1
|
Wang H, Xie X, Du M, Wang X, Wang K, Chen X, Yang H. Deciphering the influence of AP1M2 in modulating hepatocellular carcinoma growth and Mobility through JNK/ErK signaling pathway control. Gene 2024; 933:148955. [PMID: 39303819 DOI: 10.1016/j.gene.2024.148955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is the most common digestive system malignancy, with unclear pathogenesis and low survival rates. AP1M2 is associated with tumor progression, but its role and molecular mechanisms in HCC remain poorly understood and require further investigation. METHODS We utilized the Gene Expression Omnibus (GEO) and Expression Analysis Interactive Hub (XENA) databases to assess AP1M2 mRNA expression levels in HCC patients. Additionally, we employed the Cancer Genome Atlas (TCGA) database to identify pathways associated with both AP1M2 and HCC development. To evaluate the effect of AP1M2 on HCC cell proliferation and migration, we employed various techniques including EdU, CCK-8, Colony formation assay, and Transwell assays. Furthermore, Western blot analysis was conducted to examine the signaling pathways influenced by AP1M2. RESULTS AP1M2 expression was significantly increased at the mRNA level in HCC tissues(P<0.001). Importantly, overall survival (OS) analysis confirmed the association between higher AP1M2 expression and a poorer prognosis in HCC patients compared to those with lower AP1M2 expression (P<0.019).Multivariate Cox regression analysis showed that AP1M2 was an independent prognostic factor and a valid predictor for HCC patients. Furthermore, GSEA results indicated differential enrichment of lipid, metal metabolism, and coagulation processes in HCC samples demonstrating a high AP1M2 expression phenotype. In vitro experiments supported these findings by demonstrating that AP1M2 promotes HCC cell proliferation and migration, while activating the JNK/ERK pathway. CONCLUSION Our findings indicate that AP1M2 expression may serve as a potential molecular marker indicating a poor prognosis for HCC patients. Furthermore, we have demonstrated that AP1M2 significantly influences HCC cell proliferation and migration, with the JNK/ERK signaling pathway playing a key role in AP1M2-mediated regulation in the context of HCC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xin Xie
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Minwei Du
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xintong Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Kunyuan Wang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China
| | - Xingyuan Chen
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| | - Hui Yang
- Department of Gastroenterologya Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, No.250 Changgang East Road, Haizhu District, Guangzhou 510000, China.
| |
Collapse
|
2
|
Soula M, Unlu G, Welch R, Chudnovskiy A, Uygur B, Shah V, Alwaseem H, Bunk P, Subramanyam V, Yeh HW, Khan A, Heissel S, Goodarzi H, Victora GD, Beyaz S, Birsoy K. Glycosphingolipid synthesis mediates immune evasion in KRAS-driven cancer. Nature 2024; 633:451-458. [PMID: 39112706 DOI: 10.1038/s41586-024-07787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/03/2024] [Indexed: 08/17/2024]
Abstract
Cancer cells frequently alter their lipids to grow and adapt to their environment1-3. Despite the critical functions of lipid metabolism in membrane physiology, signalling and energy production, how specific lipids contribute to tumorigenesis remains incompletely understood. Here, using functional genomics and lipidomic approaches, we identified de novo sphingolipid synthesis as an essential pathway for cancer immune evasion. Synthesis of sphingolipids is surprisingly dispensable for cancer cell proliferation in culture or in immunodeficient mice but required for tumour growth in multiple syngeneic models. Blocking sphingolipid production in cancer cells enhances the anti-proliferative effects of natural killer and CD8+ T cells partly via interferon-γ (IFNγ) signalling. Mechanistically, depletion of glycosphingolipids increases surface levels of IFNγ receptor subunit 1 (IFNGR1), which mediates IFNγ-induced growth arrest and pro-inflammatory signalling. Finally, pharmacological inhibition of glycosphingolipid synthesis synergizes with checkpoint blockade therapy to enhance anti-tumour immune response. Altogether, our work identifies glycosphingolipids as necessary and limiting metabolites for cancer immune evasion.
Collapse
Affiliation(s)
- Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Rachel Welch
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Beste Uygur
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Vyom Shah
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Paul Bunk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hsi-Wen Yeh
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Fu CL, Zhao ZW, Zhang QN. The crosstalk between cellular survival pressures and N6-methyladenosine modification in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2024:S1499-3872(24)00109-7. [PMID: 39155161 DOI: 10.1016/j.hbpd.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Within the tumor microenvironment, survival pressures are prevalent with potent drivers of tumor progression, angiogenesis, and therapeutic resistance. N6-methyladenosine (m6A) methylation has been recognized as a critical post-transcriptional mechanism regulating various aspects of mRNA metabolism. Understanding the intricate interplay between survival pressures and m6A modification provides new insights into the molecular mechanisms underlying hepatocellular carcinoma (HCC) progression and highlights the potential for targeting the survival pressures-m6A axis in HCC diagnosis and treatment. DATA SOURCES A literature search was conducted in PubMed, MEDLINE, and Web of Science for relevant articles published up to April 2024. The keywords used for the search included hepatocellular carcinoma, cellular survival, survival pressure, N6-methyladenosine, tumor microenvironment, stress response, and hypoxia. RESULTS This review delves into the multifaceted roles of survival pressures and m6A RNA methylation in HCC, highlighting how survival pressures modulate the m6A landscape, the impact of m6A modification on survival pressure-responsive gene expression, and the consequent effects on HCC cell survival, proliferation, metastasis, and resistance to treatment. Furthermore, we explored the therapeutic potential of targeting this crosstalk, proposing strategies that leverage the understanding of survival pressures and m6A RNA methylation mechanisms to develop novel, and more effective treatments for HCC. CONCLUSIONS The interplay between survival pressures and m6A RNA methylation emerges as a complex regulatory network that influences HCC pathogenesis and progression.
Collapse
Affiliation(s)
- Chu-Li Fu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zheng-Wei Zhao
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Qiang-Nu Zhang
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
4
|
Xie Q, Zeng Y, Zhang X, Yu F. The significance of lipid metabolism reprogramming of tumor-associated macrophages in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:171. [PMID: 38954021 PMCID: PMC11220057 DOI: 10.1007/s00262-024-03748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
In the intricate landscape of the tumor microenvironment, tumor-associated macrophages (TAMs) emerge as a ubiquitous cellular component that profoundly affects the oncogenic process. The microenvironment of hepatocellular carcinoma (HCC) is characterized by a pronounced infiltration of TAMs, underscoring their pivotal role in modulating the trajectory of the disease. Amidst the evolving therapeutic paradigms for HCC, the strategic reprogramming of metabolic pathways presents a promising avenue for intervention, garnering escalating interest within the scientific community. Previous investigations have predominantly focused on elucidating the mechanisms of metabolic reprogramming in cancer cells without paying sufficient attention to understanding how TAM metabolic reprogramming, particularly lipid metabolism, affects the progression of HCC. In this review article, we intend to elucidate how TAMs exert their regulatory effects via diverse pathways such as E2F1-E2F2-CPT2, LKB1-AMPK, and mTORC1-SREBP, and discuss correlations of TAMs with these processes and the characteristics of relevant pathways in HCC progression by consolidating various studies on TAM lipid uptake, storage, synthesis, and catabolism. It is our hope that our summary could delineate the impact of specific mechanisms underlying TAM lipid metabolic reprogramming on HCC progression and provide useful information for future research on HCC and the development of new treatment strategies.
Collapse
Affiliation(s)
- Qingjian Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Fujun Yu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Liu S, Wei Y, Nie L, Tang Z, Lu Q, Liang Q. Effect of novel anti-tumor and anti-angiogenesis drug taurolactone on angiogenic factor AGGF1 and angiogenesis mimicry in patients with hepatocellular carcinoma. BMC Cancer 2024; 24:614. [PMID: 38773427 PMCID: PMC11106933 DOI: 10.1186/s12885-024-12356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVE Our study was to investigate the impact of taurolactone, a novel anti-tumor and anti-angiogenic drug, on AGGF1, an angiogenic factor, and angiogenesis mimicry in patients diagnosed with hepatocellular carcinoma (HCC). METHODS A total of 120 HCC patients were enrolled from the Department of Oncology and Hepatobiliary Surgery at our hospital between May 2021 and December 2022. HCC diagnoses were confirmed through imaging or tissue biopsy for all patients. The age of patients ranged from 37 to 72 years, with an average age of 64.29 ± 4.58 years. These participants were divided equally into two groups: the control group and the observation group, each consisting of 60 individuals. While the control group received standard drug treatment, the observation group was administered taurolactone treatment. Before being included in the study, all participants or their legal representatives provided signed informed consent. Patient demographic information was collected through a questionnaire survey. ELISA was used to measure the levels of VEGF and AGGF1 in patients following treatment. Western blot was applied to assess the protein expression of PDGF, Angiopoietin, and AGGF1. MRI imaging technology was utilized to assess the perfusion characteristics of tumor blood vessels in patients. Tumor vessel density was compared between patients using ultrasonography. We also conducted a comparison between the two groups in terms of progression-free survival and overall survival. RESULTS General patient information between the two groups showed no significant differences (P > 0.05). Of note, the observation group exhibited greatly lower levels of VEGF and AGGF1 compared to the control group (P < 0.05). Moreover, the levels of PDGF, Angiopoietin, and AGGF1 protein expression were significantly reduced in the observation group compared to the control group (P < 0.05). In terms of tumor perfusion, the observation group displayed lower average and maximum perfusion volumes in tumor blood vessels compared to the control group (P < 0.05). Additionally, the observation group demonstrated delayed peak times and arrival times of tumor blood vessels in comparison to the control group (P < 0.05). Furthermore, the density of tumor blood vessels was notably lower in the observation group compared to the control group (P < 0.05). Patients in the observation group had longer progression-free survival and overall survival than the control group (P < 0.05). CONCLUSION In HCC patients, our study highlighted the potential efficacy of taurolactone treatment as it effectively inhibited angiogenic factors and angiogenesis mimicry, ultimately leading to an improved prognosis for these patients.
Collapse
Affiliation(s)
- Shaoping Liu
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China
| | - Yinzhi Wei
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China
| | - Lei Nie
- Department of Abdominal Tumor Surgery, Hubei Province Cancer Hospital, Wuhan, China
| | - Ze Tang
- Department of Abdominal Oncology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qi Lu
- Department of HepatobiliarySurgery, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Qun Liang
- Department of General Practice, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.43 Wuhan Road, Huangshigang District, Huangshi, 435000, Hubei, China.
| |
Collapse
|
6
|
Xiao G, Wei Y, Xie R, Tsang Y, Gu J, Shen D, Ding M, Yuan J, Xu D, Fei J. Citric acid promotes SPARC release in pancreatic cancer cells and inhibits the progression of pancreatic tumors in mice on a high-fat diet. FEBS J 2024; 291:1699-1718. [PMID: 38245817 DOI: 10.1111/febs.17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/17/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Over the years, pancreatic cancer has experienced a global surge in incidence and mortality rates, largely attributed to the influence of obesity and diabetes mellitus on disease initiation and progression. In this study, we investigated the pathogenesis of pancreatic cancer in mice subjected to a high-fat diet (HFD) and observed an increase in citric acid expenditure. Notably, citrate treatment demonstrates significant efficacy in promoting tumor cell apoptosis, suppressing cell proliferation, and inhibiting tumor growth in vivo. Our investigations revealed that citrate achieved these effects by releasing secreted protein acidic and rich in cysteine (SPARC) proteins, repolarizing M2 macrophages into M1 macrophages, and facilitating tumor cell apoptosis. Overall, our research highlights the critical role of citric acid as a pivotal metabolite in the intricate relationship between obesity and pancreatic cancer. Furthermore, we uncovered the significant metabolic and immune checkpoint function of SPARC in pancreatic cancer, suggesting its potential as both a biomarker and therapeutic target in treating this patient population.
Collapse
Affiliation(s)
- Guohui Xiao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yan Wei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Rongli Xie
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Yiusing Tsang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jianhua Gu
- Department of Thyroid and Breast Surgery, Punan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Dongjie Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Min Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jianming Yuan
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, China
| | - Dan Xu
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Jian Fei
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
- State Key Laboratory of Oncogenes and Related Genes (Shanghai), China
- Institute of Translational Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
7
|
Rogava M, Aprati TJ, Chi WY, Melms JC, Hug C, Davis SH, Earlie EM, Chung C, Deshmukh SK, Wu S, Sledge G, Tang S, Ho P, Amin AD, Caprio L, Gurjao C, Tagore S, Ngo B, Lee MJ, Zanetti G, Wang Y, Chen S, Ge W, Melo LMN, Allies G, Rösler J, Gibney GT, Schmitz OJ, Sykes M, Creusot RJ, Tüting T, Schadendorf D, Röcken M, Eigentler TK, Molotkov A, Mintz A, Bakhoum SF, Beyaz S, Cantley LC, Sorger PK, Meckelmann SW, Tasdogan A, Liu D, Laughney AM, Izar B. Loss of Pip4k2c confers liver-metastatic organotropism through insulin-dependent PI3K-AKT pathway activation. NATURE CANCER 2024; 5:433-447. [PMID: 38286827 PMCID: PMC11175596 DOI: 10.1038/s43018-023-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/08/2023] [Indexed: 01/31/2024]
Abstract
Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.
Collapse
Affiliation(s)
- Meri Rogava
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tyler J Aprati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wei-Yu Chi
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Clemens Hug
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephanie H Davis
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ethan M Earlie
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | - Stephen Tang
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patricia Ho
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amit Dipak Amin
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lindsay Caprio
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carino Gurjao
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Somnath Tagore
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Bryan Ngo
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Giorgia Zanetti
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yiping Wang
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sean Chen
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - William Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luiza Martins Nascentes Melo
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Gabriele Allies
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Jonas Rösler
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Goeffrey T Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Dirk Schadendorf
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Martin Röcken
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Venerology and Allergology, Charité University Hospital, Berlin, Germany
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashley M Laughney
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Lu G, Li J, Gao T, Liu Q, Chen O, Zhang X, Xiao M, Guo Y, Wang J, Tang Y, Gu J. Integration of dietary nutrition and TRIB3 action into diabetes mellitus. Nutr Rev 2024; 82:361-373. [PMID: 37226405 PMCID: PMC10859691 DOI: 10.1093/nutrit/nuad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
Despite intensive studies for decades, the common mechanistic correlations among the underlying pathology of diabetes mellitus (DM), its complications, and effective clinical treatments remain poorly characterized. High-quality diets and nutrition therapy have played an indispensable role in the management of DM. More importantly, tribbles homolog 3 (TRIB3), a nutrient-sensing and glucose-responsive regulator, might be an important stress-regulatory switch, linking glucose homeostasis and insulin resistance. Therefore, this review aimed to introduce the latest research progress on the crosstalk between dietary nutrition intervention and TRIB3 in the development and treatment of DM. This study also summarized the possible mechanisms involved in the signaling pathways of TRIB3 action in DM, in order to gain an in-depth understanding of dietary nutrition intervention and TRIB3 in the pathogenesis of DM at the organism level.
Collapse
Affiliation(s)
- Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ou Chen
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaohui Zhang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Liu Y, Chen S, Zhen R. Effect of Semaglutide on High-Fat-Diet-Induced Liver Cancer in Obese Mice. J Proteome Res 2024; 23:704-717. [PMID: 38227547 PMCID: PMC10846501 DOI: 10.1021/acs.jproteome.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 01/17/2024]
Abstract
This study aims to investigate the impact of semaglutide on the expression of liver cancer proteins in obese mice induced by a high-fat diet. Sixteen obese mice were randomly divided into two groups: the high-fat diet group and the semaglutide group, each consisting of eight mice. Additionally, eight normal male mice were included as the control group. Serum samples were collected, and a differential expression analysis of total proteins in adipose tissue was performed using quantitative tandem mass spectrometry (TMT) in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differential proteins were identified and subjected to a bioinformatics analysis. The findings revealed that these differential proteins, namely, integrin αV (ITGAV), laminin γ1 (LAMC1), fatty acid-binding protein 5 (FABP5), and lipoprotein lipase (LPL), regulate the occurrence and development of liver cancer by participating in the extracellular matrix (ECM) signaling pathway and the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Notably, semaglutide can decelerate the progression of liver cancer by inducing the expression of ITGAV, LAMC1, FABP5, and LPL in the adipose tissue of obese mice.
Collapse
Affiliation(s)
- Yanhui Liu
- Department
of Internal Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Shuchun Chen
- Department
of Endocrinology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Ruoxi Zhen
- Department
of Internal Medicine, Hebei Medical University, Shijiazhuang 050051, China
| |
Collapse
|
10
|
Li B, Dong Y, Hu S, Liu T. MiR-143-3p/FNDC5 axis: a novel regulator of insulin sensitivity. Endocrine 2024; 83:368-377. [PMID: 37815745 DOI: 10.1007/s12020-023-03522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/03/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE Insulin resistance is a key hallmark in type 2 diabetes. In recent decades, there have been numerous studies of the causes of insulin resistance. microRNAs (miRNAs) participate in the regulation of multiple aspects of energy metabolism and miR-143-3p has been shown to induce insulin resistance. We aimed to predict the downstream targets of miR-143-3p and found a miR-143-3p binding site on the 3'-untranslated region of FNDC5 (Fibronectin type III domain containing 5) mRNA. METHODS We first confirmed that FNDC5 mRNA is a target of miR-143-3p using a double luciferase experiment, then constructed a prokaryotic expression system for the mature form of FNDC5, irisin, and expressed and purified irisin protein. We transfected a miR-143-3p mimic into HepG2-NTCP (Na+-taurocholate cotransporting polypeptide) cells using an NTCP targeting vector, then 24 h later, the glucose concentration of the culture medium, western blot analysis was analyzed. We next co-incubated the cells transfected with the miR-143-3p mimic with irisin for 12 h following by the assay of glucose uptake and AKT phosphorylation. RESULTS The glucose concentration of the culture medium was higher than that associated with control miRNA-transfected cells (p < 0.01). Western blot analysis showed that the miR-143-3p mimic significantly reduced the expression of FNDC5 (p < 0.05) and the phosphorylation of AKT (Protein kinase B) (p < 0.05), implying impaired insulin signaling. which increased the glucose uptake (p < 0.0001) and AKT phosphorylation in the cells (p < 0.05). CONCLUSION We conclude that FNDC5 is a direct target of miR-143-3p and that miR-143-3p induces insulin resistance by reducing its expression.
Collapse
Affiliation(s)
- Biao Li
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, National Medical Products Administration Key Laboratory of Cosmetic Safety Evaluation, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Siyuan Hu
- School of Sports and Arts, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Goswami S, Zhang Q, Celik CE, Reich EM, Yilmaz ÖH. Dietary fat and lipid metabolism in the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2023; 1878:188984. [PMID: 37722512 PMCID: PMC10937091 DOI: 10.1016/j.bbcan.2023.188984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
Metabolic reprogramming has been considered a core hallmark of cancer, in which excessive accumulation of lipids promote cancer initiation, progression and metastasis. Lipid metabolism often includes the digestion and absorption of dietary fat, and the ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment. Among multiple cancer risk factors, obesity has a positive association with multiple cancer types, while diets like calorie restriction and fasting improve health and delay cancer. Impact of these diets on tumorigenesis or cancer prevention are generally studied on cancer cells, despite heterogeneity of the tumor microenvironment. Cancer cells regularly interact with these heterogeneous microenvironmental components, including immune and stromal cells, to promote cancer progression and metastasis, and there is an intricate metabolic crosstalk between these compartments. Here, we focus on discussing fat metabolism and response to dietary fat in the tumor microenvironment, focusing on both immune and stromal components and shedding light on therapeutic strategies surrounding lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Swagata Goswami
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Qiming Zhang
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Cigdem Elif Celik
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Hacettepe Univ, Canc Inst, Department Basic Oncol, Ankara TR-06100, Turkiye
| | - Ethan M Reich
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Massachusetts General Hospital and Beth Israel Deaconness Medical Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Li X, Tan Y, Liu B, Guo H, Zhou Y, Yuan J, Wang F. Mitochondrial Lipid Metabolism Genes as Diagnostic and Prognostic Indicators in Hepatocellular Carcinoma. Curr Genomics 2023; 24:110-127. [PMID: 37994323 PMCID: PMC10662382 DOI: 10.2174/1389202924666230914110649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 11/24/2023] Open
Abstract
Background Due to the heterogeneity of Hepatocellular carcinoma (HCC), there is an urgent need for reliable diagnosis and prognosis. Mitochondria-mediated abnormal lipid metabolism affects the occurrence and progression of HCC. Objective This study aims to investigate the potential of mitochondrial lipid metabolism (MTLM) genes as diagnostic and independent prognostic biomarkers for HCC. Methods MTLM genes were screened from the Gene Expression Omnibus (GEO) and Gene Set Enrichment Analysis (GSEA) databases, followed by an evaluation of their diagnostic values in both The Cancer Genome Atlas Program (TCGA) and the Affiliated Cancer Hospital of Guangxi Medical University (GXMU) cohort. The TCGA dataset was utilized to construct a gene signature and investigate the prognostic significance, immune infiltration, and copy number alterations. The validity of the prognostic signature was confirmed through GEO, International Cancer Genome Consortium (ICGC), and GXMU cohorts. Results The diagnostic receiver operating characteristic (ROC) curve revealed that eight MTLM genes have excellent diagnostic of HCC. A prognostic signature comprising 5 MTLM genes with robust predictive value was constructed using the lasso regression algorithm based on TCGA data. The results of the Stepwise regression model showed that the combination of signature and routine clinical parameters had a higher area under the curve (AUC) compared to a single risk score. Further, a nomogram was constructed to predict the survival probability of HCC, and the calibration curves demonstrated a perfect predictive ability. Finally, the risk score also unveiled the different immune and mutation statuses between the two different risk groups. Conclusion MTLT-related genes may serve as diagnostic and prognostic biomarkers for HCC as well as novel therapeutic targets, which may be beneficial for facilitating further understanding the molecular pathogenesis and providing potential therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xuejing Li
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Ying Tan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Bihan Liu
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Houtian Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yongjian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Jianhui Yuan
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
| | - Feng Wang
- Research Center for Biomedical Photonics, Institute of Life Science, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Mayengbam SS, Singh A, Yaduvanshi H, Bhati FK, Deshmukh B, Athavale D, Ramteke PL, Bhat MK. Cholesterol reprograms glucose and lipid metabolism to promote proliferation in colon cancer cells. Cancer Metab 2023; 11:15. [PMID: 37705114 PMCID: PMC10500936 DOI: 10.1186/s40170-023-00315-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Hypercholesterolemia is often correlated with obesity which is considered a risk factor for various cancers. With the growing population of hypercholesterolemic individuals, there is a need to understand the role of increased circulatory cholesterol or dietary cholesterol intake towards cancer etiology and pathology. Recently, abnormality in the blood cholesterol level of colon cancer patients has been reported. In the present study, we demonstrate that alteration in cholesterol levels (through a high-cholesterol or high-fat diet) increases the incidence of chemical carcinogen-induced colon polyp occurrence and tumor progression in mice. At the cellular level, low-density lipoprotein cholesterol (LDLc) and high-density lipoprotein cholesterol (HDLc) promote colon cancer cell proliferation by tuning the cellular glucose and lipid metabolism. Mechanistically, supplementation of LDLc or HDLc promotes cellular glucose uptake, and utilization, thereby, causing an increase in lactate production by colon cancer cells. Moreover, LDLc or HDLc upregulates aerobic glycolysis, causing an increase in total ATP production through glycolysis, and a decrease in ATP generation by OXPHOS. Interestingly, the shift in the metabolic status towards a more glycolytic phenotype upon the availability of cholesterol supports rapid cell proliferation. Additionally, an alteration in the expression of the molecules involved in cholesterol uptake along with the increase in lipid and cholesterol accumulation was observed in cells supplemented with LDLc or HDLc. These results indicate that colon cancer cells directly utilize the cholesterol associated with LDLc or HDLc. Moreover, targeting glucose metabolism through LDH inhibitor (oxamate) drastically abrogates the cellular proliferation induced by LDLc or HDLc. Collectively, we illustrate the vital role of cholesterol in regulating the cellular glucose and lipid metabolism of cancer cells and its direct effect on the colon tumorigenesis.
Collapse
Affiliation(s)
- Shyamananda Singh Mayengbam
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Abhijeet Singh
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Himanshi Yaduvanshi
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Firoz Khan Bhati
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Bhavana Deshmukh
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Dipti Athavale
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Pranay L Ramteke
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Department of Biotechnology, Government of India, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
15
|
Talamantes S, Lisjak M, Gilglioni EH, Llamoza-Torres CJ, Ramos-Molina B, Gurzov EN. Non-alcoholic fatty liver disease and diabetes mellitus as growing aetiologies of hepatocellular carcinoma. JHEP Rep 2023; 5:100811. [PMID: 37575883 PMCID: PMC10413159 DOI: 10.1016/j.jhepr.2023.100811] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.
Collapse
Affiliation(s)
- Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Michela Lisjak
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Eduardo H. Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
| | - Camilo J. Llamoza-Torres
- Department of Hepatology, Virgen de la Arrixaca University Hospital, Murcia, 30120, Spain
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
| | - Esteban N. Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Route de Lennik 808, Brussels, 1070, Belgium
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, 30120, Spain
- WELBIO Department, WEL Research Institute, Avenue Pasteur 6, Wavre, 1300, Belgium
| |
Collapse
|
16
|
Vithayathil M, D'Alessio A, Fulgenzi CAM, Nishida N, Schönlein M, von Felden J, Schulze K, Wege H, Saeed A, Wietharn B, Hildebrand H, Wu L, Ang C, Marron TU, Weinmann A, Galle PR, Bettinger D, Bengsch B, Vogel A, Balcar L, Scheiner B, Lee PC, Huang YH, Amara S, Muzaffar M, Naqash AR, Cammarota A, Zanuso V, Pressiani T, Pinter M, Cortellini A, Kudo M, Rimassa L, Pinato DJ, Sharma R. Impact of body mass index in patients receiving atezolizumab plus bevacizumab for hepatocellular carcinoma. Hepatol Int 2023; 17:904-914. [PMID: 37005953 PMCID: PMC10386929 DOI: 10.1007/s12072-023-10491-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Atezolizumab plus bevacizumab (Atezo/Bev) is first line-treatment for unresectable hepatocellular carcinoma (HCC). Body mass index (BMI) has demonstrated predictive value for response to immunotherapy in non-HCC cancer types. Our study investigated the effect of BMI on safety and efficacy of real-life use of Atezo/Bev for unresectable HCC. METHODS 191 consecutive patients from seven centres receiving Atezo/Bev were included in the retrospective study. Overall survival (OS), progression-free survival (PFS), overall response rate (ORR) and disease control rate (DCR) defined by RECIST v1.1 were measured in overweight (BMI ≥ 25) and non-overweight (BMI < 25) patients. Treatment-related adverse events (trAEs) were evaluated. RESULTS Patients in the overweight cohort (n = 94) had higher rates of non-alcoholic fatty liver disease (NAFLD) and lower rates of Hepatitis B compared to non-overweight cohort (n = 97). Baseline Child-Pugh class and Barcelona Clinic Liver Cancer stage were similar between cohorts, with lower rates of extrahepatic spread in the overweight group. Overweight patients had similar OS compared to non-overweight (median OS 15.1 vs. 14.9 months; p = 0.99). BMI did not influence median PFS (7.1 vs. 6.1 months; p = 0.42), ORR (27.2% vs. 22.0%; p = 0.44) and DCR (74.1% vs. 71.9%; p = 0.46). There were higher rates of atezolizumab-related fatigue (22.3% vs. 10.3%; p = 0.02) and bevacizumab-related thrombosis (8.5% vs. 2.1%; p = 0.045) in the overweight patients, but overall trAEs and treatment discontinuation were comparable between cohorts. CONCLUSION Atezo/Bev has comparable efficacy in overweight HCC patients, with an increase in treatment-related fatigue and thrombosis. Combination therapy is safe and efficacious to use in overweight patients, including those with underlying NAFLD.
Collapse
Affiliation(s)
- Mathew Vithayathil
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Antonio D'Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Martin Schönlein
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johann von Felden
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kornelius Schulze
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Wege
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anwaar Saeed
- Division of Medical Oncology, Department of Medicine, Kansas University Cancer Center, Kansas City, KS, USA
| | - Brooke Wietharn
- Division of Medical Oncology, Department of Medicine, Kansas University Cancer Center, Kansas City, KS, USA
| | - Hannah Hildebrand
- Division of Medical Oncology, Department of Medicine, Kansas University Cancer Center, Kansas City, KS, USA
| | - Linda Wu
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| | - Celina Ang
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| | - Thomas U Marron
- Division of Hematology/Oncology, Department of Medicine, Tisch Cancer Institute, Mount Sinai Hospital, New York, NY, USA
| | - Arndt Weinmann
- I. Medical Department, University Medical Center Mainz, Mainz, Germany
| | - Peter R Galle
- I. Medical Department, University Medical Center Mainz, Mainz, Germany
| | - Dominik Bettinger
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
- University of Freiburg, Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, Germany
| | | | - Lorenz Balcar
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernhard Scheiner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Pei-Chang Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Suneetha Amara
- Division of Hematology/Oncology, East Carolina University, Greenville, NC, USA
| | - Mahvish Muzaffar
- Division of Hematology/Oncology, East Carolina University, Greenville, NC, USA
| | - Abdul Rafeh Naqash
- Division of Hematology/Oncology, East Carolina University, Greenville, NC, USA
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma, Norman, OK, USA
| | - Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Tiziana Pressiani
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Matthias Pinter
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessio Cortellini
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - David J Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
17
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
18
|
Li Z, Zhang H, Li Q, Feng W, Jia X, Zhou R, Huang Y, Li Y, Hu Z, Hu X, Zhu X, Huang S. GepLiver: an integrative liver expression atlas spanning developmental stages and liver disease phases. Sci Data 2023; 10:376. [PMID: 37301898 PMCID: PMC10257690 DOI: 10.1038/s41597-023-02257-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Chronic liver diseases usually developed through stepwise pathological transitions under the persistent risk factors. The molecular changes during liver transitions are pivotal to improve liver diagnostics and therapeutics yet still remain elusive. Cumulative large-scale liver transcriptomic studies have been revealing molecular landscape of various liver conditions at bulk and single-cell resolution, however, neither single experiment nor databases enabled thorough investigations of transcriptomic dynamics along the progression of liver diseases. Here we establish GepLiver, a longitudinal and multidimensional liver expression atlas integrating expression profiles of 2469 human bulk tissues, 492 mouse samples, 409,775 single cells from 347 human samples and 27 liver cell lines spanning 16 liver phenotypes with uniformed processing and annotating methods. Using GepLiver, we have demonstrated dynamic changes of gene expression, cell abundance and crosstalk harboring meaningful biological associations. GepLiver can be applied to explore the evolving expression patterns and transcriptomic features for genes and cell types respectively among liver phenotypes, assisting the investigation of liver transcriptomic dynamics and informing biomarkers and targets for liver diseases.
Collapse
Affiliation(s)
- Ziteng Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Qin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiya Jia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Runye Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shenglin Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
20
|
Chen S, Tao Y, Wang Q, Ren J, Jing Y, Huang J, Zhang L, Li R. Glucose induced-AKT/mTOR activation accelerates glycolysis and promotes cell survival in acute myeloid leukemia. Leuk Res 2023; 128:107059. [PMID: 36989577 DOI: 10.1016/j.leukres.2023.107059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Multiple studies have demonstrated that excessive glucose utilization is a common feature of cancer cells to support malignant phenotype. Acute myeloid leukemia (AML) is recognized as a heterogeneous disorder of hematopoietic stem cells characterized by altered glucose metabolism. However, the role of glucose metabolic dysfunction in AML development remains obscure. In this study, glucose and 2-Deoxy-D-glucose (2-DG) treatment were applied to analyze the relationship between glucose metabolism and cell survival. Cell Counting Kit-8 (CCK-8) and flow cytometry (FCM) assays were used to examine the cell viability and apoptosis rate. Glucose consumption and lactate production were measured to assess the glucose metabolism pathway. The results demonstrated that abnormally increased glucose effectively promoted proliferation of leukemic cells and inhibited cell apoptosis, while 2-DG ameliorated leukemic phenotypes. Importantly, glucose exposure induced active glycolysis by increasing glucose consumption and lactate production. Furthermore, the levels of key glycolysis-related genes glucose transporter 1 (GLUT1) and monocarboxylate transporter 1 (MCT1) were upregulated. Mechanistic investigations revealed that AKT/mTOR signaling pathway was activated in glucose condition. In conclusion, our findings indicate that glucose induced-AKT/mTOR activation plays a growth-promoting role in AML, highlighting that inhibition of glycolysis would be a vital adjuvant therapy strategy for AML.
Collapse
|
21
|
Yildiz E, El Alam G, Perino A, Jalil A, Denechaud PD, Huber K, Fajas L, Auwerx J, Sorrentino G, Schoonjans K. Hepatic lipid overload triggers biliary epithelial cell activation via E2Fs. eLife 2023; 12:81926. [PMID: 36876915 PMCID: PMC10030116 DOI: 10.7554/elife.81926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid activation into proliferating progenitors, a crucial step required to establish a regenerative process known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanistically, we found that lipid overload activates the E2F transcription factors in BECs, which drive cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide new insights into the mechanistic basis of this process, revealing unexpected connections between lipid metabolism, stemness, and regeneration.
Collapse
Affiliation(s)
- Ece Yildiz
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gaby El Alam
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alessia Perino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Antoine Jalil
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Katharina Huber
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland
- INSERM, Occitanie, Montpellier, France
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Giovanni Sorrentino
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Abstract
Few metabolites can claim a more central and versatile role in cell metabolism than acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is produced during nutrient catabolism to fuel the tricarboxylic acid cycle and is the essential building block for fatty acid and isoprenoid biosynthesis. It also functions as a signalling metabolite as the substrate for lysine acetylation reactions, enabling the modulation of protein functions in response to acetyl-CoA availability. Recent years have seen exciting advances in our understanding of acetyl-CoA metabolism in normal physiology and in cancer, buoyed by new mouse models, in vivo stable-isotope tracing approaches and improved methods for measuring acetyl-CoA, including in specific subcellular compartments. Efforts to target acetyl-CoA metabolic enzymes are also advancing, with one therapeutic agent targeting acetyl-CoA synthesis receiving approval from the US Food and Drug Administration. In this Review, we give an overview of the regulation and cancer relevance of major metabolic pathways in which acetyl-CoA participates. We further discuss recent advances in understanding acetyl-CoA metabolism in normal tissues and tumours and the potential for targeting these pathways therapeutically. We conclude with a commentary on emerging nodes of acetyl-CoA metabolism that may impact cancer biology.
Collapse
Affiliation(s)
- David A Guertin
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA.
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, Fernández-García J, Wu Q, Planque M, Laue KJ, Cidre-Aranaz F, Liu XZ, Marin-Bejar O, Van Elsen J, Vermeire I, Broekaert D, Demeyer S, Spotbeen X, Idkowiak J, Montagne A, Demicco M, Alkan HF, Rabas N, Riera-Domingo C, Richard F, Geukens T, De Schepper M, Leduc S, Hatse S, Lambrechts Y, Kay EJ, Lilla S, Alekseenko A, Geldhof V, Boeckx B, de la Calle Arregui C, Floris G, Swinnen JV, Marine JC, Lambrechts D, Pelechano V, Mazzone M, Zanivan S, Cools J, Wildiers H, Baud V, Grünewald TGP, Ben-David U, Desmedt C, Malanchi I, Fendt SM. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. NATURE CANCER 2023; 4:344-364. [PMID: 36732635 PMCID: PMC7615234 DOI: 10.1038/s43018-023-00513-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
Metabolic rewiring is often considered an adaptive pressure limiting metastasis formation; however, some nutrients available at distant organs may inherently promote metastatic growth. We find that the lung and liver are lipid-rich environments. Moreover, we observe that pre-metastatic niche formation increases palmitate availability only in the lung, whereas a high-fat diet increases it in both organs. In line with this, targeting palmitate processing inhibits breast cancer-derived lung metastasis formation. Mechanistically, breast cancer cells use palmitate to synthesize acetyl-CoA in a carnitine palmitoyltransferase 1a-dependent manner. Concomitantly, lysine acetyltransferase 2a expression is promoted by palmitate, linking the available acetyl-CoA to the acetylation of the nuclear factor-kappaB subunit p65. Deletion of lysine acetyltransferase 2a or carnitine palmitoyltransferase 1a reduces metastasis formation in lean and high-fat diet mice, and lung and liver metastases from patients with breast cancer show coexpression of both proteins. In conclusion, palmitate-rich environments foster metastases growth by increasing p65 acetylation, resulting in a pro-metastatic nuclear factor-kappaB signaling.
Collapse
Affiliation(s)
- Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yawen Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Alejandro M Cuadros
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Qi Wu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kathrin Julia Laue
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Florencia Cidre-Aranaz
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ines Vermeire
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sofie Demeyer
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Xander Spotbeen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jakub Idkowiak
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Aurélie Montagne
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - H Furkan Alkan
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - François Richard
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tatjana Geukens
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maxim De Schepper
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sophia Leduc
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Yentl Lambrechts
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Alisa Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Vincent Geldhof
- Laboratory for Angiogenesis and Vascular Metabolism, VIB-KU Leuven, Leuven, Belgium
| | - Bram Boeckx
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Celia de la Calle Arregui
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jan Cools
- Laboratory for Molecular Biology of Leukemia, VIB-KU Leuven, Leuven, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Véronique Baud
- Université Paris Cité, NF-kappaB, Différenciation et Cancer, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
24
|
Clasen F, Nunes PM, Bidkhori G, Bah N, Boeing S, Shoaie S, Anastasiou D. Systematic diet composition swap in a mouse genome-scale metabolic model reveals determinants of obesogenic diet metabolism in liver cancer. iScience 2023; 26:106040. [PMID: 36844450 PMCID: PMC9947310 DOI: 10.1016/j.isci.2023.106040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/08/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Dietary nutrient availability and gene expression, together, influence tissue metabolic activity. Here, we explore whether altering dietary nutrient composition in the context of mouse liver cancer suffices to overcome chronic gene expression changes that arise from tumorigenesis and western-style diet (WD). We construct a mouse genome-scale metabolic model and estimate metabolic fluxes in liver tumors and non-tumoral tissue after computationally varying the composition of input diet. This approach, called Systematic Diet Composition Swap (SyDiCoS), revealed that, compared to a control diet, WD increases production of glycerol and succinate irrespective of specific tissue gene expression patterns. Conversely, differences in fatty acid utilization pathways between tumor and non-tumor liver are amplified with WD by both dietary carbohydrates and lipids together. Our data suggest that combined dietary component modifications may be required to normalize the distinctive metabolic patterns that underlie selective targeting of tumor metabolism.
Collapse
Affiliation(s)
- Frederick Clasen
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Patrícia M. Nunes
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gholamreza Bidkhori
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | - Nourdine Bah
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Science for Life Laboratory (SciLifeLab), KTH - Royal Institute of Technology, Tomtebodavägen 23, 171 65 Solna, Stockholm, Sweden
| | - Dimitrios Anastasiou
- Cancer Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
25
|
Shen J, Sun W, Liu J, Li J, Li Y, Gao Y. Metabolism-related signatures is correlated with poor prognosis and immune infiltration in hepatocellular carcinoma via multi-omics analysis and basic experiments. Front Oncol 2023; 13:1130094. [PMID: 36860325 PMCID: PMC9969091 DOI: 10.3389/fonc.2023.1130094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Background Metabolism is an ordered series of biological processes that occur in an organism. Altered cellular metabolism is often closely associated with the development of cancer. The aim of this research was to construct a model by multiple metabolism-related molecules to diagnose and assess the prognosis of patients. Method WGCNA analysis was used to screen out differential genes. GO, KEGG are used to explore potential pathways and mechanisms. The lasso regression model was used to filter out the best indicators to construct the model. Single-sample GSEA (ssGSEA) assess immune cells abundance, immune terms in different Metabolism Index (MBI) groups. Human tissues and cells were used to verify the expression of key genes. Result WGCNA clustering grouped genes into 5 modules, of which 90 genes from the MEbrown module were selected for subsequent analysis. GO analysis was found that BP mainly has mitotic nuclear division, while KEGG pathway is enriched to Cell cycle, Cellular senescence. Mutation analysis revealed that the frequency of TP53 mutations was much higher in samples from the high MBI group than in the low MBI group. Immunoassay revealed that patients with higher MBI have higher macrophage and Regulatory T cells (Treg) abundance, while NK cells were lowly expressed in the high MBI group. RT-qPCR and immunohistochemistry (IHC) revealed that the hub genes expression is higher in cancer tissues. The expression in hepatocellular carcinoma cells was also much higher than that in normal hepatocytes. Conclusion In conclusion, a metabolism-related model was constructed that can be used to estimate the prognosis of hepatocellular carcinoma, and the clinical treatment of different hepatocellular carcinoma patients with medications was guided.
Collapse
Affiliation(s)
| | | | | | - Jiali Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | |
Collapse
|
26
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Imaging glucose metabolism to reveal tumor progression. Front Physiol 2023; 14:1103354. [PMID: 36818450 PMCID: PMC9932271 DOI: 10.3389/fphys.2023.1103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose: To analyze and review the progress of glucose metabolism-based molecular imaging in detecting tumors to guide clinicians for new management strategies. Summary: When metabolic abnormalities occur, termed the Warburg effect, it simultaneously enables excessive cell proliferation and inhibits cell apoptosis. Molecular imaging technology combines molecular biology and cell probe technology to visualize, characterize, and quantify processes at cellular and subcellular levels in vivo. Modern instruments, including molecular biochemistry, data processing, nanotechnology, and image processing, use molecular probes to perform real-time, non-invasive imaging of molecular and cellular events in living organisms. Conclusion: Molecular imaging is a non-invasive method for live detection, dynamic observation, and quantitative assessment of tumor glucose metabolism. It enables in-depth examination of the connection between the tumor microenvironment and tumor growth, providing a reliable assessment technique for scientific and clinical research. This new technique will facilitate the translation of fundamental research into clinical practice.
Collapse
Affiliation(s)
- Yiming Meng
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Medical Image, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China,*Correspondence: Tao Yu, ; Haozhe Piao,
| |
Collapse
|
27
|
Multi-omics analysis of the effects of dietary changes and probiotics on diet-induced obesity. Curr Res Food Sci 2023; 6:100435. [PMID: 36691590 PMCID: PMC9860293 DOI: 10.1016/j.crfs.2023.100435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
The consumption of a healthy diet is critical for maintaining and promoting human health. In the context of the rapid transformation from a high-fat diet (HFD) to a Mediterranean diet (MD) leading to major systemic changes, we explored the necessity of a transitional standard diet (TSD) between these two varied diets and the adjuvant effect of probiotics. HFD-fed mice were used for studying the changes and benefits of a dietary intervention and probiotic treatment. By measuring multiple systemic alterations such as weight (group B vs. group E, P < 0.05), liver function (AST, group C vs. group E, P < 0.001), and histopathology, we found that an MD, TSD and Bifidobacterium longum all contribute to alleviating lipid deposition and liver injury. The downregulation of IL-17 (group B vs. group E, P < 0.01) and MIP-1α (group B vs. group E, P < 0.001) also demonstrated the anti-inflammatory effects of the TSD. Moreover, we performed multi-omics analysis combined with the 16S sequencing, transcriptome and metabolome results and found that the TSD increased the abundance of the Lactobacillus genus (group C vs. group E, P < 0.01) and effectively lowered lipid accumulation and systemic inflammation. Furthermore, B. longum played an important role in the synergistic effect. The results showed that a TSD might be useful for HFD-induced obesity before drastic dietary changes, and probiotics were also beneficial.
Collapse
|
28
|
Understanding the Contribution of Lactate Metabolism in Cancer Progress: A Perspective from Isomers. Cancers (Basel) 2022; 15:cancers15010087. [PMID: 36612084 PMCID: PMC9817756 DOI: 10.3390/cancers15010087] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Lactate mediates multiple cell-intrinsic effects in cancer metabolism in terms of development, maintenance, and metastasis and is often correlated with poor prognosis. Its functions are undertaken as an energy source for neighboring carcinoma cells and serve as a lactormone for oncogenic signaling pathways. Indeed, two isomers of lactate are produced in the Warburg effect: L-lactate and D-lactate. L-lactate is the main end-production of glycolytic fermentation which catalyzes glucose, and tiny D-lactate is fabricated through the glyoxalase system. Their production inevitably affects cancer development and therapy. Here, we systematically review the mechanisms of lactate isomers production, and highlight emerging evidence of the carcinogenic biological effects of lactate and its isomers in cancer. Accordingly, therapy that targets lactate and its metabolism is a promising approach for anticancer treatment.
Collapse
|
29
|
Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab 2022; 34:1675-1699. [PMID: 36261043 DOI: 10.1016/j.cmet.2022.09.023] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lipids have essential biological functions in the body (e.g., providing energy storage, acting as a signaling molecule, and being a structural component of membranes); however, an excess of lipids can promote tumorigenesis, colonization, and metastatic capacity of tumor cells. To metastasize, a tumor cell goes through different stages that require lipid-related metabolic and structural adaptations. These adaptations include altering the lipid membrane composition for invading other niches and overcoming cell death mechanisms and promoting lipid catabolism and anabolism for energy and oxidative stress protective purposes. Cancer cells also harness lipid metabolism to modulate the activity of stromal and immune cells to their advantage and to resist therapy and promote relapse. All this is especially worrying given the high fat intake in Western diets. Thus, metabolic interventions aiming to reduce lipid availability to cancer cells or to exacerbate their metabolic vulnerabilities provide promising therapeutic opportunities to prevent cancer progression and treat metastasis.
Collapse
Affiliation(s)
- Miguel Martin-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, University of Barcelona, 08028 Barcelona, Spain.
| | - Uxue Urdiroz-Urricelqui
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Claudia Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
30
|
Huang JH, Wang J, Chai XQ, Li ZC, Jiang YH, Li J, Liu X, Fan J, Cai JB, Liu F. The Intratumoral Bacterial Metataxonomic Signature of Hepatocellular Carcinoma. Microbiol Spectr 2022; 10:e0098322. [PMID: 36173308 PMCID: PMC9602924 DOI: 10.1128/spectrum.00983-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/11/2022] [Indexed: 12/30/2022] Open
Abstract
Microbiota is implicated in hepatocellular carcinoma (HCC). The spectrum of intratumoral microbiota associated with HCC progression remains elusive. Fluorescence in situ hybridization revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. Viable anaerobic or aerobic bacteria were recovered in HCC tissues by fresh tissue culture. We performed a comprehensive DNA sequencing of bacterial 16S rRNA genes in 156 samples from 28 normal liver, 64 peritumoral, and 64 HCC tissues, and the DNA sequencing yielded 4.2 million high-quality reads. Both alpha and beta diversity in peritumor and HCC microbiota were increased compared to normal controls. The most predominant phyla in HCC were Patescibacteria, Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota. phyla of Proteobacteria, Firmicutes, and Actinobacteriota, and classes of Bacilli and Actinobacteria, were consistently enriched in peritumor and HCC tissues, while Gammaproteobacteria was especially abundant in HCC tissues compared to normal controls. Streptococcaceae and Lactococcus were the marker taxa of HCC cirrhosis. The Staphylococcus branch and Caulobacter branch were selectively enriched in HBV-negative HCCs. The abundance of Proteobacteria, Gammaproteobacteria, Firmicutes, Actinobacteriota, and Saccharimonadia were associated with the clinicopathological features of HCC patients. The inferred functions of different taxa were changed between the microbiota of normal liver and peritumor/HCC. Random forest machine learning achieved great discriminative performance in HCC prediction (area under the curve [AUC] = 1.00 in the training cohort, AUC = 0.950 for top five class signature, and AUC = 0.943 for the top 50 operational taxonomy units [OTUs] in the validation cohort). Our analysis highlights the complexity and diversity of the liver and HCC microbiota and established a specific intratumoral microbial signature for the potential prediction of HCC. IMPORTANCE Gut microbiome is an important regulator of hepatic inflammation, detoxification, and immunity, and contributes to the carcinogenesis of liver cancer. Intratumoral bacteria are supposed to be closer to the tumor cells, forming a microenvironment that may be relevant to the pathological process of hepatocellular carcinoma (HCC). However, the presence of viable intratumoral bacteria remains unclear. It is worth exploring whether the metataxonomic characteristics of intratumoral bacteria can be used as a potential marker for HCC prediction. Here, we present the first evidence of the existence of viable intratumoral bacteria in HCC using the tissue culture method. We revealed that microbial DNAs were distributed in the cytosol of liver hepatocytes and erythrocytes. We analyzed the diversity, structure, and abundance of normal liver and HCC microbiota. We built a machine learning model for HCC prediction using intratumoral bacterial features. We show that specific taxa represent potential targets for both therapeutic and diagnostic interventions.
Collapse
Affiliation(s)
- Jian-Hang Huang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiao-Qiang Chai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Zhong-Chen Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Jun Li
- Department of General Surgery, Shanghai TongRen Hospital, Shanghai, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jia-Bin Cai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Wang J, Wang M, Shao J, Liu Z, Fu C, Chen G, Zhao K, Li H, Sun W, Jia X, Chen S, Lai S. Combined analysis of differentially expressed lncRNAs and miRNAs in liver tissues of high-fat fed rabbits by transcriptome sequencing. Front Genet 2022; 13:1000574. [PMID: 36276943 PMCID: PMC9585185 DOI: 10.3389/fgene.2022.1000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
High-fat diet could lead to a series of metabolic diseases, including obesity, and its mechanism is not clear. In this study, the rabbit individuals were fed with high-fat diet, the liver tissues were collected, high-throughput sequencing technology was used to reveal the expression of lncRNA and miRNA difference, and the molecular regulation mechanism of lncRNA-miRNA. A total of 24,615 DE lncRNAs and 52 DE miRNAs were identified, including 15 novel discovered DE miRNAs (5 upregulated and 10 downregulated). Furthermore, five miRNAs and three mRNAs were verified by qRT-PCR, and the results showed that the expression of the DE miRNAs and DE lncRNAs in the two groups was consistent with our sequencing results. GO and KEGG analyzed 7,57,139 target genes respectively, enriching the pathways related to lipid metabolism, including mucin O-glycan biosynthesis pathway, insulin resistance and glucagon signaling pathway. Moreover, 65 targeting relationships were obtained. Among them, LOC103348122/miR-450a-5p, LOC103350359/miR-450a-3p and LOC103350429/miR-148a-5p were proposed the first time. Significantly, LOC103348122/miR-450a-5p and LOC103350429/miR-148a-5p were related to lipid metabolism in the liver. This study is of great significance to the CeRNA regulatory network related to lipid metabolism in the liver of rabbits, and provides a basis for understanding hepatic steatosis in rabbits.
Collapse
Affiliation(s)
- Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chong Fu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guanhe Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- *Correspondence: Songjia Lai,
| |
Collapse
|
32
|
A Novel Metabolism-Related Gene Signature for Predicting the Prognosis of HBV-Infected Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2391265. [PMID: 36072970 PMCID: PMC9441393 DOI: 10.1155/2022/2391265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022]
Abstract
Metabolic reprogramming is one of the crucial hallmarks of cancer. Hepatocellular carcinoma (HCC) resulting from hepatitis B has various altered metabolic features. However, the impact of such alterations on the tumor microenvironment (TME) and immunotherapy efficacy is still unclear. Here, a prognostic signature of metabolism-related gene (MRG) composition was constructed, and the immune profile of different subgroups and potential response to immunotherapy were described. Based on the HCC gene dataset, we used weighted gene coexpression network analysis for identifying MRGs linked to hepatitis B. An MRG prognostic index (MRGPI) with two genes, ATIC and KIF2C, was constructed using Cox regression analysis, an independent prognostic factor. In addition, the model was validated using the GEO dataset. The immune profile and prediction of HCC response to immunotherapy in different subgroups were analyzed using CIBERSORT and TIDE. Based on the outcomes, the distributions of memory B cells, monocytes, resting mast cells, and M0 macrophages in TME were different with a greater benefit of immunotherapy in the low MRGPI risk group. In addition, the MRGPI risk groups showed substantial differences in sensitivity to conventional drug therapy. This study concludes that MRGPI is an effective biomarker for predicting the prognoses of patients with HCC resulting from hepatitis B virus infections and determining the efficacy of immunotherapy and conventional medical therapy.
Collapse
|
33
|
Hou Y, Fei Y, Liu Z, Liu Y, Li M, Luo Z. Black phosphorous nanomaterials as a new paradigm for postoperative tumor treatment regimens. J Nanobiotechnology 2022; 20:366. [PMID: 35953821 PMCID: PMC9367102 DOI: 10.1186/s12951-022-01579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/24/2022] [Indexed: 12/02/2022] Open
Abstract
Surgery is currently a mainstream treatment modality for various solid tumor indications. However, aggressive resection of tumor tissues frequently causes postoperative complications, which severely undermine the well-being of patients. Moreover, the residue tumor cells may substantially increase the risk of local and distant tumor relapse. The recent development in black phosphorus (BP)-based nanomaterials offers a promising opportunity to address these clinical challenges. BP is an emerging nanomaterial with excellent biocompatibility and versatile functionality, which has already demonstrated great potential for a variety of biomedical applications including tumor therapy and tissue engineering. In this review, the recent advances in BP-based nanobiomaterials for the post-surgery treatment of solid tumor have been summarized, while specific emphasis was placed on their capability to continuously inhibit residue tumor growth at the surgery site as well as stimulating various healing mechanisms, aiming to preventing tumor relapse while promoting the healing of surgery-induced traumatic soft/hard tissue injuries. It is anticipated that the nanoengineered BP-based materials may open new avenues to tackle those clinical challenges in surgical treatment of solid tumors.
Collapse
Affiliation(s)
- Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yang Fei
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Zehong Liu
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Yingqi Liu
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China. .,111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
34
|
Sortilin 1 Promotes Hepatocellular Carcinoma Cell Proliferation and Migration by Regulating Immune Cell Infiltration. JOURNAL OF ONCOLOGY 2022; 2022:6509028. [PMID: 35847356 PMCID: PMC9286884 DOI: 10.1155/2022/6509028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Objectives Recent evidence suggests that Sort1 promotes carcinogenesis and tumor progression in multiple types of cancers. This study investigates the role of Sort1 in hepatocellular carcinoma (HCC). Methods The differentially expressed gene was screened through GEO and TCGA databases. The Sort1 gene was identified and its expression was then verified by TCGA and HCCDB (a database of hepatocellular carcinoma expression atlas) databases. The Human Protein Atlas database was used to assess the gene expression in tissues. The TCGA and KM-plotter databases were used to study the relationship between Sort1 and HCC. The correlation between Sort1 and immune cells was evaluated through the TIMER database. GO and KEGG enrichment analysis was used to investigate the possible mechanism. The role of Sort1 in cell proliferation and invasion of HCC was further explored through in vitro experiments. Result The differentially expressed molecule obtained from database screening was Sort1. Its expression was higher in cancer tissues than in paracancerous ones, and it was mainly located in the cytoplasm. The TCGA, KM-plotter databases, and our study data showed that low expression of Sort1 in HCC patients had better overall survival (OS), progression-free survival (PFI), and disease-specific survival (DSS). Further analysis indicated a significant correlation between Sort1 expression and immune cell infiltration. The gene set enrichment analysis (GSEA) analysis showed that Sort1 affected the biological events of HCC by participating in the WNT, TGF-BETA, JAK, STAT, and CALCIUM signaling pathways. In vitro, cytological experiments demonstrated reduced expression of PCNA, Ki-67, Vimentin, N-cadherin, and MMP-9 mRNA after knocking down Sort1, although E-cadherin expression was promoted. Overall, these processes reduced the ability of proliferation and invasion of HCC cells. Conclusion Downregulation of Sort1 can prolong the OS, PFI, and DSS of HCC patients. Furthermore, due to its link with immune cell infiltration, the Sort1 gene represents a potentially novel predictive biomarker of HCC. The growth of HCC can be significantly inhibited by interfering with Sort1; therefore, these results provide a potential target for developing anticancer strategies for HCC.
Collapse
|
35
|
Mao D, Xu M, Jiang Q, Sun H, Sun F, Yang R, Chai Y, Li X, Li B, Li Y. A Single Nucleotide Mixture Enhances the Antitumor Activity of Molecular-Targeted Drugs Against Hepatocellular Carcinoma. Front Pharmacol 2022; 13:951831. [PMID: 35833031 PMCID: PMC9271877 DOI: 10.3389/fphar.2022.951831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/13/2022] Open
Abstract
New strategies for molecular-targeted drug therapy for advanced hepatocellular carcinoma (HCC) ignore the contribution of the nutritional status of patients and nutritional support to improve physical status and immunity. We aimed to elucidate the role of a single nucleotide mixture (SNM) in the anti-tumor therapy of HCC, and to explore the importance of a SNM as adjuvant therapy for HCC. Compared with a lipid emulsion (commonly used nutritional supplement for HCC patients), the SNM could not induce metabolic abnormalities in HCC cells (Warburg effect), and did not affect expression of metabolic abnormality-related factors in HCC cells. The SNM could also attenuate the lymphocyte injury induced by antitumor drugs in vitro and in vivo, and promote the recruitment and survival of lymphocytes in HCC tissues. Using HCC models in SCID (server combined immune-deficiency) mice or BalB/c mice, the SNM had anti-tumor activity, and could significantly upregulate the antitumor activity of molecular-targeted drugs (tyrosine-kinase inhibitors [TKI] and immune-checkpoint inhibitors [ICI]) against HCC. We employed research models in vivo and in vitro to reveal the anti-tumor activity of the SNM on HCC. Our findings expand understanding of the SNM and contribute to HCC (especially nutritional support) therapy.
Collapse
Affiliation(s)
- Da Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruichuang Yang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
- *Correspondence: Yong Li, ; Boan Li,
| |
Collapse
|
36
|
Zhang K, Wang X, Gong X, Sui J. Gut Microbiome Differences in Rescued Common Kestrels (Falco tinnunculus) Before and After Captivity. Front Microbiol 2022; 13:858592. [PMID: 35794924 PMCID: PMC9251364 DOI: 10.3389/fmicb.2022.858592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbes significantly impact animal health, yet research on the gut microbiota of most birds, especially raptors, is lacking. This study investigated the effects of dietary and environmental changes on the composition and abundance of gut microbiota in 17 rescued common kestrels (Falco tinnunculus) through 16S rRNA gene high-throughput sequencing of microorganisms in the feces of the birds. Firmicutes (relative abundance, 43.63%), Proteobacteria (37.26%), Actinobacteria (7.31%), and Bacteroidetes (5.48%) were the dominant phyla in the gut microbiota of the common kestrels. A comparison of the gut microbiota before and after captivity revealed that community composition and abundance of the common kestrel gut microbiota differed among different living conditions including diet and environment. At the phylum level, the abundance of Firmicutes was higher (P < 0.05), and that of Proteobacteria was lower (P < 0.05), after captivity (54.62 and 27.16%, respectively) compared with before captivity (33.67 and 46.41%, respectively), but no significant differences were found among other phyla. At the genus level, the abundance of Lactobacillus was higher (P < 0.05) after captivity (15.77%) compared with the abundance before captivity (5.02%). Hierarchical clustering and principal component analyses showed that common kestrels in different living conditions exhibited differences (P < 0.05) in gut microbiota at phylum and genus levels. Functional prediction of gene sequences using PICRUSt2 further revealed that pathways related to glucose metabolism and amino acid metabolism were enhanced (P < 0.05) after captivity. Collectively, the findings from this study demonstrated that the relative abundance of specific microbes in the gut of the rescued common kestrels either increased or decreased, and that dietary and environment changes might be the predominant factors affecting the gut microbiota of these birds during rescue or captivity.
Collapse
|
37
|
Wang D, Zhang X, Li Y, Jia L, Zhai L, Wei W, Zhang L, Jiang H, Bai Y. Exercise-Induced Browning of White Adipose Tissue and Improving Skeletal Muscle Insulin Sensitivity in Obese/Non-obese Growing Mice: Do Not Neglect Exosomal miR-27a. Front Nutr 2022; 9:940673. [PMID: 35782940 PMCID: PMC9248804 DOI: 10.3389/fnut.2022.940673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is considered as a favorable measure to prevent and treat childhood obesity. However, the underlying mechanisms of exercise-induced beneficial effects and the difference between obese and non-obese individuals are largely unclear. Recently, miR-27a is recognized as a central upstream regulator of proliferator-activated receptor γ (PPAR-γ) in contributing to various physiological and pathological processes. This study aims to explore the possible cause of exercise affecting white adipose tissue (WAT) browning and reversing skeletal muscle insulin resistance in obese/non-obese immature bodies. For simulating the process of childhood obesity, juvenile mice were fed with a basal diet or high-fat diet (HFD) and took 1 or 2 h swimming exercise simultaneously for 10 weeks. The obese animal model was induced by the HFD. We found that exercise hindered HFD-induced body fat development in growing mice. Exercise modified glucolipid metabolism parameters differently in the obese/non-obese groups, and the changes of the 2 h exercise mice were not consistent with the 1 h exercise mice. The level of serum exosomal miR-27a in the non-exercise obese group was increased obviously, which was reduced in the exercise obese groups. Results from bioinformatics analysis and dual-luciferase reporter assay showed that miR-27a targeted PPAR-γ. Exercise stimulated WAT browning; however, the response of obese WAT lagged behind normal WAT. In the HFD-fed mice, 2 h exercise activated the IRS-1/Akt/GLUT-4 signaling pathway in the skeletal muscles. In summary, our findings confirmed that exercise-induced beneficial effects are associated with exercise duration, and the response of obese and non-obese bodies is different. Exosomal miR-27a might be a crucial node for the process of exercise-induced browning of WAT and improving skeletal muscle insulin sensitivity.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- The Second People’s Hospital of Jiashan, Jiaxing, China
| | - Xihuan Zhang
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- Xinzhou District Center for Disease Control and Prevention, Wuhan, China
| | - Yibai Li
- The First Division of Clinical Medicine, China Medical University, Shenyang, China
| | - Lihong Jia
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Lingling Zhai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Wei Wei
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
| | - Li Zhang
- Department of Dermatology, First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Hongkun Jiang
- Department of Pediatrics, First Hospital of China Medical University, Shenyang, China
| | - Yinglong Bai
- Department of Maternal and Child Health, School of Public Health, China Medical University, Shenyang, China
- *Correspondence: Yinglong Bai,
| |
Collapse
|
38
|
Qian L, Zhang F, Yin M, Lei Q. Cancer metabolism and dietary interventions. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0461. [PMID: 34931768 PMCID: PMC8832959 DOI: 10.20892/j.issn.2095-3941.2021.0461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022] Open
Abstract
Metabolic remodeling is a key feature of cancer development. Knowledge of cancer metabolism has greatly expanded since the first observation of abnormal metabolism in cancer cells, the so-called Warburg effect. Malignant cells tend to modify cellular metabolism to favor specialized fermentation over the aerobic respiration usually used by most normal cells. Thus, targeted cancer therapies based on reprogramming nutrient or metabolite metabolism have received substantial attention both conceptually and in clinical practice. In particular, the management of nutrient availability is becoming more attractive in cancer treatment. In this review, we discuss recent findings on tumor metabolism and potential dietary interventions based on the specific characteristics of tumor metabolism. First, we present a comprehensive overview of changes in macronutrient metabolism. Carbohydrates, amino acids, and lipids, are rewired in the cancer microenvironment individually or systematically. Second, we summarize recent progress in cancer interventions applying different types of diets and specific nutrient restrictions in pre-clinical research or clinical trials.
Collapse
Affiliation(s)
- Lin Qian
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Fan Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Qunying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200030, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, China
- Lead Contact, Shanghai 200030, China
| |
Collapse
|
39
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
40
|
Brahma MK, Gilglioni EH, Zhou L, Trépo E, Chen P, Gurzov EN. Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene 2021; 40:5155-5167. [PMID: 34290399 PMCID: PMC9277657 DOI: 10.1038/s41388-021-01950-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023]
Abstract
Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.
Collapse
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium
| | - Lang Zhou
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory of Experimental Gastroenterology, Université libre de Bruxelles, Brussels, Belgium
| | - Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL, 36849, United States
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
41
|
Broadfield LA, Pane AA, Talebi A, Swinnen JV, Fendt SM. Lipid metabolism in cancer: New perspectives and emerging mechanisms. Dev Cell 2021; 56:1363-1393. [PMID: 33945792 DOI: 10.1016/j.devcel.2021.04.013] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/15/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tumors undergo metabolic transformations to sustain uncontrolled proliferation, avoid cell death, and seed in secondary organs. An increased focus on cancer lipid metabolism has unveiled a number of mechanisms that promote tumor growth and survival, many of which are independent of classical cellular bioenergetics. These mechanisms include modulation of ferroptotic-mediated cell death, support during tumor metastasis, and interactions with the cells of the tumor microenvironment. As such, targeting lipid metabolism for anti-cancer therapies is attractive, with recent work on small-molecule inhibitors identifying compounds to target lipid metabolism. Here, we discuss these topics and identify open questions.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Antonino Alejandro Pane
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Ali Talebi
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute (LKI), KU Leuven, University of Leuven, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
42
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- *Correspondence: Ming Yang,
| |
Collapse
|