1
|
Zhang W, Ran Y, Yang M, Hu Y, Wang Z, Cao Y, Ran H. An Oxidative Stress Nano-Amplifier for Improved Tumor Elimination and Combined Immunotherapy. Adv Healthc Mater 2024; 13:e2402349. [PMID: 39221686 PMCID: PMC11650535 DOI: 10.1002/adhm.202402349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Amplifying oxidative stress to disrupt intracellular redox homeostasis can accelerate tumor cell death. In this work, an oxidative stress amplifier (PP@T) is prepared for enhanced tumor oxidation therapy to reduce tumor growth and metastases. The nano-amplifier has been successfully constructed by embedding MTH1 inhibitor (TH588) in the PDA-coated porphyrin metal-organic framework PCN-224. The controllable-released TH588 is demonstrated from pores can hinder MTH1-mediated damage-repairing process by preventing the hydrolysis of 8-oxo-dG, thereby amplifying oxidative stress and exacerbating the oxidative DNA damage induced by the sonodynamic therapy of PP@T under ultrasound irradiation. Furthermore, PP@T can effectively induce immunogenic cell death to trigger systemic anti-tumor immune response. When administered in combination with immune checkpoint blockade, PP@T not only impedes the progression of the primary tumor but also achieves obvious antimetastasis in breast cancer murine models, including orthotopic and artificial whole-body metastasis models. Furthermore, the nanoplatform also provides photoacoustic imaging for in vivo treatment guidance. In conclusion, by amplifying oxidative stress and reactive oxygen species sensitized immunotherapy, this image-guided nanosystem shows potential for highly specific, effective combined therapy against tumor cells with negligible side-effects to normal cells which will provide a new insight for precise tumor treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yijun Ran
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Mi Yang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yaqin Hu
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Zhigang Wang
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Yang Cao
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| | - Haitao Ran
- Department of UltrasoundSecond Affiliated Hospital of Chongqing Medical University & Chongqing Key Laboratory of Ultrasound Molecular ImagingChongqing400010China
| |
Collapse
|
2
|
Shen J, Guillén Mancina E, Chen S, Manolakou T, Gad H, Warpman Berglund U, Sanjiv K, Helleday T. Mitotic MTH1 inhibitor TH1579 induces PD-L1 expression and inflammatory response through the cGAS-STING pathway. Oncogenesis 2024; 13:17. [PMID: 38796460 PMCID: PMC11127983 DOI: 10.1038/s41389-024-00518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
The mitotic MTH1 inhibitor TH1579 is a dual inhibitor that inhibits mitosis and incorporation of oxidative DNA damage and leads to cancer-specific cell death. The response to immune checkpoint inhibitor (ICI) treatment is often augmented by DNA damaging agents through the cGAS-STING pathway. This study investigates whether TH1579 can improve the efficacy of immune checkpoint blockades through its immunomodulatory properties. Various human and murine cancer cell lines were treated with mitotic MTH1i TH1579, and the expression of PD-L1 and T-cell infiltration-related chemokines was analysed by flow cytometry and real-time qPCR. Syngeneic mouse models were established to examine the combined effect of TH1579 and PD-L1 blockade. In our investigation, we found that TH1579 upregulates PD-L1 expression at both the protein and mRNA levels in human cancer cell lines. However, in murine cell lines, the increase was less pronounced. An in vivo experiment in a syngeneic mouse melanoma model showed that TH1579 treatment significantly increased the efficacy of atezolizumab, an anti-PD-L1 antibody, compared to vehicle or atezolizumab monotherapy. Furthermore, TH1579 exhibited immune-modulatory properties, elevating cytokines such as IFN-β and chemokines including CCL5 and CXCL10, in a cGAS-STING pathway-dependent manner. In conclusion, TH1579 has the potential to improve ICI treatment by modulating immune checkpoint-related proteins and pathways.
Collapse
Affiliation(s)
- Jianyu Shen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Guillén Mancina
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Shenyu Chen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodora Manolakou
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, 11334, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Medical School, S10 2RX, Sheffield, UK.
| |
Collapse
|
3
|
Eni DB, Cassel J, Namba-Nzanguim CT, Simoben CV, Tietjen I, Akunuri R, Salvino JM, Ntie-Kang F. Design, synthesis, and biochemical and computational screening of novel oxindole derivatives as inhibitors of Aurora A kinase and SARS-CoV-2 spike/host ACE2 interaction. Med Chem Res 2024; 33:620-634. [PMID: 38646411 PMCID: PMC11024012 DOI: 10.1007/s00044-024-03201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/09/2024] [Indexed: 04/23/2024]
Abstract
Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 μ M), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 μ M), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.
Collapse
Affiliation(s)
- Donatus B. Eni
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Cyril T. Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Conrad V. Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
| | | | | | | | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Tanushi X, Pinna G, Vandamme M, Siberchicot C, D’Augustin O, Di Guilmi AM, Radicella JP, Castaing B, Smith R, Huet S, Leteurtre F, Campalans A. OGG1 competitive inhibitors show important off-target effects by directly inhibiting efflux pumps and disturbing mitotic progression. Front Cell Dev Biol 2023; 11:1124960. [PMID: 36819096 PMCID: PMC9936318 DOI: 10.3389/fcell.2023.1124960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.
Collapse
Affiliation(s)
- Xhaferr Tanushi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Guillaume Pinna
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie Vandamme
- Université Paris-Saclay, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cite, Inserm, CEA/IBFJ/IRCM/Plateforme PARi, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Capucine Siberchicot
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Ostiane D’Augustin
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Anne-Marie Di Guilmi
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - J. Pablo Radicella
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire (CBM)UPR4301 CNRS, Université d’Orléans, Orléans, France
| | - Rebecca Smith
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France
| | - Sebastien Huet
- Université Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)—UMR 6290, BIOSIT—UMS 3480, Rennes, France,Institut Universitaire de France, Paris, France
| | - François Leteurtre
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Anna Campalans
- Université Paris-Saclay, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,Université de Paris-Cité, CEA/IBFJ/IRCM. UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France,*Correspondence: Anna Campalans,
| |
Collapse
|
5
|
Helleday T. Mitotic MTH1 Inhibitors in Treatment of Cancer. Cancer Treat Res 2023; 186:223-237. [PMID: 37978139 DOI: 10.1007/978-3-031-30065-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The DNA damage response (DDR) protein MTH1 is sanitising the oxidized dNTP pool and preventing incorporation of oxidative damage into DNA and has an emerging role in mitosis. It is a stress-induced protein and often found to be overexpressed in cancer. Mitotic MTH1 inhibitors arrest cells in mitosis and result in incorporation of oxidative damage into DNA and selective killing of cancer cells. Here, I discuss the leading mitotic MTH1 inhibitor TH1579 (OXC-101, karonudib), now being evaluated in clinical trials, and describe its dual effect on mitosis and incorporation of oxidative DNA damage in cancer cells. I describe why MTH1 inhibitors that solely inhibits the enzyme activity fail to kill cancer cells and discuss if MTH1 is a valid target for cancer treatment. I discuss emerging roles of MTH1 in regulating tubulin polymerisation and mitosis and the necessity of developing the basic science insights along with translational efforts. I also give a perspective on how edgetic perturbation is making target validation difficult in the DDR field.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Metabolism, Weston Park Cancer Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
6
|
Overexpressed c-Myc Sensitizes Cells to TH1579, a Mitotic Arrest and Oxidative DNA Damage Inducer. Biomolecules 2022; 12:biom12121777. [PMID: 36551206 PMCID: PMC9775511 DOI: 10.3390/biom12121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Previously, we reported that MTH1 inhibitors TH588 and TH1579 selectively induce oxidative damage and kill Ras-expressing or -transforming cancer cells, as compared to non-transforming immortalized or primary cells. While this explains the impressive anti-cancer properties of the compounds, the molecular mechanism remains elusive. Several oncogenes induce replication stress, resulting in under replicated DNA and replication continuing into mitosis, where TH588 and TH1579 treatment causes toxicity and incorporation of oxidative damage. Hence, we hypothesized that oncogene-induced replication stress explains the cancer selectivity. To test this, we overexpressed c-Myc in human epithelial kidney cells (HA1EB), resulting in increased proliferation, polyploidy and replication stress. TH588 and TH1579 selectively kill c-Myc overexpressing clones, enforcing the cancer cell selective killing of these compounds. Moreover, the toxicity of TH588 and TH1579 in c-Myc overexpressing cells is rescued by transcription, proteasome or CDK1 inhibitors, but not by nucleoside supplementation. We conclude that the molecular toxicological mechanisms of how TH588 and TH1579 kill c-Myc overexpressing cells have several components and involve MTH1-independent proteasomal degradation of c-Myc itself, c-Myc-driven transcription and CDK activation.
Collapse
|
7
|
Helleday T, Rudd SG. Targeting the DNA damage response and repair in cancer through nucleotide metabolism. Mol Oncol 2022; 16:3792-3810. [PMID: 35583750 PMCID: PMC9627788 DOI: 10.1002/1878-0261.13227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
The exploitation of the DNA damage response and DNA repair proficiency of cancer cells is an important anticancer strategy. The replication and repair of DNA are dependent upon the supply of deoxynucleoside triphosphate (dNTP) building blocks, which are produced and maintained by nucleotide metabolic pathways. Enzymes within these pathways can be promising targets to selectively induce toxic DNA lesions in cancer cells. These same pathways also activate antimetabolites, an important group of chemotherapies that disrupt both nucleotide and DNA metabolism to induce DNA damage in cancer cells. Thus, dNTP metabolic enzymes can also be targeted to refine the use of these chemotherapeutics, many of which remain standard of care in common cancers. In this review article, we will discuss both these approaches exemplified by the enzymes MTH1, MTHFD2 and SAMHD1. © 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Collapse
Affiliation(s)
- Thomas Helleday
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Oncology and Metabolism, Weston Park Cancer CentreUniversity of SheffieldUK
| | - Sean G. Rudd
- Science for Life LaboratoryDepartment of Oncology‐PathologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
8
|
Karsten S, Fiskesund R, Zhang XM, Marttila P, Sanjiv K, Pham T, Rasti A, Bräutigam L, Almlöf I, Marcusson-Ståhl M, Sandman C, Platzack B, Harris RA, Kalderén C, Cederbrant K, Helleday T, Warpman Berglund U. MTH1 as a target to alleviate T cell driven diseases by selective suppression of activated T cells. Cell Death Differ 2022; 29:246-261. [PMID: 34453118 PMCID: PMC8738733 DOI: 10.1038/s41418-021-00854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Stella Karsten
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Roland Fiskesund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Xing-Mei Zhang
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Petra Marttila
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Therese Pham
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bräutigam
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.4714.60000 0004 1937 0626Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maritha Marcusson-Ståhl
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Carolina Sandman
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Björn Platzack
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Robert A. Harris
- grid.4714.60000 0004 1937 0626Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Kalderén
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Cederbrant
- grid.450998.90000000106922258RISE Research Institutes of Sweden, Unit for Chemical and Pharmaceutical safety, Södertälje, Sweden
| | - Thomas Helleday
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,grid.11835.3e0000 0004 1936 9262Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Ulrika Warpman Berglund
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden ,Oxcia AB, Stockholm, Sweden
| |
Collapse
|
9
|
Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Oncogene 2022; 41:427-443. [PMID: 34773075 PMCID: PMC8755538 DOI: 10.1038/s41388-021-02105-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) serve as critical signals in various cellular processes. Excessive ROS cause cell death or senescence and mediates the therapeutic effect of many cancer drugs. Recent studies showed that ROS increasingly accumulate during G2/M arrest, the underlying mechanism, however, has not been fully elucidated. Here, we show that in cancer cells treated with anticancer agent TH287 or paclitaxel that causes M arrest, mitochondria accumulate robustly and produce excessive mitochondrial superoxide, which causes oxidative DNA damage and undermines cell survival and proliferation. While mitochondrial mass is greatly increased in cells arrested at M phase, the mitochondrial function is compromised, as reflected by reduced mitochondrial membrane potential, increased SUMOylation and acetylation of mitochondrial proteins, as well as an increased metabolic reliance on glycolysis. CHK1 functional disruption decelerates cell cycle, spares the M arrest and attenuates mitochondrial oxidative stress. Induction of mitophagy and blockade of mitochondrial biogenesis, measures that reduce mitochondrial accumulation, also decelerate cell cycle and abrogate M arrest-coupled mitochondrial oxidative stress. These results suggest that cell cycle progression and mitochondrial homeostasis are interdependent and coordinated, and that impairment of mitochondrial homeostasis and the associated redox signaling may mediate the antineoplastic effect of the M arrest-inducing chemotherapeutics. Our findings provide insights into the fate of cells arrested at M phase and have implications in cancer therapy.
Collapse
|
10
|
Rajendraprasad G, Eibes S, Boldú CG, Barisic M. TH588 and Low-Dose Nocodazole Impair Chromosome Congression by Suppressing Microtubule Turnover within the Mitotic Spindle. Cancers (Basel) 2021; 13:cancers13235995. [PMID: 34885104 PMCID: PMC8657032 DOI: 10.3390/cancers13235995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary A promising anti-cancer compound TH588 has been recently identified as a microtubule-targeting agent that inhibits tubulin polymerization in vitro and interferes with microtubule dynamics in interphase cells. Although it was shown to arrest cells in mitosis, its effect on microtubule dynamics in dividing cells remained unknown. By analyzing microtubule dynamics in living cells treated with either TH588 or low-dose nocodazole, we revealed that both of these drugs stabilize microtubules within the mitotic spindle, leading to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes. This causes mitotic arrest, ultimately resulting in cell death or cell division with uncongressed chromosomes. Both of these cell fates could contribute to the selective effect associated with the activity of TH588 in cancer cells. Abstract Microtubule-targeting agents (MTAs) have been used for decades to treat different hematologic and solid cancers. The mode of action of these drugs mainly relies on their ability to bind tubulin subunits and/or microtubules and interfere with microtubule dynamics. In addition to its MTH1-inhibiting activity, TH588 has been recently identified as an MTA, whose anticancer properties were shown to largely depend on its microtubule-targeting ability. Although TH588 inhibited tubulin polymerization in vitro and reduced microtubule plus-end mobility in interphase cells, its effect on microtubule dynamics within the mitotic spindle of dividing cells remained unknown. Here, we performed an in-depth analysis of the impact of TH588 on spindle-associated microtubules and compared it to the effect of low-dose nocodazole. We show that both treatments reduce microtubule turnover within the mitotic spindle. This microtubule-stabilizing effect leads to premature formation of kinetochore-microtubule end-on attachments on uncongressed chromosomes, which consequently cannot be transported to the cell equator, thereby delaying cell division and leading to cell death or division with uncongressed chromosomes.
Collapse
Affiliation(s)
- Girish Rajendraprasad
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Claudia Guasch Boldú
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (G.R.); (S.E.); (C.G.B.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
11
|
Sanjiv K, Calderón-Montaño JM, Pham TM, Erkers T, Tsuber V, Almlöf I, Höglund A, Heshmati Y, Seashore-Ludlow B, Nagesh Danda A, Gad H, Wiita E, Göktürk C, Rasti A, Friedrich S, Centio A, Estruch M, Våtsveen TK, Struyf N, Visnes T, Scobie M, Koolmeister T, Henriksson M, Wallner O, Sandvall T, Lehmann S, Theilgaard-Mönch K, Garnett MJ, Östling P, Walfridsson J, Helleday T, Warpman Berglund U. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Cancer Res 2021; 81:5733-5744. [PMID: 34593524 PMCID: PMC9397639 DOI: 10.1158/0008-5472.can-21-0061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/25/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin-CD34+CD38-), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial. SIGNIFICANCE: The MTH1 inhibitor TH1579 is a potential novel AML treatment, targeting both blasts and the pivotal leukemic stem cells while sparing normal bone marrow cells.
Collapse
Affiliation(s)
- Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Therese M. Pham
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tom Erkers
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Viktoriia Tsuber
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Almlöf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yaser Heshmati
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Akhilesh Nagesh Danda
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Elisee Wiita
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Göktürk
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Azita Rasti
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Friedrich
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Anders Centio
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Montserrat Estruch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thea Kristin Våtsveen
- Department for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,KG Jebsen Center for B cell malignancies, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nona Struyf
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Torkild Visnes
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Scobie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Koolmeister
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Henriksson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olov Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Sandvall
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Haematology, Uppsala University, Uppsala, Sweden
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet/National University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research and Innovation Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Hematology, Rigshospitalet/National Univ. Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Päivi Östling
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Oxcia AB, Stockholm, Sweden.,Corresponding Author: Ulrika Warpman Berglund, Department of Oncology Pathology, Karolinska Institute, Tomtebodavägen 23A, Stockholm 17121, Sweden or Oxcia AB, Norrbackagatan 70C, SE-113 34 Stockholm, Sweden. Phone: 46-73-2709605; E-mail: or
| |
Collapse
|
12
|
Li XY, Deng FA, Zheng RR, Liu LS, Liu YB, Kong RJ, Chen AL, Yu XY, Li SY, Cheng H. Carrier Free Photodynamic Synergists for Oxidative Damage Amplified Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102470. [PMID: 34480417 DOI: 10.1002/smll.202102470] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.
Collapse
Affiliation(s)
- Xin-Yu Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fu-An Deng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Rong-Rong Zheng
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ling-Shan Liu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi-Bin Liu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ren-Jiang Kong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - A-Li Chen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xi-Yong Yu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
13
|
Zhao Z, Gad H, Benitez-Buelga C, Sanjiv K, Xiangwei H, Kang H, Feng M, Zhao Z, Berglund UW, Xia Q, Helleday T. NEIL3 Prevents Senescence in Hepatocellular Carcinoma by Repairing Oxidative Lesions at Telomeres during Mitosis. Cancer Res 2021; 81:4079-4093. [PMID: 34045188 PMCID: PMC9398161 DOI: 10.1158/0008-5472.can-20-1028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Patients with hepatocellular carcinoma (HCC) suffer from few treatment options and poor survival rates. Here we report that endonuclease VIII-like protein 3 (NEIL3) is overexpressed in HCC and correlates with poor survival. All six HCC cell lines investigated were dependent on NEIL3 catalytic activity for survival and prevention of senescence, while NEIL3 was dispensable for nontransformed cells. NEIL3-depleted HCC cell lines accumulated oxidative DNA lesions specifically at telomeres, resulting in telomere dysfunctional foci and 53BP1 foci formation. Following oxidative DNA damage during mitosis, NEIL3 relocated to telomeres and recruited apurinic endonuclease 1 (APE1), indicating activation of base excision repair. META-FISH revealed that NEIL3, but not NEIL1 or NEIL2, is required to initiate APE1 and polymerase beta (POLB)-dependent base excision repair at oxidized telomeres. Repeated exposure of NEIL3-depleted cells to oxidizing damage induced chromatin bridges and damaged telomeres. These results demonstrate a novel function for NEIL3 in repair of oxidative DNA damage at telomeres in mitosis, which is important to prevent senescence of HCC cells. Furthermore, these data suggest that NEIL3 could be a target for therapeutic intervention for HCC. SIGNIFICANCE: This study describes compartmentalization of base excision repair during mitosis that is dependent on NEIL3, APE1, and POLB to repair oxidative damage accumulating at telomeres in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Helge Gad
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Benitez-Buelga
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hua Xiangwei
- Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Kang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Corresponding Authors: Thomas Helleday, Karolinska Institutet, Tomtebodavägen 23B, Stockholm S-171 65, Sweden. E-mail: ; and Xia Qiang, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200001, China. E-mail:
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.,Corresponding Authors: Thomas Helleday, Karolinska Institutet, Tomtebodavägen 23B, Stockholm S-171 65, Sweden. E-mail: ; and Xia Qiang, Renji Hospital, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200001, China. E-mail:
| |
Collapse
|
14
|
Karonudib has potent anti-tumor effects in preclinical models of B-cell lymphoma. Sci Rep 2021; 11:6317. [PMID: 33737576 PMCID: PMC7973795 DOI: 10.1038/s41598-021-85613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
Chemo-immunotherapy has improved survival in B-cell lymphoma patients, but refractory/relapsed diseases still represent a major challenge, urging for development of new therapeutics. Karonudib (TH1579) was developed to inhibit MTH1, an enzyme preventing oxidized dNTP-incorporation in DNA. MTH1 is highly upregulated in tumor biopsies from patients with diffuse large B-cell lymphoma (DLBCL) and Burkitt lymphoma, hence confirming a rationale for targeting MTH1. Here, we tested the efficacy of karonudib in vitro and in preclinical B-cell lymphoma models. Using a range of B-cell lymphoma cell lines, karonudib strongly reduced viability at concentrations well tolerated by activated normal B cells. In B-cell lymphoma cells, karonudib increased incorporation of 8-oxo-dGTP into DNA, and prominently induced prometaphase arrest and apoptosis due to failure in spindle assembly. MTH1 knockout cell lines were less sensitive to karonudib-induced apoptosis, but were displaying cell cycle arrest phenotype similar to the wild type cells, indicating a dual inhibitory role of the drug. Karonudib was highly potent as single agent in two different lymphoma xenograft models, including an ABC DLBCL patient derived xenograft, leading to prolonged survival and fully controlled tumor growth. Together, our preclinical findings provide a rationale for further clinical testing of karonudib in B-cell lymphoma.
Collapse
|
15
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
16
|
Alnajjar K, Sweasy JB. Timing Is Everything: Misincorporation of 8oxodG during Mitosis Is Lethal. Cancer Res 2021; 80:3459-3460. [PMID: 32878864 DOI: 10.1158/0008-5472.can-20-1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/16/2022]
Abstract
Exploiting universal cancer vulnerabilities has been used as an approach for developing targeted therapies. In this issue of Cancer Research, Rudd and colleagues show that the dual-functioning inhibitor TH588 potentiates the accumulation of reactive oxygen species during mitosis in cancer by disturbing mitotic progression and simultaneously inhibiting the hydrolysis of 8oxodGTP. This leads to increased incorporation of 8oxodG into the DNA during mitotic replication and increased toxicity. Understanding the mechanism of this inhibitor lays the groundwork for identifying cancer targets.See related article by Rudd et al., p. 3530.
Collapse
Affiliation(s)
- Khadijeh Alnajjar
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, Tucson, Arizona
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine and University of Arizona Cancer Center, Tucson, Arizona.
| |
Collapse
|