1
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
2
|
Morgan AE, Salcedo-Sora JE, Mc Auley MT. A new mathematical model of folate homeostasis in E. coli highlights the potential importance of the folinic acid futile cycle in cell growth. Biosystems 2024; 235:105088. [PMID: 38000545 DOI: 10.1016/j.biosystems.2023.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical way to deal with such complexity is to examine it by using mathematical modelling. This work describes the construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under different metabolic scenarios.
Collapse
Affiliation(s)
- Amy E Morgan
- School of Health & Sport Sciences, Hope Park, Liverpool Hope University, Liverpool, L16 9JD, UK.
| | - J Enrique Salcedo-Sora
- Liverpool Shared Research Facilities, GeneMill, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4NT, UK
| |
Collapse
|
3
|
Mc Auley MT, Mooney KM, Salcedo-Sora JE. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing. Brief Bioinform 2019; 19:303-317. [PMID: 28007697 DOI: 10.1093/bib/bbw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/12/2022] Open
Abstract
Dietary folates have a key role to play in health, as deficiencies in the intake of these B vitamins have been implicated in a wide variety of clinical conditions. The reason for this is folates function as single carbon donors in the synthesis of methionine and nucleotides. Moreover, folates have a vital role to play in the epigenetics of mammalian cells by supplying methyl groups for DNA methylation reactions. Intriguingly, a growing body of experimental evidence suggests that DNA methylation status could be a central modulator of the ageing process. This has important health implications because the methylation status of the human genome could be used to infer age-related disease risk. Thus, it is imperative we further our understanding of the processes which underpin DNA methylation and how these intersect with folate metabolism and ageing. The biochemical and molecular mechanisms, which underpin these processes, are complex. However, computational modelling offers an ideal framework for handling this complexity. A number of computational models have been assembled over the years, but to date, no model has represented the full scope of the interaction between the folate cycle and the reactions, which governs the DNA methylation cycle. In this review, we will discuss several of the models, which have been developed to represent these systems. In addition, we will present a rationale for developing a combined model of folate metabolism and the DNA methylation cycle.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
4
|
Kok DE, Steegenga WT, Smid EJ, Zoetendal EG, Ulrich CM, Kampman E. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit Rev Food Sci Nutr 2018; 60:244-256. [DOI: 10.1080/10408398.2018.1522499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dieuwertje E. Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Cornelia M. Ulrich
- Department of Population Health Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
5
|
Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC, Swart KMA, van Laarhoven HW, van Schoor NM, de Groot LCPGM, Lemmens V, Stricker BH, Uitterlinden AG, van der Velde N. Folic Acid and Vitamin B12 Supplementation and the Risk of Cancer: Long-term Follow-up of the B Vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) Trial. Cancer Epidemiol Biomarkers Prev 2018; 28:275-282. [PMID: 30341095 DOI: 10.1158/1055-9965.epi-17-1198] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/21/2018] [Accepted: 10/04/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Folic acid and vitamin B12 play key roles in one-carbon metabolism. Disruption of one-carbon metabolism may be involved in the risk of cancer. Our aim was to assess the long-term effect of supplementation with both folic acid and vitamin B12 on the incidence of overall cancer and on colorectal cancer in the B Vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) trial. METHODS Long-term follow-up of B-PROOF trial participants (N = 2,524), a multicenter, double-blind randomized placebo-controlled trial designed to assess the effect of 2 to 3 years daily supplementation with folic acid (400 μg) and vitamin B12 (500 μg) versus placebo on fracture incidence. Information on cancer incidence was obtained from the Netherlands cancer registry (Integraal Kankercentrum Nederland), using the International Statistical Classification of Disease (ICD-10) codes C00-C97 for all cancers (except C44 for skin cancer), and C18-C20 for colorectal cancer. RESULTS Allocation to B vitamins was associated with a higher risk of overall cancer [171 (13.6%) vs. 143 (11.3%); HR 1.25; 95% confidence interval (CI), 1.00-1.53, P = 0.05]. B vitamins were significantly associated with a higher risk of colorectal cancer [43(3.4%) vs. 25(2.0%); HR 1.77; 95% CI, 1.08-2.90, P = 0.02]. CONCLUSIONS Folic acid and vitamin B12 supplementation was associated with an increased risk of colorectal cancer. IMPACT Our findings suggest that folic acid and vitamin B12 supplementation may increase the risk of colorectal cancer. Further confirmation in larger studies and in meta-analyses combining both folic acid and vitamin B12 are needed to evaluate whether folic acid and vitamin B12 supplementation should be limited to patients with a known indication, such as a proven deficiency.
Collapse
Affiliation(s)
- Sadaf Oliai Araghi
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jessica C Kiefte-de Jong
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands. .,Leiden University College, The Hague, the Netherlands.,Department of Public Health and Primary Care, Leiden University Medical Center/LUMC Campus, The Hague, the Netherlands
| | - Suzanne C van Dijk
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin M A Swart
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | | | - Valery Lemmens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Research, Netherlands Comprehensive Cancer Organisation, Utrecht, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nathalie van der Velde
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Section of Geriatric Medicine, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Blumberg JB, Bailey RL, Sesso HD, Ulrich CM. The Evolving Role of Multivitamin/Multimineral Supplement Use among Adults in the Age of Personalized Nutrition. Nutrients 2018; 10:nu10020248. [PMID: 29470410 PMCID: PMC5852824 DOI: 10.3390/nu10020248] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/08/2018] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Micronutrient deficiencies occur in segments of the adult population in the United States. Multivitamin/multimineral supplements (MVMS) are widely used by this population, which reduces inadequacies in micronutrient intake, but the potential for exceeding tolerable upper intake levels in others should be considered. There are concerns associated with the excessive intake of certain nutrients, particularly folic acid, and potential untoward consequences. The advent of nutrigenomics and the enhanced ability to directly study the interactions between nutrition and genetic variants and expression will allow for the conduct of more targeted studies with specific endpoints and may ultimately lead to progress in the field of personalized nutrition. The role of MVMS in health maintenance and chronic disease prevention remains controversial. Conducting studies in this area has been hampered by, among other factors, inconsistent definitions of MVMS, ranging from as few as three vitamins to broad-spectrum products containing more than two dozen vitamins and minerals. Results from some observational studies and large-scale, randomized, controlled trials suggest that MVMS may reduce the risk of some forms of cancer and, potentially, cardiovascular disease. The ongoing COcoa Supplement and Multivitamin Outcomes Study (COSMOS) is expected to build on this research and provide additional insights into these areas.
Collapse
Affiliation(s)
- Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | - Regan L Bailey
- Department of Nutrition Science, Purdue University, 700 West State Street, West Lafayette, IN 47907, USA.
| | - Howard D Sesso
- Brigham and Women's Hospital and Harvard Medical School, 900 Commonwealth Avenue East, 3rd Floor, Boston, MA 02215, USA.
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Li Y, Feng Q, Guo M, Wang Y, Jiang Y, Xing J. Genome-wide survey reveals dynamic effects of folate supplement on DNA methylation and gene expression during C2C12 differentiation. Physiol Genomics 2018; 50:158-168. [PMID: 29341861 DOI: 10.1152/physiolgenomics.00094.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Folic acid supplements taken during pregnancy can prevent neural tube defects and other developmental abnormalities. Here, we explored the effects of folate supplementation on gene expression and DNA methylation during C2C12 differentiation. Based on the folic acid concentration, this study comprised three groups: low folate (L), normal folate (N), and high-folate supplement (H). Our analyses revealed that differentiation and the mRNA expression of the gene myogenin in C2C12 cell were enhanced by folic acid; however, the overall methylation percentage in myogenin promoter between different treatment groups was not significantly different ( P > 0.05). The results of MeDIP-chip showed that hundreds of differentially methylated regions (DMRs) were identified between every two groups in both promoter and CpG islands, respectively. Genes with DMRs between N and L groups were mainly enriched in the processes of cell differentiation and cell development, whereas those with DMRs between H and N groups were frequently enriched in cellular process/cycle and cell metabolic processes. In addition, correlation analysis between methylation profile and expression profile revealed that some genes were regulated by methylation status directly. Together, these analyses suggest that folate deficiency and supplementation can influence the differentiation, genome-wide DNA methylation level and the expression of myogenesis-related genes including myogenin in the C2C12 cell line.
Collapse
Affiliation(s)
- Yi Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Qiang Feng
- The Central Hospital of Taian, Tai'an, Shandong , China
| | - Miao Guo
- Taishan Medical University, Tai'an, Shandong , China
| | - Yuding Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an City, Shandong Province, China
| | - Jinyi Xing
- School of Life Science, Linyi University, Linyi, Shandong , China
| |
Collapse
|
8
|
Chaudhari SN, Mukherjee M, Vagasi AS, Bi G, Rahman MM, Nguyen CQ, Paul L, Selhub J, Kipreos ET. Bacterial Folates Provide an Exogenous Signal for C. elegans Germline Stem Cell Proliferation. Dev Cell 2017; 38:33-46. [PMID: 27404357 DOI: 10.1016/j.devcel.2016.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
Here we describe an in vitro primary culture system for Caenorhabditis elegans germline stem cells. This culture system was used to identify a bacterial folate as a positive regulator of germ cell proliferation. Folates are a family of B-complex vitamins that function in one-carbon metabolism to allow the de novo synthesis of amino acids and nucleosides. We show that germ cell proliferation is stimulated by the folate 10-formyl-tetrahydrofolate-Glun both in vitro and in animals. Other folates that can act as vitamins to rescue folate deficiency lack this germ cell stimulatory activity. The bacterial folate precursor dihydropteroate also promotes germ cell proliferation in vitro and in vivo, despite its inability to promote one-carbon metabolism. The folate receptor homolog FOLR-1 is required for the stimulation of germ cells by 10-formyl-tetrahydrofolate-Glun and dihydropteroate. This work defines a folate and folate-related compound as exogenous signals to modulate germ cell proliferation.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | - Alexandra S Vagasi
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gaofeng Bi
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Mohammad M Rahman
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Christine Q Nguyen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Ligi Paul
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Edward T Kipreos
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Dattilo M, D'Amato G, Caroppo E, Ménézo Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. J Assist Reprod Genet 2016; 33:1633-1648. [PMID: 27423667 PMCID: PMC5171888 DOI: 10.1007/s10815-016-0767-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/30/2016] [Indexed: 01/21/2023] Open
Abstract
Oxidative damage triggers extensive repair in gametes and thereafter in the zygote but it results in clinically relevant damage when affecting the maturation of the gametes chromatin, i.e. padlocking and epigenetic marking. It associates with defective DNA methylation and/or with oxidation of the methyl marks leading to derangement of gamete epigenetics, defects of chromatin condensation and aneuploidy. A proper feed to the one carbon cycle has the potential to stimulate the endogenous antioxidant defences, i.e. gluthatione synthesis, and to activate compensative homeostatic mechanisms restoring both the oxy-redox balance and DNA methylation, which are indeed strictly cross-regulated. This has been shown to produce measurable clinical improvements of male reproductive potential in pilot studies herein summarised. However, the effects of dietary habits and of supplementations are variable according to the individual genetic substrate, as genetic variants of several of the concerned enzymes occur with high frequency. Individual risk assessments and personalised interventions are still difficult to implement, in the meantime, a very varied diet may facilitate metabolic compensation in the majority of the cases. This review aims to report on the mechanisms of damage, on the opportunities to modulate the physiologic oxy-redox homeostasis by means of a varied diet or dietary supplements and on the open issues related to the genetic variability of the population.
Collapse
Affiliation(s)
| | - Giuseppe D'Amato
- ASL Bari, U.O. Fisiopatologia della Riproduzione Umana e PMA, Conversano, Ba, Italy
| | - Ettore Caroppo
- ASL Bari, U.O. Fisiopatologia della Riproduzione Umana e PMA, Conversano, Ba, Italy
| | - Yves Ménézo
- London Fertility Associates, 104 Harley Street, London, UK
| |
Collapse
|
10
|
Salcedo-Sora JE, Mc Auley MT. A mathematical model of microbial folate biosynthesis and utilisation: implications for antifolate development. MOLECULAR BIOSYSTEMS 2016; 12:923-33. [PMID: 26794619 DOI: 10.1039/c5mb00801h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The metabolic biochemistry of folate biosynthesis and utilisation has evolved into a complex network of reactions. Although this complexity represents challenges to the field of folate research it has also provided a renewed source for antimetabolite targets. A range of improved folate chemotherapy continues to be developed and applied particularly to cancer and chronic inflammatory diseases. However, new or better antifolates against infectious diseases remain much more elusive. In this paper we describe the assembly of a generic deterministic mathematical model of microbial folate metabolism. Our aim is to explore how a mathematical model could be used to explore the dynamics of this inherently complex set of biochemical reactions. Using the model it was found that: (1) a particular small set of folate intermediates are overrepresented, (2) inhibitory profiles can be quantified by the level of key folate products, (3) using the model to scan for the most effective combinatorial inhibitions of folate enzymes we identified specific targets which could complement current antifolates, and (4) the model substantiates the case for a substrate cycle in the folinic acid biosynthesis reaction. Our model is coded in the systems biology markup language and has been deposited in the BioModels Database (MODEL1511020000), this makes it accessible to the community as a whole.
Collapse
|
11
|
Neuhouser ML, Cheng TYD, Beresford SAA, Brown E, Song X, Miller JW, Zheng Y, Thomson CA, Shikany JM, Vitolins MZ, Rohan T, Green R, Ulrich CM. Red blood cell folate and plasma folate are not associated with risk of incident colorectal cancer in the Women's Health Initiative observational study. Int J Cancer 2015; 137:930-9. [PMID: 25643945 PMCID: PMC4478092 DOI: 10.1002/ijc.29453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
The relationship between folate and colorectal cancer (CRC) risk is unclear. We investigated the association of two biomarkers of folate status, plasma folate and red blood cell (RBC) folate, with CRC risk using a nested case-control design in the Women's Health Initiative Observational Study. Postmenopausal women (n = 93,676) aged 50-79 years were enrolled in the Women's Health Initiative Observational Study (1993-1998). A fasting blood draw and extensive health, dietary and lifestyle data were collected upon enrollment. Through 2008, 988 incident CRC cases were reported and confirmed with medical records adjudication. Cases and controls were matched on age (± 3 years), enrollment date (± 1 year), race/ethnicity, blood draw date (± 6 months) and hysterectomy status. Plasma and RBC folate were determined by radio assay. Folate biomarker values were divided into quartiles, and conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CI) for the associations of folate with total CRC, by tumor site and by stage at diagnosis. Additional analyses examined whether risks varied across time periods corresponding to the United States folic acid fortification policy: prefortification (1994-1995), perifortification (1996-1997) and postfortification (1998). ORs for overall CRC risk comparing Q4 vs. Q1 were 0.91 (95% CI 0.67-1.24) and 0.91 (95% CI 0.67-1.23) for RBC and plasma folate, respectively. There were no changes in risk attributable to food supply fortification. These results do not support an overall association of folate with CRC risk and suggest that folic acid fortification of the US food supply did not alter the associations in these postmenopausal women.
Collapse
Affiliation(s)
- Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Ting-Yuan David Cheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Shirley A A Beresford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Elissa Brown
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiaoling Song
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Joshua W Miller
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| | - Yingye Zheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cynthia A Thomson
- Canyon Ranch Center for Prevention and Health Promotion, University of Arizona, Tucson, AZ
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Ralph Green
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| | - Cornelia M Ulrich
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
12
|
Lee TY, Chiang EP, Shih YT, Lane HY, Lin JT, Wu CY. Lower serum folate is associated with development and invasiveness of gastric cancer. World J Gastroenterol 2014; 20:11313-11320. [PMID: 25170216 PMCID: PMC4145770 DOI: 10.3748/wjg.v20.i32.11313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the associations of serum folate level with development, invasiveness and patient survival of gastric cancer.
METHODS: In this nested case-control study, patients with newly diagnosed gastric cancer undergoing gastrectomy were enrolled, and patients receiving chemotherapy prior to surgery, with other concurrent malignancy, or of the aboriginal and alien populations were excluded. In total, 155 gastric cancer patients and 149 healthy controls were enrolled for determination of serum folate levels and their correlation with gastric cancer. Using the median value of serum folate computed among the overall population as the cutoff value, the associations between serum folate and gastric cancer in all cases and different age and gender subgroups were analyzed by multivariate logistic regression analysis. In the patient cohort of gastric cancer, receiver-operating characteristic analyses were performed to calculate the best cutoff values of serum folate, and the associations between serum folate levels and clinicopathological features were further analyzed by multivariate regression analysis. Survival analyses were conducted using the Cox proportional hazards model.
RESULTS: The mean serum folate level was significantly lower in gastric cancer patients than that in controls (3.71 ± 0.30 ng/mL vs 8.00 ± 0.54 ng/mL, P < 0.01), and folate levels were consistently lower in gastric cancer patients regardless of age and gender (all P < 0.01). Using the median serum folate value as the cutoff value, low serum folate was significantly associated with gastric cancer risk in the whole population (OR = 19.77, 95%CI: 10.54-37.06, P < 0.001) and all strata (age < 60 years OR = 17.39, 95%CI: 7.28-41.54, age ≥ 60 years (OR = 21.67, 95%CI: 8.27-56.80), males (OR = 17.95, 95%CI: 7.93-40.62), and females (OR = 20.95, 95%CI: 7.66-57.31); all P < 0.001. In the patient cohort of gastric cancer, the respective cutoff values showed that low serum folate levels were significantly associated with serosal invasion (OR = 2.54, 95%CI: 1.23-5.23), lymphatic invasion (OR = 2.23, 95%CI: 1.17-4.26), and liver metastasis (OR = 6.67, 95%CI: 1.28-34.91) of gastric cancer (all P < 0.05). Serum folate level below 1.90 ng/mL was associated with poor patient survival (HR = 1.84, 95%CI: 1.04-3.27, P < 0.05) in univariate analysis.
CONCLUSION: Lower serum folate levels were significantly associated with gastric cancer development and invasive phenotypes. The role of folate depletion in gastric cancer invasion warrants further study.
Collapse
|
13
|
Nijhout HF, Reed MC. Homeostasis and Dynamic Stability of the Phenotype Link Robustness and Plasticity. Integr Comp Biol 2014; 54:264-75. [DOI: 10.1093/icb/icu010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Deghan Manshadi S, Ishiguro L, Sohn KJ, Medline A, Renlund R, Croxford R, Kim YI. Folic acid supplementation promotes mammary tumor progression in a rat model. PLoS One 2014; 9:e84635. [PMID: 24465421 PMCID: PMC3897399 DOI: 10.1371/journal.pone.0084635] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022] Open
Abstract
Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression of established mammary tumors. The potential tumor-promoting effect of folic acid supplementation in breast cancer patients and survivors needs further clarification.
Collapse
Affiliation(s)
- Shaidah Deghan Manshadi
- Department of Nutritional Sciences, University of Toronto and Keenan Research Center for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Lisa Ishiguro
- Department of Nutritional Sciences, University of Toronto and Keenan Research Center for Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kyoung-Jin Sohn
- Department of Medicine, University of Toronto and Keenan Research Center of Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Alan Medline
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology, Humber River Regional Hospital, Toronto, Ontario, Canada
| | - Richard Renlund
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Young-In Kim
- Departments of Medicine & Nutritional Sciences, University of Toronto, Division of Gastroenterology, St. Michael's Hospital and Keenan Research Center of Biomedical Science at St. Michael's Hospital, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Weber CJ, Müller S, Safley SA, Gordon KB, Amancha P, Villinger F, Camp VM, Lipowska M, Sharma J, Müller C, Schibli R, Low PS, Leamon CP, Halkar RK. Expression of functional folate receptors by human parathyroid cells. Surgery 2013; 154:1385-93; discussion 1393. [PMID: 24206618 DOI: 10.1016/j.surg.2013.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human pituitary adenomas express folate receptors (FR); therefore, we hypothesized that parathyroid (PT) tumors also might express FR, whereas normal human thyroids might not. The purpose of our study was to characterize the functionality of FRs on human PT tumors, with the goal of developing an imaging tool that would concentrate in PT more than in the thyroid. METHODS Human PTs and thyroids were evaluated for FR expression by immunohistochemistry. Expression of genes for FRα and FRβ was measured with the Illumina Human HT-12 Expression Bead Chips and verified by quantitative reverse-transcription polymerase chain reaction. Folate incorporation by PT cells versus normal thyroid cells was determined by incubation with (99m)Technetium ((99m)Tc)(CO)3-folate and (99m)Tc-Etarfolatide, and uptake was determined by gamma counting. Specific targeting of FRs was demonstrated by blocking with cold folate. A549 cells and Jurkat cells served as FR-negative controls, and KB cells and HeLa cells were FR-positive controls. RESULTS On immunohistochemistry and Western blotting, human PT cells expressed FRs, whereas human thyroid cells did not. The FRα gene was expressed in all PTs analyzed, and the FRβ gene was expressed by most. Uptake of (99m)Tc(CO)3-folate was increased in PT cells versus thyroid cells. There was dose-dependent uptake of (99m)Tc-etarfolatide, and uptake was inhibited by preincubation with cold folate, confirming FR-mediated binding. CONCLUSION This is the first report of the expression and functionality of FRs on human PT cells. These findings suggest that (99m)Tc-folate holds potential for localization of PT tumors preoperatively and their treatment.
Collapse
|
16
|
Kooistra M, Trasler JM, Baltz JM. Folate transport in mouse cumulus-oocyte complexes and preimplantation embryos. Biol Reprod 2013; 89:63. [PMID: 23904512 DOI: 10.1095/biolreprod.113.111146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endogenous folate stores are required in preimplantation embryos of several species, but how folates are accumulated and whether they can be replenished has not been determined. Folates are generally taken up into cells by specific transporters, mainly the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptors FOLR1 and FOLR2. Quantitative RT-PCR showed that Slc19a1 mRNA was expressed in mouse cumulus-oocyte complexes (COCs) and oocytes, whereas Folr1 showed expression only in preimplantation embryos, increasing from the 2-cell stage onward. The mRNAs encoding Folr2 and the intestinal folate transporter Slc46a1 were not detected. Methotrexate (MTX), an antifolate often used as a model substrate for folate transport, exhibited saturable transport in COCs and in preimplantation embryos starting at the 2-cell stage. However, folate transport characteristics differed between COCs and embryos. In COCs, transport of MTX and the reduced folate leucovorin was inhibited by the anion transport inhibitor SITS that blocks RFC1 but was insensitive to dynasore, a specific dynamin inhibitor that instead inhibits folate receptor-receptor mediated endocytosis, whereas the opposite was found in 2-cell embryos and blastocysts. The inhibitor profile and transport properties of MTX and leucovorin in COCs correspond to established transport characteristics of RFC1 (SLC19A1), whereas those in 2-cell embryos and blastocysts correspond with those of FOLR1, consistent with the mRNA expression patterns. Considerable folate was accumulated in COCs via RFC1, but the presence of cumulus cells did not enhance folate accumulation in the enclosed oocyte, indicating a lack of transfer from cumulus to oocyte.
Collapse
Affiliation(s)
- Megan Kooistra
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
17
|
Leung KY, De Castro SCP, Cabreiro F, Gustavsson P, Copp AJ, Greene NDE. Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Mol Cell Biochem 2013; 378:229-36. [PMID: 23483428 PMCID: PMC3634978 DOI: 10.1007/s11010-013-1613-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/02/2013] [Indexed: 12/01/2022]
Abstract
Folates act as co-factors for transfer of one-carbon units for nucleotide production, methylation and other biosynthetic reactions. Comprehensive profiling of multiple folates can be achieved using liquid chromatography tandem mass spectrometry, enabling determination of their relative abundance that may provide an indication of metabolic differences between cell types. For example, cell lines exposed to methotrexate showed a dose-dependent elevation of dihydrofolate, consistent with inhibition of dihydrofolate reductase. We analysed the folate profile of E. coli sub-types as well as cell lines and embryonic tissue from both human and mouse. The folate profile of bacteria differed markedly from those of all the mammalian samples, most notably in the greater abundance of formyl tetrahydrofolate. The overall profiles of mouse and human fibroblasts and mid-gestation mouse embryos were broadly similar, with specific differences. The major folate species in these cell types was 5-methyl tetrahydrofolate, in contrast to lymphoblastoid cell lines in which the predominant form was tetrahydrofolate. Analysis of embryonic human brain revealed a shift in folate profile with increasing developmental stage, with a decline in relative abundance of dihydrofolate and increase in 5-methyl tetrahydrofolate. These cell type-specific and developmental changes in folate profile may indicate differential requirements for the various outputs of folate metabolism.
Collapse
Affiliation(s)
- Kit-Yi Leung
- Neural Development Unit and Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:343-65. [PMID: 23408533 DOI: 10.1002/wsbm.1209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
Collapse
Affiliation(s)
- Marco Scotti
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | | |
Collapse
|
19
|
Figueiredo JC, Levine AJ, Crott JW, Baurley J, Haile RW. Folate-genetics and colorectal neoplasia: what we know and need to know next. Mol Nutr Food Res 2013; 57:607-27. [PMID: 23401104 DOI: 10.1002/mnfr.201200278] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/11/2012] [Accepted: 11/07/2012] [Indexed: 12/18/2022]
Abstract
SCOPE The metabolism of folate involves a complex network of polymorphic enzymes that may explain a proportion of the risk associated with colorectal neoplasia. Over 60 observational studies primarily in non-Hispanic White populations have been conducted on selected genetic variants in specific genes, MTHFR, MTR, MTRR, CBS, TCNII, RFC, GCPII, SHMT, TYMS, and MTHFD1, including five meta-analyses on MTHFR 677C>T (rs1801133) and MTHFR 1298C>T (rs1801131); two meta-analyses on MTR-2756A>C (rs1805087); and one for MTRR 66A>G (rs1801394). METHODS AND RESULTS This systematic review synthesizes these data, highlighting the consistent inverse association between MTHFR 677TT genotype and risk of colorectal cancer (CRC) and its null association with adenoma risk. Results for other variants varied across individual studies; in our meta-analyses we observed some evidence for SHMT 1420C>T (rs1979277) ((odds ratio) OR = 0.85; 95% confidence interval (CI) = 0.73-1.00 for TT v. CC) and TYMS 5' 28 bp repeat (rs34743033) and CRC risk (OR = 0.84; 95% CI = 0.75-0.94 for 2R/3R v. 3R/3R and OR = 0.82; 95% CI = 0.69-0.98 for 2R/2R v. 3R/3R). CONCLUSION To gain further insight into the role of folate variants in colorectal neoplasia will require incorporating measures of the metabolites, including B-vitamin cofactors, homocysteine and S-adenosylmethionine, and innovative statistical methods to better approximate the folate one-carbon metabolism pathway.
Collapse
Affiliation(s)
- Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
20
|
Kobayashi LC, Limburg H, Miao Q, Woolcott C, Bedard LL, Massey TE, Aronson KJ. Folate intake, alcohol consumption, and the methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism: influence on prostate cancer risk and interactions. Front Oncol 2012; 2:100. [PMID: 22912935 PMCID: PMC3418632 DOI: 10.3389/fonc.2012.00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022] Open
Abstract
Purpose: Folate is essential to DNA methylation and synthesis and may have a complex dualistic role in prostate cancer. Alcohol use may increase risk and epigenetic factors may interact with lifestyle exposures. We aimed to characterize the independent and joint effects of folate intake, alcohol consumption, and the MTHFR C677T gene polymorphism on prostate cancer risk, while accounting for intakes of vitamins B2, B6, B12, methionine, total energy, and confounders. Methods: A case-control study was conducted at Kingston General Hospital of 80 incident primary prostate cancer cases and 334 urology clinic controls, all with normal age-specific PSA levels (to exclude latent prostate cancers). Participants completed a questionnaire on folate and alcohol intakes and potential confounders prior to knowledge of diagnosis, eliminating recall bias, and blood was drawn for MTHFR genotyping. Joint effects of exposures were assessed using unconditional logistic regression and significance of multiplicative and additive interactions using general linear models. Results: Folate, vitamins B2, B6, B12, methionine, and the CT and TT genotypes were not associated with prostate cancer risk. The highest tertile of lifetime alcohol consumption was associated with increased risk (OR = 2.08; 95% CI: 1.12–3.86). Consumption of >5 alcoholic drinks per week was associated with increased prostate cancer risk among men with low folate intake (OR = 2.38; 95% CI: 1.01–5.57), and higher risk among those with the CC MTHFR genotype (OR = 4.43; 95% CI: 1.15–17.05). Increased risk was also apparent for average weekly alcohol consumption when accounting for the multiplicative interaction between folate intake and MTHFR C677T genotype (OR = 3.22; 95% CI: 1.36–7.59). Conclusion: Alcohol consumption is associated with increased prostate cancer risk, and this association is stronger among men with low folate intake, with the CC MTHFR genotype, and when accounting for the joint effect of folate intake and MTHFR C677T genotype.
Collapse
Affiliation(s)
- Lindsay C Kobayashi
- Department of Community Health and Epidemiology, Queen's University Kingston, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
McKay JA, Groom A, Potter C, Coneyworth LJ, Ford D, Mathers JC, Relton CL. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. PLoS One 2012; 7:e33290. [PMID: 22479380 PMCID: PMC3316565 DOI: 10.1371/journal.pone.0033290] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/06/2012] [Indexed: 01/17/2023] Open
Abstract
Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B12 concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B12, maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = −0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B12 concentration (rho = −0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B12 concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ2 = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ2 = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B12 status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns.
Collapse
Affiliation(s)
- Jill A McKay
- Institute for Ageing and Health, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Coppedè F. Epigenetic biomarkers of colorectal cancer: Focus on DNA methylation. Cancer Lett 2011; 342:238-47. [PMID: 22202641 DOI: 10.1016/j.canlet.2011.12.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/15/2011] [Accepted: 12/17/2011] [Indexed: 02/06/2023]
Abstract
The original theory of the multi-step process of colorectal cancer (CRC), suggesting that the disease resulted from the accumulation of mutations in oncogenes and tumor suppressor genes in colonic mucosa cells, has been largely revised following the observation that epigenetic modifications of several genes occur in the average CRC genome. Therefore, the current opinion is that CRCs are the consequence of the accumulation of both mutations and epigenetic modifications of several genes. This mini-review article focuses on DNA methylation biomarkers in CRC. Recent large-scale DNA methylation studies suggest that CRCs can be divided into at least three-four subtypes according to the frequency of DNA methylation and those of mutations in key CRC genes. Despite hundreds of genes might be epigenetically modified in CRC cells, there is interest in the identification of DNA methylation biomarkers to be used for CRC diagnosis, progression, tendency to tissue invasion and metastasis, prognosis, and response to chemotherapeutic agents. Moreover, DNA methylation largely depends on one-carbon metabolism, the metabolic pathway required for the production of S-adenosylmethionine, the major intracellular methylating agent. Complex interactions are emerging among dietary one-carbon nutrients (folates, vitamin B6, vitamin B12, methionine, and others), their metabolic genes, CRC risk, and DNA methylation profiles in CRC. Moreover, active research is also focused on the possible contribution of folic acid dietary fortification during pregnancy and the possible methylation of CRC-related genes in the offspring.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department (DAI) of Neuroscience, Pisa University Hospital (AOUP), Italy; Faculty of Medicine, University of Pisa, Italy.
| |
Collapse
|
23
|
Ho E, Beaver LM, Williams DE, Dashwood RH. Dietary factors and epigenetic regulation for prostate cancer prevention. Adv Nutr 2011; 2:497-510. [PMID: 22332092 PMCID: PMC3226387 DOI: 10.3945/an.111.001032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of epigenetic alterations in various human chronic diseases has gained increasing attention and has resulted in a paradigm shift in our understanding of disease susceptibility. In the field of cancer research, e.g., genetic abnormalities/mutations historically were viewed as primary underlying causes; however, epigenetic mechanisms that alter gene expression without affecting DNA sequence are now recognized as being of equal or greater importance for oncogenesis. Methylation of DNA, modification of histones, and interfering microRNA (miRNA) collectively represent a cadre of epigenetic elements dysregulated in cancer. Targeting the epigenome with compounds that modulate DNA methylation, histone marks, and miRNA profiles represents an evolving strategy for cancer chemoprevention, and these approaches are starting to show promise in human clinical trials. Essential micronutrients such as folate, vitamin B-12, selenium, and zinc as well as the dietary phytochemicals sulforaphane, tea polyphenols, curcumin, and allyl sulfur compounds are among a growing list of agents that affect epigenetic events as novel mechanisms of chemoprevention. To illustrate these concepts, the current review highlights the interactions among nutrients, epigenetics, and prostate cancer susceptibility. In particular, we focus on epigenetic dysregulation and the impact of specific nutrients and food components on DNA methylation and histone modifications that can alter gene expression and influence prostate cancer progression.
Collapse
Affiliation(s)
- Emily Ho
- Linus Pauling Institute, Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR, USA.
| | - Laura M. Beaver
- Linus Pauling Institute,Department of Nutrition and Exercise Sciences, and
| | - David E. Williams
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Roderick H. Dashwood
- Linus Pauling Institute,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| |
Collapse
|