for PD-L1, LAG3 and T-bet were associated (Cramér's V=0.3) with MSI/dMMR tumors and with a shorter overall survival (log-rank test: p=0.0004, p=0.0014 and p=0.0043, respectively), whereas high levels of expression of EOMES, TRAF1, PD-L1, FCRL4, BTLA and SIGLEC6 were associated with a shorter overall survival (log-rank test: p=0.0003, p=0.0188, p=0.0004, p=0.0303, p=0.0052 and p=0.0033, respectively), independently from the molecular subtype of CRC. Expression levels of PD-L1, PD-1, LAG3, EOMES, T-bet, and TIGIT were significantly correlated with each other and associated with genes coding for CD4+ and CD8+CD3+ T cell markers and NKp46+CD94+EOMES+T-bet+ cell markers, (OR >1.5, p<0.05), which identify a subset of group 1 innate lymphoid cells, namely conventional (c)NK cells. Expression of TRAF1 and BTLA co-occurred with both T cell markers, CD3γ, CD3δ, CD3ε, CD4, and B cell markers, CD19, CD20 and CD79a (OR >2, p<0.05). Expression of TGFβ1 was associated only with CD4 + and CD8+CD3ε+ T cell markers (odds ratio >2, p<0.05). Expression of PD-L2 and IDO1 was associated (OR >1.5, p<0.05) only with cNK cell markers, whereas expression of FCRL4, SIGLEC2 and SIGLEC6 was associated (OR >2.5; p<0.05) with CD19+CD20+CD79a+ B cell markers. Morphometric examination of immunostained CRC tissue sections, obtained from a validation cohort of 53 CRC patients, substantiated the biostatistical findings, showing that the highest percentage of immune exhaustion gene expressing cells were found in tumors from short-term survivors and that functional exhaustion is not confined to T lymphocytes, but also involves B cells, and cNK cells. This concept was strengthened by CYBERSORTx analysis, which revealed the expression of additional immune exhaustion genes, in particular FOXP1, SIRT1, BATF, NR4A1 and TOX, by subpopulations of T, B and NK cells. This study provides novel insight into the immune exhaustion landscape of CRC and emphasizes the need for a customized multi-targeted therapeutic approach to overcome resistance to current immunotherapy.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi D'Antonio
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University" of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Niu G, Hao J, Sheng S, Wen F. Role of T-box genes in cancer, epithelial-mesenchymal transition, and cancer stem cells. J Cell Biochem 2021; 123:215-230. [PMID: 34897787 DOI: 10.1002/jcb.30188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Sharing a common DNA binding motif called T-box, transcription factor T-box gene family controls embryonic development and is also involved in cancer progression and metastasis. Cancer metastasis shows therapy resistance and involves complex processes. Among them, epithelial-mesenchymal transition (EMT) triggers cancer cell invasiveness and the acquisition of stemness of cancer cells, called cancer stem cells (CSCs). CSCs are a small fraction of tumor bulk and are capable of self-renewal and tumorsphere formation. Recent progress has highlighted the critical roles of T-box genes in cancer progression, EMT, and CSC function, and such regulatory functions of T-box genes have emerged as potential therapeutic candidates for cancer. Herein we summarize the current understanding of the regulatory mechanisms of T-box genes in cancer, EMT, and CSCs, and discuss the implications of targeting T-box genes as anticancer therapeutics.
Collapse
Affiliation(s)
- Gengle Niu
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jin Hao
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Surui Sheng
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyuan Wen
- Department of Outpatient, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
26
|
Van Den Eeckhout B, Huyghe L, Van Lint S, Burg E, Plaisance S, Peelman F, Cauwels A, Uzé G, Kley N, Gerlo S, Tavernier J. Selective IL-1 activity on CD8 + T cells empowers antitumor immunity and synergizes with neovasculature-targeted TNF for full tumor eradication. J Immunother Cancer 2021; 9:jitc-2021-003293. [PMID: 34772757 PMCID: PMC8593706 DOI: 10.1136/jitc-2021-003293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 01/31/2023] Open
Abstract
Background Clinical success of therapeutic cancer vaccines depends on the ability to mount strong and durable antitumor T cell responses. To achieve this, potent cellular adjuvants are highly needed. Interleukin-1β (IL-1β) acts on CD8+ T cells and promotes their expansion and effector differentiation, but toxicity and undesired tumor-promoting side effects hamper efficient clinical application of this cytokine. Methods This ‘cytokine problem’ can be solved by use of AcTakines (Activity-on-Target cytokines), which represent fusions between low-activity cytokine mutants and cell type-specific single-domain antibodies. AcTakines deliver cytokine activity to a priori selected cell types and as such evade toxicity and unwanted off-target side effects. Here, we employ subcutaneous melanoma and lung carcinoma models to evaluate the antitumor effects of AcTakines. Results In this work, we use an IL-1β-based AcTakine to drive proliferation and effector functionality of antitumor CD8+ T cells without inducing measurable toxicity. AcTakine treatment enhances diversity of the T cell receptor repertoire and empowers adoptive T cell transfer. Combination treatment with a neovasculature-targeted tumor necrosis factor (TNF) AcTakine mediates full tumor eradication and establishes immunological memory that protects against secondary tumor challenge. Interferon-γ was found to empower this AcTakine synergy by sensitizing the tumor microenvironment to TNF. Conclusions Our data illustrate that anticancer cellular immunity can be safely promoted with an IL-1β-based AcTakine, which synergizes with other immunotherapies for efficient tumor destruction.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sandra Van Lint
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Elianne Burg
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Peelman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anje Cauwels
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gilles Uzé
- IRMB, University Montpellier, INSERM, CNRS, Montpellier, France
| | - Niko Kley
- Orionis Biosciences Inc, Waltham, Massachusetts, USA
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium .,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,Orionis Biosciences Inc, Waltham, Massachusetts, USA
| |
Collapse
|
27
|
Lee EHC, Wong DCP, Ding JL. NK Cells in a Tug-of-War With Cancer: The Roles of Transcription Factors and Cytoskeleton. Front Immunol 2021; 12:734551. [PMID: 34594338 PMCID: PMC8476995 DOI: 10.3389/fimmu.2021.734551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells which play a key role in shaping the immune response against cancer. Initially hailed for their potential to recognise and eliminate tumour cells, their application has been greatly hindered by the immunosuppressive tumour microenvironment (TME) which suppresses NK functions (e.g., cytotoxicity). This dysfunctional state that is accompanied by phenotypic changes such as upregulation of inhibitory receptors and downregulation of activating receptors, forms the basis of what many researchers have referred to as ‘exhausted’ NK cells. However, there is no consensus on whether these phenotypes are sufficient to define an exhausted state of the NK cell. While recent advances in checkpoint inhibition appear to show promise in early-stage pre-clinical studies, much remains to be fully explored and understood in the context of the TME. The TME is where the NK cells are subjected to interaction with various cell types and soluble factors, which could exert an inhibitory effect on NK cytotoxicity. In this review, we provide an overview of the general markers of NK cell exhaustion viz, the surface activating and inhibitory receptors. We also highlight the potential role of T-box transcription factors in characterising such a dysfunctional state and discuss the often-overlooked mechanism of cell cytoskeletal dynamics in regulating NK cell function. These aspects may further contribute to NK exhaustion or NK revival in cancer and may open new avenues to explore cancer treatment strategies.
Collapse
Affiliation(s)
- E Hui Clarissa Lee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Horn S, Borrero-Wolff D, Ritter M, Arndts K, Wiszniewsky A, Debrah LB, Debrah AY, Osei-Mensah J, Chachage M, Hoerauf A, Kroidl I, Layland LE. Distinct Immune Profiles of Exhausted Effector and Memory CD8 + T Cells in Individuals With Filarial Lymphedema. Front Cell Infect Microbiol 2021; 11:680832. [PMID: 34485170 PMCID: PMC8415778 DOI: 10.3389/fcimb.2021.680832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022] Open
Abstract
CD8+ T cells are crucial for the clearance of viral infections, and current research begins to highlight their importance in parasitic diseases too. In-depth research about characteristics of CD8+ T-cell subsets and exhaustion remains uncertain, especially during filariasis, a chronic helminth infection. Lymphatic filariasis, elicited by Wuchereria bancrofti, remains a serious health problem in endemic areas in Ghana, especially in those suffering from morbidity due to lymphedema (LE). In this observational study, the characteristics and profiles of CD8+ T cells were compared between asymptomatic Wuchereria bancrofti-infected individuals, uninfected endemic normals, and those with LE (grades 2–6). Focusing on exhausted memory (CD8+exmem: CD8+ T-betdimEomeshi) and effector (CD8+exeff: CD8+T-bethiEomesdim) CD8+ T-cell subsets, advanced flow cytometry revealed that LE individuals presented reduced frequencies of IFN-γ+CD8+exmem T cells expressing Tim-3 or LAG-3 which negatively correlated to the presence of LE. Moreover, the LE cohort further showed significantly higher frequencies of IL-10+CD8+exeff T cells expressing either Tim-3, LAG-3, CD39, KLRG-1, or PD-1, all associated markers of exhaustion, and that these frequencies positively correlated with the presence of LE. In summary, this study shows that distinct exhausted CD8+ T-cell subsets are prominent in individuals suffering from LE, suggesting that enhanced inflammation and constant immune activation might drive exhaustion of CD8+ T cells. Since T-cell exhaustion is known to be associated with insufficient control of persisting antigen, the data presented here reveals that these CD8+ T-cell exhaustion patterns in filarial LE should be taken into consideration for prevention and control management of LE.
Collapse
Affiliation(s)
- Sacha Horn
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Dennis Borrero-Wolff
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany
| | - Kathrin Arndts
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany
| | - Anna Wiszniewsky
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany
| | - Linda Batsa Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Filariasis Unit, Kumasi, Ghana.,Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana
| | - Alexander Y Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Filariasis Unit, Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana.,Faculty of Allied Health Sciences, Kwame Nkrumah University of Sciences and Technology, Kumasi, Ghana
| | - Jubin Osei-Mensah
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Filariasis Unit, Kumasi, Ghana.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Kumasi, Kumasi, Ghana
| | - Mkunde Chachage
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,National Institute for Medical Research (NIMR)-Mbeya Medical Research Center (MMRC), Department of Immunology, Mbeya, Tanzania.,University of Dar es Salaam-Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Department of Microbiology and Immunology, Mbeya, Tanzania
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, partner site, Bonn-Cologne, Bonn, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital Munich, Ludwig-Maximilians-Universität (LMU), Munich, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, partner site, Munich, Munich, Germany
| | - Laura E Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.,German-West African Centre for Global Health and Pandemic Prevention (G-WAC), Partner Site, Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Neglected Tropical Disease, partner site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
29
|
Improving prediction accuracy in acute myeloid leukaemia: micro-environment, immune and metabolic models. Leukemia 2021; 35:3073-3077. [PMID: 34365474 PMCID: PMC8550966 DOI: 10.1038/s41375-021-01377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 02/02/2023]
|
30
|
Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021; 29:2640-2659. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has led to a paradigm shift in cancer immunotherapy, but still several obstacles limit CAR T cell efficacy in cancers. Advances in high-throughput technologies revealed new insights into the role that epigenetic reprogramming plays in T cells. Mechanistic studies as well as comprehensive epigenome maps revealed an important role for epigenetic remodeling in T cell differentiation. These modifications shape the overall immune response through alterations in T cell phenotype and function. Here, we outline how epigenetic modifications in CAR T cells can overcome barriers limiting CAR T cell effectiveness, particularly in immunosuppressive tumor microenvironments. We also offer our perspective on how selected epigenetic modifications can boost CAR T cells to ultimately improve the efficacy of CAR T cell therapy.
Collapse
Affiliation(s)
- Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saba Ghassemi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran.
| |
Collapse
|
31
|
Acute Myeloid Leukemia: Is It T Time? Cancers (Basel) 2021; 13:cancers13102385. [PMID: 34069204 PMCID: PMC8156992 DOI: 10.3390/cancers13102385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease driven by impaired differentiation of hematopoietic primitive cells toward myeloid lineages (monocytes, granulocytes, red blood cells, platelets), leading to expansion and accumulation of "stem" and/or "progenitor"-like or differentiated leukemic cells in the bone marrow and blood. AML progression alters the bone marrow microenvironment and inhibits hematopoiesis' proper functioning, causing sustained cytopenia and immunodeficiency. This review describes how the AML microenvironment influences lymphoid lineages, particularly T lymphocytes that originate from the thymus and orchestrate adaptive immune response. We focus on the elderly population, which is mainly affected by this pathology. We discuss how a permissive AML microenvironment can alter and even worsen the thymic function, T cells' peripheral homeostasis, phenotype, and functions. Based on the recent findings on the mechanisms supporting that AML induces quantitative and qualitative changes in T cells, we suggest and summarize current immunotherapeutic strategies and challenges to overcome these anomalies to improve the anti-leukemic immune response and the clinical outcome of patients.
Collapse
|
32
|
Bozorgmehr N, Okoye I, Oyegbami O, Xu L, Fontaine A, Cox-Kennett N, Larratt LM, Hnatiuk M, Fagarasanu A, Brandwein J, Peters AC, Elahi S. Expanded antigen-experienced CD160 +CD8 +effector T cells exhibit impaired effector functions in chronic lymphocytic leukemia. J Immunother Cancer 2021; 9:jitc-2020-002189. [PMID: 33931471 PMCID: PMC8098955 DOI: 10.1136/jitc-2020-002189] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background T cell exhaustion compromises antitumor immunity, and a sustained elevation of co-inhibitory receptors is a hallmark of T cell exhaustion in solid tumors. Similarly, upregulation of co-inhibitory receptors has been reported in T cells in hematological cancers such as chronic lymphocytic leukemia (CLL). However, the role of CD160, a glycosylphosphatidylinositol-anchored protein, as one of these co-inhibitory receptors has been contradictory in T cell function. Therefore, we decided to elucidate how CD160 expression and/or co-expression with other co-inhibitory receptors influence T cell effector functions in patients with CLL. Methods We studied 56 patients with CLL and 25 age-matched and sex-matched healthy controls in this study. The expression of different co-inhibitory receptors was analyzed in T cells obtained from the peripheral blood or the bone marrow. Also, we quantified the properties of extracellular vesicles (EVs) in the plasma of patients with CLL versus healthy controls. Finally, we measured 29 different cytokines, chemokines or other biomarkers in the plasma specimens of patients with CLL and healthy controls. Results We found that CD160 was the most upregulated co-inhibitory receptor in patients with CLL. Its expression was associated with an exhausted T cell phenotype. CD160+CD8+ T cells were highly antigen-experienced/effector T cells, while CD160+CD4+ T cells were more heterogeneous. In particular, we identified EVs as a source of CD160 in the plasma of patients with CLL that can be taken up by T cells. Moreover, we observed a dominantly proinflammatory cytokine profile in the plasma of patients with CLL. In particular, interleukin-16 (IL-16) was highly elevated and correlated with the advanced clinical stage (Rai). Furthermore, we observed that the incubation of T cells with IL-16 results in the upregulation of CD160. Conclusions Our study provides a novel insight into the influence of CD160 expression/co-expression with other co-inhibitory receptors in T cell effector functions in patients with CLL. Besides, IL-16-mediated upregulation of CD160 expression in T cells highlights the importance of IL-16/CD160 as potential immunotherapy targets in patients with CLL. Therefore, our findings propose a significant role for CD160 in T cell exhaustion in patients with CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Olaide Oyegbami
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amelie Fontaine
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nanette Cox-Kennett
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Loree M Larratt
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Hnatiuk
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andrei Fagarasanu
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph Brandwein
- Division of Hematology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthea C Peters
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada .,Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.,Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs 2021; 35:281-302. [PMID: 33826079 DOI: 10.1007/s40259-021-00477-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in chemorefractory B cell malignancies, raising the possibilities of using this immunotherapeutic modality for other devastating hematologic malignancies, such as acute myeloid leukemia (AML). AML is an aggressive hematologic malignancy which, like B cell malignancies, poses several challenges for clinical translation of successful immunotherapy. The antigenic heterogeneity of AML results in a list of potential targets that CAR-T cells could be directed towards, each with advantages and disadvantages. In this review, we provide an up-to-date report of outcomes and adverse effects from published and presented clinical trials of CAR-T cell therapy for AML and provide the preclinical rationale underlying these studies and antigen selection. Comparison across trials is difficult, yet themes emerge with respect to appropriate antigen selection and association of adverse effects with outcomes. We highlight currently active clinical trials and the potential improvements and caveats with these novel approaches. Key hurdles to the successful introduction of CAR-T cell therapy for the treatment of AML include the effect of antigenic heterogeneity and trade-offs between therapy specificity and sensitivity; on-target off-tumor toxicities; the AML tumor microenvironment; and practical considerations for future trials that should be addressed to enable successful CAR-T cell therapy for AML.
Collapse
|
34
|
Redirecting the Immune Microenvironment in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13061423. [PMID: 33804676 PMCID: PMC8003817 DOI: 10.3390/cancers13061423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Despite remarkable progress in the outcome of childhood acute myeloid leukemia (AML), risk of relapse and refractory diseases remains high. Treatment of the chemo-refractory disease is restricted by dose-limiting therapy-related toxicities which necessitate alternative tolerable efficient therapeutic modalities. By disrupting its immune environment, leukemic blasts are known to gain the ability to evade immune surveillance and promote disease progression; therefore, many efforts have been made to redirect the immune system against malignant blasts. Deeper knowledge about immunologic alterations has paved the way to the discovery and development of novel targeted therapeutic concepts, which specifically override the immune evasion mechanisms to eradicate leukemic blasts. Herein, we review innovative immunotherapeutic strategies and their mechanisms of action in pediatric AML. Abstract Acute myeloid leukemia is a life-threatening malignant disorder arising in a complex and dysregulated microenvironment that, in part, promotes the leukemogenesis. Treatment of relapsed and refractory AML, despite the current overall success rates in management of pediatric AML, remains a challenge with limited options considering the heavy but unsuccessful pretreatments in these patients. For relapsed/refractory (R/R) patients, hematopoietic stem cell transplantation (HSCT) following ablative chemotherapy presents the only opportunity to cure AML. Even though in some cases immune-mediated graft-versus-leukemia (GvL) effect has been proven to efficiently eradicate leukemic blasts, the immune- and chemotherapy-related toxicities and adverse effects considerably restrict the feasibility and therapeutic power. Thus, immunotherapy presents a potent tool against acute leukemia but needs to be engineered to function more specifically and with decreased toxicity. To identify innovative immunotherapeutic approaches, sound knowledge concerning immune-evasive strategies of AML blasts and the clinical impact of an immune-privileged microenvironment is indispensable. Based on our knowledge to date, several promising immunotherapies are under clinical evaluation and further innovative approaches are on their way. In this review, we first focus on immunological dysregulations contributing to leukemogenesis and progression in AML. Second, we highlight the most promising therapeutic targets for redirecting the leukemic immunosuppressive microenvironment into a highly immunogenic environment again capable of anti-leukemic immune surveillance.
Collapse
|
35
|
Llaó-Cid L, Roessner PM, Chapaprieta V, Öztürk S, Roider T, Bordas M, Izcue A, Colomer D, Dietrich S, Stilgenbauer S, Hanna B, Martín-Subero JI, Seiffert M. EOMES is essential for antitumor activity of CD8 + T cells in chronic lymphocytic leukemia. Leukemia 2021; 35:3152-3162. [PMID: 33731848 PMCID: PMC8550953 DOI: 10.1038/s41375-021-01198-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Genome-wide association studies identified a single-nucleotide polymorphism (SNP) affecting the transcription factor Eomesodermin (EOMES) associated with a significantly increased risk to develop chronic lymphocytic leukemia (CLL). Epigenetic analyses, RNA sequencing, and flow cytometry revealed that EOMES is not expressed in CLL cells, but in CD8+ T cells for which EOMES is a known master regulator. We thus hypothesized that the increased CLL risk associated with the EOMES SNP might be explained by its negative impact on CD8+ T-cell-mediated immune control of CLL. Flow cytometry analyses revealed a higher EOMES expression in CD8+ T cells of CLL patients compared to healthy individuals, and an accumulation of PD-1+ EOMES+ CD8+ T cells in lymph nodes rather than blood or bone marrow in CLL. This was in line with an observed expansion of EOMES+ CD8+ T cells in the spleen of leukemic Eµ-TCL1 mice. As EOMES expression was highest in CD8+ T cells that express inhibitory receptors, an involvement of EOMES in T-cell exhaustion and dysfunction seems likely. Interestingly, Eomes-deficiency in CD8+ T cells resulted in their impaired expansion associated with decreased CLL control in mice. Overall, these observations suggest that EOMES is essential for CD8+ T-cell expansion and/or maintenance, and therefore involved in adaptive immune control of CLL.
Collapse
Affiliation(s)
- Laura Llaó-Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vicente Chapaprieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bordas
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Ana Izcue
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Center for Chronic Immunodeficiency, University Medical Center Freiburg and University of Freiburg, Freiburg, Germany.,Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Section, Hospital Clinic, Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stephan Stilgenbauer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany.,Department of Internal Medicine I, Saarland University, Homburg, Germany
| | - Bola Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - José Ignacio Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Rapoport BL, Cooksley T, Johnson DB, Anderson R, Shannon VR. Treatment of infections in cancer patients: an update from the neutropenia, infection and myelosuppression study group of the Multinational Association for Supportive Care in Cancer (MASCC). Expert Rev Clin Pharmacol 2021; 14:295-313. [PMID: 33517803 DOI: 10.1080/17512433.2021.1884067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Patients with hematological and advanced solid malignancies have acquired immune dysfunction, often exacerbated by treatment, posing a significant risk for the development of infections. This review evaluates the utility of current clinical and treatment guidelines, in the setting of management of infections in cancer patients. AREAS COVERED These include causes of infection in cancer patients, management of patients with high-risk and low-risk febrile neutropenia, management of low-risk patients in an outpatient setting, the role of granulocyte colony-stimulating factor (G-CSF) in the prevention and treatment of neutropenia-related infections, management of lung infections in various clinical settings, and emerging challenges surrounding the risk of infection in cancer patients treated with novel treatments. The literature search was performed by accessing PubMed and other databases, focusing on published clinical trials of relevant anti-cancer agents and diseases, primarily covering the recent past, but also including several key studies published during the last decade and, somewhat earlier in a few cases. EXPERT REVIEW Notwithstanding the promise of gene therapy/gene editing in hematological malignancies and some types of solid cancers, innovations introduced in clinical practice include more discerning clinical management such as the generalized use of biosimilar formulations of G-CSF and the implementation of novel, innovative immunotherapies.
Collapse
Affiliation(s)
- Bernardo L Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa.,The Multinational Association for Supportive Care in Cancer (MASCC), Chair of the Neutropenia, Infection and Myelosuppression Study Group
| | - Tim Cooksley
- Manchester University Foundation Trust, Manchester, United Kingdom. The Christie, University of Manchester, Manchester, UK.,The Multinational Association for Supportive Care in Cancer (MASCC), Infection and Myelosuppression Study Group
| | - Douglas B Johnson
- Douglas B. Johnson, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, Tennessee, USA
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Vickie R Shannon
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
37
|
Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol 2021; 100:1169-1179. [PMID: 33704530 PMCID: PMC8043896 DOI: 10.1007/s00277-021-04467-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
This translational study aimed at gaining insight into the effects of lenalidomide in acute myeloid leukemia (AML). Forty-one AML patients aged 66 or older of the Swiss cohort of the HOVON-103 AML/SAKK30/10 study were included. After randomization, they received standard induction chemotherapy with or without lenalidomide. Bone marrow biopsies at diagnosis and before the 2nd induction cycle were obtained to assess the therapeutic impact on leukemic blasts and microenvironment. Increased bone marrow angiogenesis, as assessed by microvessel density (MVD), was found at AML diagnosis and differed significantly between the WHO categories. Morphological analysis revealed a higher initial MVD in AML with myelodysplasia-related changes (AML-MRC) and a more substantial decrease of microvascularization after lenalidomide exposure. A slight increase of T-bet-positive TH1-equivalents was identifiable under lenalidomide. In the subgroup of patients with AML-MRC, the progression-free survival differed between the two treatment regimens, showing a potential but not significant benefit of lenalidomide. We found no correlation between the cereblon genotype (the target of lenalidomide) and treatment response or prognosis. In conclusion, addition of lenalidomide may be beneficial to elderly patients suffering from AML-MRC, where it leads to a reduction of microvascularization and, probably, to an intensified specific T cell-driven anti-leukemic response.
Collapse
|
38
|
Peiffer L, Farahpour F, Sriram A, Spassova I, Hoffmann D, Kubat L, Stoitzner P, Gambichler T, Sucker A, Ugurel S, Schadendorf D, Becker JC. BRAF and MEK inhibition in melanoma patients enables reprogramming of tumor infiltrating lymphocytes. Cancer Immunol Immunother 2021; 70:1635-1647. [PMID: 33275172 PMCID: PMC8139931 DOI: 10.1007/s00262-020-02804-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Combined inhibition of BRAF/MEK is an established therapy for melanoma. In addition to its canonical mode of action, effects of BRAF/MEK inhibitors on antitumor immune responses are emerging. Thus, we investigated the effect of these on adaptive immune responses. PATIENTS, METHODS AND RESULTS Sequential tumor biopsies obtained before and during BRAF/MEK inhibitor treatment of four (n = 4) melanoma patients were analyzed. Multiplexed immunofluorescence staining of tumor tissue revealed an increased infiltration of CD4+ and CD8+ T cells upon therapy. Determination of the T-cell receptor repertoire usage demonstrated a therapy induced increase in T-cell clonotype richness and diversity. Application of the Grouping of Lymphocyte Interactions by Paratope Hotspots algorithm revealed a pre-existing immune response against melanoma differentiation and cancer testis antigens that expanded preferentially upon therapy. Indeed, most of the T-cell clonotypes found under BRAF/MEK inhibition were already present in lower numbers before therapy. This expansion appears to be facilitated by induction of T-bet and TCF7 in T cells, two transcription factors required for self-renewal and persistence of CD8+ memory T cells. CONCLUSIONS Our results suggest that BRAF/MEK inhibition in melanoma patients allows an increased expansion of pre-existing melanoma-specific T cells by induction of T-bet and TCF7 in these.
Collapse
Affiliation(s)
- Lukas Peiffer
- grid.5718.b0000 0001 2187 5445Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Essen, Translational Skin Cancer Research, University of Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany ,grid.7497.d0000 0004 0492 0584Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Farnoush Farahpour
- grid.5718.b0000 0001 2187 5445Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Ashwin Sriram
- grid.5718.b0000 0001 2187 5445Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Essen, Translational Skin Cancer Research, University of Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany ,grid.7497.d0000 0004 0492 0584Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- grid.5718.b0000 0001 2187 5445Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Essen, Translational Skin Cancer Research, University of Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany
| | - Daniel Hoffmann
- grid.5718.b0000 0001 2187 5445Bioinformatics and Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Linda Kubat
- grid.5718.b0000 0001 2187 5445Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Essen, Translational Skin Cancer Research, University of Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany
| | - Patrizia Stoitzner
- grid.5361.10000 0000 8853 2677Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thilo Gambichler
- grid.5570.70000 0004 0490 981XDepartment of Dermatology, Skin Cancer Center, Ruhr-University Bochum, Bochum, Germany
| | - Antje Sucker
- grid.410718.b0000 0001 0262 7331Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Selma Ugurel
- grid.410718.b0000 0001 0262 7331Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Dirk Schadendorf
- grid.410718.b0000 0001 0262 7331Department of Dermatology, University Hospital of Essen, Essen, Germany
| | - Jürgen C. Becker
- grid.5718.b0000 0001 2187 5445Deutsches Konsortium Für Translationale Krebsforschung (DKTK), Partner Site Essen, Translational Skin Cancer Research, University of Duisburg-Essen, Universitätsstr. 1, 45141 Essen, Germany ,grid.7497.d0000 0004 0492 0584Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany ,grid.410718.b0000 0001 0262 7331Department of Dermatology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
39
|
Poorebrahim M, Melief J, Pico de Coaña Y, L Wickström S, Cid-Arregui A, Kiessling R. Counteracting CAR T cell dysfunction. Oncogene 2021; 40:421-435. [PMID: 33168929 PMCID: PMC7808935 DOI: 10.1038/s41388-020-01501-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
In spite of high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, the efficacy of this approach is limited by generation of dysfunctional CAR T cells in vivo, conceivably induced by immunosuppressive tumor microenvironment (TME) and excessive antigen exposure. Exhaustion and senescence are two critical dysfunctional states that impose a pivotal hurdle for successful CAR T cell therapies. Recently, modified CAR T cells with an "exhaustion-resistant" phenotype have shown superior antitumor functions and prolonged lifespan. In addition, several studies have indicated the feasibility of senescence delay in CAR T cells. Here, we review the latest reports regarding blockade of CAR T cell exhaustion and senescence with a particular focus on the exhaustion-inducing pathways. Subsequently, we describe what potential these latest insights offer for boosting the potency of adoptive cell transfer (ACT) therapies involving CAR T cells. Furthermore, we discuss how induction of costimulation, cytokine exposure, and TME modulation can impact on CAR T cell efficacy and persistence, while potential safety issues associated with reinvigorated CAR T cells will also be addressed.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden. .,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
40
|
Papagno L, Kuse N, Lissina A, Gostick E, Price DA, Appay V, Nicoli F. The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8 + T-cell responses in vitro. Sci Rep 2020; 10:11620. [PMID: 32669577 PMCID: PMC7363897 DOI: 10.1038/s41598-020-67704-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2'3'-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2'3'-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs.
Collapse
Affiliation(s)
- Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Anna Lissina
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| | - Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, 75013, Paris, France.
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
41
|
Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proc Natl Acad Sci U S A 2020; 117:14331-14341. [PMID: 32513686 PMCID: PMC7321988 DOI: 10.1073/pnas.1916206117] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with approximately four new cases per 100,000 persons per year. Standard treatment for AML consists of induction chemotherapy with remission achieved in 50 to 75% of cases. Unfortunately, most patients will relapse and die from their disease, as 5-y survival is roughly 29%. Therefore, other treatment options are urgently needed. In recent years, immune-based therapies have led to unprecedented rates of survival among patients with some advanced cancers. Suppression of T cell function in the tumor microenvironment is commonly observed and may play a role in AML. We found that there is a significant association between T cell infiltration in the bone marrow microenvironment of newly diagnosed patients with AML and increased overall survival. Functional studies aimed at establishing the degree of T cell suppression in patients with AML revealed impaired T cell function in many patients. In most cases, T cell proliferation could be restored by blocking the immune checkpoint molecules PD-1, CTLA-4, or TIM3. Our data demonstrate that AML establishes an immune suppressive environment in the bone marrow, in part through T cell checkpoint function.
Collapse
|
42
|
Lee DJ. The relationship between TIGIT + regulatory T cells and autoimmune disease. Int Immunopharmacol 2020; 83:106378. [PMID: 32172208 PMCID: PMC7250710 DOI: 10.1016/j.intimp.2020.106378] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
The role of regulatory T cells (Treg cell) in controlling autoimmune disease is an area of intense study. As such, the characterization and understanding the function of Treg markers has the potential to provide a considerable impact in developing treatments and understanding the pathogenesis of autoimmune diseases. One such inhibitory Treg cell marker that has been recently discovered is T cell immunoglobulin and ITIM domain (TIGIT). In this review, we discuss what is known about the expression and function of TIGIT on Treg cells, and we discuss the relationship between TIGIT expressing Treg cells and different autoimmune diseases such as atopic dermatitis, autoimmune thyroiditis, type 1 diabetes, autoimmune uveitis, aplastic anemia, multiple sclerosis, systemic lupus erythematosus, arthritis, and colitis.
Collapse
Affiliation(s)
- Darren J Lee
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK, USA.
| |
Collapse
|
43
|
Han F, Zhong C, Li W, Wang R, Zhang C, Yang X, Ji C, Ma D. hsa_circ_0001947 suppresses acute myeloid leukemia progression via targeting hsa-miR-329-5p/CREBRF axis. Epigenomics 2020; 12:935-953. [PMID: 32657138 DOI: 10.2217/epi-2019-0352] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Accumulating evidence has indicated that circular RNAs (circRNAs) are involved in cancer biology. However, their roles in acute myeloid leukemia (AML) remain unclear. Therefore, we aimed to define novel circRNAs involved the development and progression of AML. Materials & methods: We used circRNAs microarray to determine the differential expression profile. Quantitative reverse transcription PCR analyzed the expression of hsa_circ_0001947. The siRNA assesses the function of hsa_circ_0001947 in vitro and in vivo. A dual-luciferase and mimics/inhibitor were to determine the target gene relationship. Results: hsa_circ_0001947 functions as a tumor inhibitor to suppress AML cell proliferation through hsa-miR-329-5p/ CREBRF axis. Conclusion: hsa_circ_0001947 may be as a novel potential biomarker for the treatment of AML.
Collapse
Affiliation(s)
- Fengjiao Han
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Chaoqin Zhong
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
- Department of Hematology, Yantai Mountain Hospital, Yantai 264000, PR China
| | - Wei Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
44
|
Li Z, Philip M, Ferrell PB. Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 2020; 39:3611-3619. [PMID: 32127646 PMCID: PMC7234277 DOI: 10.1038/s41388-020-1239-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Acute myeloid leukemia (AML) is a systemic, heterogeneous hematologic malignancy with poor overall survival. While some malignancies have seen improvements in clinical outcomes with immunotherapy, success of these agents in AML remains elusive. Despite limited progress, stem cell transplantation and donor lymphocyte infusions show that modulation of the immune system can improve overall survival of AML patients. Understanding the causes of immune evasion and disease progression will identify potential immune-mediated targets in AML. This review explores immunosuppressive mechanisms that alter T-cell-mediated immunity in AML.
Collapse
Affiliation(s)
- Zhuoyan Li
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - P. Brent Ferrell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Ohmura H, Yamaguchi K, Hanamura F, Ito M, Makiyama A, Uchino K, Shimokawa H, Tamura S, Esaki T, Mitsugi K, Shibata Y, Oda H, Tsuchihashi K, Ariyama H, Kusaba H, Oda Y, Akashi K, Baba E. OX40 and LAG3 are associated with better prognosis in advanced gastric cancer patients treated with anti-programmed death-1 antibody. Br J Cancer 2020; 122:1507-1517. [PMID: 32203221 PMCID: PMC7217874 DOI: 10.1038/s41416-020-0810-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Background Anti-PD-1 monoclonal antibody, nivolumab, has shown efficacy for advanced gastric cancer (AGC). However, the specific immune cell subsets predominantly activated during the period of anti-PD-1 therapy for AGC have not been clarified. Methods Peripheral blood of 30 AGC patients treated with nivolumab was prospectively obtained before the initial and second administrations and at the time of progressive disease (PD). The proportions of immune cell subsets and the serum concentrations of cytokines were systematically analysed by flow cytometry. Associations of subsets and serum cytokines with therapeutic effects were evaluated. Results After the initial administration, significant increases in activated central/effector memory, activated effector T cells, and activated T-helper 1 subsets were observed. At the time of PD, activated regulatory T cells, LAG3-positive CD4+/CD8+ T cells, and TIM3-positive CD4+/CD8+ T cells increased significantly. Significant positive correlations were shown between progression-free survival and proportions of LAG3-positive CD4+/CD8+ T cells and of OX40-positive CD4+/CD8+ T cells (log-rank p = 0.0008, 0.0003, 0.0035 and 0.0040). Conclusions Nivolumab therapy enhances activation of central/effector memory and effector subsets of CD4+/CD8+ T cells. The expression levels of LAG-3 and OX40 on T cells correlated with the efficacy of nivolumab therapy and could be reasonable biomarkers for anti-PD-1 therapy.
Collapse
Affiliation(s)
- Hirofumi Ohmura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Kyoko Yamaguchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Fumiyasu Hanamura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Mamoru Ito
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Akitaka Makiyama
- Department of Hematology/Oncology, Japan Community Healthcare Organization Kyushu Hospital, Fukuoka, Japan
| | - Keita Uchino
- Department of Clinical Oncology, NTT Medical Center Tokyo, Tokyo, Japan
| | - Hozumi Shimokawa
- Department of Medical Oncology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shingo Tamura
- Department of Medical Oncology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Taito Esaki
- Department of Gastrointestinal and Medical Oncology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Kenji Mitsugi
- Department of Medical Oncology, Hamanomachi Hospital, Fukuoka, Japan
| | - Yoshihiro Shibata
- Department of Medical Oncology, Fukuoka Wajiro Hospital, Fukuoka, Japan
| | - Hisanobu Oda
- Department of Medical Oncology, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Kenji Tsuchihashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Hiroshi Ariyama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Hitoshi Kusaba
- Department of Medicine and Comprehensive Biosystemic Science Faculty, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Higashi-ku, Fukuoka, Japan
| | - Eishi Baba
- Department of Oncology and Social Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
46
|
Kong Y, Jia B, Zhao C, Claxton DF, Sharma A, Annageldiyev C, Fotos JS, Zeng H, Paulson RF, Prabhu KS, Zheng H. Downregulation of CD73 associates with T cell exhaustion in AML patients. J Hematol Oncol 2019; 12:40. [PMID: 31014364 PMCID: PMC6480867 DOI: 10.1186/s13045-019-0728-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background Successful treatment for acute myeloid leukemia (AML) remains challenging. Inhibiting immune checkpoint to enhance anti-tumor response is an attractive strategy for effective leukemia therapeutics. CD73 is a recently recognized immune checkpoint mediator that is highly expressed on tumor cells and stromal cells in tumor microenvironment. The ectonucleotidase activity of CD73 catalyzes AMP to adenosine, which subsequently inhibits anti-tumor immune responses. In this study, we aim to explore the effect of CD73 in AML. Methods Peripheral blood samples collected from patients with newly diagnosed AML (n = 27) were used in this study. CD73 expression on each immune cell component was examined by flow cytometry. Phenotypic study of CD73-expressing T cells and analysis of the correlation between CD73 and other immune checkpoints were performed using flow cytometry-based assays. Functional status of CD73+ vs. CD73− T cells was assessed in an in vitro cytokine release assay upon CD3/CD28 antibody stimulation. Results In contrast to the long recognized immune suppressive effect of CD73-adenosine signaling in tumor tissue, we made a striking observation that in AML, CD73 expression on CD8 T cells associates with an increased immune response. CD73+ CD8 T cells are more functional, whereas CD73− CD8 T cells exhibit features of exhaustion manifested by high expression of inhibitory receptors such as PD-1 and TIGIT, increased intracellular expression of Eomes, reduced capacity of cytokine production, and high susceptibility to apoptosis. Conclusions Our data highlight the potential of CD73 as a double-edged sword in anti-leukemia immunity and argue strongly for the combinational treatment by adding immune checkpoint inhibitors to the CD73-targeting approaches.
Collapse
Affiliation(s)
- Yaxian Kong
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.,Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Bei Jia
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Chenchen Zhao
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - David F Claxton
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Arati Sharma
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA.,Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Charyguly Annageldiyev
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Joseph S Fotos
- Department of Radiology, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Hui Zeng
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University College of Agricultural Sciences, University Park, Harrisburg, PA, 16802, USA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University College of Agricultural Sciences, University Park, Harrisburg, PA, 16802, USA
| | - Hong Zheng
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|