1
|
Wang Y, Wang Z, Mao X, Zhang H, Zhang L, Yang Y, Liu B, Li X, Luo F, Sun H. Cutting-edge technologies illuminate the neural landscape of cancer: Insights into tumor development. Cancer Lett 2025; 619:217667. [PMID: 40127813 DOI: 10.1016/j.canlet.2025.217667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Neurogenesis constitutes a pivotal facet of malignant tumors, wherein cancer and its therapeutic interventions possess the ability to reconfigure the nervous system, establishing a pathologic feedback loop that exacerbates tumor progression. Recent strides in high-resolution imaging, single-cell analysis, multi-omics technologies, and experimental models have opened unprecedented avenues in cancer neuroscience. This comprehensive review summarizes the latest advancements of these emerging technologies in elucidating the biological mechanisms underlying tumor initiation, invasion, metastasis, and the dynamic heterogeneity of the tumor microenvironment(TME), with a specific focus on neuron-glial-tumor interactions in glioblastoma(GBM) and other neurophilic cancers. Moreover, we innovatively propose target screening processes based on sequencing technologies and database frameworks. It rigorously evaluates ongoing clinical trial drugs and efficacy while spotlighting characteristic cells in the central and peripheral TME, consolidating cancer biomarkers pivotal for future targeted therapies and management strategies. By integrating these cutting-edge findings, this review aims to offer fresh insights into tumor-nervous system interactions, establishing a robust foundation for forthcoming clinical advancements.
Collapse
Affiliation(s)
- Yajing Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaojun Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyuan Mao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongrui Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Zhang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Yang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Beibei Liu
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinxu Li
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feiyang Luo
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Zhujiang Hospital and the Second Clinical Medical College, Southern Medical University, Guangzhou, China; Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital Institute for Brain Science and Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Liang Y, Su T, Zhu S, Sun R, Qin J, Yue Z, Wang X, Liang Z, Tan X, Bian Y, Zhao F, Tang D, Yin G. Astragali Radix-Curcumae Rhizoma normalizes tumor blood vessels by HIF-1α to anti-tumor metastasis in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156562. [PMID: 40023968 DOI: 10.1016/j.phymed.2025.156562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Abnormal tumor blood vessels can significantly promote the malignant progression of tumors, prompting researchers to focus on drugs that normalize these vessels for clinical treatment. The combination of the Qi-tonifying drug Astragali Radix and the blood-activating drug Curcumae Rhizoma, referred to as AC, exhibited significant anti-tumor metastasis effects. However, the association between the anti-tumor metastasis effect of AC and its potential role in regulating tumor vascular remodeling warrants further exploration. PURPOSE This study aimed to elucidate the mechanism through which AC induces tumor blood vessel normalization in colon cancer (CC). METHODS The potential active components of AC were identified through UPLC-MS/MS. An orthotopic transplantation model of CC was established in BALB/c mice using the CT26-Lucifer cell line, and the effects of AC were evaluated using IVIS imaging, hematoxylin and eosin (H&E) staining, and immunohistochemistry. Network pharmacology and molecular biology analyses were employed to identify the potential direct targets of AC. Subsequently, RT-PCR and Western blotting techniques were utilized to validate the findings obtained from network pharmacology. Furthermore, ELISA and other methodologies were used to investigate glycolysis-related indicators, along with immunofluorescence technology to demonstrate changes in vascular leakage and perfusion characteristics associated with blood vessel normalization. RESULTS We identified HIF-1α as a potential direct target of AC. This interaction influences the glycolytic processes in both tumor cells and tumor-associated endothelial cells (TECs) by directly binding to HIF-1α and modulating its nuclear translocation, thereby determining the integrity of TEC junctions. Mechanistically, AC directly regulates the key enzyme PFKFB3 in glycolysis by modulating HIF-1α expression and inhibiting its nuclear translocation. This action reduces tumor glycolytic flux, decreases the internalization of VE-cad, and influences the expression of downstream matrix metalloproteinases (MMPs), thereby strengthening the adherens and tight junctions between TECs and restoring vascular integrity. CONCLUSION This study presents novel findings that AC can regulate glycolysis through the inhibition of HIF-1α nuclear translocation, thereby promoting the normalization of tumor blood vessels and effectively inhibiting tumor metastasis. These results suggested that AC may serve as an effective therapeutic agent for normalizing tumor blood vessels.
Collapse
Affiliation(s)
- Yan Liang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tingting Su
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijiao Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruolan Sun
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahui Qin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zengyaran Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Wang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhongqing Liang
- School of Acupuncture-Moxibustion and Tuina · School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Fan Zhao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Decai Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Gang Yin
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Reghukumar SK, Inkielewicz-Stepniak I. Tumour cell-induced platelet aggregation in breast cancer: Scope of metal nanoparticles. Biochim Biophys Acta Rev Cancer 2025; 1880:189276. [PMID: 39921012 DOI: 10.1016/j.bbcan.2025.189276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Breast cancer is a major cause of cancer-related mortality among the female population worldwide. Among the various factors promoting breast cancer metastasis, the role of cancer-cell platelet interactions leading to tumour cell-induced platelet aggregation (TCIPA) has garnered significant attention recently. Our state-of-the-art literature review verifies the implications of metal nanoparticles in breast cancer research and TCIPA-specific breast cancer metastasis. We have evaluated in vitro and in vivo research data as well as clinical investigations within the scope of this topic presented in the last ten years. Nanoparticle-based drug delivery platforms in cancer therapy can combat the growing concerns of multi-drug resistance, the alarming rates of chemotherapy-induced toxicities and cancer progression. Metal nanoparticles conjugated with chemotherapeutics can outperform their free drug counterparts in achieving targeted drug delivery and desired drug concentration inside the tumour tissue with minimal toxic effects. Existing data highlights the potential of metal nanoparticles as a promising tool for targeting the platelet-specific interactions associated with breast cancer metastasis including TCIPA.
Collapse
|
5
|
Köhler B, Brieger E, Brandstätter T, Hörterer E, Wilk U, Pöhmerer J, Jötten A, Paulitschke P, Broedersz CP, Zahler S, Rädler JO, Wagner E, Roidl A. Unraveling the metastasis-preventing effect of miR-200c in vitro and in vivo. Mol Oncol 2025; 19:1029-1053. [PMID: 39404181 PMCID: PMC11977663 DOI: 10.1002/1878-0261.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 04/09/2025] Open
Abstract
Advanced breast cancer, as well as ineffective treatments leading to surviving cancer cells, can result in the dissemination of these malignant cells from the primary tumor to distant organs. Recent research has shown that microRNA 200c (miR-200c) can hamper certain steps of the invasion-metastasis cascade. However, it is still unclear whether miR-200c expression alone is sufficient to prevent breast cancer cells from metastasis formation. Hence, we performed a xenograft mouse experiment with inducible miR-200c expression in MDA-MB 231 cells. The ex vivo analysis of metastatic sites in a multitude of organs, including lung, liver, brain, and spleen, revealed a dramatically reduced metastatic burden in mice with miR-200c-expressing tumors. A fundamental prerequisite for metastasis formation is the motility of cancer cells and, therefore, their migration. Consequently, we analyzed the effect of miR-200c on collective- and single-cell migration in vitro, utilizing MDA-MB 231 and MCF7 cell systems with genetically modified miR-200c expression. Analysis of collective-cell migration revealed confluence-dependent motility of cells with altered miR-200c expression. Additionally, scratch assays showed an enhanced predisposition of miR-200c-negative cells to leave cell clusters. The in-between stage of collective- and single-cell migration was validated using transwell assays, which showed reduced migration of miR-200c-positive cells. Finally, to measure migration at the single-cell level, a novel assay on dumbbell-shaped micropatterns was performed, which revealed that miR-200c critically determines confined cell motility. All of these results demonstrate that sole expression of miR-200c impedes metastasis formation in vivo and migration in vitro and highlights miR-200c as a metastasis suppressor in breast cancer.
Collapse
Affiliation(s)
- Bianca Köhler
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Emily Brieger
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Tom Brandstätter
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Elisa Hörterer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Anna Jötten
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Philipp Paulitschke
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
- PHIO Scientific GmbHMunichGermany
| | - Chase P. Broedersz
- Department of Physics and AstronomyVrije Universiteit AmsterdamThe Netherlands
- Arnold‐Sommerfeld‐Center for Theoretical PhysicsLudwig‐Maximilians‐Universität MünchenGermany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Joachim O. Rädler
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐Universität MünchenGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of PharmacyLudwig‐Maximilians‐Universität MünchenGermany
| |
Collapse
|
6
|
Olatunde D, Franco OC, Gaestel M, De Benedetti A. Targeting the TLK1-MK5 Axis Suppresses Prostate Cancer Metastasis. Cancers (Basel) 2025; 17:1187. [PMID: 40227796 DOI: 10.3390/cancers17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Background: The spread of metastatic prostate cancer (PCa) is responsible for the majority of PCa-related deaths, yet the precise mechanisms driving this process remain unclear. We have identified a novel interaction between two distinct promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), which triggers a signaling cascade that promotes metastasis. In PCa, the TLK1-MK5 pathway may play a critical role, as androgen deprivation therapy (ADT) has been linked to increased expression of both TLK1 and MK5 in metastatic patients linked with poor survival. Objectives: In this study, we directly examined the effects of disrupting the TLK1>MK5 axis on the motility, invasiveness, and metastatic potential of PCa cells. Methods: To establish this, we used both pharmacologic and systemic approaches with genetically engineered mouse models and the use of IVIS. Results: The results of targeting the TLK1>MK5 axis support the notion that this axis is essential for the spread of metastatic cells and the development of age-related metastases.
Collapse
Affiliation(s)
- Damilola Olatunde
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Omar Coronel Franco
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
7
|
Lopez D, Tyson DR, Hong T. Intercellular signaling reinforces single-cell level phenotypic transitions and facilitates robust re-equilibrium of heterogeneous cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631250. [PMID: 39803530 PMCID: PMC11722408 DOI: 10.1101/2025.01.03.631250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Background Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood. In particular, the role of intercellular communications in phenotypic plasticity remains elusive. Methods In this study, we employ a multiscale inference-based approach using single-cell RNA sequencing (scRNA-seq) data to explore how intercellular interactions influence phenotypic dynamics of cancer cells, particularly cancers undergoing epithelial-mesenchymal transition. In addition, we use mathematical models based on our data-driven findings to interrogate the roles of intercellular communications at the cell populations from the viewpoint of dynamical systems. Results Our inference approach reveals that signaling interactions between cancerous cells in small cell lung cancer (SCLC) result in the reinforcement of the phenotypic transition in single cells and the maintenance of population-level intratumoral heterogeneity. Additionally, we find a recurring signaling pattern across multiple types of cancer in which the mesenchymal-like subtypes utilize signals from other subtypes to support its new phenotype, further promoting the intratumoral heterogeneity. Our models show that inter-subtype communication both accelerates the development of heterogeneous tumor populations and confers robustness to their steady state phenotypic compositions. Conclusions Our work highlights the critical role of intercellular signaling in sustaining intratumoral heterogeneity, and our approach of computational analysis of scRNA-seq data can infer inter- and intra-cellular signaling networks in a holistic manner.
Collapse
Affiliation(s)
- Daniel Lopez
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville. Knoxville, Tennessee 37916, USA
| | - Darren R Tyson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas. Richardson, Texas 75080, USA
| |
Collapse
|
8
|
Shah H, Patel P, Nath A, Shah U, Sarkar R. Role of human microbiota in facilitating the metastatic journey of cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03957-8. [PMID: 40072555 DOI: 10.1007/s00210-025-03957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Cancer continues to be the leading cause of mortality worldwide, with metastasis being the primary contributor to cancer-related deaths. Despite significant advancements in cancer therapies, metastasis remains a major challenge in effective cancer management. Metastasis, the process by which cancer cells spread from the primary tumor to distant organs, is a complex phenomenon influenced by multiple factors, including the human microbiota. The human body encompasses various microorganisms, comprising bacteria, viruses, fungi, and protozoa, collectively known as microbiota. In fact, the microbiota is more abundant than human cells, and its disruption, leading to an imbalance in host-microbiota interactions (dysbiosis), has been linked to various diseases, including cancer. Among all microbiota, bacteria are one of the key contributors to cancer progression. Bacteria and bacteria-derived components such as secondary metabolites, QSPs, and toxins play a pivotal role in the metastatic progression of cancers. This review explores the intricate relationship between the human microbiota and cancer progression, focusing on different bacterial species which have been implicated in tumorigenesis, immune evasion, and metastasis. The present review explores the role of the human microbiome, specifically of bacteria in promoting metastasis in different types of cancers, demonstrating its ability to impact both the spread of tumors and their underlying mechanisms. This review also highlights the therapeutic potential and challenges of microbiome-based interventions in combating metastatic cancers. By addressing these challenges and by integrating microbiome-targeted strategies into clinical cancer treatment could represent a transformative approach in the fight against metastasis.
Collapse
Affiliation(s)
- Himisa Shah
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Princy Patel
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Abhay Nath
- Devang Patel Institute of Advanced Technology and Research, Charotar University of Science and Technology, CHARUSAT Campus, Anand, 388421, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Anand, 388421, Gujarat, India
| | - Ruma Sarkar
- B. D. Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India.
| |
Collapse
|
9
|
Ticha P, Northey JJ, Kersten K, Velozo HG, Ironside AJ, Zidek M, Drain A, Lakins JN, Chen YY, Tsai KK, Weaver VM. NCOR2 represses MHC class I molecule expression to drive metastatic progression of breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642060. [PMID: 40161756 PMCID: PMC11952456 DOI: 10.1101/2025.03.10.642060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Metastatic progression depends upon the ability of disseminated tumor cells to evade immune surveillance. MHC molecule expression facilitates T cell recognition and activation to permit the eradication of metastatic tumor cells. We identified nuclear corepressor 2 (NCOR2) as a key epigenetic regulator of MHC class I molecule expression on breast tumor cells. Patients with triple negative breast cancers (TNBC) that expressed high levels of NCOR2 also exhibited reduced metastasis free survival and decreased MHC class I expression, and the metastatic lesions in patients with TNBC had high nuclear NCOR2 and reduced CD8 T cell levels and activity. Genetically and experimentally reducing NCOR2 expression in tumor cells permitted interferon gamma upregulation of MHC class I, and potentiated CD8 T cell activity and induction of apoptosis to repress metastatic progression of disseminated breast cancer cells. These studies provide evidence to support NCOR2 as a targetable epigenetic regulator of metastasis towards which therapies could be developed to reduce patient mortality.
Collapse
Affiliation(s)
- Pavla Ticha
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Department of Plastic Surgery, 3rd Faculty of Medicine and University Hospital Kralovske Vinohrady, Charles University in Prague, Srobarova 50, 10034, Praha 10, Czech Republic
| | - Jason J. Northey
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelly Kersten
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Current address: Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hugo González Velozo
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Laboratory of Tumor Microenvironment and Metastasis, Centro Ciencia & Vida, Santiago, Chile
| | | | - Martin Zidek
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison Drain
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathan N. Lakins
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kelvin K. Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Valerie M. Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Hehnen F, Wolff H, Krakowski S, Bondzio G, Lommel M, Kertzscher U, Geus PF. Numerical Assessment of the Efficiency of a New Minimally Invasive Probe for the Isolation of Circulating Tumor Cells. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70032. [PMID: 40130714 PMCID: PMC11934836 DOI: 10.1002/cnm.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/26/2025]
Abstract
Liquid biopsy, particularly the isolation of circulating tumor cells (CTCs) from blood, is a promising approach in the fight against cancer. However, the main reason why CTCs are hardly used as biomarkers in the clinic is their complicated isolation from the patient's blood. Existing ex vivo systems use a small volume of blood and can therefore only isolate very few CTCs. To overcome this problem and increase the number of isolated CTCs, a new in vivo method-the BMProbe was introduced, which can isolate CTCs directly from the patient's bloodstream. This study investigates the efficiency of the BMProbe by using Computational Fluid Dynamics simulations to evaluate parameters influencing the attachment probability of CTCs to the probe surface. The analyzed parameters include screened blood volume, residence time, and wall normal rate. Additionally, the impact of probe geometry, vein diameter, and blood flow velocity on probe efficiency was examined. The numerical data suggest that the geometry has a strong influence on cell binding efficiency. Increasing the number of windings from 4 to 32 improves the transport of cells to the surface (negative wall normal rate) from 0 to -29 [mm2/s] and the screened blood volume by 138% but decreases the residence time of particles in the close vicinity of the probe by 77%. When compared to experimental data, the screened blood volume and the wall normal rate indicate cell attachment very well, whereas the residence time does not show a significant impact on the attachment of cells. For the 32-windings BMProbe, the screened blood volume is determined to be 130-313 mL, depending on the vein diameter, which is a multiple of the volume achieved by common CTC isolation techniques.
Collapse
Affiliation(s)
- Felix Hehnen
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| | - Henri Wolff
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| | - Sophia Krakowski
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| | | | - Michael Lommel
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| | - Ulrich Kertzscher
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| | - Paul Friedrich Geus
- Deutsches Herzzentrum der Charité, Institute of Computer‐Assisted Cardiovascular MedicineBiofluid Mechanics LaboratoryBerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinInstitute of Computer‐Assisted Cardiovascular MedicineBerlinGermany
| |
Collapse
|
11
|
Sajjad M, Malik MZ, Awan ABU, Shah HS, Sarfraz M, Usman F, Chohan TA, Wani TA, Zargar S, Jawad Z. Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals (Basel) 2025; 18:347. [PMID: 40143125 PMCID: PMC11944626 DOI: 10.3390/ph18030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study examined the fabrication and characterization of nanosponges (NS) laden with polyoxometalates (TiW11Co) with the intention of targeting malignancy. Methods: By employing the emulsion solvent diffusion technique, TiW11Co-NS were generated by combining polyvinyl alcohol (PVA) and ethyl cellulose (EC) in different concentrations. Results: A significant numerical results encompassed a hydrodynamic particle diameter of 109.5 nm, loading efficiencies reaching 85.9%, and zeta potentials varying from -24.91 to -27.08 (mV). Scanning and transmission electron microscopy were employed to validate the TiW11Co-NS porous structure and surface morphology. The results of the stability investigation indicated that TiW11Co-NS exhibited prolonged sturdiness. Investigation examining the inhibition of enzymes revealed that TiW11Co-NS exhibited enhanced effectiveness against TNAP. Pharmacological evaluations of TiW11Co-NS demonstrated improved cytotoxicity and apoptotic effects in comparison to pure TiW11Co, thereby indicating their potential utility in targeted cancer therapy. In vivo investigations involving mice revealed that TiW11Co-NS caused a more substantial reduction in tumor weight and increased survival rates in comparison to pure TiW11Co. The resemblance of TiW11Co for crucial proteins associated with cancer proliferation was featured through molecular docking, thereby supporting its therapeutic potential. Conclusions: The TiW11Co-laden nanosponges demonstrated superior stability, enzyme inhibition, cytotoxicity, and in vivo anticancer efficacy, underscoring their potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | | | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Zobia Jawad
- Lady Willingdon Hospital, King Edward Medical University, Lahore 54000, Pakistan;
| |
Collapse
|
12
|
Esparza S, Jacobs E, Hammel JH, Michelhaugh SK, Alinezhadbalalami N, Nagai-Singer M, Imran KM, Davalos RV, Allen IC, Verbridge SS, Munson JM. Transient Lymphatic Remodeling Follows Sub-Ablative High-Frequency Irreversible Electroporation Therapy in a 4T1 Murine Model. Ann Biomed Eng 2025:10.1007/s10439-024-03674-y. [PMID: 39998766 DOI: 10.1007/s10439-024-03674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/23/2024] [Indexed: 02/27/2025]
Abstract
High-frequency irreversible electroporation (H-FIRE) is a minimally invasive local ablation therapy known to activate the adaptive immune system and reprogram the tumor microenvironment. Its predecessor, irreversible electroporation (IRE), transiently increases microvascular density and immune cell infiltration within the surviving non-ablated and non-necrotic tumor region, also known as the viable tumor region. However, the impact of pulse electric field therapies on lymphatic vessels, crucial for T-cell fate and maturation, remains unclear. This study investigates how sub-ablative H-FIRE (SA-HFIRE) affects lymphatic and blood microvascular remodeling in the 4T1 mammary mouse model. We conducted a temporal and spatial analysis to evaluate vascular changes in the viable tumor, peritumoral fat pad, and tumor-draining lymph node post-treatment. Histological examination showed a transient increase in blood vessel density on Day 1 post-treatment, followed by a spike in lymphatic vessel density in the viable tumor region on Day 3 post-treatment, increased lymphatic vessel density in the peripheral fat pad, and minimal remodeling of the tumor-draining lymph node within 3 days following treatment. Gene expression analysis indicated elevated levels of CCL21 and CXCL2 on Day 1 post-treatment, while VEGFA and VEGFC did not appear to contribute to vascular remodeling. Likewise, CCL21 protein content in tumor-draining axillary lymph nodes correlated with gene expression data from the viable tumor region. These findings suggest a dynamic shift in lymphatic and blood microvascular structures post-SA-HFIRE, potentially enhancing the adaptive immune response through CCL21-mediated lymphatic homing and subsequent lymph node microvascular remodeling. Future work will assess the immune and transport function of the microvasculature to inform experiments aimed at the application of adjuvant therapies during scenarios of tumor partial ablation.
Collapse
Affiliation(s)
- Savieay Esparza
- Fralin Biomedical Research Institute at Virginia Tech-Carilion, Room 1210, 4 Riverside Circle, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Edward Jacobs
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech & Emory University, Atlanta, GA, USA
| | - Jennifer H Hammel
- Fralin Biomedical Research Institute at Virginia Tech-Carilion, Room 1210, 4 Riverside Circle, Roanoke, VA, 24016, USA
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Sharon K Michelhaugh
- Fralin Biomedical Research Institute at Virginia Tech-Carilion, Room 1210, 4 Riverside Circle, Roanoke, VA, 24016, USA
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Margaret Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Khan Mohammad Imran
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech & Emory University, Atlanta, GA, USA
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Scott S Verbridge
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Jennifer M Munson
- Fralin Biomedical Research Institute at Virginia Tech-Carilion, Room 1210, 4 Riverside Circle, Roanoke, VA, 24016, USA.
- Department of Biomedical Engineering & Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
14
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
15
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
16
|
Mehdikhani F, Hajimehdipoor H, Tansaz M, Maresca M, Rajabi S. Sesquiterpene Lactones as Promising Phytochemicals to Cease Metastatic Propagation of Cancer. Biomolecules 2025; 15:268. [PMID: 40001571 PMCID: PMC11852507 DOI: 10.3390/biom15020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer metastasis remains the most challenging issue in cancer therapy. Recent reports show that cancer metastasis accounts for over 90% of cancer-associated deaths in the world. Metastasis is a multi-step process by which cancer cells spread to distant tissues and organs beyond the primary site. The metastatic propagation of different cancers is under the surveillance of several regulating processes and factors related to cellular signaling pathways. Plant-derived phytochemicals are bioactive components of plants with a variety of biological and medicinal activities. Several phytochemicals have been shown to target various molecular factors in cancer cells to tackle metastasis. Sesquiterpene lactones, as a diverse group of plant-derived phytochemicals with a variety of biological activities, have been shown to suppress the promotion and progression of different cancer types by acting on multiple cell-signaling pathways. This review article briefly describes the process of metastasis and its components. Then, sesquiterpene lactones with the ability to target and inhibit invasion, migration, and metastasis along with the molecular mechanisms of their effects on different cancers are described in detail.
Collapse
Affiliation(s)
- Fatemeh Mehdikhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Homa Hajimehdipoor
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran;
| | - Mojgan Tansaz
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran;
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Med, ISM2, 13013 Marseille, France
| | - Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1516745811, Iran
| |
Collapse
|
17
|
Zhang L, Duan X, Zhao Y, Zhang D, Zhang Y. Implications of intratumoral microbiota in tumor metastasis: a special perspective of microorganisms in tumorigenesis and clinical therapeutics. Front Immunol 2025; 16:1526589. [PMID: 39995663 PMCID: PMC11847830 DOI: 10.3389/fimmu.2025.1526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Tumor metastasis is the main cause of therapeutic failure and mortality in cancer patients. The intricate metastastic process is influenced by both the intrinsic properties of tumor cells and extrinsic factors, such as microorganisms. Notably, some microbiota have been discovered to colonize tumor tissues, collectively known as intratumoral microbiota. Intratumoral microbiota can modulate tumor progression through multiple mechanisms, including regulating immune responses, inducing genomic instability and gene mutations, altering metabolic pathways, controlling epigenetic pathways, and disrupting cancer-related signaling pathways. Furthermore, intratumoral microbiota have been shown to directly impact tumor metastasis by regulating cell adhesion, stem cell plasticity and stemness, mechanical stresses and the epithelial-mesenchymal transition. Indirectly, they may affect tumor metastasis by modulating the host immune system and the tumor microenvironment. These recent findings have reshaped our understanding of the relationship between microorganims and the metastatic process. In this review, we comprehensively summarize the existing knowledge on tumor metastasis and elaborate on the properties, origins and carcinogenic mechanisms of intratumoral microbiota. Moreover, we explore the roles of intratumoral microbiota in tumor metastasis and discuss their clinical implications. Ongoing research in this field will establish a solid foundation for novel therapeutic strategies and clinical treatments for various tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| | | | | | | | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| |
Collapse
|
18
|
López-Collazo E, Hurtado-Navarro L. Cell fusion as a driver of metastasis: re-evaluating an old hypothesis in the age of cancer heterogeneity. Front Immunol 2025; 16:1524781. [PMID: 39967663 PMCID: PMC11832717 DOI: 10.3389/fimmu.2025.1524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Numerous studies have investigated the molecular mechanisms and signalling pathways underlying cancer metastasis, as there is still no effective treatment for this terminal stage of the disease. However, the exact processes that enable primary cancer cells to acquire a metastatic phenotype remain unclear. Increasing attention has been focused on the fusion of cancer cells with myeloid cells, a phenomenon that may result in hybrid cells, so-called Tumour Hybrid Cells (THCs), with enhanced migratory, angiogenic, immune evasion, colonisation, and metastatic properties. This process has been shown to potentially drive tumour progression, drug resistance, and cancer recurrence. In this review, we explore the potential mechanisms that govern cancer cell fusion, the molecular mediators involved, the metastatic characteristics acquired by fusion-derived hybrids, and their clinical significance in human cancer. Additionally, we discuss emerging pharmacological strategies aimed at targeting fusogenic molecules as a means to prevent metastatic dissemination.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
- UNIE University, Madrid, Spain
| | - Laura Hurtado-Navarro
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
19
|
Rassouli FB, Matin MM, Hadizadeh F, Nejabat M, Allahverdizadeh H, Jamali H, Gharedaghi S, Hassanzadeh H. Exploring the anti-metastatic potential of sunitinib and novel analogs in colorectal cancer: insights into HIF-1α mediated metastasis. Front Pharmacol 2025; 16:1520881. [PMID: 39968177 PMCID: PMC11832664 DOI: 10.3389/fphar.2025.1520881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction Colorectal cancer (CRC) is a prevalent malignancy worldwide with high mortality rate. Metastasis, the primary cause of cancer-related deaths, is attributed to various factors including tumor hypoxia. Due to the urgent demand for potent anti-metastatic agents, we aimed to determine the effects of sunitinib and novel analogs on the metastatic behavior of human CRC cells in hypoxic condition for the first time. Methods For in silico analyses, pathogenic targets of metastatic CRC were identified, PPI network was constructed and KEGG pathway enrichment analysis was conducted. The expression of HIF1A was evaluated in seven CRC cell lines, and computational modeling was carried out to define the interaction of sunitinib with HIF-1α. For in vitro studies, analogs of sunitinib were synthesized, and cells were assessed for viability, migration, invasion, MMPs activity and gene expression in hypoxic condition. Results and Discussion Computational analyses highlighted the importance of HIF-1α as a crucial mediator of metastasis in CRC. Molecular docking and dynamics simulations demonstrated favorable and stable interaction of sunitinib and three novel analogs with HIF-1α PAS-B domain. Volcano plots indicated upregulation of HIF1A in LoVo cells compared to six other CRC cell lines. Findings of in vitro studies revealed considerable inhibitory effects of sunitinib and analogs on LoVo cell migration and invasion in hypoxic condition. Gelatin zymography and qPCR analysis indicated decreased activity of MMP-2 and MMP-9, along with downregulation of EMT transcription factors in hypoxic condition. Current study reports promising anti-metastatic effects of sunitinib and novel analogs on CRC cells, providing foundation for further investigation to combat cancer metastasis.
Collapse
Affiliation(s)
- Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Nejabat
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamidreza Jamali
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shahin Gharedaghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Halimeh Hassanzadeh
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| |
Collapse
|
20
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
21
|
Sethi SC, Singh R, Sahay O, Barik GK, Kalita B. Unveiling the hidden gem: A review of long non-coding RNA NBAT-1 as an emerging tumor suppressor and prognostic biomarker in cancer. Cell Signal 2025; 126:111525. [PMID: 39592019 DOI: 10.1016/j.cellsig.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Previously considered junk or non-functional, long non-coding RNAs (lncRNAs) have emerged over the past few decades as pivotal components in both physiological and pathological processes, including cancer. Neuroblastoma-associated transcript-1 (NBAT-1) was initially discovered a decade ago as a risk-associated tumor suppressor lncRNA in neuroblastoma (NB). Subsequent studies have consistently demonstrated that NBAT-1 serves as a dedicated tumor suppressor in many cancers. NBAT-1 is significantly downregulated in cancer, which is closely linked to higher histological grades, increased metastasis, and poor survival in cancer patients suggesting NBAT-1's potential as a prognostic biomarker. In this review, we delve into the current body of literature, elucidating the tumor-suppressive roles of NBAT-1 and the underlying regulatory mechanisms in the context of human malignancies. Additionally, we shed light on the mechanisms contributing to the diminished expression of NBAT-1 and its potential as both a prognostic biomarker and a promising therapeutic target in cancer.
Collapse
Affiliation(s)
- Subhash Chandra Sethi
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ragini Singh
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Osheen Sahay
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ganesh Kumar Barik
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Bhargab Kalita
- Amrita Research Center, Amrita Vishwa Vidyapeetham, Amrita Hospital, Mata Amritanandamayi Marg, Faridabad 121002, India.
| |
Collapse
|
22
|
Xie Y, Wang J, Li L, Wang M, Sun J, Chang J, Lin J, Li C. A Metal Chelation Therapy to Effectively Eliminate Breast Cancer and Intratumor Bacteria While Suppressing Tumor Metastasis by Copper Depletion and Zinc Ions Surge. Angew Chem Int Ed Engl 2025; 64:e202417592. [PMID: 39394640 DOI: 10.1002/anie.202417592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/13/2024]
Abstract
The intratumor microbiota results in the immunosuppressive microenvironment and facilitates tumor growth and metastasis. However, developing a synergistic therapy with antitumor, antibacterial, and antimetastatic effects faces enormous challenges. Here, we propose an innovative metal chelation therapy to effectively eliminate tumor and intratumor bacteria and suppress tumor metastasis. Different from traditional chelation therapy that only consumes metal elements, this therapy not only eliminates the crucial metal elements for tumor metabolism but also releases new metal ions with antitumor and antibacterial properties. Based on the high demand for copper in breast cancer, we prepare a fibrous therapeutic nanoagent (Zn-PEN) by chelating the copper chelator D-Penicillamine (D-PEN) with Zn2+. Firstly, Zn-PEN achieves dual inhibition of oxidative phosphorylation (OXPHOS) and glycolysis metabolism in breast cancer through copper depletion and Zn2+ activated cGAS-STING pathway, thus inducing tumor cell death. Secondly, Zn-PEN has the capability to eradicate Fusobacterium nucleatum (F. nucleatum) in breast cancer, thereby mitigating its immunosuppressive impact on the tumor microenvironment. Finally, Zn-PEN effectively inhibits tumor metastasis through multiple routes, including the inhibition of epithelial-mesenchymal transition (EMT) process, activation of cGAS-STING pathway, and elimination with F. nucleatum. Therefore, we verify the feasibility of Zn-PEN mediated metal chelation therapy in a 4T1 model infected with F. nucleatum, providing a new therapeutic strategy for inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Man Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jikai Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jiaying Chang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
23
|
Miranda I, Jahan N, Shevde LA. The metastatic cascade through the lens of therapeutic inhibition. Cell Rep Med 2025; 6:101872. [PMID: 39706193 DOI: 10.1016/j.xcrm.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024]
Abstract
Metastasis is a main cause of cancer-related death, and a deeper understanding of the metastatic process will inform more targeted and mechanistic approaches that can abrogate challenges in treatment efficacy and toxicity. Several steps throughout the metastatic cascade, from angiogenesis to secondary tumor formation, offer specific vulnerabilities to therapies that can lead to the decline or cessation of metastatic progression. A deeper understanding of the metastatic cascade also allows combination systemic therapies to be used synergistically. In this review, we describe current treatment modalities in the context of multiple steps of the metastatic cascade. We highlight their mechanisms and present their efficacy across multiple cancers. This work also presents targets within the metastatic cascade in need of more research that can advance the landscape of treatments and lead to the goal of metastatic cancer remission.
Collapse
Affiliation(s)
- Ian Miranda
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nusrat Jahan
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells. Clin Cancer Res 2025; 31:414-429. [PMID: 39540841 PMCID: PMC11739783 DOI: 10.1158/1078-0432.ccr-24-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell RNA sequencing, we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multiparameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics were used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and nontumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. Single-cell RNA sequencing demonstrated that the surrounding lung stroma adopts a chronic, nonresolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, the metastasis-associated lung demonstrated marked fibrosis, likely because of the accumulation of pathogenic, profibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a prometastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the antifibrotic tyrosine kinase inhibitor (TKI) nintedanib. Our data shed light on the non-cell-autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
Affiliation(s)
- James B Reinecke
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio
| | - Leyre Jimenez Garcia
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio
| | - Amy C Gross
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Maren Cam
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Matthew V Cannon
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Matthew J Gust
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
| | - Jeffrey P Sheridan
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Berkley E Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ruben Dries
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Ryan D Roberts
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio
- Department of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, Columbus, Ohio
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
25
|
Ko YG, Jo JH, Song SY, Lee HS. The crucial role of CEMIP in cancer metastasis: Mechanistic insights and clinical implications. FASEB J 2025; 39:e70284. [PMID: 39758005 PMCID: PMC11701794 DOI: 10.1096/fj.202402522r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Cancer metastasis is the leading cause of cancer-related deaths, making early detection and the prevention of metastatic progression critical research priorities. Recent studies have expanded our understanding of CEMIP (KIAA1199, HYBID), revealing its involvement in cancer metastasis and its potential role in slowing cancer progression. CEMIP plays critical roles in several stages of cancer metastasis: First, CEMIP promotes cancer cell proliferation to maintain cell heterogeneity before the metastasis process. Second, it facilitates cancer cell detachment by promoting the epithelial-mesenchymal transition (EMT) through alterations in signaling pathways. Third, CEMIP contributes to cancer cell adherence and attachment by enabling cells to withstand cell death (anoikis and ferroptosis) and hypoxia. Fourth, during the invasion process, CEMIP induces hyaluronan depolymerization and further modulates signaling to promote EMT. Lastly, in the pre-metastatic niche, CEMIP influences the tumor microenvironment through hypoxia, angiogenesis, signaling pathway changes, and hyaluronan degradation. Recent studies have focused on leveraging CEMIP as a diagnostic tool or a predictor of metastasis and/or targeting CEMIP to overcome cancer resistance and progression. This review aims to explore the role of CEMIP at each stage of cancer metastasis and highlight recent advances in targeting CEMIP to inhibit cancer progression.
Collapse
Affiliation(s)
- Yeo Gyeong Ko
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| | - Jung Hyun Jo
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute of GastroenterologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute of GastroenterologyYonsei University College of MedicineSeoulRepublic of Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
- Institute of GastroenterologyYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
26
|
Lusby R, Demirdizen E, Inayatullah M, Kundu P, Maiques O, Zhang Z, Terp MG, Sanz-Moreno V, Tiwari VK. Pan-cancer drivers of metastasis. Mol Cancer 2025; 24:2. [PMID: 39748426 PMCID: PMC11697158 DOI: 10.1186/s12943-024-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
Metastasis remains a leading cause of cancer-related mortality, irrespective of the primary tumour origin. However, the core gene regulatory program governing distinct stages of metastasis across cancers remains poorly understood. We investigate this through single-cell transcriptome analysis encompassing over two hundred patients with metastatic and non-metastatic tumours across six cancer types. Our analysis revealed a prognostic core gene signature that provides insights into the intricate cellular dynamics and gene regulatory networks driving metastasis progression at the pan-cancer and single-cell level. Notably, the dissection of transcription factor networks active across different stages of metastasis, combined with functional perturbation, identified SP1 and KLF5 as key regulators, acting as drivers and suppressors of metastasis, respectively, at critical steps of this transition across multiple cancer types. Through in vivo and in vitro loss of function of SP1 in cancer cells, we revealed its role in driving cancer cell survival, invasive growth, and metastatic colonisation. Furthermore, tumour cells and the microenvironment increasingly engage in communication through WNT signalling as metastasis progresses, driven by SP1. Further validating these observations, a drug repurposing analysis identified distinct FDA-approved drugs with anti-metastasis properties, including inhibitors of WNT signalling across various cancers.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Engin Demirdizen
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Paramita Kundu
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Oscar Maiques
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK
| | - Mikkel Green Terp
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Building, Charterhouse Square, London, EC1M 6BQ, UK
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Institute for Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Patrick G Johnston Centre for Cancer Research, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, BT9 7AE, Belfast, UK.
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark.
| |
Collapse
|
27
|
Sun Q, Zhao H, Zhang X, Zhang S, He Z, Wang G, Jiang H, Xuan A, Li X. Efficacy Analysis of Hypofractionated Radiotherapy for Oligometastatic Tumors: A Retrospective Study. Technol Cancer Res Treat 2025; 24:15330338241310155. [PMID: 39819190 PMCID: PMC11742154 DOI: 10.1177/15330338241310155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/22/2024] [Accepted: 11/19/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Metastasis remains a major cause of death among patients with malignant tumors. Radiotherapy is one of the main modalities of cancer treatment. The rapid development of radiotherapy technology has enabled the widespread application of hypofractionated radiotherapy (HFRT) in clinical practice. This study aimed to evaluate the effect of HFRT on the survival and safety of patients with oligometastatic tumors. METHODS We conducted a retrospective study that involved 65 patients with well-controlled primary tumors and 1-5 metastatic foci treated at the study site between January 2020 and December 2022. Patients were aged >18 years and had a ≥ 6-month life expectancy. The patients received standard treatments plus HFRT for all metastatic foci. The dose fractionation regimen was adjusted according to the location and size of the patient's metastatic foci. The planning gross tumor volume of HFRT was 82.93 cm3 (range: 10.12-562.80 cm3), and the radiation dose range was 20 Gy/5 F-60 Gy/15 F. Progression-free survival (PFS), overall survival (OS), local control rates, and incidence of adverse events of the patients were observed. RESULTS Among the 65 patients, the median follow-up time, PFS, and OS were 26 months (95% CI: 0.80-37.50), 15 months (95% CI: 9.36-20.64), and 28 months (95% CI: 16.71-39.29), respectively. The 1- and 2-year PFS were 53.8% and 40.0%, respectively, while the 1- and 2-year OS rates were 73.8% and 56.9%, respectively. In total, 13.8%, 55.4%, 20.0%, and 13.8% of patients showed complete response, partial response, stable disease, and progressive disease, respectively. Four patients developed grade 3 or worse adverse events, and no treatment-related deaths occurred. CONCLUSIONS HFRT showed favorable clinical efficacy and safety in patients with oligometastatic tumors, generally achieving a good OS rate. Further randomized trials should be conducted.
Collapse
Affiliation(s)
- Qian Sun
- Jinan University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hanqing Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Suli Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zelai He
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Gengming Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Aili Xuan
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xianming Li
- Jinan University, Guangzhou, Guangdong, China
- Department of Radiation Oncology, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, Shenzhen, China
| |
Collapse
|
28
|
Lu C, Liu T, Yimin E, Miao L, Yu C, Zhang J, Luo X. FAM49B drives colorectal cancer progression by stabilizing c-Myc through NEK9 phosphorylation. Biofactors 2025; 51:e2158. [PMID: 39780509 DOI: 10.1002/biof.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored. In this study, we observed that FAM49B was abnormally expressed in CRC tissues and cell lines, with elevated expression correlating with poor patient prognosis. FAM49B knockdown markedly suppressed CRC cell proliferation by arresting the cell cycle and reducing cell migration and invasion. Single-cell RNA-seq (ScRNA-seq) analysis revealed that high FAM49B expression in malignant epithelial cell clusters was strongly linked to c-Myc oncogene activation. Further, FAM49B knockdown significantly reduced c-Myc expression by enhancing its K48 ubiquitination. We identified NEK9 as a direct interacting partner of FAM49B, with FAM49B knockdown inhibiting NEK9-Thr210 phosphorylation. Similarly, high NEK9 expression was linked to unfavorable prognosis in CRC. In FAM49B-overexpressing CRC cells, NEK9 knockdown significantly suppressed c-Myc expression, c-Myc-ser62 phosphorylation, and reduced cell proliferation, migration, and invasion. Thus, directly targeting the FAM49B/NEK9/c-Myc pathway presents a promising therapeutic approach for c-Myc positive CRC patients.
Collapse
Affiliation(s)
- Chen Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tianyu Liu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - E Yimin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Lin Miao
- Medical Centre for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian, China
| | - Xiagang Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Frame G, Huang X, Haas R, Khan KA, Leong HS, Kislinger T, Boutros PC, Downes M, Liu SK. Accelerated growth and local progression of radiorecurrent prostate cancer in an orthotopic bioluminescent mouse model. Sci Rep 2024; 14:31205. [PMID: 39732766 DOI: 10.1038/s41598-024-82546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Globally, prostate cancer is the second most common malignancy in males, with over 400 thousand men dying from the disease each year. A common treatment modality for localized prostate cancer is radiotherapy. However, up to half of high-risk patients can relapse with radiorecurrent prostate cancer, the aggressive clinical progression of which remains severely understudied. To address this, we have established an orthotopic mouse model for study that recapitulates the aggressive clinical progression of radiorecurrent prostate cancer. Radiorecurrent DU145 cells which survived conventional fraction (CF) irradiation were orthotopically injected into the prostates of athymic nude mice and monitored with bioluminescent imaging. CF tumours exhibited higher take rates and grew more rapidly than treatment-naïve parental tumours (PAR). Pathohistological analysis revealed extensive seminal vesicle invasion and necrosis in CF tumours, recapitulating the aggressive progression towards locally advanced disease exhibited by radiorecurrent tumours clinically. RNA sequencing of CF and PAR tumours identified ROBO1, CAV1, and CDH1 as candidate targets of radiorecurrent progression associated with biochemical relapse clinically. Together, this study presents a clinically relevant orthotopic model of radiorecurrent prostate cancer progression that will enable discovery of targets for therapeutic intervention to improve outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Roni Haas
- University of California Los Angeles, Los Angeles, USA
| | - Kabir A Khan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Hon S Leong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- University of California Los Angeles, Los Angeles, USA
| | - Michelle Downes
- Division of Anatomic Pathology, Precision Diagnostics & Therapeutics Program-Laboratory Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
30
|
Sanghvi N, Calvo-Alcañiz C, Rajagopal PS, Scalera S, Canu V, Sinha S, Schischlik F, Wang K, Madan S, Shulman E, Papanicolau-Sengos A, Blandino G, Ruppin E, Nair NU. Charting the transcriptomic landscape of primary and metastatic cancers in relation to their origin and target normal tissues. SCIENCE ADVANCES 2024; 10:eadn0220. [PMID: 39642223 PMCID: PMC11623296 DOI: 10.1126/sciadv.adn0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/31/2024] [Indexed: 12/08/2024]
Abstract
Metastasis is a leading cause of cancer-related deaths, yet understanding how metastatic tumors adapt from their origin to their target tissues remains a fundamental challenge. To address this, we assessed whether primary and metastatic tumors more closely resemble their tissues of origin or target tissues in terms of gene expression. We analyzed expression profiles from multiple cancer types and normal tissues, including single-cell and bulk RNA sequencing data from both paired and unpaired patient cohorts. Primary tumors were overall more transcriptomically similar to their tissues of origin, while metastases shifted toward their target tissues. However, pathway-level analysis highlighted critical metabolic and immune transcriptomic changes toward target tissues during metastasis in both primary and metastatic tumors. In addition, primary tumors exhibited higher activity in cancer hallmarks such as "Activating Invasion and Metastasis" when compared to metastases. This comprehensive analysis provides a transcriptome-wide view of the processes through which cancer tumors adapt to their metastatic environments before and after metastasis.
Collapse
Affiliation(s)
- Neel Sanghvi
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Camilo Calvo-Alcañiz
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Padma S. Rajagopal
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stefano Scalera
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Fiorella Schischlik
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kun Wang
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sanna Madan
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Eldad Shulman
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Antonios Papanicolau-Sengos
- Laboratory of Pathology, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, Via Elio Chianesi, Rome, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Nishanth Ulhas Nair
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
31
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Bach-Griera M, Hernández A, Julián E. Mycobacteria Treatment Inhibits Bladder Cancer Cell Migration, Invasion, and Anchorage-Independent Growth. Int J Mol Sci 2024; 25:12997. [PMID: 39684712 DOI: 10.3390/ijms252312997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Bladder cancer (BC) is a highly recurrent and invasive malignancy, with Mycobacterium bovis BCG serving as the primary immunotherapy, particularly for non-muscle-invasive bladder cancer (NMIBC). However, the mechanisms underlying BCG's antitumor effects and the potential of non-tuberculous mycobacteria like Mycobacterium brumae remain unclear. This study investigates the antitumor effects of M. bovis BCG and M. brumae on BC cell migration, invasion, and anchorage-independent growth. BC cell lines representing different stages of tumor differentiation were treated with either M. bovis BCG or M. brumae. Cell migration was assessed through wound healing and transwell assays, invasiveness by transwell invasion assays, MMP-9 production by gelatin zymography, and anchorage-independent growth via soft agar colony formation. Both mycobacteria inhibited individual cell migration across all BC lines, while collective migration was only reduced in intermediate-grade cells. Both treatments also reduced invasiveness, associated with decreased MMP-9 production. Furthermore, M. brumae inhibited anchorage-independent growth across all BC lines, while M. bovis BCG had a more selective effect, primarily inhibiting growth in high-grade cells. In conclusion, both mycobacteria reduce migration, invasion, and anchorage-independent growth of BC cells, with their effectiveness varying by species and tumor differentiation grade.
Collapse
Affiliation(s)
- Marc Bach-Griera
- Microbiology Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Alba Hernández
- Genetics Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Esther Julián
- Microbiology Unit, Department of Genetics and Microbiology, Biosciences School, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
33
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
34
|
Gehling GM, Alfaqih M, Pruinelli L, Starkweather A, Dungan JR. A systematic review of candidate genes and their relevant pathways for metastasis among adults diagnosed with breast cancer. Breast Cancer Res 2024; 26:165. [PMID: 39593069 PMCID: PMC11590482 DOI: 10.1186/s13058-024-01914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Presently incurable, metastatic breast cancer is estimated to occur in as many as 30% of those diagnosed with early-stage breast cancer. Timely and accurate identification of those at risk for developing metastasis using validated biomarkers has the potential to have profound impact on overall survival rates. Our primary goal was to conduct a systematic review and synthesize the existing body of scientific knowledge on the candidate genes and their respective single nucleotide polymorphisms associated with metastasis-related outcomes among patients diagnosed with breast cancer. This knowledge is critical to inform future hypothesis-driven and validation research aimed at enhancing clinical decision-making for breast cancer patients. METHODS Using PRISMA guidelines, literature searches were conducted on September 13th, 2023, using PubMed and Embase databases. The systematic review protocol was registered with INPLASY (DOI: https://doi.org/10.37766/inplasy2024.8.0014 ). Covidence software was used to facilitate the screening and article extraction processes. Peer-reviewed articles were selected if authors reported on single nucleotide polymorphisms directly associated with metastasis among adults diagnosed with breast cancer. FINDINGS We identified 451 articles after 44 duplicates were removed resulting in 407 articles to be screened for study inclusion. Three reviewers completed the article screening process which resulted in 86 articles meeting the study inclusion criteria. Sampling varied across studies with the majority utilizing a case-control design (n = 75, 87.2%), with sample sizes ranging from 23 to 1,017 participants having mean age 50.65 ± 4.50 (min-max: 20-75). The synthesis of this internationally generated evidence revealed that the scientific area on the underlying biological contributions to breast cancer metastasis remains predominantly exploratory in nature (n = 74, 86%). Of the 12 studies with reported power analyses, only 9 explicitly stated the power values which ranged from 47.88 to 99%. DISCUSSION Understanding the underlying biological mechanisms contributing to metastasis is a critical component for precision oncological therapeutics and treatment approaches. Current evidence investigating the contribution of SNPs to the development of metastasis is characterized by underpowered candidate gene studies. To inform individualized precision health practices and improve breast cancer survival outcomes, future hypothesis-driven research is needed to replicate these associations in larger, more diverse datasets.
Collapse
Affiliation(s)
- Gina M Gehling
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Miad Alfaqih
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisiane Pruinelli
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Angela Starkweather
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Jennifer R Dungan
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA.
| |
Collapse
|
35
|
Zhang L, Xie A, Ma J, Liu H, Zeng C. Unveiling Cuproptosis: Mechanistic insights, roles, and leading advances in oncology. Biochim Biophys Acta Rev Cancer 2024; 1879:189180. [PMID: 39276875 DOI: 10.1016/j.bbcan.2024.189180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Copper, a vital micronutrient, performs essential functions in numerous biological settings. Its disrupted metabolism is implicated in both the initiation of tumors and therapeutic interventions for cancer, underscoring the critical necessity of preserving copper homeostasis. Cuproptosis, a regulated cell death (RCD) modulated by copper, is activated in response to elevated copper concentrations, prompting an investigation into its implication in oncogenesis. Within this review, an exploration is conducted into copper dynamics and homeostasis maintenance within cells. Furthermore, it delves into the mechanisms underlying cuproptosis and its interplay with signaling pathways implicated in cancer. The potential synergy between cuproptosis and ferroptosis and its impact on tumor immunomodulation is discussed. Additionally, promising avenues for addressing cuproptosis in cancer involve assessing the utility of copper chelators and ionophores. By addressing pressing questions surrounding cuproptosis and outlining its pivotal role in cancer pathogenesis and treatment, this review propounds targeting cuproptosis as a promising frontier in antitumor therapy, potentially revolutionizing cancer treatment strategies.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Aihui Xie
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jingxian Ma
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Huilin Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
36
|
Mu Y, Wallenius A, Zang G, Zhu S, Rudolfsson S, Aripaka K, Bergh A, Mateus A, Landström M. The TβRI promotes migration and metastasis through thrombospondin 1 and ITGAV in prostate cancer cells. Oncogene 2024; 43:3321-3334. [PMID: 39304722 PMCID: PMC11534692 DOI: 10.1038/s41388-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
TGFβ potently modifies the extracellular matrix (ECM), which is thought to favor tumor cell invasion. However, the mechanism whereby the cancer cells employ the ECM proteins to facilitate their motility is largely unknown. In this study we used RNA-seq and proteomic analysis to examine the proteins secreted by castration-resistant prostate cancer (CRPC) cells upon TGFβ treatment and found that thrombospondin 1 (THBS1) was observed to be one of the predominant proteins. The CRISPR Cas9, or siRNA techniques was used to downregulate TGFβ type I receptor (TβRI) to interfere with TGFβ signaling in various cancer cells in vitro. The interaction of ECM proteins with the TβRI in the migratory prostate cancer cells in response to TGFβ1 was demonstrated by several different techniques to reveal that THBS1 mediates cell migration by interacting with integrin subunit alpha V (ITGAV) and TβRI. Deletion of TβRI or THBS1 in cancer cells prevented their migration and invasion. THBS1 belongs to a group of tumorigenic ECM proteins induced via TGFβ signaling in CRPC cells, and high expression of THBS1 in human prostate cancer tissues correlated with the degree of malignancy. TGFβ-induced production of THBS1 through TβRI facilitates the invasion and metastasis of CRPC cells as shown in vivo xenograft animal experiments.
Collapse
Affiliation(s)
- Yabing Mu
- Department of Medical Bioscience, Umeå University, Umeå, Sweden.
| | | | - Guangxiang Zang
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - Shaochun Zhu
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Karthik Aripaka
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Bioscience, Umeå University, Umeå, Sweden
| | - André Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Maréne Landström
- Department of Medical Bioscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
37
|
Wang S, Zeng Y, Zhu L, Zhang M, Zhou L, Yang W, Luo W, Wang L, Liu Y, Zhu H, Xu X, Su P, Zhang X, Ahmed M, Chen W, Chen M, Chen S, Slobodyanyuk M, Xie Z, Guan J, Zhang W, Khan AA, Sakashita S, Liu N, Pham NA, Boutros PC, Ke Z, Moran MF, Cai Z, Cheng C, Yu J, Tsao MS, He HH. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Cancer Discov 2024; 14:2279-2299. [PMID: 38922581 PMCID: PMC11528209 DOI: 10.1158/2159-8290.cd-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weishan Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peiran Su
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Xinyue Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mykhaylo Slobodyanyuk
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiansheng Guan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California
- Department of Urology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, California
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael F. Moran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming S. Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Lombardo C, Fazio R, Sinagra M, Gattuso G, Longo F, Lombardo C, Salmeri M, Zanghì GN, Loreto CAE. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J Pers Med 2024; 14:1083. [PMID: 39590575 PMCID: PMC11595780 DOI: 10.3390/jpm14111083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The human microbiota represents a heterogeneous microbial community composed of several commensal, symbiotic, and even pathogenic microorganisms colonizing both the external and internal body surfaces. Despite the term "microbiota" being commonly used to identify microorganisms inhabiting the gut, several pieces of evidence suggest the presence of different microbiota physiologically colonizing other organs. In this context, several studies have also confirmed that microbes are integral components of tumor tissue in different types of cancer, constituting the so-called "intratumoral microbiota". The intratumoral microbiota is closely related to the occurrence and development of cancer as well as to the efficacy of anticancer treatments. Indeed, intratumoral microbiota can contribute to carcinogenesis and metastasis formation as some microbes can directly cause DNA damage, while others can induce the activation of proinflammatory responses or oncogenic pathways and alter the tumor microenvironment (TME). All these characteristics make the intratumoral microbiota an interesting topic to investigate for both diagnostic and prognostic purposes in order to improve the management of cancer patients. This review aims to gather the most recent data on the role of the intratumoral microbiota in cancer development, progression, and response to treatment, as well as its potential diagnostic and prognostic value.
Collapse
Affiliation(s)
- Claudia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Rosanna Fazio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Marta Sinagra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Cinzia Lombardo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical-Surgical Specialties, Policlinico-Vittorio Emanuele Hospital, University of Catania, 95123 Catania, Italy;
| | - Carla Agata Erika Loreto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.L.); (R.F.); (M.S.); (C.L.); (M.S.); (C.A.E.L.)
| |
Collapse
|
39
|
Guo C, An Q, Zhang L, Wei X, Xu J, Yu J, Wu G, Ma J. Intratumoral microbiota as cancer therapeutic target. Aging Med (Milton) 2024; 7:636-644. [PMID: 39507228 PMCID: PMC11535161 DOI: 10.1002/agm2.12359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Intratumoral microbiota, which affects the physiological and pathological processes of the host, has attracted increasing attention from researchers. Microbials have been found in normal as well as tumor tissues that were originally thought to be sterile. Intratumoral microbiota is considered to play a significant role in the development of tumors and the reduction of clinical benefits. In addition, intratumoral microbiota are heterogeneous, which have different distribution in various types of tumors, and can influence tumor development through different mechanisms, including genome mutations, inflammatory responses, activated cancer pathways, and immunosuppressive microenvironments. Therefore, eliminating the intratumoral microbiota is considered one of the most promising ways to slow down the tumor progression and improve therapeutic outcomes. In this review, we systematically categorized the intratumoral microbiota and elucidated its role in the pathogenesis and therapeutic response of cancer. We have also described the novel strategies to mitigate the impact of tumor progression. We hope this review will provide new insights for the anti-tumor treatment, particularly for the elderly population, where such insights could significantly enhance treatment outcomes.
Collapse
Affiliation(s)
- Chang Guo
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingPeople's Republic of China
| | - Qi An
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Lu‐yao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Xun‐dong Wei
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jiang‐yong Yu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Guo‐ju Wu
- General Surgery Department, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric MedicineChinese Academy of Medical SciencesBeijingPeople's Republic of China
| |
Collapse
|
40
|
Hughes RO, Davis HJ, Nease LA, Piskounova E. Decoding the role of tRNA modifications in cancer progression. Curr Opin Genet Dev 2024; 88:102238. [PMID: 39088870 DOI: 10.1016/j.gde.2024.102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Epitranscriptomic modification of tRNA has recently gained traction in the field of cancer biology. The presence of such modifications on tRNA appears to allow for translational control of processes central to progression and malignant transformation. Methyltransferase Like 1 protein (METTL1), along with other epitranscriptomic writers (e.g. NSUN3, NAT10, ELP3, etc.), has recently been investigated in multiple cancer types. Here, we review the impact of such tRNA modifications in tumorigenesis and the progression of cancer toward drug resistance and metastasis. Regulation of central cellular processes relied upon by malignant cancer cells through modulation of the tRNA epitranscriptome represents an area with great potential to bring novel first-in-class therapies to the clinic.
Collapse
Affiliation(s)
- Riley O Hughes
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hannah J Davis
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Leona A Nease
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Elena Piskounova
- Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Dermatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
41
|
Alqarni A, Hosmani J, Alassiri S, Alqahtani AMA, Assiri HA. A Network Pharmacology Identified Metastasis Target for Oral Squamous Cell Carcinoma Originating from Breast Cancer with a Potential Inhibitor from F. sargassaceae. Pharmaceuticals (Basel) 2024; 17:1309. [PMID: 39458948 PMCID: PMC11510435 DOI: 10.3390/ph17101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to identify specific therapeutic targets for oral squamous cell carcinoma (OSCC) that metastasize from breast cancer (BC) by using network pharmacology. The Gene Expression Omnibus for OSCC and BC served as the source of gene expression datasets and their analysis. Upregulated genes and the common intersecting genes of these cancers were determined along with that of the phytochemicals of F. sargassum to predict the pharmacological targets. Further, gene enrichment analysis revealed that their metastasis signature and metastasis targets were determined via a protein interaction network. Molecular docking and pharmacokinetic screening determined the potential therapeutic phytochemicals against the targets. The interaction network of 39 genes thus identified encoding proteins revealed HIF1A as a prominent metastasis target due to its high degree of connectivity and its involvement in cancer-related pathways. Molecular docking showed a strong binding affinity of isonahocol D2, a sargassum-derived compound with HIF1A, presenting a binding energy of -7.1 kcal/mol. Further, pharmacokinetic screening showed favorable ADME properties and molecular dynamics simulations showed stable interactions between isonahocol D2 and HIF1A, with significant stability over 100 ns. This study's results emphasized that isonahocol D2 is a promising therapeutic candidate against HIF1A in OSCC metastasized from breast cancer in translational medicine.
Collapse
Affiliation(s)
| | - Jagadish Hosmani
- Department of Diagnostic Dental Sciences & Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia; (A.A.); (S.A.); (A.M.A.A.); (H.A.A.)
| | | | | | | |
Collapse
|
42
|
Li S, Feng T, Yuan H, Li Q, Zhao G, Li K. DEAD-box RNA helicases in the multistep process of tumor metastasis. Mol Biol Rep 2024; 51:1006. [PMID: 39306810 DOI: 10.1007/s11033-024-09912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
RNA helicases constitute a large family of proteins that share a catalytic core with high structural similarity. DEAD-box (DDX) proteins belong to the largest RNA helicase subfamily, and DDX members have been implicated in all facets of RNA metabolism, from transcription to translation, miRNA maturation, and RNA delay and degradation. Interestingly, an increasing number of studies have suggested a relationship between DDX proteins and cancer initiation and progression. The expression levels of many DDX proteins are elevated in a majority of cancers, and recent studies have demonstrated that some DDX proteins have a potent positive effect on promoting the metastasis of malignant cells. Metastasis is a complex, multistep cascade process that includes local invasion, intravasation and survival in the circulation, arrest at a distant organ site, extravasation and metastatic colonization; here, we review this process and present the suggested functions and mechanisms of DDX family proteins in particular steps of the invasion‒metastasis cascade.
Collapse
Affiliation(s)
- Shan Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Tianyu Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Sichuan Clinical Research Center for Laboratory Medicine, West China Hospital, Sichuan University, Chengdu City, People's Republic of China
| | - Hang Yuan
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Qin Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Gang Zhao
- Division of Abdominal Tumor, Department of Medical Oncology, Cancer Center and State Key Laboratory of Biological Therapy, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
43
|
Kadhim IH, Oluremi AS, Chhetri BP, Ghosh A, Ali N. Encapsulation of Inositol Hexakisphosphate with Chitosan via Gelation to Facilitate Cellular Delivery and Programmed Cell Death in Human Breast Cancer Cells. Bioengineering (Basel) 2024; 11:931. [PMID: 39329673 PMCID: PMC11429465 DOI: 10.3390/bioengineering11090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Inositol hexakisphosphate (InsP6) is the most abundant inositol polyphosphate both in plant and animal cells. Exogenous InsP6 is known to inhibit cell proliferation and induce apoptosis in cancerous cells. However, cellular entry of exogenous InsP6 is hindered due to the presence of highly negative charge on this molecule. Therefore, to enhance the cellular delivery of InsP6 in cancerous cells, InsP6 was encapsulated by chitosan (CS), a natural polysaccharide, via the ionic gelation method. Our hypothesis is that encapsulated InsP6 will enter the cell more efficiently to trigger its apoptotic effects. The incorporation of InsP6 into CS was optimized by varying the ratios of the two and confirmed by InsP6 analysis via polyacrylamide gel electrophoresis (PAGE) and atomic absorption spectrophotometry (AAS). The complex was further characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) for physicochemical changes. The data indicated morphological changes and changes in the spectral properties of the complex upon encapsulation. The encapsulated InsP6 enters human breast cancer MCF-7 cells more efficiently than free InsP6 and triggers apoptosis via a mechanism involving the production of reactive oxygen species (ROS). This work has potential for developing cancer therapeutic applications utilizing natural compounds that are likely to overcome the severe toxic effects associated with synthetic chemotherapeutic drugs.
Collapse
Affiliation(s)
- Ilham H Kadhim
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Adeolu S Oluremi
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Bijay P Chhetri
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Anindya Ghosh
- Department of Chemistry, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Nawab Ali
- Department of Biology, Donaghey College of Science, Engineering, Technology, and Mathematics, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
44
|
Reinecke JB, Jimenez Garcia L, Gross AC, Cam M, Cannon MV, Gust MJ, Sheridan JP, Gryder BE, Dries R, Roberts RD. Aberrant activation of wound healing programs within the metastatic niche facilitates lung colonization by osteosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575008. [PMID: 38260361 PMCID: PMC10802507 DOI: 10.1101/2024.01.10.575008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
PURPOSE Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics was used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and non-tumor cells within the metastatic microenvironment. RESULTS Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a pro-metastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the anti-fibrotic TKI nintedanib. Our data shed light on the non-cell autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.
Collapse
|
45
|
Zhang H, Zhang X, Huang Z, Zhang H. Integrative genomics unveils basement membrane-related diagnostic markers and therapeutic targets in esophageal squamous cell carcinoma. Biol Direct 2024; 19:79. [PMID: 39256753 PMCID: PMC11389425 DOI: 10.1186/s13062-024-00529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inherent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related genes (BMRGs) in diagnosing ESCC remains sparse. METHODS We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clustering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis. RESULTS Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment. CONCLUSION Our study identified seven key BMRGs (BGN, LAMB3, SPARC, MMP1, LUM, COL4A1, and NELL2) and established a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug target, indicating a novel strategy for future clinical combination therapies in ESCC.
Collapse
Affiliation(s)
- Han Zhang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
| | - Xia Zhang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhenyu Huang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Hao Zhang
- Department of Geriatrics, Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
46
|
Liu K, Han H, Xiong K, Zhai S, Yang X, Yu X, Chen B, Liu M, Dong Q, Meng H, Gu Y. Single-cell landscape of intratumoral heterogeneity and tumor microenvironment remolding in pre-nodal metastases of breast cancer. J Transl Med 2024; 22:804. [PMID: 39210391 PMCID: PMC11363495 DOI: 10.1186/s12967-024-05625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The metastasis of cancer cells is influenced by both their intrinsic characteristics and the tumor microenvironment (TME). However, the molecular mechanisms underlying pre-nodal metastases of breast cancer remain unclear. METHODS We integrated a total of 216,963 cells from 54 samples across 6 single-cell datasets to profile the cellular landscape differences between primary tumors and pre-nodal metastases. RESULTS We revealed three distinct metastatic epithelial cell subtypes (Epi1, Epi2 and Epi3), which exhibited different metastatic mechanisms. Specifically, the marker gene KCNK15 of the Epi1 subtype exhibited increased gene expression along the cell differentiation trajectory and was specifically regulated by the transcription factor ASCL1. In the Epi3 subtype, we highlighted NR2F1 as a regulator targeting the marker gene MUCL1. Additionally, we found that the Epi2 and Epi3 subtypes shared some regulons, such as ZEB1 and NR2C1. Similarly, we identified specific subtypes of stromal and immune cells in the TME, and discovered that vascular cancer-associated fibroblasts might promote capillary formation through CXCL9+ macrophages in pre-nodal metastases. All three subtypes of metastatic epithelial cells were associated with poor prognosis. CONCLUSIONS In summary, this study dissects the intratumoral heterogeneity and remodeling of the TME in pre-nodal metastases of breast cancer, providing novel insights into the mechanisms underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinmiao Yu
- Department of Human Anatomy, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
47
|
Suárez-Rozas C, Jara JA, Cortés G, Rojas D, Araya-Valdés G, Molina-Berrios A, González-Herrera F, Fuentes-Retamal S, Aránguiz-Urroz P, Campodónico PR, Maya JD, Vivar R, Catalán M. Antimigratory Effect of Lipophilic Cations Derived from Gallic and Gentisic Acid and Synergistic Effect with 5-Fluorouracil on Metastatic Colorectal Cancer Cells: A New Synthesis Route. Cancers (Basel) 2024; 16:2980. [PMID: 39272835 PMCID: PMC11393949 DOI: 10.3390/cancers16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Gonzalo Cortés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Diego Rojas
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Gabriel Araya-Valdés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Alfredo Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Sebastián Fuentes-Retamal
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Pablo Aránguiz-Urroz
- School of Health Science, Universidad de Viña del Mar, Viña del Mar 2580022, Chile
| | - Paola Rossana Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Diego Maya
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Raúl Vivar
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Mabel Catalán
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| |
Collapse
|
48
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
49
|
Li Z, Alshagawi MA, Oot RA, Alamoudi MK, Su K, Li W, Collins MP, Wilkens S, Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice. Oncotarget 2024; 15:575-587. [PMID: 39145534 PMCID: PMC11325586 DOI: 10.18632/oncotarget.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells. We have previously shown that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. We have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. We show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro. We further find that injection of this nanobody into mice implanted with 4T1-12B cells orthotopically in the mammary fat pad inhibits metastasis of tumor cells to lung. These results suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mohammed A. Alshagawi
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Pharmacology, University of Minnesota School of Medicine, MN 55455, USA
- These authors contributed equally to this work
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariam K. Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kevin Su
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Korro Bio, Cambridge, MA 02139, USA
| | - Wenhui Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael P. Collins
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Foghorn Therapeutics, Cambridge, MA 02139, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
50
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.09.523294. [PMID: 36712084 PMCID: PMC9882016 DOI: 10.1101/2023.01.09.523294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metabolic conditions such as hypoxia, nutrient starvation, and media acidification, together with interactions with stromal cells are critical drivers of metastasis. Since these conditions arise deep within tumor tissues with poor access to the bloodstream, the observation of nascent metastases in vivo is exceedingly challenging. On the other hand, conventional cell culture studies cannot capture the complex nature of metastatic processes. We thus designed and implemented an ex vivo model of the tumor microenvironment to study the emergence of metastatic features in tumor cells in their native 3-dimensional (3D) context. In this system, named 3MIC, tumor cells spontaneously create ischemic-like conditions, and it allows the direct visualization of tumor-stroma interactions with high spatial and temporal resolution. We studied how 3D tumor spheroids evolve in the 3MIC when cultured under different metabolic environments and in the presence or absence of stromal cells. Consistent with previous experimental and clinical data, we show that ischemic environments increase cell migration and invasion. Importantly, the 3MIC allowed us to directly observe the emergence of these pro-metastatic features with single-cell resolution allowing us to track how changes in tumor motility were modulated by macrophages and endothelial cells. With these tools, we determined that the acidification of the extracellular media was more important than hypoxia in the induction of pro-metastatic tumor features. We also illustrate how the 3MIC can be used to test the effects of anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC allows us to directly observe the emergence of metastatic tumor features in a physiologically relevant model of the tumor microenvironment. This simple and cost-effective system can dissect the complexity of the tumor microenvironment to test perturbations that may prevent tumors from becoming metastatic.
Collapse
|