1
|
Sun DY, Hu YJ, Li X, Peng J, Dai ZJ, Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int Immunopharmacol 2025; 144:113392. [PMID: 39608170 DOI: 10.1016/j.intimp.2024.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
In recent years, immune cell therapy, particularly adoptive cell therapy (ACT), has shown superior therapeutic effects on hematologic malignancies. However, a challenge lies in ensuring that genetically engineered specific T cells maintain lasting anti-tumor effects within the host. The enduring success of ACT therapy hinges on the persistence of memory T (TM) cells, a diverse cell subset crucial for tumor immune response and immune memory upkeep. Notably, TM cell subsets at varying differentiation stages exhibit distinct biological traits and anti-tumor capabilities. Poorly differentiated TM cells are pivotal for favorable clinical outcomes in ACT. The differentiation of TM cells is influenced by multiple factors, including metabolism and cytokines. Consequently, current research focuses on investigating the differentiation patterns of TM cells and enhancing the production of poorly differentiated TM cells with potent anti-tumor properties in vitro, which is a prominent area of interest globally. This review delves into the differentiation features of TM cells, outlining their distribution in patients and their impact on ACT treatment. It comprehensively explores cutting-edge strategies to boost ACT efficacy through TM cell differentiation induction, aiming to unlock the full potential of TM cells in treating hematologic malignancies and offering novel insights for tumor immune cell therapy.
Collapse
Affiliation(s)
- Ding-Ya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China
| | - Yi-Jie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- International Medicine Institute, Changsha Medical University, Changsha, China
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China.
| | - Zhi-Jie Dai
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
2
|
Wenes M, Lepez A, Arinkin V, Maundrell K, Barabas O, Simonetta F, Dutoit V, Romero P, Martinou JC, Migliorini D. A novel mitochondrial pyruvate carrier inhibitor drives stem cell-like memory CAR T cell generation and enhances antitumor efficacy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200897. [PMID: 39559715 PMCID: PMC11570499 DOI: 10.1016/j.omton.2024.200897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/23/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
Adoptive cell transfer with chimeric antigen receptor (CAR)-expressing T cells can induce remarkable complete responses in cancer patients. Therapeutic success has been correlated with central and stem cell-like memory T cell subsets in the infusion product, which are better able to drive efficient CAR T cell in vivo expansion and long-term persistence. We previously reported that inhibition of the mitochondrial pyruvate carrier (MPC) during mouse CAR T cell culture induces a memory phenotype and enhances antitumor efficacy against melanoma. Here, we use a novel MPC inhibitor, MITO-66, which robustly induces a stem cell-like memory phenotype in CD19-CAR T cells generated from healthy donors and patients with relapsed/refractory B cell malignancies. MITO-66-conditioned CAR T cells were superior in controlling human pre-B cell acute lymphoblastic leukemia in mice. Following adoptive cell transfer, MITO-66-conditioned CAR T cells maintained a memory phenotype and protected cured mice against tumor rechallenge. Furthermore, in an in vivo B cell leukemia stress model, CD19-CAR T cells generated in the presence of MITO-66 largely outperformed clinical-stage AKT and PI-3Kδ inhibitors. Thus, we provide compelling preclinical evidence that MPC inhibition with MITO-66 during CAR T cell manufacturing dramatically enhances their antitumor efficacy, thereby paving the way to clinical translation.
Collapse
Affiliation(s)
- Mathias Wenes
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- MPC Therapeutics, 1206 Geneva, Switzerland
| | - Anouk Lepez
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir Arinkin
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Kinsey Maundrell
- MPC Therapeutics, 1206 Geneva, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Orsolya Barabas
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Federico Simonetta
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- Division of Hematology, Department of Oncology, Geneva University Hospitals (HUG), 1206 Geneva, Switzerland
| | - Valérie Dutoit
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
| | - Pedro Romero
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
- Novigenix SA, 1066 Epalinges, Switzerland
| | - Jean-Claude Martinou
- MPC Therapeutics, 1206 Geneva, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, 1206 Geneva, Switzerland
| | - Denis Migliorini
- AGORA Cancer Research Center, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, Geneva, Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, 1206 Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), 1206 Geneva, Switzerland
| |
Collapse
|
3
|
Chen G, Yuan L, Zhang Y, Li T, You H, Han L, Qin P, Wang Y, Liu X, Guo J, Zhang M, Zhang K, Li L, Yuan P, Xu B, Gao Q. Transient-resting culture after activation enhances the generation of CD8 + stem cell-like memory T cells from peripheral blood mononuclear cells. Transl Oncol 2024; 50:102138. [PMID: 39357466 PMCID: PMC11474225 DOI: 10.1016/j.tranon.2024.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024] Open
Abstract
Adoptive cell therapy (ACT) has revolutionized the treatment of patients with cancer. The success of ACT depends largely on transferred T cell status, particularly their less-differentiated state with stem cell-like properties, which enhances ACT effectiveness. Stem cell-like memory T (TSCM) cells exhibit continuous self-renewal and multilineage differentiation similar to pluripotent stem cells. TSCM cells are promising candidates for cancer immunotherapies, whereas maintenance of a more stem-cell-like state before transfer is challenging. Here, we established a highly efficient protocol for generating CD8+ TSCM cells from peripheral blood mononuclear cells (PBMCs). The process involved activating PBMCs using anti-CD3 monoclonal antibody and RetroNectin, followed by a transient-resting culture period (24 h) and subsequent long-term expansion in vitro with interlukien-2. We report that this transient-resting culture after activation preserves CD8+ T cells in a stem memory phenotype (CD95+ CD45RA+ CCR7+) compared to the conventional culture method. Further, this approach reduces the expression of T cell immunoglobulin mucin-3, an exhaustion marker, and increases the expression of T cell factor-1, a master regulator of stemness even after long-term culture compared to the conventional culture method. In conclusion, our study presents a simplified and cost-effective method for generating and expanding CD8+ TSCM cells ex vivo. This approach streamlines the optimization of cancer immunotherapy using ACT.
Collapse
Affiliation(s)
- Guangyu Chen
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Long Yuan
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Yong Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Tiepeng Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Hongqin You
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Lu Han
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Peng Qin
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Yao Wang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Xue Liu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Jindong Guo
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Mengyu Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Kuang Zhang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Linlin Li
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Peng Yuan
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China.
| | - Quanli Gao
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, PR China.
| |
Collapse
|
4
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2024:1-17. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
5
|
Braverman EL, Qin M, Schuler H, Brown H, Wittmann C, Ramgopal A, Kemp F, Mullet SJ, Yang A, Poholek AC, Gelhaus SL, Byersdorfer CA. AMPK agonism optimizes the in vivo persistence and anti-leukemia efficacy of chimeric antigen receptor T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615290. [PMID: 39386600 PMCID: PMC11463370 DOI: 10.1101/2024.09.26.615290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
BACKGROUND Chimeric antigen receptor T cell (CART) therapy has seen great clinical success. However, up to 50% of leukemia patients relapse and long-term survivor data indicate that CART cell persistence is key to enforcing relapse-free survival. Unfortunately, ex vivo expansion protocols often drive metabolic and functional exhaustion, reducing in vivo efficacy. Preclinical models have demonstrated that redirecting metabolism ex vivo can improve in vivo T cell function and we hypothesized that exposure to an agonist targeting the metabolic regulator AMP-activated protein kinase (AMPK), would create CARTs capable of both efficient leukemia clearance and increased in vivo persistence. METHODS CART cells were generated from healthy human via lentiviral transduction. Following activation, cells were exposed to either Compound 991 or DMSO for 96 hours, followed by a 48-hour washout. During and after agonist treatment, T cells were harvested for metabolic and functional assessments. To test in vivo efficacy, immunodeficient mice were injected with luciferase+ NALM6 leukemia cells, followed one week later by either 991- or DMSO-expanded CARTs. Leukemia burden and anti-leukemia efficacy was assessed via radiance imaging and overall survival. RESULTS Human T cells expanded in Compound 991 activated AMPK without limiting cellular expansion and gained both mitochondrial density and improved handling of reactive oxygen species (ROS). Importantly, receipt of 991-exposed CARTs significantly improved in vivo leukemia clearance, prolonged recipient survival, and increased CD4+ T cell yields at early times post-injection. Ex vivo, 991 agonist treatment mimicked nutrient starvation, increased autophagic flux, and promoted generation of mitochondrially-protective metabolites. DISCUSSION Ex vivo expansion processes are necessary to generate sufficient cell numbers, but often promote sustained activation and differentiation, negatively impacting in vivo persistence and function. Here, we demonstrate that promoting AMPK activity during CART expansion metabolically reprograms cells without limiting T cell yield, enhances in vivo anti-leukemia efficacy, and improves CD4+ in vivo persistence. Importantly, AMPK agonism achieves these results without further modifying the expansion media, changing the CART construct, or genetically altering the cells. Altogether, these data highlight AMPK agonism as a potent and readily translatable approach to improve the metabolic profile and overall efficacy of cancer-targeting T cells.
Collapse
Affiliation(s)
- Erica L Braverman
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Mengtao Qin
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
- School of Medicine, Tsinghua University, Beijing, China
| | - Herbert Schuler
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Harrison Brown
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Christopher Wittmann
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Archana Ramgopal
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Felicia Kemp
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| | - Steven J Mullet
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Yang
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C Poholek
- Department of Pediatrics, Division of Pediatric Rheumatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh PA 15224
| |
Collapse
|
6
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Hu J, Liu X. Generation of CAR-T SCM: CAR-T with super clutch. Int Immunopharmacol 2024; 136:112379. [PMID: 38833844 DOI: 10.1016/j.intimp.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
CAR-T therapy has demonstrated effectiveness in hematological malignancies and is now striding into solid tumor areas. One of the main roadblocks of CAR-T therapy is T cell exhaustion normally aroused by T cell terminal differentiation due to persistent contact with antigen in vivo or in vitro manufacturing process. TSCM positions as the first, and pivotal step of naïve T cell differentiation to downstream memory and effector stages. Researchers highly seek to restrain CAR-T cells at the TSCM stage during manufacture as TSCM percentage in CAR-T products is strongly associated with better treatment response. We reviewed the recent strategies regarding CAR-TSCM generation from aspects of starting source, manufacturing process, CAR assembly, transcription factor and metabolism regulation, etc.
Collapse
Affiliation(s)
- Jinhui Hu
- Department of Laboratory Medicine, Gongli Hospital, No. 219, Miaopu Road, Pudong, Shanghai, 200135, China.
| | - Xiang Liu
- TriArm Therapeutics Inc, Building 5, Niudun Road, Pudong New District, Shanghai, 201203, China.
| |
Collapse
|
8
|
Li J, Luo L, He J, Yu J, Li X, Shen X, Zhang J, Li S, Karp JM, Kuai R. A Virus-Inspired Inhalable Liponanogel Induces Potent Antitumor Immunity and Regression in Metastatic Lung Tumors. Cancer Res 2024; 84:2352-2363. [PMID: 38718316 PMCID: PMC11247319 DOI: 10.1158/0008-5472.can-23-3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary delivery of immunostimulatory agents such as poly(I:C) to activate double-stranded RNA sensors MDA5 and RIG-I within lung-resident antigen-presenting cells is a potential strategy to enhance antitumor immunity by promoting type I interferon secretion. Nevertheless, following pulmonary delivery, poly(I:C) suffers from rapid degradation and poor endosomal escape, thus limiting its potency. Inspired by the structure of a virus that utilizes internal viral proteins to tune the loading and cytosolic delivery of viral nucleic acids, we developed a liponanogel (LNG)-based platform to overcome the delivery challenges of poly(I:C). The LNG comprised an anionic polymer hyaluronic acid-based nanogel core coated by a lipid shell, which served as a protective layer to stabilize the nanogel core in the lungs. The nanogel core was protonated within acidic endosomes to enhance the endosomal membrane permeability and cytosolic delivery of poly(I:C). After pulmonary delivery, LNG-poly(I:C) induced 13.7-fold more IFNβ than poly(I:C) alone and two-fold more than poly(I:C) loaded in the state-of-art lipid nanoparticles [LNP-poly(I:C)]. Additionally, LNG-poly(I:C) induced more potent CD8+ T-cell immunity and stronger therapeutic effects than LNP-poly(I:C). The combination of LNG-poly(I:C) and PD-L1 targeting led to regression of established lung metastases. Due to the ease of manufacturing and the high biocompatibility of LNG, pulmonary delivery of LNG may be broadly applicable to the treatment of different lung tumors and may spur the development of innovative strategies for cancer immunotherapy. Significance: Pulmonary delivery of poly(I:C) with a virus-inspired inhalable liponanogel strongly activates cytosolic MDA5 and RIG-I and stimulates antitumor immunity, representing a promising strategy for safe and effective treatment of metastatic lung tumors.
Collapse
Affiliation(s)
- Junyao Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Lanqing Luo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Jia He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Jinchao Yu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Xinyan Li
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Xueying Shen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Junxia Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China.
| | - Sai Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- School of Life Sciences, Tsinghua University, Beijing, China.
- Frontier Research Center for Biological Structure & State Key Laboratory of Membrane Biology, Beijing, China.
| | - Jeffrey M. Karp
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
- Harvard-MIT Program in Health Sciences and Technology, MIT, Cambridge, Massachusetts.
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Rui Kuai
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
9
|
Liu J, Jiao X, Ma D, Fang Y, Gao Q. CAR-T therapy and targeted treatments: Emerging combination strategies in solid tumors. MED 2024; 5:530-549. [PMID: 38547867 DOI: 10.1016/j.medj.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 06/17/2024]
Abstract
CAR-T cell therapies hold great potential in achieving long-term remission in patients suffering from malignancies. However, their efficacy in treating solid tumors is impeded by challenges such as limited infiltration, compromised cancer recognition, decreased cytotoxicity, heightened exhaustion, absence of memory phenotypes, and inevitable toxicity. To surmount these obstacles, researchers are exploring innovative strategies, including the integration of CAR-T cells with targeted inhibitors. The combination of CAR-T therapies with specific targeted drugs has shown promise in enhancing CAR-T cell infiltration into tumor sites, boosting their tumor recognition capabilities, strengthening their cytotoxicity, alleviating exhaustion, promoting the development of a memory phenotype, and reducing toxicity. By harnessing the synergistic potential, a wider range of patients with solid tumors may potentially experience favorable outcomes. To summarize the current combined strategies of CAR-T therapies and targeted therapies, outline the potential mechanisms, and provide insights for future studies, we conducted this review by collecting existing experimental and clinical evidence.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Jiao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Hunt EG, Hurst KE, Riesenberg BP, Kennedy AS, Gandy EJ, Andrews AM, Del Mar Alicea Pauneto C, Ball LE, Wallace ED, Gao P, Meier J, Serody JJ, Coleman MF, Thaxton JE. Acetyl-CoA carboxylase obstructs CD8 + T cell lipid utilization in the tumor microenvironment. Cell Metab 2024; 36:969-983.e10. [PMID: 38490211 DOI: 10.1016/j.cmet.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.
Collapse
Affiliation(s)
- Elizabeth G Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Katie E Hurst
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Brian P Riesenberg
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Andrew S Kennedy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Evelyn J Gandy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alex M Andrews
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Coral Del Mar Alicea Pauneto
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emily D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Peng Gao
- Department of Medicine, Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy Meier
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - John J Serody
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jessica E Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
11
|
Liu S, Zhao Y, Gao Y, Li F, Zhang Y. Targeting metabolism to improve CAR-T cells therapeutic efficacy. Chin Med J (Engl) 2024; 137:909-920. [PMID: 38501360 PMCID: PMC11046027 DOI: 10.1097/cm9.0000000000003046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 03/20/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor T (CAR-T) cell therapy achieved advanced progress in the treatment of hematological tumors. However, the application of CAR-T cell therapy for solid tumors still faces many challenges. Competition with tumor cells for metabolic resources in an already nutrient-poor tumor microenvironment is a major contributing cause to CAR-T cell therapy's low effectiveness. Abnormal metabolic processes are now acknowledged to shape the tumor microenvironment, which is characterized by increased interstitial fluid pressure, low pH level, hypoxia, accumulation of immunosuppressive metabolites, and mitochondrial dysfunction. These factors are important contributors to restriction of T cell proliferation, cytokine release, and suppression of tumor cell-killing ability. This review provides an overview of how different metabolites regulate T cell activity, analyzes the current dilemmas, and proposes key strategies to reestablish the CAR-T cell therapy's effectiveness through targeting metabolism, with the aim of providing new strategies to surmount the obstacle in the way of solid tumor CAR-T cell treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyu Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yaoxin Gao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Feng Li
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
- School of Public Health, Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|