1
|
Ying C, Li Y, Zhang H, Pang S, Hao S, Hu S, Zhao L. Probing the diagnostic values of plasma cf-nDNA and cf-mtDNA for Parkinson's disease and multiple system atrophy. Front Neurosci 2024; 18:1488820. [PMID: 39687490 PMCID: PMC11647036 DOI: 10.3389/fnins.2024.1488820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Cell loss and mitochondrial dysfunction are key pathological features of idiopathic Parkinson's disease (PD) and multiple system atrophy (MSA). It remains unclear whether disease-specific changes in plasma circulating cell-free nuclear DNA (cf-nDNA) and mitochondrial DNA (cf-mtDNA) occur in patients with PD and MSA. In this study, we investigated whether plasma cf-nDNA, cf-mtDNA levels, as well as cf-mtDNA integrity, are altered in patients with PD and MSA. Methods TaqMan probe-based quantitative PCR was employed to measure plasma cf-nDNA levels, cf-mtDNA copy numbers, and cf-mtDNA deletion levels in 171 participants, including 76 normal controls (NC), 62 PD patients, and 33 MSA patients. A generalized linear model was constructed to analyze differences in circulating cell-free DNA (cfDNA) biomarkers across clinical groups, while a logistic regression model was applied to assess the predictive values of these biomarkers for developing PD or MSA. Spearman correlations were used to explore associations between the three cfDNA biomarkers, demographic data, and clinical scales. Results No significant differences in plasma cf-nDNA levels, cf-mtDNA copy numbers, or cf-mtDNA deletion levels were observed among the PD, MSA, and NC groups (all P > 0.05). Additionally, these measures were not associated with the risk of developing PD or MSA. In PD patients, cf-nDNA levels were positively correlated with Hamilton Anxiety Rating Scale scores (Rho = 0.382, FDR adjusted P = 0.027). In MSA patients, cf-nDNA levels were positively correlated with International Cooperative Ataxia Rating Scale scores (Rho = 0.588, FDR adjusted P = 0.011) and negatively correlated with Montreal Cognitive Assessment scores (Rho = -0.484, FDR adjusted P = 0.044). Subgroup analysis showed that PD patients with constipation had significantly lower plasma cf-mtDNA copy numbers than those without constipation (P = 0.049). MSA patients with cognitive impairment had significantly higher cf-nDNA levels compared to those without (P = 0.008). Conclusion Plasma cf-nDNA level, cf-mtDNA copy number, and cf-mtDNA deletion level have limited roles as diagnostic biomarkers for PD and MSA. However, their correlations with clinical symptoms support the hypothesis that cell loss and mitochondrial dysfunction are involved in PD and MSA development.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shimin Pang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuwen Hao
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songnian Hu
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory on Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Fukihara J, Sakamoto K, Ikeyama Y, Furukawa T, Teramachi R, Kataoka K, Kondoh Y, Hashimoto N, Ishii M. Mitochondrial DNA in bronchoalveolar lavage fluid is associated with the prognosis of idiopathic pulmonary fibrosis: a single cohort study. Respir Res 2024; 25:202. [PMID: 38730452 PMCID: PMC11083749 DOI: 10.1186/s12931-024-02828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Extracellular mitochondrial DNA (mtDNA) is released from damaged cells and increases in the serum and bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. While increased levels of serum mtDNA have been reported to be linked to disease progression and the future development of acute exacerbation (AE) of IPF (AE-IPF), the clinical significance of mtDNA in BALF (BALF-mtDNA) remains unclear. We investigated the relationships between BALF-mtDNA levels and other clinical variables and prognosis in IPF. METHODS Extracellular mtDNA levels in BALF samples collected from IPF patients were determined using droplet-digital PCR. Levels of extracellular nucleolar DNA in BALF (BALF-nucDNA) were also determined as a marker for simple cell collapse. Patient characteristics and survival information were retrospectively reviewed. RESULTS mtDNA levels in serum and BALF did not correlate with each other. In 27 patients with paired BALF samples obtained in a stable state and at the time of AE diagnosis, BALF-mtDNA levels were significantly increased at the time of AE. Elevated BALF-mtDNA levels were associated with inflammation or disordered pulmonary function in a stable state (n = 90), while being associated with age and BALF-neutrophils at the time of AE (n = 38). BALF-mtDNA ≥ 4234.3 copies/µL in a stable state (median survival time (MST): 42.4 vs. 79.6 months, p < 0.001) and ≥ 11,194.3 copies/µL at the time of AE (MST: 2.6 vs. 20.0 months, p = 0.03) were associated with shorter survival after BALF collection, even after adjusting for other known prognostic factors. On the other hand, BALF-nucDNA showed different trends in correlation with other clinical variables and did not show any significant association with survival time. CONCLUSIONS Elevated BALF-mtDNA was associated with a poor prognosis in both IPF and AE-IPF. Of note, at the time of AE, it sharply distinguished survivors from non-survivors. Given the trends shown by analyses for BALF-nucDNA, the elevation of BALF-mtDNA might not simply reflect the impact of cell collapse. Further studies are required to explore the underlying mechanisms and clinical applications of BALF-mtDNA in IPF.
Collapse
Affiliation(s)
- Jun Fukihara
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan.
| | - Yoshiki Ikeyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Taiki Furukawa
- Medical IT Center, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Ryo Teramachi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Giulivi C, Wang JY, Hagerman RJ. Artificial neural network applied to fragile X-associated tremor/ataxia syndrome stage diagnosis based on peripheral mitochondrial bioenergetics and brain imaging outcomes. Sci Rep 2022; 12:21382. [PMID: 36496525 PMCID: PMC9741636 DOI: 10.1038/s41598-022-25615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA.
| | - Jun Yi Wang
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Center for Mind and Brain, University of California Davis, Davis, CA, USA
| | - Randi J Hagerman
- MIND Institute, University of California at Davis Medical Center, Sacramento, CA, USA
- Department of Pediatrics, University of California at Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
4
|
Mori KM, McElroy JP, Weng DY, Chung S, Fadda P, Reisinger SA, Ying KL, Brasky TM, Wewers MD, Freudenheim JL, Shields PG, Song MA. Lung mitochondrial DNA copy number, inflammatory biomarkers, gene transcription and gene methylation in vapers and smokers. EBioMedicine 2022; 85:104301. [PMID: 36215783 PMCID: PMC9561685 DOI: 10.1016/j.ebiom.2022.104301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mitochondrial DNA copy number (mtCN) maintains cellular function and homeostasis, and is linked to nuclear DNA methylation and gene expression. Increased mtCN in the blood is associated with smoking and respiratory disease, but has received little attention for target organ effects for smoking or electronic cigarette (EC) use. METHODS Bronchoscopy biospecimens from healthy EC users, smokers (SM), and never-smokers (NS) were assessed for associations of mtCN with mtDNA point mutations, immune responses, nuclear DNA methylation and gene expression using linear regression. Ingenuity pathway analysis was used for enriched pathways. GEO and TCGA respiratory disease datasets were used to explore the involvement of mtCN-associated signatures. FINDINGS mtCN was higher in SM than NS, but EC was not statistically different from either. Overall there was a negative association of mtCN with a point mutation in the D-loop but no difference within groups. Positive associations of mtCN with IL-2 and IL-4 were found in EC only. mtCN was significantly associated with 71,487 CpGs and 321 transcripts. 263 CpGs were correlated with nearby transcripts for genes enriched in the immune system. EC-specific mtCN-associated-CpGs and genes were differentially expressed in respiratory diseases compared to controls, including genes involved in cellular movement, inflammation, metabolism, and airway hyperresponsiveness. INTERPRETATION Smoking may elicit a lung toxic effect through mtCN. While the impact of EC is less clear, EC-specific associations of mtCN with nuclear biomarkers suggest exposure may not be harmless. Further research is needed to understand the role of smoking and EC-related mtCN on lung disease risks. FUNDING The National Cancer Institute, the National Heart, Lung, and Blood Institute, the Food and Drug Administration Center for Tobacco Products, the National Center For Advancing Translational Sciences, and Pelotonia Intramural Research Funds.
Collapse
Affiliation(s)
- Kellie M Mori
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sangwoon Chung
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Paolo Fadda
- Genomics Shared Resource, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Kevin L Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Theodore M Brasky
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, United States.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
5
|
Avilés-Ramírez C, Moreno-Godínez ME, Bonner MR, Parra-Rojas I, Flores-Alfaro E, Ramírez M, Huerta-Beristain G, Ramírez-Vargas MA. Effects of exposure to environmental pollutants on mitochondrial DNA copy number: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43588-43606. [PMID: 35399130 DOI: 10.1007/s11356-022-19967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Exposure to environmental pollutants has been associated with alteration on relative levels of mitochondrial DNA copy number (mtDNAcn). However, the results obtained from epidemiological studies are inconsistent. This meta-analysis aimed to evaluate whether environmental pollutant exposure can modify the relative levels of mtDNAcn in humans. We performed a literature search using PubMed, Scopus, and Web of Science databases. We selected and reviewed original articles performed in humans that analyzed the relationship between environmental pollutant exposure and the relative levels of mtDNAcn; the selection of the included studies was based on inclusion and exclusion criteria. Only twenty-two studies fulfilled our inclusion criteria. A total of 6011 study participants were included in this systematic review and meta-analysis. We grouped the included studies into four main categories according to the type of environmental pollutant: (1) heavy metals, (2) polycyclic aromatic hydrocarbons (PAHs), (3) particulate matter (PM), and (4) cigarette smoking. Inconclusive results were observed in all categories; the pooled analysis shows a marginal increase of relative levels of mtDNAcn in response to environmental pollutant exposure. The trial sequential analysis and rate confidence in body evidence showed the need to perform new studies. Therefore, a large-scale cohort and mechanistic studies in this area are required to probe the possible use of relative levels of mtDNAcn as biomarkers linked to environmental pollution exposure.
Collapse
Affiliation(s)
- Cristian Avilés-Ramírez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Ma Elena Moreno-Godínez
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Matthew R Bonner
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Investigación en Obesidad Y Diabetes, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eugenia Flores-Alfaro
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Epidemiología Clínica Y Molecular, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Ramírez
- Facultad de Ciencias Químico-Biológicas, CONACyT, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Gerardo Huerta-Beristain
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México
| | - Marco Antonio Ramírez-Vargas
- Facultad de Ciencias Químico-Biológicas, Laboratorio de Toxicología Y Salud Ambiental, Universidad Autónoma De Guerrero, Av. Lázaro Cárdenas s/n, 39089, Chilpancingo, GRO, México.
| |
Collapse
|
6
|
Bulgakova O, Kussainova A, Kakabayev A, Aripova A, Baikenova G, Izzotti A, Bersimbaev R. The level of free-circulating mtDNA in patients with radon-induced lung cancer. ENVIRONMENTAL RESEARCH 2022; 207:112215. [PMID: 34656631 DOI: 10.1016/j.envres.2021.112215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/15/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE According to the World Health Organization, radon is the second leading cause of lung cancer after smoking. Cell free circulating mitochondrial DNA (cf mtDNA) have been used not only as a biomarker of carcinogenesis but also as a biomarker of exposure to radiation, but nothing is known about changes in the level of cf mtDNA following radon exposure. Therefore, the purpose of this study was to estimate the cf mtDNA copy number as a biomarker of the response to radon exposure in lung cancer pathogenesis. METHODS 207 subjects were examined including 41 radon-exposed lung cancer patients, 40 lung cancer patients without radon exposure and 126 healthy controls exposed/not exposed to high level of radon. Total cell free circulating DNA from blood samples was extracted and used to detect cell free circulating mitochondrial DNA copy number by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our data indicate that the level of cf mtDNA in the radon-induced lung cancer patients was significantly higher than that of the other study participants. There was a significant difference in the level of cf mtDNA in the blood plasma of healthy volunteers exposed and not exposed to high doses of radon. Moreover, in healthy volunteers living in areas with high radon levels, the mtDNA copy number was higher than that in patients with lung cancer who were not exposed to high doses of radon. CONCLUSION Our study provides evidence for a possible role of cf mtDNA as a promising biomarker of lung cancer induced by exposure to high dose of radon.
Collapse
Affiliation(s)
- Olga Bulgakova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan
| | - Assiya Kussainova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan; Department of Experimental Medicine, University of Genoa, Italy
| | | | - Akmaral Aripova
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan
| | - Gulim Baikenova
- Sh. Ualikhanov Kokshetau State University, Kokshetau, Kazakhstan
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, Italy; IRCCS Ospedale Policlinico SanMartino, Genoa, Italy.
| | - Rakhmetkazhi Bersimbaev
- L.N.Gumilyov Eurasian National University, Institute of Cell Biology and Biotechnology, Nur-Sultan, Kazakhstan.
| |
Collapse
|
7
|
Sarlak S, Lalou C, Sant'Anna-Silva ACB, Mafhouf W, De Luise M, Rousseau B, Izotte J, Claverol S, Lacombe D, Nikitopoulou E, Yang M, Oliveira M, Frezza C, Gasparre G, Rezvani HR, Amoedo ND, Rossignol R. Lung Tumor Growth Promotion by Tobacco-Specific Nitrosamines Involves the β2-Adrenergic Receptors-Dependent Stimulation of Mitochondrial REDOX Signaling. Antioxid Redox Signal 2022; 36:525-549. [PMID: 34715750 DOI: 10.1089/ars.2020.8259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Lung cancer is the leading cause of cancer death worldwide, and tobacco smoking is a recognized major risk factor for lung tumor development. We analyzed the effect of tobacco-specific nitrosamines (TSNAs) on human lung adenocarcinoma metabolic reprogramming, an emergent hallmark of carcinogenesis. Results: A series of in vitro and in vivo bioenergetic, proteomic, metabolomic, and tumor biology studies were performed to analyze changes in lung cancer cell metabolism and the consequences for hallmarks of cancer, including tumor growth, cancer cell invasion, and redox signaling. The findings revealed that nicotine-derived nitrosamine ketone (NNK) stimulates mitochondrial function and promotes lung tumor growth in vivo. These malignant properties were acquired from the induction of mitochondrial biogenesis induced by the upregulation and activation of the beta-2 adrenergic receptors (β2-AR)-cholinergic receptor nicotinic alpha 7 subunit (CHRNAα7)-dependent nitrosamine canonical signaling pathway. The observed NNK metabolic effects were mediated by TFAM overexpression and revealed a key role for mitochondrial reactive oxygen species and Annexin A1 in tumor growth promotion. Conversely, ectopic expression of the mitochondrial antioxidant enzyme manganese superoxide dismutase rescued the reprogramming and malignant metabolic effects of exposure to NNK and overexpression of TFAM, underlining the link between NNK and mitochondrial redox signaling in lung cancer. Innovation: Our findings describe the metabolic changes caused by NNK in a mechanistic framework for understanding how cigarette smoking causes lung cancer. Conclusion: Mitochondria play a role in the promotion of lung cancer induced by tobacco-specific nitrosamines. Antioxid. Redox Signal. 36, 525-549.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Bordeaux University, Bordeaux, France
- INSERM U1211, Bordeaux, France
| | - Claude Lalou
- Bordeaux University, Bordeaux, France
- INSERM U1211, Bordeaux, France
| | | | - Walid Mafhouf
- Bordeaux University, Bordeaux, France
- INSERM U1045, Bordeaux, France
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics, Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Benoît Rousseau
- Bordeaux University, Bordeaux, France
- Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Bordeaux, France
- Transgenic Animal Facility A2, University of Bordeaux, Bordeaux, France
| | - Stéphane Claverol
- Bordeaux University, Bordeaux, France
- Proteomics Facility, Functional Genomics Center (CGFB), Bordeaux, France
| | - Didier Lacombe
- Bordeaux University, Bordeaux, France
- INSERM U1211, Bordeaux, France
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Ming Yang
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marcus Oliveira
- Institute of Medical Biochemistry, Federal University, Rio de Janeiro, Brazil
| | - Christian Frezza
- Medical Research Council Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics, Center for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | | | - Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center of Bordeaux (CGFB), Bordeaux, France
| | - Rodrigue Rossignol
- Bordeaux University, Bordeaux, France
- INSERM U1211, Bordeaux, France
- CELLOMET, Functional Genomics Center of Bordeaux (CGFB), Bordeaux, France
| |
Collapse
|
8
|
Tommasi S, Pabustan N, Li M, Chen Y, Siegmund KD, Besaratinia A. A novel role for vaping in mitochondrial gene dysregulation and inflammation fundamental to disease development. Sci Rep 2021; 11:22773. [PMID: 34815430 PMCID: PMC8611078 DOI: 10.1038/s41598-021-01965-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
We constructed and analyzed the whole transcriptome in leukocytes of healthy adult vapers (with/without a history of smoking), ‘exclusive’ cigarette smokers, and controls (non-users of any tobacco products). Furthermore, we performed single-gene validation of expression data, and biochemical validation of vaping/smoking status by plasma cotinine measurement. Computational modeling, combining primary analysis (age- and sex-adjusted limmaVoom) and sensitivity analysis (cumulative e-liquid- and pack-year modeling), revealed that ‘current’ vaping, but not ‘past’ smoking, is significantly associated with gene dysregulation in vapers. Comparative analysis of the gene networks and canonical pathways dysregulated in vapers and smokers showed strikingly similar patterns in the two groups, although the extent of transcriptomic changes was more pronounced in smokers than vapers. Of significance is the preferential targeting of mitochondrial genes in both vapers and smokers, concurrent with impaired functional networks, which drive mitochondrial DNA-related disorders. Equally significant is the dysregulation of immune response genes in vapers and smokers, modulated by upstream cytokines, including members of the interleukin and interferon family, which play a crucial role in inflammation. Our findings accord with the growing evidence on the central role of mitochondria as signaling organelles involved in immunity and inflammatory response, which are fundamental to disease development.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Niccolo Pabustan
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Meng Li
- USC Libraries Bioinformatics Service, University of Southern California, NML 203, M/C 9130, Los Angeles, CA, 90089, USA
| | - Yibu Chen
- USC Libraries Bioinformatics Service, University of Southern California, NML 203, M/C 9130, Los Angeles, CA, 90089, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA
| | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA, 90033, USA.
| |
Collapse
|
9
|
Snyder RJ, Kleeberger SR. Role of Mitochondrial DNA in Inflammatory Airway Diseases. Compr Physiol 2021; 11:1485-1499. [PMID: 33577124 DOI: 10.1002/cphy.c200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitochondrial genome is a small, circular, and highly conserved piece of DNA which encodes only 13 protein subunits yet is vital for electron transport in the mitochondrion and, therefore, vital for the existence of multicellular life on Earth. Despite this importance, mitochondrial DNA (mtDNA) is located in one of the least-protected areas of the cell, exposing it to high concentrations of intracellular reactive oxygen species (ROS) and threat from exogenous substances and pathogens. Until recently, the quality control mechanisms which ensured the stability of the nuclear genome were thought to be minimal or nonexistent in the mitochondria, and the thousands of redundant copies of mtDNA in each cell were believed to be the primary mechanism of protecting these genes. However, a vast network of mechanisms has been discovered that repair mtDNA lesions, replace and recycle mitochondrial chromosomes, and conduct alternate RNA processing for previously undescribed mitochondrial proteins. New mtDNA/RNA-dependent signaling pathways reveal a mostly undiscovered biochemical landscape in which the mitochondria interface with their host cells/organisms. As the myriad ways in which the function of the mitochondrial genome can affect human health have become increasingly apparent, the use of mitogenomic biomarkers (such as copy number and heteroplasmy) as toxicological endpoints has become more widely accepted. In this article, we examine several pathologies of human airway epithelium, including particle exposures, inflammatory diseases, and hyperoxia, and discuss the role of mitochondrial genotoxicity in the pathogenesis and/or exacerbation of these conditions. © 2021 American Physiological Society. Compr Physiol 11:1485-1499, 2021.
Collapse
Affiliation(s)
- Ryan J Snyder
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, NIH, Durham, North Carolina, USA
| |
Collapse
|
10
|
Awasthi A, Singh SK, Kumar B, Gulati M, Kumar R, Wadhwa S, Khursheed R, Corrie L, Kr A, Kumar R, Patni P, Kaur J, Vishwas S, Yadav A. Treatment Strategies Against Diabetic Foot Ulcer: Success so Far and the Road Ahead. Curr Diabetes Rev 2021; 17:421-436. [PMID: 33143613 DOI: 10.2174/1573399816999201102125537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the leading complications of type-2 diabetes mellitus. It is associated with neuropathy and peripheral arterial disease of the lower limb in patients with diabetes. There are four stages of wound healing, namely hemostasis phase, inflammatory phase, proliferative phase and maturation phase. In the case of DFU, all these stages are disturbed which lead to delay in healing and consequently to lower limb amputation. Conventional dosage forms like tablets, creams, ointments, gels and capsules have been used for the treatment of diabetic foot ulcer for many years. INTRODUCTION In this review, the global prevalence as well as etiopathogenesis related to diabetic foot ulcer have been discussed. The potential role of various synthetic and herbal drugs, as well as their conventional dosage forms in the effective management of DFU have been discussed in detail. METHODS Structured search of bibliographic databases from previously published peer-reviewed research papers was explored and data has been represented in terms of various approaches that are used for the treatment of DFU. RESULTS About 148 papers, including both research and review articles, were included in this review to produce a comprehensive as well as a readily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose and mechanism of action. CONCLUSION DFU has become one of the most common complications in patients having diabetes for more than ten years. Hence, understanding the root cause and its successful treatment is a big challenge because it depends upon multiple factors such as the judicious selection of drugs as well as proper control of blood sugar level. Most of the drugs that have been used so far either belong to the category of antibiotics, antihyperglycaemic or they have been repositioned. In clinical practice, much focus has been given to dressings that have been used to cover the ulcer. The complete treatment of DFU is still a farfetched dream to be achieved and it is expected that combination therapy of herbal and synthetic drugs with multiple treatment pathways could be able to offer better management of DFU.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Arya Kr
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Pooja Patni
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Ankit Yadav
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| |
Collapse
|
11
|
Ebrahimi E, Akhavan MH, Akrami R, Mahmoodi M, Hesami S, Hashemi M, Razavi SM, Hadji M, Zendehdel K. Association between mitochondrial DNA content and opium exposure. J Biochem Mol Toxicol 2020; 34:e22559. [PMID: 33034947 DOI: 10.1002/jbt.22559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
To date, not much study has been done to investigate the mitochondrial DNA (mtDNA) copy number as the potential biomarker for opium exposure. Here, we conducted a cross-sectional study to determine the relative mtDNA content as the potential biomarker for opium exposure. Quantitative real-time PCR was performed to investigate the mtDNA copy number variation across 205 individuals, including blood samples of 45 opium users, 41 cigarette users, 47 dual users, and 72 never users of any product. We found a significantly higher mtDNA content among the opium-only users (adjusted OR: 3.21; 95% CI: [1.34, 7.66]; P = .009) and dual users (adjusted OR: 2.64; 95% CI: [1.15, 6.1]; P = .02) compared to that in never users even after adjustment for confounding factors, age, and sex. Discordantly, analysis of mitochondrial DNA in cigarette smokers revealed an indirect association between cigarette smoking and mtDNA content although it was not statistically significant. The reason behind the increased mitochondrial DNA is unclear. The possible hypothesis is that there might be a way to compensate for the oxidative damage induced by opium consumption. Taken together, our findings indicated that the mtDNA copy number may alter during opium exposure. Since changes in the mitochondrial DNA copy number was associated with the etiology of many diseases including cancer, further investigations on the mtDNA copy number may shed light on the carcinogenicity of opium consumption and means for early detection among the populations who have been exposed to opium and its products.
Collapse
Affiliation(s)
- Elmira Ebrahimi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Mohammad H Akhavan
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rahim Akrami
- Department of Epidemiology & Biostatistics, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Mahmoodi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Hesami
- Medical Genetics Department, Cancer Institute, Imam Khomeini Hospital, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed M Razavi
- Department of Occupational Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Hadji
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Health Science Unit, Faculty of Social Science, Tampere University, Tampere, Finland
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran, Iran
| |
Collapse
|
12
|
Hsieh AY, Kimmel E, Pick N, Sauvé L, Brophy J, Kakkar F, Bitnun A, Murray MC, Côté HC. Inverse relationship between leukocyte telomere length attrition and blood mitochondrial DNA content loss over time. Aging (Albany NY) 2020; 12:15196-15221. [PMID: 32703912 PMCID: PMC7467389 DOI: 10.18632/aging.103703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/06/2020] [Indexed: 05/16/2023]
Abstract
Leukocyte telomere length (LTL) and whole blood mitochondrial DNA (WB mtDNA) content are aging markers impacted by chronic diseases such as human immunodeficiency virus (HIV) infection. We characterized the relationship between these two markers in 312 women ≥12 years of age living with HIV and 300 HIV-negative controls. We found no relationship between the two markers cross-sectionally. In multivariable models, age, ethnicity, HIV, and tobacco smoking were independently associated with shorter LTL, and the former three with lower WB mtDNA. Longitudinally, among a subgroup of 228 HIV participants and 68 HIV-negative controls with ≥2 biospecimens ≥1 year apart, an inverted pattern was observed between the rates of change in LTL and WB mtDNA content per year, whereby faster decline of one was associated with the preservation of the other. Furthermore, if HIV viral control was not maintained between visits, increased rates of both LTL attrition and WB mtDNA loss were observed. We describe a novel relationship between two established aging markers, whereby rates of change in LTL and WB mtDNA are inversely related. Our findings highlight the importance of maintaining HIV viral control, the complementary longitudinal relationship between the two markers, and the need to consider both in aging studies.
Collapse
Affiliation(s)
- Anthony Y.Y. Hsieh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Elana Kimmel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Neora Pick
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver V5Z 1M9, British Columbia, Canada
| | - Laura Sauvé
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver V6H 0B3, British Columbia, Canada
| | - Jason Brophy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa K1H 8L1, Ontario, Canada
| | - Fatima Kakkar
- Department of Pediatrics, Centre Hospitalier Universtaire Sainte-Justine, Université de Montréal, Montréal H3T 1C5, Quebec, Canada
| | - Ari Bitnun
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto M5G 1X8, Ontario, Canada
| | - Melanie C.M. Murray
- Oak Tree Clinic, BC Women's Hospital, Vancouver V6H 3N1, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver V5Z 1M9, British Columbia, Canada
| | - Hélène C.F. Côté
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver V6T 2B5, British Columbia, Canada
- Centre for Blood Research, University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
- Women's Health Research Institute, Vancouver V6H 2N9, British Columbia, Canada
| |
Collapse
|
13
|
Ghosh M, Janssen L, Martens DS, Öner D, Vlaanderen J, Pronk A, Kuijpers E, Vermeulen R, Nawrot TS, Godderis L, Hoet PH. Increased telomere length and mtDNA copy number induced by multi-walled carbon nanotube exposure in the workplace. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122569. [PMID: 32240902 DOI: 10.1016/j.jhazmat.2020.122569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNTs) except MWCNT-7 have been classified as Group 3 ["Not classifiable as to its carcinogenicity to humans"] by the IARC. Despite considerable mechanistic evidence in vitro/in vivo, the classification highlights a general lack of data, especially among humans. In our previous study, we reported epigenetic changes in the MWCNT exposed workers. Here, we evaluated whether MWCNT can also cause alterations in aging related features including relative telomere length (TL) and/or mitochondrial copy number (mtDNAcn). Relative TL and mtDNAcn were measured on extracted DNA from peripheral blood from MWCNT exposed workers (N = 24) and non-exposed controls (N = 43) using a qPCR method. A higher mtDNAcn and longer TL were observed in MWCNT exposed workers when compared to controls. Independent of age, sex, smoking behavior, alcohol consumption and BMI, MWCNT-exposure was associated with an 18.30 % increase in blood TL (95 % CI: 7.15-30.62 %; p = 0.001) and 35.21 % increase in mtDNAcn (95 % CI: 19.12-53.46 %). Our results suggest that exposure to MWCNT can induce an increase in the mtDNAcn and TL; however, the mechanistic basis or consequence of such change requires further experimental studies.
Collapse
Affiliation(s)
- Manosij Ghosh
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium
| | - Lisa Janssen
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium
| | - Dries S Martens
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Deniz Öner
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium
| | - Jelle Vlaanderen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anjoeka Pronk
- TNO, Netherlands Organisation for Applied Scientific Research, Zeist, the Netherlands
| | - Eelco Kuijpers
- TNO, Netherlands Organisation for Applied Scientific Research, Zeist, the Netherlands
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Tim S Nawrot
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium; External Service for Prevention and Protection at Work, Idewe, Heverlee, Belgium.
| | - Peter Hm Hoet
- Department of Public Health and Primary Care, Centre Environment & Health, KU Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Zeng H, Kong X, Zhang H, Chen Y, Cai S, Luo H, Chen P. Inhibiting DNA methylation alleviates cigarette smoke extract-induced dysregulation of Bcl-2 and endothelial apoptosis. Tob Induc Dis 2020; 18:51. [PMID: 32547354 PMCID: PMC7291961 DOI: 10.18332/tid/119163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION There is evidence that cigarette smoking participates in disease progression through endothelial apoptosis. Bcl-2 family proteins are essential and critical regulators of apoptosis. We explored whether Bcl-2 plays a role in cigarette smoke extract induced (CSE-induced) endothelial apoptosis. Furthermore, given the involvement of epigenetics in apoptosis and Bcl-2 expression, we hypothesized that CSE-induced apoptosis might be caused by gene methylation. METHODS Human umbilical vascular endothelial cells (HUVECs) were treated with CSE, CSE plus 5-aza-2'-deoxycytidine (AZA, an inhibitor of DNA methylation), or AZA and phosphate-buffered saline (PBS). Endothelial apoptosis was determined by Annexin-V and propidium iodide staining. The expression levels of Bcl-2, Bax, and cytochrome C (cyt C) were assessed by immunoblotting and RT-PCR. The methylation status of the Bcl-2 promoter was observed by bisulfite sequencing PCR (BSP). RESULTS The apoptotic index of endothelial cells in the CSE-treated group increased. Decreased expression of Bcl-2 and high methylation of the Bcl-2 promoter were observed after CSE treatment. AZA alleviated the endothelial apoptosis caused by CSE. AZA treatment also increased Bcl-2 expression along with decreased Bcl-2 promoter methylation. CONCLUSIONS Inhibiting DNA methylation alleviates CSE-induced endothelial apoptosis and Bcl-2 promoter methylation. Bcl-2 promoter methylation might be involved in CES-induced endothelial apoptosis.
Collapse
Affiliation(s)
- Huihui Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Xianglong Kong
- Department of Respiratory Medicine, The First Hospital of Changsha, Changsha, China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Shan Cai
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Respiratory Diseases, Central South University, Changsha, China.,Hunan Centre for Evidence-based Medicine, Changsha, China
| |
Collapse
|
15
|
Manevski M, Muthumalage T, Devadoss D, Sundar IK, Wang Q, Singh KP, Unwalla HJ, Chand HS, Rahman I. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases. Redox Biol 2020; 33:101443. [PMID: 32037306 PMCID: PMC7251248 DOI: 10.1016/j.redox.2020.101443] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023] Open
Abstract
The abnormal inflammatory responses due to the lung tissue damage and ineffective repair/resolution in response to the inhaled toxicants result in the pathological changes associated with chronic respiratory diseases. Investigation of such pathophysiological mechanisms provides the opportunity to develop the molecular phenotype-specific diagnostic assays and could help in designing the personalized medicine-based therapeutic approaches against these prevalent diseases. As the central hubs of cell metabolism and energetics, mitochondria integrate cellular responses and interorganellar signaling pathways to maintain cellular and extracellular redox status and the cellular senescence that dictate the lung tissue responses. Specifically, as observed in chronic obstructive pulmonary disease (COPD) and pulmonary fibrosis, the mitochondria-endoplasmic reticulum (ER) crosstalk is disrupted by the inhaled toxicants such as the combustible and emerging electronic nicotine-delivery system (ENDS) tobacco products. Thus, the recent research efforts have focused on understanding how the mitochondria-ER dysfunctions and oxidative stress responses can be targeted to improve inflammatory and cellular dysfunctions associated with these pathologic illnesses that are exacerbated by viral infections. The present review assesses the importance of these redox signaling and cellular senescence pathways that describe the role of mitochondria and ER on the development and function of lung epithelial responses, highlighting the cause and effect associations that reflect the disease pathogenesis and possible intervention strategies.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang J Unwalla
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
16
|
Li A, Sun Y, Wang T, Wang K, Wang T, Liu W, Li K, Au WW, Wang Z, Xia ZL. Effects of Micronucleus Frequencies and Mitochondrial DNA Copy Numbers among Benzene-Exposed Workers in China. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:355-360. [PMID: 31899575 DOI: 10.1002/em.22354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
To provide a more comprehensive understanding of genotoxic effects from benzene exposure, its effects on induction of mitochondrial DNA copy number (MtDNAcn) and of micronucleus (MN) were investigated using peripheral blood from workers in China. Changes in mtDNAcn and MN were determined using quantitative real-time polymerase chain reaction (PCR) and cytokinesis-block micronucleus assays (CBMN), respectively, in 58 control and 174 benzene-exposed workers in Shanghai, China. Among the exposed workers, relative mtDNAcn increased and then decreased with increasing doses of benzene exposure. Significant and dose-dependent increase in MN frequencies were observed among the different exposure groups. In addition, the relative mtDNAcn were significantly associated with the MN frequencies in the low-level exposure group (P = 0.046), but not in the high dose groups. Therefore, the mechanisms for induction of MtDNAcn and MN by benzene may be similar from exposure to low doses but different from high doses. Similar increase of MN frequencies and MtDNAcn may be due to oxidative stress induced by benzene at low concentrations, while higher concentrations may start to initiate the cell death pathway. The pathway may be associated with excessive MtDNAcn which can initiate apoptosis while MN can continue to be induced. However, the differential mechanisms need to be investigated because they may represent different levels of risk for different health consequences. On the other hand, our data indicate that induction of MtDNAcn may be a sensitive genotoxic biomarker for workers with exposure to low dose of benzene. Environ. Mol. Mutagen. 61:355-360, 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anqi Li
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Tongshuai Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Kan Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| | - Wuzhong Liu
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Keyong Li
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Tirgu Mures, Romania and University of Texas Medical Branch, Galveston, TX
| | - Zubing Wang
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, and Key Laboratory of Public Health and Safety of Ministry of Education of China, Shanghai, China
| |
Collapse
|
17
|
The alterations of mitochondrial DNA in coronary heart disease. Exp Mol Pathol 2020; 114:104412. [PMID: 32113905 DOI: 10.1016/j.yexmp.2020.104412] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Coronary heart disease (CHD) is the major cause of death in modern society. CHD is characterized by atherosclerosis, which could lead to vascular cavity stenosis or obstruction, resulting in ischemic cardiac conditions such as angina and myocardial infarction. In terms of the mitochondrion, the main function is to produce adenosine triphosphate (ATP) for cells. And the alterations (including mutations, altered copy number and haplogroups) of mitochondrial DNA (mtDNA) are associated with the abnormal expression of oxidative phosphorylation (OXPHOS) system, resulting in mitochondrial dysfunction, then leading to perturbation on the electron transport chain and increased ROS generation and reduction in ATP level, contributing to ATP-producing disorders and oxidative stress, which may further accelerate development or vulnerability of atherosclerosis and myocardial ischemic injury. Therefore, the mtDNA defects may play an important role in making an early diagnosis, identifying disease-specific biomarkers and therapeutic targets, and predicting outcomes for patients with atherosclerosis and CHD. In this review, we aim to summarize the contribution of mtDNA mutations, altered mtDNA copy number and mtDNA haplogroups on the occurrence and development of CHD.
Collapse
|
18
|
Wang XB, Cui NH, Liu X, Liu X. Mitochondrial 8-hydroxy-2'-deoxyguanosine and coronary artery disease in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2020; 19:22. [PMID: 32075646 PMCID: PMC7029479 DOI: 10.1186/s12933-020-00998-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background Little is known about whether mitochondria 8-hydroxy-2′-deoxyguanosine (8-OHdG), a biomarker of mitochondrial DNA (mtDNA) oxidative damage, contributes to the development of coronary artery disease (CAD) in diabetic patients. Here, we explored the associations of mtDNA 8-OHdG in leukocytes with obstructive CAD, coronary stenosis severity, cardiovascular biomarkers, and 1-year adverse outcomes after coronary revascularization in patients with type 2 diabetes mellitus (T2DM). Methods In a total of 1920 consecutive patients with T2DM who underwent coronary angiography due to symptoms of angina or angina equivalents, the presence of obstructive CAD, the number of diseased vessels with ≥ 50% stenosis, and modified Gensini score were cross-sectionally evaluated; the level of mtDNA 8-OHdG was quantified by quantitative PCR. Then, 701 of 1920 diabetic patients who further received coronary revascularization completed 1-year prospective follow-up to document major adverse cardiovascular and cerebral events (MACCEs). In vitro experiments were also performed to observe the effects of mtDNA oxidative damage in high glucose-cultured human umbilical vein endothelial cells (HUVECs). Results Cross-sectionally, greater mtDNA 8-OHdG was associated with increased odds of obstructive CAD (odds ratio [OR] 1.38, 95% CI confidence interval 1.24–1.52), higher degree of coronary stenosis (number of diseased vessels: OR 1.29, 95% CI 1.19–1.41; modified Gensini scores: OR 1.28, 95% CI 1.18–1.39), and higher levels of C-reactive protein (β 0.18, 95% CI 0.06–0.31) after adjusting for confounders. Sensitivity analyses using propensity score matching yielded similar results. Stratification by smoking status showed that the association between mtDNA 8-OHdG and obstructive CAD was most evident in current smokers (Pinteration < 0.01). Prospectively, the adjusted hazards ratio per 1-SD increase in mtDNA 8-OHdG was 1.59 (95% CI 1.33–1.90) for predicting 1-year MACCEs after revascularization. In HUVECs, exposure to antimycin A, an inducer for mtDNA oxidative damage, led to adverse alterations in markers of mitochondrial and endothelia function. Conclusion Greater mtDNA 8-OHdG in leukocytes may serve as an independent risk factor for CAD in patients with T2DM.
Collapse
Affiliation(s)
- Xue-Bin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, 450000, Henan, China.
| | - Ning-Hua Cui
- Zhengzhou Key Laboratory of Children's Infection and Immunity, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xia'nan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, 450000, Henan, China
| | - Xin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Jianshe East Road No. 1, Zhengzhou, 450000, Henan, China
| |
Collapse
|
19
|
Sarkar R, Kishida S, Kishida M, Nakamura N, Kibe T, Karmakar D, Chaudhuri CR, Barui A. Effect of cigarette smoke extract on mitochondrial heme-metabolism: An in vitro model of oral cancer progression. Toxicol In Vitro 2019; 60:336-346. [PMID: 31247333 DOI: 10.1016/j.tiv.2019.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 11/23/2022]
Abstract
Tobacco smoking is considered as one of the major risk factors for development of oral cancer. In vitro studies indicate that cigarette smoke initiates transformation of epithelial cells toward development of oral cancer through altering mitochondrial metabolic pathways. However the present in vitro models need to be improved to correlate these molecular changes with epithelial transformations. In present study, we investigated the association of mitochondrial metabolic events with oral cancer progression under cigarette smoke extract (CSE). In this regard, an in vitro model of oral keratinocyte cell line (MOE1A) was developed by exposing them with different concentrations of CSE. Alterations in cellular phenomena were confirmed by Fourier-transform infrared spectroscopy (FTIR) study, which indicated changes in important functional groups of CSE-induced oral cells. Enhanced reactive oxygen species (ROS) of exposed cells altered the mitochondrial metabolic activities in terms of increased mitochondrial mass and DNA content. Further, mitochondrial heme-metabolism was investigated and real-time PCR study showed altered expression of important genes like ALAS1, ABCB6, CPOX, FECH, HO-1. Both transcriptomic and proteomic studies showed up- and down-regulation of important biomarkers related to cellular cancer progression. Overall data suggest that CSE alters mitochondrial heme metabolic pathway and initiates cancer progression through modifying cellar biomarkers in oral epithelial cells.
Collapse
Affiliation(s)
- Ripon Sarkar
- Centre for Healthcare Science and Technology, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Michiko Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Norifumi Nakamura
- Department of Oral & Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Toshiro Kibe
- Department of Oral & Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | | | - Chirasree Roy Chaudhuri
- Department of Electronics & Telecommunication Engineering, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering of Science and Technology Shibpur, Howrah 711103, India.
| |
Collapse
|
20
|
Muid KA, Kimyon Ö, Reza SH, Karakaya HC, Koc A. Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene 2019; 706:172-180. [PMID: 31082499 DOI: 10.1016/j.gene.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms of aging and longevity are still mostly unknown. Mitochondria play central roles in cellular metabolism and aging. In this study, we identified three deletion mutants of mitochondrial metabolism genes (ppa2∆, dss1∆, and afg3∆) that live longer than wild-type cells. These long-lived cells harbored significantly decreased amount of mitochondrial DNA (mtDNA) and reactive oxygen species (ROS). Compared to the serpentine nature of wild-type mitochondria, a different dynamics and distribution pattern of mitochondria were observed in the mutants. Both young and old long-lived cells produced relatively low but adequate levels of ATP for cellular activities. The status of the retrograde signaling was checked by expression of CIT2 gene and found activated in long-lived mutants. The mutant cells were also profiled for their gene expression patterns, and genes that were differentially regulated were determined. All long-lived cells comprised similar pleiotropic phenotype regarding mitochondrial dynamics and functions. Thus, this study suggests that DSS1, PPA2, and AFG3 genes modulate the lifespan by altering the mitochondrial morphology and functions.
Collapse
Affiliation(s)
- K A Muid
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Önder Kimyon
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Shahadat Hasan Reza
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Huseyin Caglar Karakaya
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey
| | - Ahmet Koc
- Izmir Institute of Technology, Department of Molecular Biology and Genetics, 35430 Urla, Izmir, Turkey; Inonu University, Medical School, Department of Medical Biology and Genetics, Battalgazi, Malatya, Turkey.
| |
Collapse
|
21
|
Xia N, Morteza A, Yang F, Cao H, Wang A. Review of the role of cigarette smoking in diabetic foot. J Diabetes Investig 2019; 10:202-215. [PMID: 30300476 PMCID: PMC6400172 DOI: 10.1111/jdi.12952] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic foot ulceration has been a serious issue over the past decades in Asia, causing economic and social problems. Therefore, it is important to identify and reduce the risk factors of diabetic foot. Cigarette smoking has been reported to be associated with diabetes and its macrovascular complications, but the relationship between smoking and diabetic foot ulcers is still unclear. In the present review, we summarize the effects of cigarette smoking on diabetic foot ulcers with respect to peripheral neuropathy, vascular alterations and wound healing. One underlying mechanism of these impacts might be the smoking-induced oxidative stress inside the cells. At the end of this review, the current mainstream therapies for smoking cessation are also outlined. We believe that it is urgent for all diabetic patients to quit smoking so as to reduce their chances of developing foot ulcers and to improve the prognosis of diabetic foot ulcers.
Collapse
Affiliation(s)
- Nan Xia
- Diabetes & Wound Care CenterMingci Cardiovascular HospitalWuxiChina
| | - Afsaneh Morteza
- Endocrinology and Metabolism Research Center – EMRCVali‐Asr. HospitalTehran University of Medical SciencesTehranIran
| | - Fengyu Yang
- Diabetes & Wound Care CenterMingci Cardiovascular HospitalWuxiChina
| | - Hong Cao
- Department of EndocrinologyWuxi No. 3 People's HospitalWuxiChina
| | - Aiping Wang
- Diabetes & Wound Care CenterMingci Cardiovascular HospitalWuxiChina
- Department of EndocrinologyNanjing 454th HospitalNanjingChina
| |
Collapse
|
22
|
Takahashi PY, Jenkins GD, Welkie BP, McDonnell SK, Evans JM, Cerhan JR, Olson JE, Thibodeau SN, Cicek MS, Ryu E. Association of mitochondrial DNA copy number with self-rated health status. APPLICATION OF CLINICAL GENETICS 2018; 11:121-127. [PMID: 30498369 PMCID: PMC6207265 DOI: 10.2147/tacg.s167640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Purpose In aging adults, mitochondrial dysfunction may be an important contributor. We evaluated the association between mitochondrial DNA (mtDNA) copy number, which is a biomarker for mitochondrial function, and self-rated health status. Patients and methods We conducted a cross-sectional study of patients enrolled within the Mayo Clinic Biobank. We utilized the questionnaire and sequence data from 944 patients. We examined the association between mtDNA copy number and self-rated health status with 3 collapsed categories for the latter variable (excellent/very good, good, and fair/poor). For analysis, we used proportional odds models after log-transforming mtDNA copy number, and we adjusted for age and sex. Results We found the median age at enrollment was 61 years (25th–75th percentile: 51–71), and 64% reported excellent or very good health, 31% reported good health, and 6% reported fair/poor health. Overall, the median mtDNA copy number was 88.9 (25th–75th percentile: 77.6–101.1). Higher mtDNA copy number was found for subjects reporting better self-rated health status after adjusting for age, sex, and comorbidity burden (OR =2.3 [95% CI: 1.2–4.5] for having better self-rated health for a one-unit increase in log-transformed mtDNA copy number). Conclusion We found that a higher mtDNA copy number is associated with better self-rated health status after adjustment for age, sex, and comorbidity burden. The current study implies that mtDNA copy number may serve as a biomarker for self-reported health. Further studies, potentially including cohort studies, may be required.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen N Thibodeau
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mine S Cicek
- Department of laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
23
|
Mitochondrial DNA copy number is associated with psychosis severity and anti-psychotic treatment. Sci Rep 2018; 8:12743. [PMID: 30143692 PMCID: PMC6109159 DOI: 10.1038/s41598-018-31122-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial pathology has been implicated in the pathogenesis of psychotic disorders. A few studies have proposed reduced leukocyte mitochondrial DNA (mtDNA) copy number in schizophrenia and bipolar disorder type I, compared to healthy controls. However, it is unknown if mtDNA copy number alteration is driven by psychosis, comorbidity or treatment. Whole blood mtDNA copy number was determined in 594 psychosis patients and corrected for platelet to leukocyte count ratio (mtDNAcnres). The dependence of mtDNAcnres on clinical profile, metabolic comorbidity and antipsychotic drug exposure was assessed. mtDNAcnres was reduced with age (β = −0.210, p < 0.001), use of clozapine (β = −0.110,p = 0.012) and risperidone (β = −0.109,p = 0.014), dependent on prescribed dosage (p = 0.006 and p = 0.026, respectively), and the proportion of life on treatment (p = 0.006). Clozapine (p = 0.0005) and risperidone (p = 0.0126) had a reducing effect on the mtDNA copy number also in stem cell-derived human neurons in vitro at therapeutic plasma levels. For patients not on these drugs, psychosis severity had an effect (β = −0.129, p = 0.017), similar to age (β = −0.159, p = 0.003) and LDL (β = −0.119, p = 0.029) on whole blood mtDNAcnres. Further research is required to determine if mtDNAcnres reflects any psychosis-intrinsic mitochondrial changes.
Collapse
|
24
|
Fujita R, Yoshioka K, Seko D, Suematsu T, Mitsuhashi S, Senoo N, Miura S, Nishino I, Ono Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism. FASEB J 2018; 32:5012-5025. [PMID: 29913553 DOI: 10.1096/fj.201701264r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle mitochondria are crucial for systemic metabolic function, yet their regulation remains unclear. The zinc finger MYND domain-containing protein 17 (Zmynd17) was recently identified as a muscle-specific gene in mammals. Here, we investigated the role of Zmynd17 in mice. We found Zmynd17 predominantly expressed in skeletal muscle, especially in fast glycolytic muscle. Genetic Zmynd17 inactivation led to morphologic and functional abnormalities in muscle mitochondria, resulting in decreased respiratory function. Metabolic stress induced by a high-fat diet upregulated Zmynd17 expression and further exacerbated muscle mitochondrial morphology in Zmynd17-deficient mice. Strikingly, Zmynd17 deficiency significantly aggravated metabolic stress-induced hepatic steatosis, glucose intolerance, and insulin resistance. Furthermore, middle-aged mice lacking Zmynd17 exhibited impaired aerobic exercise performance, glucose intolerance, and insulin resistance. Thus, our results indicate that Zmynd17 is a metabolic stress-inducible factor that maintains muscle mitochondrial integrity, with its deficiency profoundly affecting whole-body glucose metabolism.-Fujita, R., Yoshioka, K., Seko, D., Suematsu, T., Mitsuhashi, S., Senoo, N., Miura, S., Nishino, I., Ono, Y. Zmynd17 controls muscle mitochondrial quality and whole-body metabolism.
Collapse
Affiliation(s)
- Ryo Fujita
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Yoshioka
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daiki Seko
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Suematsu
- Central Electron Microscope Laboratory, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satomi Mitsuhashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan; and
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yusuke Ono
- Musculoskeletal Molecular Biology Research Group, Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
25
|
|
26
|
Meng S, De Vivo I, Liang L, Hu Z, Christiani DC, Giovannucci E, Han J. Pre-diagnostic leukocyte mitochondrial DNA copy number and risk of lung cancer. Oncotarget 2017; 7:27307-12. [PMID: 27036024 PMCID: PMC5053651 DOI: 10.18632/oncotarget.8426] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/16/2016] [Indexed: 01/17/2023] Open
Abstract
We prospectively investigated the relationship between mtCN and the risk of lung cancer in 463 case-control pairs from two prospective cohort studies, the Nurses’ Health Study (NHS) and the Health Professionals Follow-Up Study (HPFS). The adjusted least-squares means of log-transformed mtCN (log_mtCN) by smoking status were estimated by generalized linear models. Multivariable conditional logistic regression model adjusting for confounders was used to obtain the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between log_mtCN and lung cancer risk. The adjusted least-squares mean of log_mtCN in heavy smokers was significantly lower than that in never smokers (P = 0.05). Compared to the high log_mtCN group, the risk of lung cancer was 1.29 (95% CI = 0.89–1.87) for the median group, and 1.11 (95% CI = 0.75–1.64) for the low group. Among current smokers, compared to participants with high levels of log_mtCN, those with median levels had a significantly higher risk of lung cancer (OR = 2.09; 95% CI = 1.12–3.90), but not those with low levels (OR = 1.37; 95% CI = 0.75–2.48). Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Shasha Meng
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Liming Liang
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - David C Christiani
- Department of Environmental Health, Harvard University School of Public Health, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Giovannucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Nutrition, Harvard University School of Public Health, Boston, Massachusetts, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.,Melvin and Bren Simon Cancer Center Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Moore A, Lan Q, Hofmann JN, Liu CS, Cheng WL, Lin TT, Berndt SI. A prospective study of mitochondrial DNA copy number and the risk of prostate cancer. Cancer Causes Control 2017; 28:529-538. [PMID: 28357528 DOI: 10.1007/s10552-017-0879-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/07/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Evidence suggests that mitochondrial DNA (mtDNA) copy number increases in response to DNA damage. Increased mtDNA copy number has been observed in prostate cancer (PCa) cells, suggesting a role in PCa development, but this association has not yet been investigated prospectively. METHODS We conducted a nested case-control study (793 cases and 790 controls) of men randomized to the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) to evaluate the association between pre-diagnosis mtDNA copy number, measured in peripheral blood leukocytes, and the risk of PCa. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) and polytomous logistic regression to analyze differences in associations by non-aggressive (Stage I/II AND Gleason grade < 8) or aggressive (Stage III/IV OR Gleason grade ≥ 8) PCa. RESULTS Although mtDNA copy number was not significantly associated with PCa risk overall (OR 1.23, 95% CI 0.97-1.55, p = 0.089), increasing mtDNA copy number was associated with an increased risk of non-aggressive PCa (OR 1.29, 95% CI 1.01-1.65, p = 0.044) compared to controls. No association was observed with aggressive PCa (OR 1.02, 95% CI 0.64-1.63, p = 0.933). Higher mtDNA copy number was also associated with increased PSA levels among controls (p = 0.014). CONCLUSIONS These results suggest that alterations in mtDNA copy number may reflect disruption of the normal prostate glandular architecture seen in early-stage disease, as opposed to reflecting the large number of tumor cells seen with advanced PCa.
Collapse
Affiliation(s)
- Amy Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, 7F No. 235, Syuguang Rd., Changhua, 500, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Research Center, Changhua Christian Hospital, 7F No. 235, Syuguang Rd., Changhua, 500, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Research Center, Changhua Christian Hospital, 7F No. 235, Syuguang Rd., Changhua, 500, Taiwan
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Pirini F, Goldman LR, Soudry E, Halden RU, Witter F, Sidransky D, Guerrero-Preston R. Prenatal exposure to tobacco smoke leads to increased mitochondrial DNA content in umbilical cord serum associated to reduced gestational age. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2017; 27:52-67. [PMID: 28002977 PMCID: PMC5532520 DOI: 10.1080/09603123.2016.1268677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/11/2016] [Indexed: 05/22/2023]
Abstract
We investigated if prenatal exposures to tobacco smoke lead to changes in mitochondrial DNA content (mtDNA) in cord serum and adversely affect newborns' health. Umbilical cord serum cotinine levels were used to determine in utero exposure to smoking. Cord serum mtDNA was measured by quantitative polymerase chain reaction analysis of the genes coding for cytochrome c oxidase1 (MT-CO1) and cytochrome c oxidase2 (MT-CO2). Log transformed levels of mtDNA coding for MT-CO1 and MT-CO2 were significantly higher among infants of active smokers with higher serum level of cotinine (p < 0.05) and inversely associated with gestational age (p = 0.08; p = 0.02). Structural equation modeling results confirmed a positive association between cotinine and MT-CO1 and2 (p < 0.01) and inverse associations with gestational age (p = 0.02) and IGF-1 (p < 0.01). We identified a dose-dependent increase in the level of MT-CO1 and MT-CO2 associated to increased cord serum cotinine and decreased gestational age.
Collapse
Affiliation(s)
- Francesca Pirini
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
| | - Lynn R. Goldman
- The George Washington University, Milken Institute School of Public Health, Washington, District of Columbia, USA
| | - Ethan Soudry
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
| | - Rolf U. Halden
- Arizona State University, The Biodesign Institute and Global Security Initiative, Center for Environmental Security, Tempe, Arizona
| | - Frank Witter
- The Johns Hopkins University, School of Medicine, Obstetrics and Gynecology Department, Baltimore, USA
| | - David Sidransky
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
- Co-corresponding authors: Rafael Guerrero-Preston, DrPH, MPH, . David Sidransky, MD, , Johns Hopkins School of Medicine, Head and Neck Cancer Research Division, 1550 Orleans Street, Cancer Research Building II, Room 5M, Baltimore. MD, 21231, 410-502-5153
| | - Rafael Guerrero-Preston
- The Johns Hopkins University, School of Medicine, Otolaryngology Department, Head and Neck Cancer Research Division, Baltimore, USA
- University of Puerto Rico School of Medicine, Department of Obstetrics and Gynecology, San Juan, Puerto Rico
- Co-corresponding authors: Rafael Guerrero-Preston, DrPH, MPH, . David Sidransky, MD, , Johns Hopkins School of Medicine, Head and Neck Cancer Research Division, 1550 Orleans Street, Cancer Research Building II, Room 5M, Baltimore. MD, 21231, 410-502-5153
| |
Collapse
|
29
|
Ling X, Zhang G, Sun L, Wang Z, Zou P, Gao J, Peng K, Chen Q, Yang H, Zhou N, Cui Z, Zhou Z, Liu J, Cao J, Ao L. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:680-687. [PMID: 27751638 DOI: 10.1016/j.envpol.2016.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/08/2016] [Accepted: 10/09/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria.
Collapse
Affiliation(s)
- Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jianfang Gao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Kaige Peng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhihong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
30
|
Lerner CA, Sundar IK, Rahman I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int J Biochem Cell Biol 2016; 81:294-306. [PMID: 27474491 DOI: 10.1016/j.biocel.2016.07.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 01/01/2023]
Abstract
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.
Collapse
Affiliation(s)
- Chad A Lerner
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
31
|
Yue L, Yao H. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases. Br J Pharmacol 2016; 173:2305-18. [PMID: 27189175 DOI: 10.1111/bph.13518] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/04/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are dynamic organelles, which couple the various cellular processes that regulate metabolism, cell proliferation and survival. Environmental stress can cause mitochondrial dysfunction and dynamic changes including reduced mitochondrial biogenesis, oxidative phosphorylation and ATP production, as well as mitophagy impairment, which leads to increased ROS, inflammatory responses and cellular senescence. Oxidative stress, inflammation and cellular senescence all have important roles in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, pulmonary fibrosis and bronchopulmonary dysplasia. In this review, we discuss the current state on how mitochondrial dysfunction affects inflammatory responses and cellular senescence, the mechanisms of mitochondrial dysfunction underlying the pathogenesis of chronic lung diseases and the potential of mitochondrial transfer and replacement as treatments for these diseases.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Alpert Medical School, Providence, RI, USA
| |
Collapse
|
32
|
Im I, Jang MJ, Park SJ, Lee SH, Choi JH, Yoo HW, Kim S, Han YM. Mitochondrial Respiratory Defect Causes Dysfunctional Lactate Turnover via AMP-activated Protein Kinase Activation in Human-induced Pluripotent Stem Cell-derived Hepatocytes. J Biol Chem 2015; 290:29493-505. [PMID: 26491018 DOI: 10.1074/jbc.m115.670364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
A defective mitochondrial respiratory chain complex (DMRC) causes various metabolic disorders in humans. However, the pathophysiology of DMRC in the liver remains unclear. To understand DMRC pathophysiology in vitro, DMRC-induced pluripotent stem cells were generated from dermal fibroblasts of a DMRC patient who had a homoplasmic mutation (m.3398T→C) in the mitochondrion-encoded NADH dehydrogenase 1 (MTND1) gene and that differentiated into hepatocytes (DMRC hepatocytes) in vitro. DMRC hepatocytes showed abnormalities in mitochondrial characteristics, the NAD(+)/NADH ratio, the glycogen storage level, the lactate turnover rate, and AMPK activity. Intriguingly, low glycogen storage and transcription of lactate turnover-related genes in DMRC hepatocytes were recovered by inhibition of AMPK activity. Thus, AMPK activation led to metabolic changes in terms of glycogen storage and lactate turnover in DMRC hepatocytes. These data demonstrate for the first time that energy depletion may lead to lactic acidosis in the DMRC patient by reduction of lactate uptake via AMPK in liver.
Collapse
Affiliation(s)
- Ilkyun Im
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | - Mi-Jin Jang
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| | | | - Sang-Hee Lee
- BioMedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon 34141 and
| | - Jin-Ho Choi
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Han-Wook Yoo
- the Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seyun Kim
- From the Department of Biological Sciences
| | - Yong-Mahn Han
- From the Department of Biological Sciences, Center for Stem Cell Differentiation, and
| |
Collapse
|
33
|
Bergen AW, Krasnow R, Javitz HS, Swan GE, Li MD, Baurley JW, Chen X, Murrelle L, Zedler B. Total Exposure Study Analysis consortium: a cross-sectional study of tobacco exposures. BMC Public Health 2015; 15:866. [PMID: 26346437 PMCID: PMC4561475 DOI: 10.1186/s12889-015-2212-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 09/02/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The Total Exposure Study was a stratified, multi-center, cross-sectional study designed to estimate levels of biomarkers of tobacco-specific and non-specific exposure and of potential harm in U.S. adult current cigarette smokers (≥one manufactured cigarette per day over the last year) and tobacco product non-users (no smoking or use of any nicotine containing products over the last 5 years). The study was designed and sponsored by a tobacco company and implemented by contract research organizations in 2002-2003. Multiple analyses of smoking behavior, demographics, and biomarkers were performed. Study data and banked biospecimens were transferred from the sponsor to the Virginia Tobacco and Health Research Repository in 2010, and then to SRI International in 2012, for independent analysis and dissemination. METHODS We analyzed biomarker distributions overall, and by biospecimen availability, for comparison with existing studies, and to evaluate generalizability to the entire sample. We calculated genome-wide statistical power for a priori hypotheses. We performed clinical chemistries, nucleic acid extractions and genotyping, and report correlation and quality control metrics. RESULTS Vital signs, clinical chemistries, and laboratory measures of tobacco specific and non-specific toxicants are available from 3585 current cigarette smokers, and 1077 non-users. Peripheral blood mononuclear cells, red blood cells, plasma and 24-h urine biospecimens are available from 3073 participants (2355 smokers and 719 non-users). In multivariate analysis, participants with banked biospecimens were significantly more likely to self-identify as White, to be older, to have increased total nicotine equivalents per cigarette, decreased serum cotinine, and increased forced vital capacity, compared to participants without. Effect sizes were small (Cohen's d-values ≤ 0.11). Power for a priori hypotheses was 57 % in non-Hispanic Black (N = 340), and 96 % in non-Hispanic White (N = 1840), smokers. All DNA samples had genotype completion rates ≥97.5 %; 68 % of RNA samples yielded RIN scores ≥6.0. CONCLUSIONS Total Exposure Study clinical and laboratory assessments and biospecimens comprise a unique resource for cigarette smoke health effects research. The Total Exposure Study Analysis Consortium seeks to perform molecular studies in multiple domains and will share data and analytic results in public repositories and the peer-reviewed literature. Data and banked biospecimens are available for independent or collaborative research.
Collapse
Affiliation(s)
- Andrew W Bergen
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA.
| | - Ruth Krasnow
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA.
| | - Harold S Javitz
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA, 94025, USA.
| | - Gary E Swan
- Stanford Prevention Research Center, Stanford University School of Medicine, Palo Alto, CA, 94305, USA.
| | - Ming D Li
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, 22911, USA.
| | | | | | | | | |
Collapse
|
34
|
Stangenberg S, Nguyen LT, Chen H, Al-Odat I, Killingsworth MC, Gosnell ME, Anwer AG, Goldys EM, Pollock CA, Saad S. Oxidative stress, mitochondrial perturbations and fetal programming of renal disease induced by maternal smoking. Int J Biochem Cell Biol 2015; 64:81-90. [PMID: 25849459 DOI: 10.1016/j.biocel.2015.03.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
An adverse in-utero environment is increasingly recognized to predispose to chronic disease in adulthood. Maternal smoking remains the most common modifiable adverse in-utero exposure leading to low birth weight, which is strongly associated with chronic kidney disease (CKD) in later life. In order to investigate underlying mechanisms for such susceptibility, female Balb/c mice were sham or cigarette smoke-exposed (SE) for 6 weeks before mating, throughout gestation and lactation. Offspring kidneys were examined for oxidative stress, expression of mitochondrial proteins, mitochondrial structure as well as renal functional parameters on postnatal day 1, day 20 (weaning) and week 13 (adult age). From birth throughout adulthood, SE offspring had increased renal levels of mitochondrial-derived reactive oxygen species (ROS), which left a footprint on DNA with increased 8-hydroxydeoxyguanosin (8-OHdG) in kidney tubular cells. Mitochondrial structural abnormalities were seen in SE kidneys at day 1 and week 13 along with a reduction in oxidative phosphorylation (OXPHOS) proteins and activity of mitochondrial antioxidant Manganese superoxide dismutase (MnSOD). Smoke exposure also resulted in increased mitochondrial DNA copy number (day 1-week 13) and lysosome density (day 1 and week 13). The appearance of mitochondrial defects preceded the onset of albuminuria at week 13. Thus, mitochondrial damage caused by maternal smoking may play an important role in development of CKD at adult life.
Collapse
Affiliation(s)
- Stefanie Stangenberg
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Long T Nguyen
- School of Medical and Molecular Biosciences, Faculty of Science, Centre for Health Technology, University of Technology, Sydney, Australia
| | - Hui Chen
- School of Medical and Molecular Biosciences, Faculty of Science, Centre for Health Technology, University of Technology, Sydney, Australia
| | - Ibrahim Al-Odat
- School of Medical and Molecular Biosciences, Faculty of Science, Centre for Health Technology, University of Technology, Sydney, Australia
| | - Murray C Killingsworth
- Department of Anatomical Pathology, Sydney South West Pathology Service, Liverpool, Australia
| | - Martin E Gosnell
- MQ BioFocus Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Ayad G Anwer
- MQ BioFocus Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Ewa M Goldys
- MQ BioFocus Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Carol A Pollock
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia
| | - Sonia Saad
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney Medical School, University of Sydney, St Leonards, NSW, Australia.
| |
Collapse
|
35
|
Yang M, Chen P, Peng H, Zhang H, Chen Y, Cai S, Lu Q, Guan C. Cigarette smoke extract induces aberrant cytochrome-c oxidase subunit II methylation and apoptosis in human umbilical vascular endothelial cells. Am J Physiol Cell Physiol 2015; 308:C378-84. [PMID: 25500741 DOI: 10.1152/ajpcell.00197.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cigarette smoke-induced apoptosis of vascular endothelial cells contributes to the pathogenesis of chronic obstructive pulmonary disease. However, the mechanisms responsible for endothelial apoptosis remain poorly understood. We conducted an in vitro study to investigate whether DNA methylation is involved in smoking-induced endothelial apoptosis. Human umbilical vascular endothelial cells (HUVECs) were exposed to cigarette smoke extract (CSE) at a range of concentrations (0-10%). HUVECs were also incubated with a demethylating reagent, 5-aza-2'-deoxycytidinem (AZA), with and without CSE. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and flow cytometry using annexin V-FITC/propidium iodide staining. We found that CSE treatment significantly increased HUVEC apoptosis in a dose- and time-dependent manner. Quantitative real-time RT-PCR and immunoblot revealed that CSE treatment decreased cytochrome-c oxidase subunit II (COX II) mRNA and protein levels and decreased COX activity. Methylation-specific PCR and direct bisulfite sequencing revealed positive COX II gene methylation. AZA administration partly increased mRNA and protein expressions of COX II, and COX activity decreased by CSE and attenuated the toxic effects of CSE. Our results showed that CSE induced aberrant COX II methylation and apoptosis in HUVECs.
Collapse
Affiliation(s)
- Min Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China;
| | - Hong Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Hongliang Zhang
- Emergency Department, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Shan Cai
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Qianjin Lu
- Dermatological Department, The Second Xiangya Hospital of Central-South University, Hunan, Changsha, China
| | - Chaxiang Guan
- Department of Physiology, Central-South University, Hunan, Changsha, China
| |
Collapse
|
36
|
Pieters N, Janssen BG, Valeri L, Cox B, Cuypers A, Dewitte H, Plusquin M, Smeets K, Nawrot TS. Molecular responses in the telomere-mitochondrial axis of ageing in the elderly: a candidate gene approach. Mech Ageing Dev 2015; 145:51-7. [PMID: 25736869 DOI: 10.1016/j.mad.2015.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/22/2015] [Accepted: 02/27/2015] [Indexed: 11/18/2022]
Abstract
Experimental evidence shows that telomere shortening induces mitochondrial damage but so far studies in humans are scarce. Here, we investigated the association between leukocyte telomere length (LTL) and mitochondrial DNA (mtDNA) content in elderly and explored possible intermediate mechanisms by determining the gene expression profile of candidate genes in the telomere-mitochondrial axis of ageing. Among 166 non-smoking elderly, LTL, leukocyte mtDNA content and expression of candidate genes: sirtuin1 (SIRT1), tumor protein p53 (TP53), peroxisome proliferator-activated receptor γ-coactivator1α (PGC-1α), peroxisome proliferator-activated receptor γ-coactivator1β (PGC-1β), nuclear respiratory factor 1 (NRF1) and nuclear factor, erythroid 2 like 2 (NRF2), using a quantitave real time polymerase chain assay (qPCR). Statistical mediation analysis was used to study intermediate mechanisms of the telomere-mitochondrial axis of ageing. LTL correlated with leukocyte mtDNA content in our studied elderly (r = 0.23, p = 0.0047). SIRT1 gene expression correlated positively with LTL (r = 0.26, p = 0.0094) and leukocyte mtDNA content (r = 0.43, p < 0.0001). The other studied candidates showed significant correlations in the telomere-mitochondrial interactome but not independent from SIRT1. SIRT1 gene expression was estimated to mediate 40% of the positive association between LTL and leukocyte mtDNA content. The key finding of our study was that SIRT1 expression plays a pivotal role in the telomere-mitochondrial interactome.
Collapse
Affiliation(s)
- Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Linda Valeri
- Department of Biostatistics, School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA, USA
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Harrie Dewitte
- Primary Health Care Centre GVHV, Keinkesstraat 3a, Genk, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D Diepenbeek, Belgium; Department of Public Health, Occupational & Environmental Medicine, Herestraat 49, Leuven, Belgium.
| |
Collapse
|
37
|
Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1135-55. [PMID: 25648174 PMCID: PMC4344659 DOI: 10.3390/ijerph120201135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Newborns exposed to maternal cigarette smoke (CS) in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal) and assesses how such changes may have consequences for both fetal growth and development.
Collapse
|
38
|
Datta S, Chattopadhyay E, Ray JG, Majumder M, Roy PD, Roy B. D-loop somatic mutations and ∼5 kb "common" deletion in mitochondrial DNA: important molecular markers to distinguish oral precancer and cancer. Tumour Biol 2014; 36:3025-33. [PMID: 25527154 DOI: 10.1007/s13277-014-2937-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022] Open
Abstract
Apart from genomic DNA, mutations at mitochondrial DNA (mtDNA) have been hypothesized to play vital roles in cancer development. In this study, ∼5 kb deletion and D-loop mutations in mtDNA and alteration in mtDNA content were investigated in buccal smears from 104 healthy controls and 74 leukoplakia and 117 cancer tissue samples using Taqman-based quantitative assay and re-sequencing. The ∼5 kb deletion in mtDNA was significantly less (9.8 and 10.5 folds, P < 0.0001) in cancer tissues compared to control and leukoplakia tissues, respectively. On the other hand, somatic mutations in D-loop, investigated in 54 controls, 50 leukoplakias and 56 cancer patients, were found to be significantly more in cancer tissues, but not in leukoplakia tissues, compared to control (Z-score = 5.4). MtDNA contents were observed to be significantly more in leukoplakia (2.1 folds, P = 0.004) and cancer (1.6 folds, P = 0.03) tissues compared to control tissues. So, D-loop somatic mutations and ∼5 kb deletion patterns could be used as distinguishing markers between precancer and cancer tissues. This observation further suggests that somatic mutations in D-loop may facilitate carcinogenesis and cancer cells with less ∼5 kb deletion, i.e., intact mtDNA, may become resistant to apoptosis.
Collapse
Affiliation(s)
- Sayantan Datta
- Human Genetics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata, 700108, India
| | | | | | | | | | | |
Collapse
|
39
|
Chen S, Xie X, Wang Y, Gao Y, Xie X, Yang J, Ye J. Association between leukocyte mitochondrial DNA content and risk of coronary heart disease: A case-control study. Atherosclerosis 2014; 237:220-6. [DOI: 10.1016/j.atherosclerosis.2014.08.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 01/04/2023]
|
40
|
Zhang J, Li D, Qu F, Chen Y, Li G, Jiang H, Huang X, Yang H, Xing J. Association of leukocyte mitochondrial DNA content with glioma risk: evidence from a Chinese case-control study. BMC Cancer 2014; 14:680. [PMID: 25234800 PMCID: PMC4177174 DOI: 10.1186/1471-2407-14-680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
Background Increasing evidence suggests that alterations in mitochondrial DNA (mtDNA) content may be implicated in the tumorigenesis of several malignancies. However, the association between mtDNA content in peripheral blood lymphocytes (PBLs) and glioma risk has not been investigated. Methods Real-time PCR was used to examine the mtDNA content in PBLs of 414 glioma patients and 414 matched controls in a hospital-based case–control study. The association between mtDNA content and glioma risk was evaluated using an unconditional multivariate logistic regression model. Results We found that glioma patients exhibited a significantly higher median mtDNA content than healthy controls (0.99 vs. 0.71, P < 0.001). Unconditional multivariate logistic regression analysis adjusting for age, gender, smoking status, and family cancer history showed that there was an S-shaped association between mtDNA content and glioma risk. Higher mtDNA content was significantly associated with an elevated risk of glioma. Compared with the first quartile, the odds ratio (95% confidence interval) for subjects in the second, third, and fourth quartiles of mtDNA content were 0.90 (0.52-1.53), 3.38 (2.15-5.31), and 5.81 (3.74-9.03), respectively (P for nonlinearity = 0.009). Stratified analysis showed that the association between mtDNA content and glioma risk was not modulated by major host characteristics. Conclusions Our findings demonstrate for the first time that a higher mtDNA content in PBLs is associated with an elevated risk of glioma, which warrants further investigation in larger populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinliang Xing
- State Key Laboratory of Cancer Biology & Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
41
|
Profiling of biomarkers for the exposure of polycyclic aromatic hydrocarbons: lamin-A/C isoform 3, poly[ADP-ribose] polymerase 1, and mitochondria copy number are identified as universal biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:605135. [PMID: 25114913 PMCID: PMC4121044 DOI: 10.1155/2014/605135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
This study investigated the profiling of polycyclic aromatic hydrocarbon- (PAH-) induced genotoxicity in cell lines and zebrafish. Each type of cells displayed different proportionality of apoptosis. Mitochondrial DNA (mtDNA) copy number was dramatically elevated after 5-day treatment of fluoranthene and pyrene. The notable deregulated proteins for PAHs exposure were displayed as follows: lamin-A/C isoform 3 and annexin A1 for benzopyrene; lamin-A/C isoform 3 and DNA topoisomerase 2-alpha for pentacene; poly[ADP-ribose] polymerase 1 (PARP-1) for fluoranthene; and talin-1 and DNA topoisomerase 2-alpha for pyrene. Among them, lamin-A/C isoform 3 and PARP-1 were further confirmed using mRNA and protein expression study. Obvious morphological abnormalities including curved backbone and cardiomegaly in zebrafish were observed in the 54 hpf with more than 400 nM of benzopyrene. In conclusion, the change of mitochondrial genome (increased mtDNA copy number) was closely associated with PAH exposure in cell lines and mesenchymal stem cells. Lamin-A/C isoform 3, talin-1, and annexin A1 were identified as universal biomarkers for PAHs exposure. Zebrafish, specifically at embryo stage, showed suitable in vivo model for monitoring PAHs exposure to hematopoietic tissue and other organs.
Collapse
|
42
|
Mitochondrial dysfunction in cancer. MENOPAUSE REVIEW 2014; 13:136-44. [PMID: 26327844 PMCID: PMC4520353 DOI: 10.5114/pm.2014.42717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/02/2014] [Accepted: 01/15/2014] [Indexed: 01/10/2023]
Abstract
Mitochondria are semi-autonomous organelles of eukaryotic cells. They perform crucial functions such as generating most of the cellular energy through the oxidative phosphorylation (OXPHOS) system and some other metabolic processes. In addition, mitochondria are involved in regulation of cell death and reactive oxygen species (ROS) generation. Also, mitochondria play important roles in carcinogenesis via altering energy metabolism, resistance to apoptosis, increase of production of ROS and mtDNA (mitochondrial genome) changes. Studies have suggested that aerobic glycolysis is high in malignant tumors. Probably, it correlates with high glucose intake of cancerous tissues. This observation is contrary to Warburg's theory that the main way of energy generation in cancer cells is non-oxidative glycolysis. Further studies have suggested that in tumor cells both oxidative phosphorylation and glycolysis were active at various rates. An increase of intracellular oxidative stress induces damage of cellular structure and somatic mutations. Further studies confirmed that permanent activity of oxidative stress and the influence of chronic inflammation damage the healthy neighboring epithelium and may lead to carcinogenesis. For instance, chronic inflammatory bowel disease could be related to high risk of colon adenocarcinoma. The data have shown a role of ROS generation, mtDNA or nDNA alterations and abnormal apoptotic machinery in endometrial cancer progress. Recent studies suggest that mtDNA mutations might play a potential role in endometrial cancer progress and indicate an increase of mitochondrial biogenesis in this cancer. The investigators suggested that MtCOI and MtND6 alteration has an influence on assembly of respiratory complexes in endometrial cancer. In many human cancers, there is a deregulation of the balance between cell growth and death. The tumor cells can avoid apoptosis through a loss of balance between anti- and pro-apoptotic proteins, reduced caspase function and impaired death receptor signaling. Over-expression of the anti-apoptotic BCL-2 gene has also been identified in numerous cancers including colon, thyroid, breast and endometrial cancer. Most studies have found low BCL-2 family gene expression, which could be a sign of blocking apoptosis in breast and endometrial cancer. Moreover, BCL-2 gene expression is correlated with the degree of aggressiveness and differentiation in endometrial cancer. As a result, it could be a valuable predictor of disease progression.
Collapse
|
43
|
He Y, Gong Y, Gu J, Lee JJ, Lippman SM, Wu X. Increased leukocyte mitochondrial DNA copy number is associated with oral premalignant lesions: an epidemiology study. Carcinogenesis 2014; 35:1760-4. [PMID: 24743515 DOI: 10.1093/carcin/bgu093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although changes in the mitochondrial DNA (mtDNA) copy number in peripheral blood leukocytes (PBLs) have been linked to increased susceptibility to several cancers, the relationship between the mtDNA copy number in PBLs and the risk of cancer precursors has not been investigated. In this study, we measured the relative mtDNA copy number in PBLs of 143 patients with histologically confirmed oral premalignant lesions (OPLs) and of 357 healthy controls that were frequency-matched to patients according to age, sex and race. OPL patients had a significantly higher mtDNA copy number than the controls (1.36 ± 0.74 versus 1.11 ± 0.32; P < 0.001). In analyses stratified by sex, race, alcohol consumption and smoking status, the mtDNA copy number was higher in the OPL patients than in the controls in all the strata. Using the median mtDNA copy number in the control group as a cutoff, we found that individuals with a high mtDNA copy number had significantly higher risk of having OPLs than individuals with a low mtDNA copy number (adjusted odds ratio, 1.93; 95% confidence interval, 1.23-3.05, P = 0.004). Analysis of the joint effect of alcohol consumption and smoking revealed even greater risk for OPLs. Our results suggest that high mtDNA copy number in PBLs is significantly associated with having OPLs. To our knowledge, this is the first epidemiologic study to show that the mtDNA copy number may indicate the risk of cancer precursors.
Collapse
Affiliation(s)
- Yonggang He
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yilei Gong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Center, Houston, TX 77030, USA and
| | - Scott M Lippman
- Moores Cancer Center, University of California San Diego, San Diego, CA 92093, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,
| |
Collapse
|
44
|
Pavanello S, Dioni L, Hoxha M, Fedeli U, Mielzynska-Svach D, Baccarelli AA. Mitochondrial DNA copy number and exposure to polycyclic aromatic hydrocarbons. Cancer Epidemiol Biomarkers Prev 2013; 22:1722-9. [PMID: 23885040 DOI: 10.1158/1055-9965.epi-13-0118] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Increased mitochondrial DNA copy number (mtDNAcn) is a biologic response to mtDNA damage and dysfunction, predictive of lung cancer risk. Polycyclic aromatic hydrocarbons (PAHs) are established lung carcinogens and may cause mitochondrial toxicity. Whether PAH exposure and PAH-related nuclear DNA (nDNA) genotoxic effects are linked with increased mtDNAcn has never been evaluated. METHODS We investigated the effect of chronic exposure to PAHs on mtDNAcn in peripheral blood lymphocytes (PBLs) of 46 Polish male noncurrent smoking coke-oven workers and 44 matched controls, who were part of a group of 94 study individuals examined in our previous work. Subjects' PAH exposure and genetic alterations were characterized through measures of internal dose (urinary 1-pyrenol), target dose [anti-benzo[a]pyrene diolepoxide (anti-BPDE)-DNA adduct], genetic instability (micronuclei and telomere length), and DNA methylation (p53 promoter) in PBLs. mtDNAcn (MT/S) was measured using a validated real-time PCR method. RESULTS Workers with PAH exposure above the median value (>3 μmol 1-pyrenol/mol creatinine) showed higher mtDNAcn [geometric means (GM) of 1.06 (unadjusted) and 1.07 (age-adjusted)] compared with controls [GM 0.89 (unadjusted); 0.89 (age-adjusted); (P = 0.029 and 0.016)], as well as higher levels of genetic and chromosomal [i.e., anti-BPDE-DNA adducts (P < 0.001), micronuclei (P < 0.001), and telomere length (P = 0.053)] and epigenetic [i.e., p53 gene-specific promoter methylation (P < 0.001)] alterations in the nDNA. In the whole study population, unadjusted and age-adjusted mtDNAcn was positively correlated with 1-pyrenol (P = 0.043 and 0.032) and anti-BPDE-DNA adducts (P = 0.046 and 0.049). CONCLUSIONS PAH exposure and PAH-related nDNA genotoxicity are associated with increased mtDNAcn. IMPACT The present study is suggestive of potential roles of mtDNAcn in PAH-induced carcinogenesis.
Collapse
Affiliation(s)
- Sofia Pavanello
- Authors' Affiliations: Occupational Health Section, Department of Cardiac, Thoracic, and Vascular Sciences, Università degli Studi di Padova; Sistema Epidemiologico Regione Veneto (SER), Padova; Department of Clinical Sciences and Community Health, University of Milan, Milano and Fondazione IRCSS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy; Institute of Occupational Medicine and Environmental Health, Sosnowiec, Poland; and Department of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
45
|
Woodell A, Coughlin B, Kunchithapautham K, Casey S, Williamson T, Ferrell WD, Atkinson C, Jones BW, Rohrer B. Alternative complement pathway deficiency ameliorates chronic smoke-induced functional and morphological ocular injury. PLoS One 2013; 8:e67894. [PMID: 23825688 PMCID: PMC3692454 DOI: 10.1371/journal.pone.0067894] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), a complex disease involving genetic variants and environmental insults, is among the leading causes of blindness in Western populations. Genetic and histologic evidence implicate the complement system in AMD pathogenesis; and smoking is the major environmental risk factor associated with increased disease risk. Although previous studies have demonstrated that cigarette smoke exposure (CE) causes retinal pigment epithelium (RPE) defects in mice, and smoking leads to complement activation in patients, it is unknown whether complement activation is causative in the development of CE pathology; and if so, which complement pathway is required. METHODS Mice were exposed to cigarette smoke or clean, filtered air for 6 months. The effects of CE were analyzed in wildtype (WT) mice or mice without a functional complement alternative pathway (AP; CFB(-/-) ) using molecular, histological, electrophysiological, and behavioral outcomes. RESULTS CE in WT mice exhibited a significant reduction in function of both rods and cones as determined by electroretinography and contrast sensitivity measurements, concomitant with a thinning of the nuclear layers as measured by SD-OCT imaging and histology. Gene expression analyses suggested that alterations in both photoreceptors and RPE/choroid might contribute to the observed loss of function, and visualization of complement C3d deposition implies the RPE/Bruch's membrane (BrM) complex as the target of AP activity. RPE/BrM alterations include an increase in mitochondrial size concomitant with an apical shift in mitochondrial distribution within the RPE and a thickening of BrM. CFB(-/-) mice were protected from developing these CE-mediated alterations. CONCLUSIONS Taken together, these findings provide clear evidence that ocular pathology generated in CE mice is dependent on complement activation and requires the AP. Identifying animal models with RPE/BrM damage and verifying which aspects of pathology are dependent upon complement activation is essential for developing novel complement-based treatment approaches for the treatment of AMD.
Collapse
Affiliation(s)
- Alex Woodell
- Division of Research, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Beth Coughlin
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kannan Kunchithapautham
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sarah Casey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tucker Williamson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - W. Drew Ferrell
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bryan W. Jones
- Moran Eye Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Bärbel Rohrer
- Division of Research, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, South Carolina, United States of America
| |
Collapse
|
46
|
Fetterman JL, Pompilius M, Westbrook DG, Uyeminami D, Brown J, Pinkerton KE, Ballinger SW. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice. PLoS One 2013; 8:e66835. [PMID: 23825571 PMCID: PMC3692512 DOI: 10.1371/journal.pone.0066835] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.
Collapse
Affiliation(s)
- Jessica L. Fetterman
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Melissa Pompilius
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - David G. Westbrook
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Dale Uyeminami
- University of California at Davis, Center for Health and Environment, Davis, California, United States of America
| | - Jamelle Brown
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
| | - Kent E. Pinkerton
- University of California at Davis, Center for Health and Environment, Davis, California, United States of America
| | - Scott W. Ballinger
- The University of Alabama at Birmingham, Division of Molecular and Cellular Pathology, Birmingham, Alabama, United States of America
- Department of Pathology, Division of Molecular and Cellular Pathology, 535 BMR2, 1720 2nd Ave S, Birmingham
| |
Collapse
|
47
|
Pieters N, Koppen G, Smeets K, Napierska D, Plusquin M, De Prins S, Van De Weghe H, Nelen V, Cox B, Cuypers A, Hoet P, Schoeters G, Nawrot TS. Decreased mitochondrial DNA content in association with exposure to polycyclic aromatic hydrocarbons in house dust during wintertime: from a population enquiry to cell culture. PLoS One 2013; 8:e63208. [PMID: 23658810 PMCID: PMC3643917 DOI: 10.1371/journal.pone.0063208] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/02/2013] [Indexed: 01/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are formed in combustion processes. At the cellular level, exposure to PAHs causes oxidative stress and/or some of it congeners bind to DNA, which may interact with mitochondrial function. However, the influence of these pollutants on mitochondrial DNA (mtDNA) content remains largely unknown. We determined whether indoor exposure to PAHs is associated with mitochondrial damage as represented by blood mtDNA content. Blood mtDNA content (ratio mitochondrial/nuclear DNA copy number) was determined by real-time qPCR in 46 persons, both in winter and summer. Indoor PAH exposure was estimated by measuring PAHs in sedimented house dust, including 6 volatile PAHs and 8 non-volatile PAHs. Biomarkers of oxidative stress at the level of DNA and lipid peroxidation were measured. In addition to the epidemiologic enquiry, we exposed human TK6 cells during 24 h at various concentrations (range: 0 to 500 µM) of benzo(a)pyrene and determined mtDNA content. Mean blood mtDNA content averaged (±SD) 0.95±0.185. The median PAH content amounted 554.1 ng/g dust (25th–75th percentile: 390.7–767.3) and 1385ng/g dust (25th–75th percentile: 1000–1980) in winter for volatile and non-volatile PAHs respectively. Independent for gender, age, BMI and the consumption of grilled meat or fish, blood mtDNA content decreased by 9.85% (95% CI: −15.16 to −4.2; p = 0.002) for each doubling of non-volatile PAH content in the house dust in winter. The corresponding estimate for volatile PAHs was −7.3% (95% CI: −13.71 to −0.42; p = 0.04). Measurements of oxidative stress were not correlated with PAH exposure. During summer months no association was found between mtDNA content and PAH concentration. The ability of benzo(a)pyrene (range 0 µM to 500 µM) to lower mtDNA content was confirmed in vitro in human TK6 cells. Based on these findings, mtDNA content can be a target of PAH toxicity in humans.
Collapse
Affiliation(s)
- Nicky Pieters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Gudrun Koppen
- Environmental Risk & Health Unit, VITO (Flemish Institute of Technological Research), Mol, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dorota Napierska
- Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University (KU Leuven), Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie De Prins
- Environmental Risk & Health Unit, VITO (Flemish Institute of Technological Research), Mol, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Hendrik Van De Weghe
- Environmental Risk & Health Unit, VITO (Flemish Institute of Technological Research), Mol, Belgium
| | - Vera Nelen
- Environment and Health Unit, Provincial Institute of Hygiene, Antwerp, Belgium
| | - Bianca Cox
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Peter Hoet
- Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University (KU Leuven), Leuven, Belgium
| | - Greet Schoeters
- Environmental Risk & Health Unit, VITO (Flemish Institute of Technological Research), Mol, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health & Primary Care, Occupational & Environmental Medicine, Leuven University (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|
48
|
Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, Antoshechkin IA, Margulies KB, Maclellan WR. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation 2013; 127:1957-67. [PMID: 23589024 DOI: 10.1161/circulationaha.112.001219] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mitochondria are key players in the development and progression of heart failure (HF). Mitochondrial (mt) dysfunction leads to diminished energy production and increased cell death contributing to the progression of left ventricular failure. The fundamental mechanisms that underlie mt dysfunction in HF have not been fully elucidated. METHODS AND RESULTS To characterize mt morphology, biogenesis, and genomic integrity in human HF, we investigated left ventricular tissue from nonfailing hearts and end-stage ischemic (ICM) or dilated (DCM) cardiomyopathic hearts. Although mt dysfunction was present in both types of cardiomyopathy, mt were smaller and increased in number in DCM compared with ICM or nonfailing hearts. mt volume density and mtDNA copy number was increased by ≈2-fold (P<0.001) in DCM hearts in comparison with ICM hearts. These changes were accompanied by an increase in the expression of mtDNA-encoded genes in DCM versus no change in ICM. mtDNA repair and antioxidant genes were reduced in failing hearts, suggestive of a defective repair and protection system, which may account for the 4.1-fold increase in mtDNA deletion mutations in DCM (P<0.05 versus nonfailing hearts, P<0.05 versus ICM). CONCLUSIONS In DCM, mt dysfunction is associated with mtDNA damage and deletions, which could be a consequence of mutating stress coupled with a peroxisome proliferator-activated receptor γ coactivator 1α-dependent stimulus for mt biogenesis. However, this maladaptive compensatory response contributes to additional oxidative damage. Thus, our findings support further investigations into novel mechanisms and therapeutic strategies for mt dysfunction in DCM.
Collapse
Affiliation(s)
- Preeti Ahuja
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-569 CHS, BOX 957115, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Dakubo GD. Mitochondrial genome analysis in biofluids for early cancer detection and monitoring. ACTA ACUST UNITED AC 2013; 2:263-75. [PMID: 23495657 DOI: 10.1517/17530059.2.3.263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Biofluids collected in a non-invasive fashion are potentially valuable samples for assaying genomic alterations for early detection and monitoring of cancer. The low cellularity and nucleic acid content in biofluids, the high copy number of the mitochondrial genome (mtgenome) and its noted early imprints in cancer make this molecule theoretically more sensitive than nuclear targets to measure for early cancer detection. OBJECTIVE This review explores mtgenome analysis in biofluids and addresses the question of whether targeting the mtgenome in biofluids is superior or equivalent to analysis of nuclear genomic alterations. METHODS The literature was retrieved from PubMed using a combination of the following keywords: mtDNA, mutation, deletion, content, copy number, cancer, biofluids, bodily fluids and the specific cancers described here. Studies that analyzed mtgenome alterations in biofluids were included. Analytical methods available for assaying mtgenome changes in biofluids are discussed. RESULTS Despite the limited data available, mtgenome changes in biofluids have been demonstrated in a wide variety of cancer patients. CONCLUSION Mtgenome analysis in biofluids is feasible and relatively easy. Despite the paucity of data, tumor-specific mtgenome changes are observed in biofluids of cancer patients. Given the multiple copies per cell of the mtgenome, future cancer detection efforts should consider complementary analysis of mtgenome changes in biofluids.
Collapse
Affiliation(s)
- Gabriel D Dakubo
- Senior Scientist Genesis Genomics, Inc., 290 Munro Street, Ste 1000, Thunder Bay, Ontario, P7A 7T1, Canada +1 807 768 4516 ; +1 807 346 8105 ;
| |
Collapse
|
50
|
Verma M, Khoury MJ, Ioannidis JPA. Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomarkers Prev 2013; 22:189-200. [PMID: 23242141 PMCID: PMC3565041 DOI: 10.1158/1055-9965.epi-12-1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress has been made in the last decade in new methods for biologic measurements using sophisticated technologies that go beyond the established genome, proteome, and gene expression platforms. These methods and technologies create opportunities to enhance cancer epidemiologic studies. In this article, we describe several emerging technologies and evaluate their potential in epidemiologic studies. We review the background, assays, methods, and challenges and offer examples of the use of mitochondrial DNA and copy number assessments, epigenomic profiling (including methylation, histone modification, miRNAs, and chromatin condensation), metabolite profiling (metabolomics), and telomere measurements. We map the volume of literature referring to each one of these measurement tools and the extent to which efforts have been made at knowledge integration (e.g., systematic reviews and meta-analyses). We also clarify strengths and weaknesses of the existing platforms and the range of type of samples that can be tested with each of them. These measurement tools can be used in identifying at-risk populations and providing novel markers of survival and treatment response. Rigorous analytic and validation standards, transparent availability of massive data, and integration in large-scale evidence are essential in fulfilling the potential of these technologies.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|