1
|
Burgueño-Rodríguez G, Méndez Y, Olano N, Schelotto M, Castillo L, Soler AM, da Luz J. Pharmacogenetics of pediatric acute lymphoblastic leukemia in Uruguay: adverse events related to induction phase drugs. Front Pharmacol 2023; 14:1278769. [PMID: 38044950 PMCID: PMC10690766 DOI: 10.3389/fphar.2023.1278769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
In Uruguay, the pediatric acute lymphoblastic leukemia (ALL) cure rate is 82.2%, similar to those reported in developed countries. However, many patients suffer adverse effects that could be attributed, in part, to genetic variability. This study aims to identify genetic variants related to drugs administered during the induction phase and analyze their contribution to adverse effects, considering individual genetic ancestry. Ten polymorphisms in five genes (ABCB1, CYP3A5, CEP72, ASNS, and GRIA1) related to prednisone, vincristine, and L-asparaginase were genotyped in 200 patients. Ancestry was determined using 45 ancestry informative markers (AIMs). The sample ancestry was 69.2% European, 20.1% Native American, and 10.7% African, but with high heterogeneity. Mucositis, Cushing syndrome, and neurotoxicity were the only adverse effects linked with genetic variants and ancestry. Mucositis was significantly associated with ASNS (rs3832526; 3R/3R vs. 2R carriers; OR: = 6.88 [1.88-25.14], p = 0.004) and CYP3A5 (non-expressors vs. expressors; OR: 4.55 [1.01-20.15], p = 0.049) genes. Regarding Cushing syndrome, patients with the TA genotype (rs1049674, ASNS) had a higher risk of developing Cushing syndrome than those with the TT genotype (OR: 2.60 [1.23-5.51], p = 0.012). Neurotoxicity was significantly associated with ABCB1 (rs9282564; TC vs. TT; OR: 4.25 [1.47-12.29], p = 0.007). Moreover, patients with <20% Native American ancestry had a lower risk of developing neurotoxicity than those with ≥20% (OR: 0.312 [0.120-0.812], p = 0.017). This study shows the importance of knowing individual genetics to improve the efficacy and safety of acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Gabriela Burgueño-Rodríguez
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Sede Salto, Universidad de la República, Salto, Uruguay
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Santiago, Chile
| | - Yessika Méndez
- Servicio Hemato Oncológico Pediátrico (SHOP), Centro Hospitalario Pereira Rossell (CHPR), Montevideo, Uruguay
| | - Natalia Olano
- Servicio Hemato Oncológico Pediátrico (SHOP), Centro Hospitalario Pereira Rossell (CHPR), Montevideo, Uruguay
| | - Magdalena Schelotto
- Servicio Hemato Oncológico Pediátrico (SHOP), Centro Hospitalario Pereira Rossell (CHPR), Montevideo, Uruguay
| | - Luis Castillo
- Servicio Hemato Oncológico Pediátrico (SHOP), Centro Hospitalario Pereira Rossell (CHPR), Montevideo, Uruguay
| | - Ana María Soler
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Sede Salto, Universidad de la República, Salto, Uruguay
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Santiago, Chile
| | - Julio da Luz
- Laboratorio de Genética Molecular Humana, Departamento de Ciencias Biológicas, CENUR Litoral Norte-Sede Salto, Universidad de la República, Salto, Uruguay
- Red Latinoamericana de Implementación y Validación de Guías Clínicas Farmacogenómicas (RELIVAF-CYTED), Santiago, Chile
| |
Collapse
|
2
|
Singh P, Shah DA, Jouni M, Cejas RB, Crossman DK, Magdy T, Qiu S, Wang X, Zhou L, Sharafeldin N, Hageman L, McKenna DE, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ritchey AK, Ginsberg JP, Landier W, Bhatia R, Burridge PW, Bhatia S. Altered Peripheral Blood Gene Expression in Childhood Cancer Survivors With Anthracycline-Induced Cardiomyopathy - A COG-ALTE03N1 Report. J Am Heart Assoc 2023; 12:e029954. [PMID: 37750583 PMCID: PMC10727235 DOI: 10.1161/jaha.123.029954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
Background Anthracycline-induced cardiomyopathy is a leading cause of premature death in childhood cancer survivors, presenting a need to understand the underlying pathogenesis. We sought to examine differential blood-based mRNA expression profiles in anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Methods and Results We designed a matched case-control study (Children's Oncology Group-ALTE03N1) with mRNA sequencing on total RNA from peripheral blood in 40 anthracycline-exposed survivors with cardiomyopathy (cases) and 64 matched survivors without (controls). DESeq2 identified differentially expressed genes. Ingenuity Pathway Analyses (IPA) and Gene Set Enrichment Analyses determined the potential roles of altered genes in biological pathways. Functional validation was performed by gene knockout in human-induced pluripotent stem cell-derived cardiomyocytes using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) technology. Median age at primary cancer diagnosis for cases and controls was 8.2 and 9.7 years, respectively. Thirty-six differentially expressed genes with fold change ≥±2 were identified; 35 were upregulated. IPA identified "hepatic fibrosis" and "iron homeostasis" pathways to be significantly modulated by differentially expressed genes, including toxicology functions of myocardial infarction, cardiac damage, and cardiac dilation. Leading edge analysis from Gene Set Enrichment Analyses identified lactate dehydrogenase A (LDHA) and cluster of differentiation 36 (CD36) genes to be significantly upregulated in cases. Interleukin 1 receptor type 1, 2 (IL1R1, IL1R2), and matrix metalloproteinase 8, 9 (MMP8, MMP9) appeared in multiple canonical pathways. LDHA-knockout human-induced pluripotent stem cell-derived cardiomyocytes showed increased sensitivity to doxorubicin. Conclusions We identified differential mRNA expression profiles in peripheral blood of anthracycline-exposed childhood cancer survivors with and without cardiomyopathy. Upregulation of LDHA and CD36 genes suggests metabolic perturbations in a failing heart. Dysregulation of proinflammatory cytokine receptors IL1R1 and IL1R2 and matrix metalloproteinases, MMP8 and MMP9 indicates structural remodeling that accompanies the clinical manifestation of symptomatic cardiotoxicity.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | | | - Mariam Jouni
- Department of PharmacologyNorthwestern UniversityChicagoIL
| | | | - David K. Crossman
- Department of GeneticsUniversity of Alabama at BirminghamBirminghamAL
| | - Tarek Magdy
- Department of PharmacologyNorthwestern UniversityChicagoIL
- Louisiana State University Health ShreveportShreveportLA
| | - Shaowei Qiu
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | - Xuexia Wang
- Department of BiostatisticsFlorida International UniversityMiamiFL
| | - Liting Zhou
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | - Lindsey Hageman
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
| | | | | | - Frank M. Balis
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | | | - Frank G. Keller
- Department of Pediatrics, Children’s Healthcare of AtlantaEmory UniversityAtlantaGA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisTN
| | | | - A Kim Ritchey
- Department of PediatricsUPMC Children’s Hospital of PittsburghPAPittsburgh
| | - Jill P. Ginsberg
- Department of PediatricsChildren’s Hospital of PhiladelphiaPhiladelphiaPA
| | - Wendy Landier
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| | - Ravi Bhatia
- Division of Hematology and OncologyUniversity of Alabama at BirminghamBirminghamAL
| | | | - Smita Bhatia
- Institute for Cancer Outcomes and SurvivorshipUniversity of Alabama at BirminghamBirminghamAL
- Department of PediatricsUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
3
|
Jayakodi S, Senthilnathan R, Swaminathan A, Shanmugam VK, Shanmugam RK, Krishnan A, Ponnusamy VK, Tsai PC, Lin YC, Chen YH. Bio-inspired nanoparticles mediated from plant extract biomolecules and their therapeutic application in cardiovascular diseases: A review. Int J Biol Macromol 2023:125025. [PMID: 37245774 DOI: 10.1016/j.ijbiomac.2023.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.
Collapse
Affiliation(s)
- Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Raghul Senthilnathan
- Global Business School for Health, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Akila Swaminathan
- Clinical Virology, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Venkat Kumar Shanmugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Rajesh Kumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu 600077, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Jayakodi S, Shanmugam R, Almutairi BO, Almutairi MH, Mahboob S, Kavipriya MR, Gandusekar R, Nicoletti M, Govindarajan M. Azadirachta indica-wrapped copper oxide nanoparticles as a novel functional material in cardiomyocyte cells: An ecotoxicity assessment on the embryonic development of Danio rerio. ENVIRONMENTAL RESEARCH 2022; 212:113153. [PMID: 35341753 DOI: 10.1016/j.envres.2022.113153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
This research reports on the production of copper oxide nanoparticles (CuO NPs) through the green synthesis method using Azadirachta indica (Ai) flower extract. Synthesized Ai-CuO NPs are characterized by Zeta Potential, TGA, SEM and TEM analysis. The Ai-CuO NPs gave a maximum peak at 270 nm. As per XRD studies, the Ai-CuO NPs obtained were crystalline. FTIR spectrum Ai-CuO NPs showed the presence of functional groups like the O-H group, aromatic group, etc. TEM and SEM assist in investigating the size and morphology of the Ai-CuO NPs, which were spherical and varied in size between 10.11 nm and 17.54 nm. EDAX showed that Ai-CuO NPs were pure with no impurities. The synthesized Ai-CuO NPs were then analyzed for their cytotoxicity at various concentrations (5, 10, 20, 30, 40 and 50 μg/mL) against H9c2 cardiomyocyte cells using MTT assay. DOX-induced H9c2 cell damage of apoptosis and ROS. The nanoparticle formed by Ai-CuO was cured with different concentrations (5, 10 and 20 μg/mL). In zebrafish, 48 hpf and 72 hpf were measured at 75 μM to reduce dysfunction and mortality during organ development. These results can have a beneficial impact on eco-toxicological effects.
Collapse
Affiliation(s)
- Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, 602105, TN, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Chennai, 600077, TN, India.
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - M R Kavipriya
- Department of Botany, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Ramesh Gandusekar
- Department of Regenerative Medicine &Immune Regulation, Medical University of Bialystok (MUB), Poland
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Marimuthu Govindarajan
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India; Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
5
|
Waespe N, Strebel S, Nava T, Uppugunduri CRS, Marino D, Mattiello V, Otth M, Gumy-Pause F, Von Bueren AO, Baleydier F, Mader L, Spoerri A, Kuehni CE, Ansari M. Cohort-based association study of germline genetic variants with acute and chronic health complications of childhood cancer and its treatment: Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study protocol. BMJ Open 2022; 12:e052131. [PMID: 35074812 PMCID: PMC8788194 DOI: 10.1136/bmjopen-2021-052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Childhood cancer and its treatment may lead to various health complications. Related impairment in quality of life, excess in deaths and accumulated healthcare costs are relevant. Genetic variations are suggested to contribute to the wide inter-individual variability of complications but have been used only rarely to risk-stratify treatment and follow-up care. This study aims to identify germline genetic variants associated with acute and late complications of childhood cancer. METHODS AND ANALYSIS The Genetic Risks for Childhood Cancer Complications Switzerland (GECCOS) study is a nationwide cohort study. Eligible are patients and survivors who were diagnosed with childhood cancers or Langerhans cell histiocytosis before age 21 years, were registered in the Swiss Childhood Cancer Registry (SCCR) since 1976 and have consented to the Paediatric Biobank for Research in Haematology and Oncology, Geneva, host of the national Germline DNA Biobank Switzerland for Childhood Cancer and Blood Disorders (BISKIDS).GECCOS uses demographic and clinical data from the SCCR and the associated Swiss Childhood Cancer Survivor Study. Clinical outcome data consists of organ function testing, health conditions diagnosed by physicians, second primary neoplasms and self-reported information from participants. Germline genetic samples and sequencing data are collected in BISKIDS. We will perform association analyses using primarily whole-exome or whole-genome sequencing to identify genetic variants associated with specified health conditions. We will use clustering and machine-learning techniques and assess multiple health conditions in different models. DISCUSSION GECCOS will improve knowledge of germline genetic variants associated with childhood cancer-associated health conditions and help to further individualise cancer treatment and follow-up care, potentially resulting in improved efficacy and reduced side effects. ETHICS AND DISSEMINATION The Geneva Cantonal Commission for Research Ethics has approved the GECCOS study.Research findings will be disseminated through national and international conferences, publications in peer-reviewed journals and in lay language online. TRIAL REGISTRATION NUMBER NCT04702321.
Collapse
Affiliation(s)
- Nicolas Waespe
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Paediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Sven Strebel
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences (GHS), University of Bern, Bern, Switzerland
| | - Tiago Nava
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Chakradhara Rao S Uppugunduri
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Marino
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Veneranda Mattiello
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Maria Otth
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
- Division of Oncology-Hematology, Department of Pediatrics, Kantonsspital Aarau AG, Aarau, Switzerland
| | - Fabienne Gumy-Pause
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - André O Von Bueren
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Frederic Baleydier
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| | - Luzius Mader
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Adrian Spoerri
- SwissRDL - Medical Registries and Data Linkage, Institute of Social and Preventive Medicine, Universitat Bern, Bern, Switzerland
| | - Claudia E Kuehni
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Paediatrics, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform for Paediatric Oncology and Haematology, Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Paediatric Oncology and Haematology, Department of Women, Children, and Adolescents, University Hospitals of Geneva, Geneve, Switzerland
| |
Collapse
|
6
|
Landier W, Cohn RJ, van den Heuvel-Eibrink MM. Hearing and Other Neurologic Problems. Pediatr Clin North Am 2020; 67:1219-1235. [PMID: 33131543 DOI: 10.1016/j.pcl.2020.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ototoxicity and other neurologic toxicities are potential consequences of exposure to common therapeutic agents used during treatment of childhood cancer, including platinum and vinca alkaloid chemotherapy, cranial radiation, surgery involving structures critical to cochlear and neurologic function, and supportive care medications such as aminoglycoside antibiotics and loop diuretics. This article provides an overview of ototoxicity and other neurologic toxicities related to childhood cancer treatment, discusses the challenges that these toxicities may pose for survivors, and presents an overview of current recommendations for surveillance and clinical management of these potentially life-altering toxicities in survivors of childhood cancers.
Collapse
Affiliation(s)
- Wendy Landier
- Pediatric Hematology/Oncology, Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, 1600 7th Avenue South, Lowder 500, Birmingham, AL 35233, USA.
| | - Richard J Cohn
- School of Women's and Children's Health, UNSW Sydney, Medicine, Clinical Oncology, Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, Sydney, New South Wales 2031, Australia
| | - Marry M van den Heuvel-Eibrink
- University of Utrecht, Princess Maxima Center for Pediatric Oncology, Prinses Maxima Centrum voor kinderoncologie, Postbus 113 - 3720 AC Bilthoven Heidelberglaan 25, 3584 CS Utrecht, Room number: 2-5 F3, The Netherlands
| |
Collapse
|
7
|
Bhatia S. Genetics of Anthracycline Cardiomyopathy in Cancer Survivors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2020; 2:539-552. [PMID: 33364618 PMCID: PMC7757557 DOI: 10.1016/j.jaccao.2020.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/31/2022] Open
Abstract
Anthracyclines are an integral part of chemotherapy regimens used to treat a variety of childhood-onset and adult-onset cancers. However, the development of cardiac dysfunction and heart failure often compromises the clinical utility of anthracyclines. The risk of cardiac dysfunction increases with anthracycline dose. This anthracycline-cardiac dysfunction association is modified by several demographic and clinical factors, such as age at anthracycline exposure (<4 years and ≥65 years); female sex; chest radiation; presence of cardiovascular risk factors (diabetes, hypertension); and concurrent use of cyclophosphamide, paclitaxel, and trastuzumab. However, the clinical variables alone yield modest predictive power in detecting cardiac dysfunction. Recently, attention has focused on the molecular basis of anthracycline-related cardiac dysfunction, providing an initial understanding of the mechanism of anthracycline-related cardiomyopathy. This review describes the current state of knowledge with respect to the pathogenesis of anthracycline-related cardiomyopathy and identifies the critical next steps to mitigate this problem.
Collapse
Affiliation(s)
- Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Rassaf T, Totzeck M, Backs J, Bokemeyer C, Hallek M, Hilfiker-Kleiner D, Hochhaus A, Lüftner D, Müller OJ, Neudorf U, Pfister R, von Haehling S, Lehmann LH, Bauersachs J. Onco-Cardiology: Consensus Paper of the German Cardiac Society, the German Society for Pediatric Cardiology and Congenital Heart Defects and the German Society for Hematology and Medical Oncology. Clin Res Cardiol 2020; 109:1197-1222. [PMID: 32405737 PMCID: PMC7515958 DOI: 10.1007/s00392-020-01636-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
The acute and long-lasting side effects of modern multimodal tumour therapy significantly impair quality of life and survival of patients afflicted with malignancies. The key components of this therapy include radiotherapy, conventional chemotherapy, immunotherapy and targeted therapies. In addition to established tumour therapy strategies, up to 30 new therapies are approved each year with only incompletely characterised side effects. This consensus paper discusses the risk factors that contribute to the development of a potentially adverse reaction to tumour therapy and, in addition, defines specific side effect profiles for different treatment groups. The focus is on novel therapeutics and recommendations for the surveillance and treatment of specific patient groups.
Collapse
Affiliation(s)
- Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre Essen, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre Essen, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Johannes Backs
- Institute for Experimental Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with the Section Pneumology, Centre for Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology ABCD, University Hospital of Cologne, Cologne, Germany
| | | | - Andreas Hochhaus
- Department of Hematology and Medical Oncology, University Hospital Jena, Jena, Germany
| | - Diana Lüftner
- Department of Haematology, Oncology and Tumour Immunology, Charité, Humboldt University Berlin, Berlin, Germany
| | - Oliver J Müller
- Department of Internal Medicine III (Cardiology, Angiology and Internal Intensive Care Medicine), University Hospital Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Ulrich Neudorf
- Department of Pediatrics III, West German Heart and Vascular Centre Essen, University Hospital Essen, Essen, Germany
| | - Roman Pfister
- Clinic III for Internal Medicine, General and Interventional Cardiology, Electrophysiology, Angiology, Pneumology and Internal Intensive Care Medicine, University Hospital Cologne, Cologne, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart Center Göttingen, University of Göttingen Medical Center and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lorenz H Lehmann
- Department of Cardiology, Angiology, Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Singh P, Wang X, Hageman L, Chen Y, Magdy T, Landier W, Ginsberg JP, Neglia JP, Sklar CA, Castellino SM, Dreyer ZE, Hudson MM, Robison LL, Blanco JG, Relling MV, Burridge P, Bhatia S. Association of GSTM1 null variant with anthracycline-related cardiomyopathy after childhood cancer-A Children's Oncology Group ALTE03N1 report. Cancer 2020; 126:4051-4058. [PMID: 32413235 PMCID: PMC7423633 DOI: 10.1002/cncr.32948] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/07/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Anthracycline-related cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Glutathione S-transferases (GSTs) are a class of phase II detoxification enzymes that facilitate the elimination of anthracyclines. As free-radical scavengers, GSTs could play a role in oxidative damage-induced cardiomyopathy. Associations between the GSTμ1 (GSTM1) null genotype and iron-overload-related cardiomyopathy have been reported in patients with thalassemia. METHODS The authors sought to identify an association between the GSTM1 null genotype and anthracycline-related cardiomyopathy in childhood cancer survivors and to corroborate the association by examining GSTM1 gene expression in peripheral blood and human-induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) from survivors with and without cardiomyopathy. GSTM1 gene deletion was examined by polymerase chain reaction in 75 survivors who had clinically validated cardiomyopathy (cases) and in 92 matched survivors without cardiomyopathy (controls). Conditional logistic regression analysis adjusting for sex, age at cancer diagnosis, chest radiation, and anthracycline dose was used to assess the association between genotype and cardiomyopathy. Proprietary bead array technology and quantitative real-time polymerase chain reaction were used to measure GSTM1 expression levels in samples from 20 cases and 20 matched controls. hiPSC-CMs from childhood cancer survivors (3 with cardiomyopathy, 3 without cardiomyopathy) also were examined for GSTM1 gene expression levels. RESULTS A significant association was observed between the risk of cardiomyopathy and the GSTM1 null genotype (odds ratio, 2.7; 95% CI, 1.3-5.9; P = .007). There was significant downregulation of GSTM1 expression in cases compared with controls (average relative expression, 0.67 ± 0.57 vs 1.33 ± 1.33, respectively; P = .049). hiPSC-CMs from patients who had cardiomyopathy revealed reduced GSTM1 expression (P = .007). CONCLUSIONS The current findings could facilitate the identification of childhood cancer survivors who are at risk for anthracycline-related cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, Texas
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill P. Ginsberg
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Joseph P. Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Charles A. Sklar
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sharon M. Castellino
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Zoann E. Dreyer
- Department of Pediatrics, Texas Children’s Cancer Center, Houston, Texas
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Javier G. Blanco
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Mary V. Relling
- Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Paul Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
10
|
Erdmann F, Frederiksen LE, Bonaventure A, Mader L, Hasle H, Robison LL, Winther JF. Childhood cancer: Survival, treatment modalities, late effects and improvements over time. Cancer Epidemiol 2020; 71:101733. [PMID: 32461035 DOI: 10.1016/j.canep.2020.101733] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Since the 1960s, paediatric oncologists have gradually become better organised in large study groups and participation in clinical trials is today considered as the standard of care, with most children with cancer in Europe and North America being enrolled on available treatment protocols. Chemotherapy is nowadays the main element of therapy, but irradiation is still required for some patients. With the advent of multimodality therapy and supportive care, five-year cancer survival exceeds 80 % in most European and North American countries today. The substantial improvements in survival led to a constantly growing population of childhood cancer survivors. Concerns regarding the risk of late effects of the intensive cancer treatment at a young age, together with increasing numbers of survivors, have directed attention towards survivorship research. Survivors of childhood cancer are at longstanding risk of various severe somatic and mental health conditions attributable to the cancer and its treatment, as well as adverse social and socioeconomic consequences, and diminished psychological well-being and quality of life. It is, however, important to stress that some survivors have no or very mild adverse health conditions. Nevertheless, joint efforts are warranted for the care and long-term follow-up of childhood cancer patients. With this article, we provide a comprehensive overview of improvements in survival and treatment modalities over time, as well as the related somatic and mental late effects, and social and socioeconomic difficulties that these children might encounter later in life.
Collapse
Affiliation(s)
- Friederike Erdmann
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Denmark; German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | - Audrey Bonaventure
- Epidemiology of Childhood and Adolescent Cancer Team, Centre of Research in Epidemiology and Statistics, University of Paris, UMR 1153 INSERM, France
| | - Luzius Mader
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Denmark; Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Denmark
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, United States
| | - Jeanette Falck Winther
- Childhood Cancer Research Group, Danish Cancer Society Research Center, Denmark; Department of Clinical Medicine, Faculty of Health, Aarhus University and University Hospital, Denmark
| |
Collapse
|
11
|
Belitskiy GA, Kirsanov KI, Lesovaya EA, Yakubovskaya MG. Drug-Related Carcinogenesis: Risk Factors and Approaches for Its Prevention. BIOCHEMISTRY (MOSCOW) 2020; 85:S79-S107. [PMID: 32087055 DOI: 10.1134/s0006297920140059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The review summarizes the data on the role of metabolic and repair systems in the mechanisms of therapy-related carcinogenesis and the effect of their polymorphism on the cancer development risk. The carcinogenic activity of different types of drugs, from the anticancer agents to analgesics, antipyretics, immunomodulators, hormones, natural remedies, and non-cancer drugs, is described. Possible approaches for the prevention of drug-related cancer induction at the initiation and promotion stages are discussed.
Collapse
Affiliation(s)
- G A Belitskiy
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| | - K I Kirsanov
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia. .,Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - E A Lesovaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia.,Pavlov Ryazan State Medical University, Ryazan, 390026, Russia
| | - M G Yakubovskaya
- Blokhin Russian Cancer Research Center, Ministry of Health of Russian Federation, Moscow, 115478, Russia
| |
Collapse
|
12
|
Sági JC, Egyed B, Kelemen A, Kutszegi N, Hegyi M, Gézsi A, Herlitschke MA, Rzepiel A, Fodor LE, Ottóffy G, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018; 18:704. [PMID: 29970035 PMCID: PMC6029426 DOI: 10.1186/s12885-018-4629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. Methods Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. Results Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis. Conclusions Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4629-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Bálint Egyed
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Márta Hegyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Martina Ayaka Herlitschke
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Andrea Rzepiel
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, Pécs University, József Attila út 7, Pécs, H-7623, Hungary
| | - Gábor T Kovács
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Dániel J Erdélyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Central Laboratory, Heim Pal Children Hospital, Üllői út 86, Budapest, H-1089, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.
| |
Collapse
|
13
|
Tilemann LM, Heckmann MB, Katus HA, Lehmann LH, Müller OJ. Cardio-oncology: conflicting priorities of anticancer treatment and cardiovascular outcome. Clin Res Cardiol 2018; 107:271-280. [PMID: 29453595 PMCID: PMC5869944 DOI: 10.1007/s00392-018-1202-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/11/2018] [Indexed: 12/03/2022]
Abstract
BACKGROUND This article about the emerging field of cardio-oncology highlights typical side effects of oncological therapies in the cardiovascular system, cardiovascular complications of malignancies itself, and potential preventive or therapeutic modalities. METHODS We performed a selective literature search in PubMed until September 2016. RESULTS Cardiovascular events in cancer patients can be frequently attributed to oncological therapies or to the underlying malignancy itself. Furthermore, many patients with cancer have pre-existing cardiovascular diseases that can be aggravated by the malignancy or its therapy. Cardiovascular abnormalities in oncological patients comprise a broad spectrum from alterations in electrophysiological, laboratory or imaging tests to the occurrence of thromboembolic, ischemic or rhythmological events and the impairment of left ventricular function or manifest heart failure. DISCUSSION A close interdisciplinary collaboration between oncologists and cardiologists/angiologists as well as an increased awareness of potential cardiovascular complications could improve clinical care of cancer patients and provides a basis for an improved understanding of underlying mechanisms of cardiovascular morbidity.
Collapse
Affiliation(s)
- Lisa M Tilemann
- Abteilung für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Heidelberg, Mannheim, Germany
| | - Markus B Heckmann
- Abteilung für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Heidelberg, Mannheim, Germany
| | - Hugo A Katus
- Abteilung für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Heidelberg, Mannheim, Germany
| | - Lorenz H Lehmann
- Abteilung für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Heidelberg, Mannheim, Germany.
| | - Oliver J Müller
- Abteilung für Kardiologie, Pneumologie und Angiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Standort Heidelberg, Mannheim, Germany.
- Department of Internal Medicine III, University of Kiel, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
| |
Collapse
|
14
|
Dixon SB, Bjornard KL, Alberts NM, Armstrong GT, Brinkman TM, Chemaitilly W, Ehrhardt MJ, Fernandez-Pineda I, Force LM, Gibson TM, Green DM, Howell CR, Kaste SC, Kirchhoff A, Klosky JL, Krull KR, Lucas JT, Mulrooney DA, Ness KK, Wilson CL, Yasui Y, Robison LL, Hudson MM. Factors influencing risk-based care of the childhood cancer survivor in the 21st century. CA Cancer J Clin 2018; 68:133-152. [PMID: 29377070 PMCID: PMC8893118 DOI: 10.3322/caac.21445] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022] Open
Abstract
The population of adult survivors of childhood cancer continues to grow as survival rates improve. Although it is well established that these survivors experience various complications and comorbidities related to their malignancy and treatment, this risk is modified by many factors that are not directly linked to their cancer history. Research evaluating the influence of patient-specific demographic and genetic factors, premorbid and comorbid conditions, health behaviors, and aging has identified additional risk factors that influence cancer treatment-related toxicity and possible targets for intervention in this population. Furthermore, although current long-term follow-up guidelines comprehensively address specific therapy-related risks and provide screening recommendations, the risk profile of the population continues to evolve with ongoing modification of treatment strategies and the emergence of novel therapeutics. To address the multifactorial modifiers of cancer treatment-related health risk and evolving treatment approaches, a patient-centered and risk-adapted approach to care that often requires a multidisciplinary team approach, including medical and behavioral providers, is necessary for this population. CA Cancer J Clin 2018;68:133-152. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Stephanie B Dixon
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kari L Bjornard
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Nicole M Alberts
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Tara M Brinkman
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Wassim Chemaitilly
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Pediatric Medicine – Division of Endocrinology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Matthew J Ehrhardt
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Lisa M Force
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Todd M Gibson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daniel M Green
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Carrie R Howell
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Sue C Kaste
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Radiology, University of Tennessee Health Science Center, Memphis, TN
| | - Anne Kirchhoff
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - James L Klosky
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kevin R Krull
- Department of Psychology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - John T Lucas
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Daniel A Mulrooney
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Carmen L Wilson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
15
|
Wing C, Komatsu M, Delaney SM, Krause M, Wheeler HE, Dolan ME. Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Res 2017. [PMID: 28645005 DOI: 10.1016/j.scr.2017.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) and differentiation to cells composing major organs has opened up the possibility for a new model system to study adverse toxicities associated with chemotherapy. Therefore, we used human iPSC-derived neurons to study peripheral neuropathy, one of the most common adverse effects of chemotherapy and cause for dose reduction. To determine the utility of these neurons in investigating the effects of neurotoxic chemotherapy, we measured morphological differences in neurite outgrowth, cell viability as determined by ATP levels and apoptosis through measures of caspase 3/7 activation following treatment with clinically relevant concentrations of platinating agents (cisplatin, oxaliplatin and carboplatin), taxanes (paclitaxel, docetaxel and nab-paclitaxel), a targeted proteasome inhibitor (bortezomib), an antiangiogenic compound (thalidomide), and 5-fluorouracil, a chemotherapeutic that does not cause neuropathy. We demonstrate differential sensitivity of neurons to mechanistically distinct classes of chemotherapeutics. We also show a dose-dependent reduction of electrical activity as measured by mean firing rate of the neurons following treatment with paclitaxel. We compared neurite outgrowth and cell viability of iPSC-derived cortical (iCell® Neurons) and peripheral (Peri.4U) neurons to cisplatin, paclitaxel and vincristine. Goshajinkigan, a Japanese herbal neuroprotectant medicine, was protective against paclitaxel-induced neurotoxicity but not oxaliplatin as measured by morphological phenotypes. Thus, we have demonstrated the utility of human iPSC-derived neurons as a useful model to distinguish drug class differences and for studies of a potential neuroprotectant for the prevention of chemotherapy-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Masaaki Komatsu
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Shannon M Delaney
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - Matthew Krause
- Committee of Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather E Wheeler
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Ehrhardt MJ, Bhakta N, Liu Q, Yasui Y, Krasin MJ, Mulrooney DA, Hudson MM, Robison LL. Absence of Basal Cell Carcinoma in Irradiated Childhood Cancer Survivors of Black Race: A Report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol Biomarkers Prev 2016; 25:1356-60. [PMID: 27365149 DOI: 10.1158/1055-9965.epi-16-0280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer survivors exposed to therapeutic radiation are at increased risk for basal cell carcinoma (BCC). Despite the notable influence of race on rates of BCC in the general population, the same is not clearly defined in previously irradiated cancer survivors. We investigated the influence of race on the development of BCC in adult survivors of childhood cancer. METHODS Using a retrospective cohort study, outcomes were collected through June 30, 2015, for 1,746 irradiated childhood cancer survivors participating in the St. Jude Lifetime Cohort Study (SJLIFE), comprising a total of 33,147 person-years of follow-up. Subsequent neoplasms identified in survivors through self-report and prospective clinical assessment were validated by pathology reports. Expected numbers of each type of radiation-associated neoplasm, including BCC, were calculated for irradiated black survivors based on rates in irradiated white survivors, accounting for primary cancer diagnosis, diagnosis year, attained age, and sex. RESULTS On the basis of the rate of BCC in previously irradiated white survivors, 56.1 BCCs were expected among 237 black survivors, yet none observed. In contrast, the observed-to-expected ratio of non-BCC radiation-associated neoplasms (melanoma, brain, breast, thyroid cancer) was 0.88 (30 observed/34.2 expected, 95% confidence interval, 0.59-1.25). CONCLUSIONS We identified an unexpected absence of BCC in irradiated black survivors in SJLIFE. We observe a similar absence of BCC in black individuals among two additional cohorts treated with irradiation for childhood cancer. IMPACT Black survivors are at a substantially reduced or absent risk for BCC from therapeutic radiation for reasons not yet fully understood. Cancer Epidemiol Biomarkers Prev; 25(9); 1356-60. ©2016 AACR.
Collapse
Affiliation(s)
- Matthew J Ehrhardt
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nickhill Bhakta
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Qi Liu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yutaka Yasui
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee. School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew J Krasin
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Daniel A Mulrooney
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee. Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
17
|
McCabe MS, Pickard TA. Planning for the future: the role of nurse practitioners and physician assistants in survivorship care. Am Soc Clin Oncol Educ Book 2016:e56-61. [PMID: 24451832 DOI: 10.14694/edbook_am.2012.32.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of cancer survivors in the United States now approaches 12 million individuals, with an estimated 7.2% of the general population aged 18 years or older reporting a previous cancer diagnosis. These figures highlight a number of questions about the care of survivors-how patients at risk for a known set of health problems should be followed, by whom, and for how long. At the same time that oncologists are developing strategies to provide services to this growing population, there are economic and systems challenges that have relevance to the previous questions, including a predicted national shortage of physicians to provide oncology services. Nurse practitioners (NPs) and physician assistants (PAs) have been identified as members of the health care team who can help reduce the oncology supply and demand gap in a number of ways. The ASCO Study of Collaborative Practice Arrangements (SCPA) in 2011 concluded that oncology patients were aware and satisfied when their care was provided by NPs and PAs; there was an increase in productivity in practices that utilized NPs and PAs; utilizing the full scope of practice of NPs and PAs was financially advantageous; and, physicians, NPs, and PAs are highly satisfied with their collaborative practices. Increasingly, the oncology and health policy literature contains evidence supporting innovative provider models. There is still much work to be done to move beyond pilot data to establish the true value of these models.
Collapse
Affiliation(s)
- Mary S McCabe
- From the Memorial Sloan-Kettering Cancer Center and University of Texas M. D. Anderson Cancer Center
| | - Todd Alan Pickard
- From the Memorial Sloan-Kettering Cancer Center and University of Texas M. D. Anderson Cancer Center
| |
Collapse
|
18
|
Landier W. Ototoxicity and cancer therapy. Cancer 2016; 122:1647-58. [PMID: 26859792 DOI: 10.1002/cncr.29779] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 11/10/2022]
Abstract
Ototoxicity is a well-established toxicity associated with a subgroup of antineoplastic therapies that includes platinum chemotherapy, radiation or surgery involving the ear and auditory nerve, and supportive care agents such as aminoglycoside antibiotics and loop diuretics. The reported prevalence of ototoxicity in patients who have received potentially ototoxic therapy ranges from 4% to 90% depending on factors such as age of the patient population, agent(s) used, cumulative dose, and administration techniques. The impact of ototoxicity on subsequent health-related and psychosocial outcomes in these patients can be substantial, and the burden of morbidity related to ototoxic agents is particularly high in very young children. Considerable interindividual variability in the prevalence and severity of ototoxicity has been observed among patients receiving similar treatment, suggesting genetic susceptibility as a risk factor. The development and testing of otoprotective agents is ongoing; however, to the author's knowledge, no US Food and Drug Administration-approved otoprotectants are currently available. Prospective monitoring for ototoxicity allows for comparison of auditory outcomes across clinical trials, as well as for early detection, potential alterations in therapy, and auditory intervention and rehabilitation to ameliorate the adverse consequences of hearing loss. Cancer 2016;122:1647-58. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Wendy Landier
- Department of Pediatric Hematology/Oncology, Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Travis LB, Fossa SD, Sesso HD, Frisina RD, Herrmann DN, Beard CJ, Feldman DR, Pagliaro LC, Miller RC, Vaughn DJ, Einhorn LH, Cox NJ, Dolan ME. Chemotherapy-induced peripheral neurotoxicity and ototoxicity: new paradigms for translational genomics. J Natl Cancer Inst 2014; 106:dju044. [PMID: 24623533 PMCID: PMC4568989 DOI: 10.1093/jnci/dju044] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/07/2023] Open
Abstract
In view of advances in early detection and treatment, the 5-year relative survival rate for all cancer patients combined is now approximately 66%. As a result, there are more than 13.7 million cancer survivors in the United States, with this number increasing by 2% annually. For many patients, improvements in survival have been countered by therapy-associated adverse effects that may seriously impair long-term functional status, workplace productivity, and quality of life. Approximately 20% to 40% of cancer patients given neurotoxic chemotherapy develop chemotherapy-induced peripheral neurotoxicity (CIPN), which represents one of the most common and potentially permanent nonhematologic side effects of chemotherapy. Permanent bilateral hearing loss and/or tinnitus can result from several ototoxic therapies, including cisplatin- or carboplatin-based chemotherapy. CIPN and ototoxicity represent important challenges because of the lack of means for effective prevention, mitigation, or a priori identification of high-risk patients, and few studies have applied modern genomic approaches to understand underlying mechanisms/pathways. Translational genomics, including cell-based models, now offer opportunities to make inroads for the first time to develop preventive and interventional strategies for CIPN, ototoxicity, and other treatment-related complications. This commentary provides current perspective on a successful research strategy, with a focus on cisplatin, developed by an experienced, transdisciplinary group of researchers and clinicians, representing pharmacogenomics, statistical genetics, neurology, hearing science, medical oncology, epidemiology, and cancer survivorship. Principles outlined herein are applicable to the construction of research programs in translational genomics with strong clinical relevance and highlight unprecedented opportunities to understand, prevent, and treat long-term treatment-related morbidities.
Collapse
Affiliation(s)
- Lois B Travis
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL.
| | - Sophie D Fossa
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Howard D Sesso
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Robert D Frisina
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - David N Herrmann
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Clair J Beard
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Darren R Feldman
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Lance C Pagliaro
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Robert C Miller
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - David J Vaughn
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Lawrence H Einhorn
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - Nancy J Cox
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| | - M Eileen Dolan
- Affiliations of authors: Rubin Center for Cancer Survivorship and Department of Radiation Oncology (LBT) and Department of Neurology (DNH), University of Rochester Medical Center, Rochester, NY; Department of Oncology, Oslo University Hospital, Radiumhospital, Oslo, Norway (SDF); Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA (HDS); Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (CJB); Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL (RDF); Department of Medical Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY (DRF); Department of Genitourinary Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX (LCP); Department of Radiation Oncology, Mayo Clinic, Rochester, MN (RCM); Department of Medicine, University of Pennsylvania, Philadelphia, PA (DJV); Department of Medical Oncology, Indiana University, Indianapolis, IN (LHE); Departments of Human Genetics (NJC) and Medicine (MED), University of Chicago, Chicago, IL
| |
Collapse
|
20
|
Nekhlyudov L, Aziz NM, Lerro C, Virgo KS. Oncologists' and primary care physicians' awareness of late and long-term effects of chemotherapy: implications for care of the growing population of survivors. J Oncol Pract 2014; 10:e29-36. [PMID: 24222054 PMCID: PMC3948708 DOI: 10.1200/jop.2013.001121] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The population of cancer survivors is large and growing. Yet after successful completion of treatment, many experience chemotherapy-related late or long-term effects (LEs). The extent to which physicians are aware of LEs is unknown. METHODS We conducted a nationally representative survey of 1,130 oncologists and 1,072 primary care providers (PCPs). Respondents were asked to select the LEs they had either observed or seen reported for five chemotherapy agents used to treat breast and colon cancers. We described and compared oncologists' and PCPs' awareness of the specified LEs. Using multivariate logistic regression models, we determined predictors of physicians' awareness of the main LEs associated with the agents. RESULTS Almost all oncologists (95%) reported awareness of cardiac dysfunction as an LE of doxorubicin and peripheral neuropathy as an LE of paclitaxel (97%) and oxaliplatin (97%). These LEs were reported by 55%, 27%, and 22% of PCPs, respectively. Most oncologists reported awareness of premature menopause (71%) and secondary malignancies (62%) as LEs of cyclophosphamide, compared with only 15% and 17% of PCPs, respectively. Main LEs associated with all four agents were identified by 65% of oncologists and only 6% of PCPs. CONCLUSION Although more than half of PCPs were aware of cardiac dysfunction as an LE of doxorubicin, awareness of other LEs was limited. Because PCPs may not be directly exposed to chemotherapy-related LEs, oncologists must communicate this information to PCPs as patients transition to primary care settings. Education for all providers caring for the growing population of cancer survivors is needed.
Collapse
Affiliation(s)
- Larissa Nekhlyudov
- Harvard Medical School and Harvard Vanguard Medical Associates, Boston MA; National Institute of Nursing Research, Bethesda, MD; Yale University School of Public Health, New Haven, CT; and Rollins School of Public Health, Emory University, Atlanta, GA
| | - Noreen M. Aziz
- Harvard Medical School and Harvard Vanguard Medical Associates, Boston MA; National Institute of Nursing Research, Bethesda, MD; Yale University School of Public Health, New Haven, CT; and Rollins School of Public Health, Emory University, Atlanta, GA
| | - Catherine Lerro
- Harvard Medical School and Harvard Vanguard Medical Associates, Boston MA; National Institute of Nursing Research, Bethesda, MD; Yale University School of Public Health, New Haven, CT; and Rollins School of Public Health, Emory University, Atlanta, GA
| | - Katherine S. Virgo
- Harvard Medical School and Harvard Vanguard Medical Associates, Boston MA; National Institute of Nursing Research, Bethesda, MD; Yale University School of Public Health, New Haven, CT; and Rollins School of Public Health, Emory University, Atlanta, GA
| |
Collapse
|
21
|
Rueda-Clausen CF, Benterud E, Bond T, Olszowka R, Vallis MT, Sharma AM. Effect of implementing the 5As of obesity management framework on provider-patient interactions in primary care. Clin Obes 2014; 4:39-44. [PMID: 25425131 DOI: 10.1111/cob.12038] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/07/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022]
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Obesity counselling in primary care is positively associated with self-reported behaviour change in patients with obesity. Obesity counselling is rare, and when it does occur, it is often of low quality because of poor training and/or competency of providers' obesity management, lack of time and economical disincentives, and negative attitude towards obesity and obesity management. 5As frameworks are routinely used for behaviour-change counselling and addiction management (e.g. smoking cessation), but few studies have examined its efficacy for weight management. WHAT THIS STUDY ADDS This study presents pilot data from the implementation and evaluation of an obesity management tool (5As of Obesity Management developed by the Canadian Obesity Network) in a primary care setting. Results show that the tool facilitates weight management in primary care by promoting physician-patient communications, medical assessments for obesity and plans for follow-up care. Obesity remains poorly managed in primary care. The 5As of Obesity Management is a theory-driven, evidence-based minimal intervention designed to facilitate obesity counselling and management by primary care practitioners. This project tested the impact of implementing this tool in primary care clinics. Electronic self-administered surveys were completed by pre-screened obese subjects at the end of their appointments in four primary care clinics (over 25 healthcare providers [HCPs]). These measurements were performed before (baseline, n = 51) and 1 month after implementing the 5As of Obesity Management (post-intervention, n = 51). Intervention consisted of one online training session (90 min) and distribution of the 5As toolkit to HCPs of participating clinics. Subjects completing the survey before and after the intervention were comparable in terms of age, sex, body mass index, comorbidities, satisfaction and self-reported health status (P > 0.2). Implementing the 5As of Obesity Management resulted in a twofold increase in the initiation of obesity management (19 vs. 39%, P = 0.03), and caused a statistically significant increase in the perceived follow-up/coordination efforts (self-reported Patient Assessment of Chronic Illness Care components, 45 ± 22 vs. 67 ± 12 points, P = 0.002), as well as two components of the 5As framework: Assess (50 ± 29 vs. 66 ± 15 points, P = 0.03) and Assist (54 ± 26 vs. 72 ± 13 points, P = 0.01). Our results suggest that using the 5As of Obesity Management facilitates weight management in primary care by promoting physician-patient communications, medical assessments for obesity and plans for follow-up care.
Collapse
Affiliation(s)
- C F Rueda-Clausen
- Obesity Research and Management, Department of Medicine, University of Alberta, Edmonton, Canada; South Calgary Primary Care Network (SCPCN), Calgary, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Survival rates for most paediatric cancers have improved at a remarkable pace over the past four decades. In developed countries, cure is now the probable outcome for most children and adolescents who are diagnosed with cancer: their 5-year survival rate approaches 80%. However, the vast majority of these cancer survivors will have at least one chronic health condition by 40 years of age. The burden of responsibility to understand the long-term morbidity and mortality that is associated with currently successful treatments must be borne by many, including the research and health care communities, survivor advocacy groups, and governmental and policy-making entities.
Collapse
Affiliation(s)
- Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Melissa M Hudson
- 1] Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA. [2] Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| |
Collapse
|
23
|
Rowland JH, Kent EE, Forsythe LP, Loge JH, Hjorth L, Glaser A, Mattioli V, Fosså SD. Cancer survivorship research in Europe and the United States: where have we been, where are we going, and what can we learn from each other? Cancer 2013; 119 Suppl 11:2094-108. [PMID: 23695922 PMCID: PMC3690309 DOI: 10.1002/cncr.28060] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 11/06/2022]
Abstract
The growing number of cancer survivors worldwide has led to of the emergence of diverse survivorship movements in the United States and Europe. Understanding the evolution of cancer survivorship within the context of different political and health care systems is important for identifying the future steps that need to be taken and collaborations needed to promote research among and enhance the care of those living after cancer. The authors first review the history of survivorship internationally and important related events in both the United States and Europe. Lessons learned from survivorship research are then broadly discussed, followed by examination of the infrastructure needed to sustain and advance this work, including platforms for research, assessment tools, and vehicles for the dissemination of findings. Future perspectives concern the identification of collaborative opportunities for investigators in Europe and the United States to accelerate the pace of survivorship science going forward.
Collapse
Affiliation(s)
- Julia H Rowland
- Office of Cancer Survivorship, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health/Department of Health and Human Services, Bethesda, Maryland 20892-7397, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lenihan DJ, Oliva S, Chow EJ, Cardinale D. Cardiac toxicity in cancer survivors. Cancer 2013; 119 Suppl 11:2131-42. [DOI: 10.1002/cncr.28061] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 01/11/2023]
Affiliation(s)
- Daniel J. Lenihan
- Divison of Cardiovascular Medicine; Vanderbilt University; Nashville Tennessee
| | - Stefano Oliva
- Cardiology Unit; National Cancer Research Center; Istituto Tumori “Giovanni Paolo II,” Bari Italy
| | - Eric J. Chow
- Public Health and Clinical Research Divisions; Fred Hutchinson Cancer Center; Seattle Washington
| | | |
Collapse
|
25
|
Sieswerda E, Mulder RL, van Dijk IWEM, van Dalen EC, Knijnenburg SL, van der Pal HJH, Mud MS, Heinen RC, Caron HN, Kremer LCM. The EKZ/AMC childhood cancer survivor cohort: methodology, clinical characteristics, and data availability. J Cancer Surviv 2013; 7:439-54. [PMID: 23625157 DOI: 10.1007/s11764-013-0283-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Childhood cancer survivors are at high risk of late adverse effects of cancer treatment, but there are still many gaps in evidence about these late effects. We described the methodology, clinical characteristics, data availability, and outcomes of our cohort study of childhood cancer survivors. METHODS The Emma Children's Hospital/Academic Medical Center (EKZ/AMC) childhood cancer survivor cohort is an ongoing single-center cohort study of ≥5-year childhood cancer survivors, which started in 1996 simultaneously with regular structured medical outcome assessments at our outpatient clinic. RESULTS From 1966 to 2003, 3,183 eligible children received primary cancer treatment in the EKZ/AMC, of which 1,822 (57.2 %) survived ≥5 years since diagnosis. Follow-up time ranged from 5.0 to 42.5 years (median, 17.7). Baseline primary cancer treatment characteristics were complete for 1,781 (97.7 %) survivors, and 1,452 (79.7 %) survivors visited our outpatient clinic. Baseline characteristics of survivors who visited the clinic did not differ from those without follow-up. Within our cohort, 54 studies have been conducted studying a wide range of late treatment-related effects. CONCLUSIONS The EKZ/AMC childhood cancer survivor cohort provides a strong structure for ongoing research on the late effects of childhood cancer treatment and will continuously contribute in reducing evidence gaps concerning risks and risk groups within this vulnerable population. IMPLICATIONS FOR CANCER SURVIVORS Our large cohort study of childhood cancer survivors with complete baseline characteristics and unique, long-term medical follow-up decreases gaps in evidence about specific risks of late effects and high-risk groups, with the ultimate goal of improving the quality of care for childhood cancer survivors.
Collapse
Affiliation(s)
- E Sieswerda
- Department of Pediatric Oncology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kimmel M, Corey S. Stochastic Hypothesis of Transition from Inborn Neutropenia to AML: Interactions of Cell Population Dynamics and Population Genetics. Front Oncol 2013; 3:89. [PMID: 23641360 PMCID: PMC3638131 DOI: 10.3389/fonc.2013.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/02/2013] [Indexed: 11/13/2022] Open
Abstract
We present a stochastic model of driver mutations in the transition from severe congenital neutropenia to myelodysplastic syndrome to acute myeloid leukemia (AML). The model has the form of a multitype branching process. We derive equations for the distributions of the times to consecutive driver mutations and set up simulations involving a range of hypotheses regarding acceleration of the mutation rates in successive mutant clones. Our model reproduces the clinical distribution of times at diagnosis of secondary AML. Surprisingly, within the framework of our assumptions, stochasticity of the mutation process is incapable of explaining the spread of times at diagnosis of AML in this case; it is necessary to additionally assume a wide spread of proliferative parameters among disease cases. This finding is unexpected but generally consistent with the wide heterogeneity of characteristics of human cancers.
Collapse
Affiliation(s)
- Marek Kimmel
- Department of Statistics, Rice University Houston, TX, USA ; Department of Bioengineering, Rice University Houston, TX, USA
| | | |
Collapse
|
27
|
Aetiology, genetics and prevention of secondary neoplasms in adult cancer survivors. Nat Rev Clin Oncol 2013; 10:289-301. [PMID: 23529000 DOI: 10.1038/nrclinonc.2013.41] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Second and higher-order malignancies now comprise about 18% of all incident cancers in the USA, superseding first primary cancers of the breast, lung, and prostate. The occurrence of second malignant neoplasms (SMN) is influenced by a myriad of factors, including the late effects of cancer therapy, shared aetiological factors with the primary cancer (such as tobacco use, excessive alcohol intake, and obesity), genetic predisposition, environmental determinants, host effects, and combinations of factors, including gene-environment interactions. The influence of these factors on SMN in survivors of adult-onset cancer is reviewed here. We also discuss how modifiable behavioural and lifestyle factors may contribute to SMN, and how these factors can be managed. Cancer survivorship provides an opportune time for oncologists and other health-care providers to counsel patients with regard to health promotion, not only to reduce SMN risk, but to minimize co-morbidities. In particular, the importance of smoking cessation, weight control, physical activity, and other factors consonant with adoption of a healthy lifestyle should be consistently emphasized to cancer survivors. Clinicians can also play a critical role by endorsing genetic counselling for selected patients and making referrals to dieticians, exercise trainers, and others to assist with lifestyle change interventions.
Collapse
|
28
|
Nekhlyudov L, Greene SM, Chubak J, Rabin B, Tuzzio L, Rolnick S, Field TS. Cancer research network: using integrated healthcare delivery systems as platforms for cancer survivorship research. J Cancer Surviv 2012; 7:55-62. [PMID: 23239136 DOI: 10.1007/s11764-012-0244-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/22/2012] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Much progress has been made in cancer survivorship research, but there are still many unanswered questions that can and need to be addressed by collaborative research consortia. METHODS Since 1999, the National Cancer Institute-funded HMO Cancer Research Network (CRN) has engaged in a wide variety of research focusing on cancer survivorship. With a focus on thematic topics in cancer survivorship, we describe how the CRN has contributed to research in cancer survivorship and the resources it offers for future collaborations. RESULTS We identified the following areas of cancer survivorship research: surveillance for and predictors of recurrences, health care delivery and care coordination, health care utilization and costs, psychosocial outcomes, cancer communication and decision making, late effects of cancer and its treatment, use of and adherence to adjuvant therapies, and lifestyle and behavioral interventions following cancer treatment. CONCLUSIONS With over a decade of experience using cancer data in community-based settings, the CRN investigators and their collaborators are poised to generate evidence in cancer survivorship research. IMPLICATIONS FOR CANCER SURVIVORS Collaborative research within these settings can improve the quality of care for cancer survivors within and beyond integrated health care delivery systems.
Collapse
Affiliation(s)
- Larissa Nekhlyudov
- Department of Population Medicine Harvard Medical School/Harvard Pilgrim Health Care Institute Department of Medicine Harvard Vanguard Medical Associates, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Elena JW, Travis LB, Simonds NI, Ambrosone CB, Ballard-Barbash R, Bhatia S, Cerhan JR, Hartge P, Heist RS, Kushi LH, Lash TL, Morton LM, Onel K, Pierce JP, Robison LL, Rowland JH, Schrag D, Sellers TA, Seminara D, Shu XO, Thomas NE, Ulrich CM, Freedman AN. Leveraging epidemiology and clinical studies of cancer outcomes: recommendations and opportunities for translational research. J Natl Cancer Inst 2012. [PMID: 23197494 DOI: 10.1093/jnci/djs473] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As the number of cancer survivors continues to grow, research investigating the factors that affect cancer outcomes, such as disease recurrence, risk of second malignant neoplasms, and the late effects of cancer treatments, becomes ever more important. Numerous epidemiologic studies have investigated factors that affect cancer risk, but far fewer have addressed the extent to which demographic, lifestyle, genomic, clinical, and psychosocial factors influence cancer outcomes. To identify research priorities as well as resources and infrastructure needed to advance the field of cancer outcomes and survivorship research, the National Cancer Institute sponsored a workshop titled "Utilizing Data from Cancer Survivor Cohorts: Understanding the Current State of Knowledge and Developing Future Research Priorities" on November 3, 2011, in Washington, DC. This commentary highlights recent findings presented at the workshop, opportunities to leverage existing data, and recommendations for future research, data, and infrastructure needed to address high priority clinical and research questions. Multidisciplinary teams that include epidemiologists, clinicians, biostatisticians, and bioinformaticists will be essential to facilitate future cancer outcome studies focused on improving clinical care of cancer patients, identifying those at high risk of poor outcomes, and implementing effective interventions to ultimately improve the quality and duration of survival.
Collapse
Affiliation(s)
- Joanne W Elena
- Clinical and Translational Epidemiology Branch, DCCPS 6130 Executive Blvd, rm 5136 Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wood ME, Vogel V, Ng A, Foxhall L, Goodwin P, Travis LB. Second malignant neoplasms: assessment and strategies for risk reduction. J Clin Oncol 2012; 30:3734-45. [PMID: 23008293 DOI: 10.1200/jco.2012.41.8681] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Improvements in early detection, supportive care, and treatment have resulted in an increasing number of cancer survivors, with a current 5-year relative survival rate for all cancers combined of approximately 66.1%. For some patients, these survival advances have been offset by the long-term late effects of cancer and its treatment, with second malignant neoplasms (SMNs) comprising one of the most potentially life-threatening sequelae. The number of patients with SMNs is growing, with new SMNs now representing about one in six of all cancers reported to the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) Program. SMNs reflect not only the late effects of therapy but also the influence of shared etiologic factors (in particular, tobacco and excessive alcohol intake), genetic susceptibility, environmental exposures, host effects, and combinations of factors, including gene-environment interactions. For selected SMNs, risk is also modified by age at exposure and attained age. SMNs can be categorized into three major groups according to the predominant etiologic factor(s): (1) treatment-related, (2) syndromic, and (3) those due to shared etiologic exposures, although the nonexclusivity of these groups should be underscored. Here we provide an overview of SMNs in survivors of adult-onset cancer, summarizing the current, albeit limited, clinical evidence with regard to screening and prevention, with a focus on the provision of guidance for health care providers. The growing number of patients with second (and higher-order) cancers mandates that we also further probe etiologic influences and genetic variants that heighten risk, and that we better define high-risk groups for targeted preventive and interventional clinical strategies.
Collapse
Affiliation(s)
- Marie E Wood
- Division of Hematology/Oncology, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
31
|
A polymorphism in the XPD gene predisposes to leukemic transformation and new nonmyeloid malignancies in essential thrombocythemia and polycythemia vera. Blood 2012; 119:5221-8. [PMID: 22496165 DOI: 10.1182/blood-2012-02-411215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with essential thrombocythemia (ET) and polycythemia vera (PV) have an increased incidence of acute myeloid leukemia and new nonhematologic malignancies compared with the general population. However, information on the factors determining the risk for such complications is limited. In the present study, we investigated whether constitutional genetic variations in DNA repair predispose to leukemic transformation and new nonmyeloid neoplasias in patients with ET and PV. Case-control studies for predisposition to both types of malignancies were nested in a cohort of 422 subjects diagnosed with ET or PV during the period 1973-2010 in several institutions in Spain. A total of 64 incidence cases of leukemia and 50 cases of primary nonmyeloid cancers were accrued. At conditional regression analysis, the Gln/Gln genotype in the XPD codon 751 showed the strongest association with both leukemic transformation (odds ratio [OR] = 4.9; 95% confidence interval [95% CI], 2.0-12) and development of nonmyeloid malignancies (OR = 4.2; 95% CI, 1.5-12). Additional predictive factors were exposure to cytoreductive agents for leukemic transformation (OR = 3.5; 95% CI, 2.0-6.2) and age for nonmyeloid malignancies (OR = 2.0; 95% CI, 1.4-2.8). These findings provide further evidence about the contribution of inherited genetic variations to the pathogenesis and clinical course of myeloproliferative neoplasms.
Collapse
|
32
|
Grunfeld E, Earle CC, Stovall E. A Framework for Cancer Survivorship Research and Translation to Policy. Cancer Epidemiol Biomarkers Prev 2011; 20:2099-104. [DOI: 10.1158/1055-9965.epi-11-0622] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|