1
|
Lin YH, Hung CC, Lin GC, Tsai IC, Lum CY, Hsiao TH. Utilizing polygenic risk score for breast cancer risk prediction in a Taiwanese population. Cancer Epidemiol 2024; 94:102701. [PMID: 39705763 DOI: 10.1016/j.canep.2024.102701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Breast cancer has been the most frequently diagnosed cancer among women in Taiwan since 2003. While genetic variants play a significant role in the elevated risk of breast cancer, their implications have been less explored within Asian populations. Variant-based polygenic risk scores (PRS) have emerged as valuable tools for assessing the likelihood of developing breast cancer. In light of this, we attempted to establish a predictive breast cancer PRS tailored specifically for the Taiwanese population. METHODS The cohort analyzed in this study comprised 28,443 control subjects and 1501 breast cancer cases. These individuals were sourced from the Taiwan Precision Medicine Initiative (TPMI) array and the breast cancer registry lists at Taichung Veterans General Hospital (TCVGH). Utilizing the breast cancer-associated Polygenic Score (PGS) Catalog, we employed logistic regression to identify the most effective PRS for predicting breast cancer risk. Subsequently, we subjected the cohort of 1501 breast cancer patients to further analysis to investigate potential heterogeneity in breast cancer risk. RESULTS The Polygenic Score ID PGS000508 demonstrated a significant association with breast cancer risk in Taiwanese women with a 1.498-fold increase in cancer risk(OR = 1.498, 95 % CI(1.431-1.567, p=5.38×10^-68). Individuals in the highest quartile exhibited a substantially elevated risk compared to those in the lowest quartile, with an odds ratio (OR) of 3.11 (95 % CI: 2.70-3.59; p=1.15×10^-55). In a cohort of 1501 breast cancer cases stratified by PRS distribution, women in the highest quartile were diagnosed at a significantly younger age (p=0.003) compared to those in the lowest quartile. However, no significant differences were observed between PRS quartiles in relation to clinical stage (p=0.274), pathological stage (p=0.647), or tumor subtype distribution (p=0.244). CONCLUSION In our study, we pinpointed PGS000508 as a significant predictive factor for breast cancer risk in Taiwanese women. Furthermore, we found that a higher PGS000508 score was associated with younger age at the time of first diagnosis among the breast cancer cases examined.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chih-Chiang Hung
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; Department of Applied Cosmetology, College of Human Science and Social Innovation, Hung Kuang University, Taichung 43302, Taiwan; Ph.D Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Guan-Cheng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Chen Tsai
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan; College of Biomedical, China Medical University, Taichung, Taiwan
| | - Chih Yean Lum
- Division of Breast Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Tzu-Hung Hsiao
- Ph.D Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Department of Public Health, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 4022, Taiwan.
| |
Collapse
|
2
|
Rosenstein BS, Yamoah K, Bentzen SM, Kerns SL, McDonald JT, West CML, Vega A, Rattay T, Ricks-Santi LJ. The Need to Enrich Population Diversity in Radiogenomic Research. Int J Radiat Oncol Biol Phys 2024; 120:1107-1110. [PMID: 39424580 DOI: 10.1016/j.ijrobp.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 10/21/2024]
Affiliation(s)
- Barry S Rosenstein
- Departments of Radiation Oncology and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kosj Yamoah
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Søren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland Greenebaum Comprehensive Cancer Center and University of Maryland School of Medicine, Baltimore, Maryland
| | - Sarah L Kerns
- Department of Radiation Oncology, The Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Catharine M L West
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Instituto de Investigacion Sanitaria de Santiago de Compostela, Hospital Clínico Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Tim Rattay
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Luisel J Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| |
Collapse
|
3
|
Kasugai Y, Oze I, Koyanagi YN, Taniyama Y, Ito H, Imoto I, Matsuo K. Confounding in Epidemiological Studies on Assessment of the Impact of Genetic Factors on Disease Risk: The Problem of Redundant Adjustment. J Epidemiol 2024; 34:498-502. [PMID: 38403691 PMCID: PMC11405368 DOI: 10.2188/jea.je20230277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Affiliation(s)
- Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yuriko N. Koyanagi
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yukari Taniyama
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Jung EM, Raduski AR, Mills LJ, Spector LG. A phenome-wide association study of polygenic scores for selected childhood cancer: Results from the UK Biobank. HGG ADVANCES 2024; 6:100356. [PMID: 39340156 PMCID: PMC11538869 DOI: 10.1016/j.xhgg.2024.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to scan phenotypes in adulthood associated with polygenic risk scores (PRS) for childhood cancers with well-articulated genetic architectures-acute lymphoblastic leukemia (ALL), Ewing sarcoma, and neuroblastoma-to examine genetic pleiotropy. Furthermore, we aimed to determine which SNPs could drive associations. Per-SNP summary statistics were extracted for PRS calculation. Participants with white British ancestry were exclusively included for analyses. SNPs were queried from the UK Biobank genotype imputation data. Records from the cancer registry, death registry, and inpatient diagnoses were abstracted for phenome-wide scans. Firth logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) alongside corresponding p values, adjusting for age at recruitment and sex. A total of 244,332 unrelated white British participants were included. We observed a significant association between ALL-PRS and ALL (OR: 1.20e+24, 95% CI: 9.08e+14-1.60e+33). In addition, we observed a significant association between high-risk neuroblastoma PRS and nonrheumatic aortic valve disorders (OR: 43.9, 95% CI: 7.42-260). There were no significant phenotype associations with Ewing sarcoma and neuroblastoma PRS. Regarding individual SNPs, rs17607816 increased the risk of ALL (OR: 6.40, 95% CI: 3.26-12.57). For high-risk neuroblastoma, rs80059929 elevated the risk of atrioventricular block (OR: 3.04, 95% CI: 1.85-4.99). Our findings suggest that individuals with genetic susceptibility to ALL may face a lifelong risk for developing ALL, along with a genetic pleiotropic association between high-risk neuroblastoma and circulatory diseases.
Collapse
Affiliation(s)
- Eun Mi Jung
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| | - Andrew R Raduski
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Lauren J Mills
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Basurto-Lozada P, Vázquez-Cruz ME, Molina-Aguilar C, Jiang A, Deacon DC, Cerrato-Izaguirre D, Simonin-Wilmer I, Arriaga-González FG, Contreras-Ramírez KL, Dawson ET, Wong-Ramirez JRC, Ramos-Galguera JI, Álvarez-Cano A, García-Ortega DY, García-Salinas OI, Hidalgo-Miranda A, Cisneros-Villanueva M, Martínez-Said H, Arends MJ, Ferreira I, Tullett M, Olvera-León R, van der Weyden L, del Castillo Velasco Herrera M, Roldán-Marín R, Vidaurri de la Cruz H, Tavares-de-la-Paz LA, Hinojosa-Ugarte D, Belote RL, Bishop DT, Díaz-Gay M, Alexandrov LB, Sánchez-Pérez Y, In GK, White RM, Possik PA, Judson-Torres RL, Adams DJ, Robles-Espinoza CD. Ancestry and somatic profile predict acral melanoma origin and prognosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.21.24313911. [PMID: 39399030 PMCID: PMC11469390 DOI: 10.1101/2024.09.21.24313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Acral melanoma, which is not ultraviolet (UV)-associated, is the most common type of melanoma in several low- and middle-income countries including Mexico. Latin American samples are significantly underrepresented in global cancer genomics studies, which directly affects patients in these regions as it is known that cancer risk and incidence may be influenced by ancestry and environmental exposures. To address this, here we characterise the genome and transcriptome of 128 acral melanoma tumours from 96 Mexican patients, a population notable because of its genetic admixture. Compared with other studies of melanoma, we found fewer frequent mutations in classical driver genes such as BRAF, NRAS or NF1. While most patients had predominantly Amerindian genetic ancestry, those with higher European ancestry had increased frequency of BRAF mutations and a lower number of structural variants. These BRAF-mutated tumours have a transcriptional profile similar to cutaneous non-volar melanocytes, suggesting that acral melanomas in these patients may arise from a distinct cell of origin compared to other tumours arising in these locations. KIT mutations were found in a subset of these tumours, and transcriptional profiling defined three expression clusters; these characteristics were associated with overall survival. We highlight novel low-frequency drivers, such as SPHKAP, which correlate with a distinct genomic profile and clinical characteristics. Our study enhances knowledge of this understudied disease and underscores the importance of including samples from diverse ancestries in cancer genomics studies.
Collapse
Affiliation(s)
- Patricia Basurto-Lozada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Christian Molina-Aguilar
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Amanda Jiang
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dekker C. Deacon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Dennis Cerrato-Izaguirre
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Irving Simonin-Wilmer
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Fernanda G. Arriaga-González
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Kenya L. Contreras-Ramírez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | | | - J. Rene C. Wong-Ramirez
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johana Itzel Ramos-Galguera
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
| | - Alethia Álvarez-Cano
- Surgical Oncology, Christus Muguerza Alta Especialidad, Monterrey, Nuevo Leon, Mexico
| | - Dorian Y. García-Ortega
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Omar Isaac García-Salinas
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Héctor Martínez-Said
- Surgical Oncology, Skin, Soft Tissue & Bone Tumors Department, National Cancer Institute, Mexico City, Mexico
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Mark Tullett
- Department of histopathology, University Hospitals Sussex, St Richard hospital, Spitalfield lane, Chichester
| | - Rebeca Olvera-León
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | - Rodrigo Roldán-Marín
- Dermato-Oncology Clinic, Research Division, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Helena Vidaurri de la Cruz
- Pediatric Dermatology Service, General Hospital of Mexico Dr. Eduardo Liceaga, Ministry of Health. Mexico City, Mexico
| | | | | | - Rachel L. Belote
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- The Ohio State University, Department of Molecular Genetics, Columbus, Ohio, United States
| | - D. Timothy Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), San Fernando No. 22, Tlalpan, Ciudad de México CP. 14080, Mexico
| | - Gino K. In
- University of Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, Division of Oncology, Los Angeles, CA, USA
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Patrícia A. Possik
- Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rua Andre Cavalcanti 37, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - David J. Adams
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico, 76230
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
6
|
Morris HN, Winslow AT, Barreiro-Rosado JA, Torian S, Charlot M. Scoping Review of Barriers and Facilitators to Recruitment of Black People With Cancer in Biospecimen-Based Research. JCO Precis Oncol 2024; 8:e2300708. [PMID: 38748944 PMCID: PMC11371087 DOI: 10.1200/po.23.00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 09/01/2024] Open
Abstract
The increasing focus on precision medicine to optimize cancer treatments and improve cancer outcomes is an opportunity to consider equitable engagement of people racialized as Black or African American (B/AA) in biospecimen-based cancer research. B/AA people have the highest cancer incidence and mortality rates compared with all other racial and ethnic groups in the United States, yet are under-represented in biospecimen-based research. A narrative scoping review was conducted to understand the current literature on barriers, facilitators, and evidence-based strategies associated with the engagement of B/AA people with cancer in biospecimen research. Three comprehensive searches of MEDLINE, CINAHL, Embase, and Scopus were conducted. Of 770 studies generated by the search, 10 met all inclusion criteria for this review. The most frequently reported barriers to engagement of B/AA people in biospecimen research were lack of biospecimen research awareness, fear of medical harm, and violation of personal health information privacy, resource constraints, and medical mistrust. Key facilitators included previous exposure to research, knowledge about underlying genetic causes of cancer, and altruism. Recommended strategies to increase participation of B/AA people in biospecimen-based research included community engagement, transparent communication, workforce diversity, education and training, and research participant incentives. Inclusion of B/AA people in biospecimen-based research has the potential to advance the promise of precision oncology for all patients and reduce racial disparities in cancer outcomes.
Collapse
Affiliation(s)
- Hayley N. Morris
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | | | - Stacy Torian
- Division of Libraries, New York University, New York, NY
| | - Marjory Charlot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
7
|
Chen H, Wang Z, Gong L, Wang Q, Chen W, Wang J, Ma X, Ding R, Li X, Zou X, Plass M, Lian C, Ni T, Wei GH, Li W, Deng L, Li L. A distinct class of pan-cancer susceptibility genes revealed by an alternative polyadenylation transcriptome-wide association study. Nat Commun 2024; 15:1729. [PMID: 38409266 PMCID: PMC10897204 DOI: 10.1038/s41467-024-46064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zeyang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Lihai Gong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Qixuan Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Wenyan Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jia Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xuelian Ma
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Ruofan Ding
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xing Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Mireya Plass
- Gene Regulation of Cell Identity Group, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Barcelona, 08908, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Cheng Lian
- Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, China
| | - Gong-Hong Wei
- Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, 90410, Finland
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, The University of California, Irvine, CA, 92697, USA.
| | - Lin Deng
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
8
|
Winham SJ, Sherman ME. Leveraging GWAS: Path to Prevention? Cancer Prev Res (Phila) 2024; 17:13-18. [PMID: 38173393 DOI: 10.1158/1940-6207.capr-23-0336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Developing novel cancer prevention medication strategies is important for reducing mortality. Identification of common genetic variants associated with cancer risk suggests the potential to leverage these discoveries to define causal targets for cancer interception. Although each risk variant confers small increases in risk, researchers propose that blocking those that produce causal carcinogenic effects might have large impacts on cancer prevention. While a promising concept, we describe potential hurdles that may need to be scaled to reach this goal, including: (i) understanding the complexity of risk; (ii) achieving statistical power in studies with binary outcomes (cancer development: yes or no); (iii) characterization of cancer precursors; (iv) heterogeneity of cancer subtypes and the populations in which these diseases occur; (v) impact of static genetic markers across complex events of the life course; (vi) defining gene-gene and gene-environment interactions and (vii) demonstrating functional effects of markers in human populations. We assess short-term prospects for this research against the backdrop of these challenges and the potential to prevent cancer through other means. See related commentary by Peters and Tomlinson, p. 7.
Collapse
Affiliation(s)
- Stacey J Winham
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Mark E Sherman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
9
|
Fernández-Rhodes L. Beyond borders: A commentary on the benefit of promoting immigrant populations in genome-wide association studies. HGG ADVANCES 2023; 4:100205. [PMID: 37287864 PMCID: PMC10241976 DOI: 10.1016/j.xhgg.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Immigrants are an important part of many high-income nations, in that they contribute to the sociocultural tapestry, economic well-being, and demographic diversity of their receiving countries and communities. Yet, genomic studies to date have generally focused on non-immigrant, European-ancestry populations. Although this approach has proven fruitful in discovering and validating genomic loci, within the context of racially/ethnically diverse countries like the United States-wherein half of immigrants hail from Latin America and another quarter from Asia-this approach is insufficient. There is a persistent diversity gap in genomic research in terms of both current samples and genome-wide association studies, meaning that the field's understanding of genetic architecture and gene-environmental interactions is being hampered. In this commentary, I provide motivating examples of recent research developments related to the following: (1) how the increased ancestral diversity, such as seen among Latin American immigrants, improves power to discover and document genomic loci, (2) informs how environmental factors, such as immigration-related exposures, interact with genotypes to influence phenotypes, and (3) how inclusion can be promoted through community-engaged research programs and policies. I conclude that greater inclusion of immigrants in genomic research can move the field forward toward novel discoveries and interventions to address racial/ethnic health disparities.
Collapse
Affiliation(s)
- Lindsay Fernández-Rhodes
- Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA 16802, USA
| |
Collapse
|
10
|
Sivakumar S, Lee JK, Moore JA, Hopkins J, Newberg JY, Madison R, Graf R, Schrock AB, Kobetz E, Vince R, Franco I, Seldon C, Frampton GM, Mills J, Venstrom J, Mahal BA. Comprehensive genomic profiling and treatment patterns across ancestries in advanced prostate cancer: a large-scale retrospective analysis. Lancet Digit Health 2023; 5:e380-e389. [PMID: 37236698 DOI: 10.1016/s2589-7500(23)00053-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Men of African ancestry experience the greatest burden of prostate cancer globally, but they are under-represented in genomic and precision medicine studies. Therefore, we sought to characterise the genomic landscape, comprehensive genomic profiling (CGP) utilisation patterns, and treatment patterns across ancestries in a large, diverse, advanced prostate cancer cohort, to determine the impact of genomics on ancestral disparities. METHODS In this large-scale retrospective analysis, the CGP-based genomic landscape was evaluated in biopsy sections from 11 741 patients with prostate cancer, with ancestry inferred using a single nucleotide polymorphism-based approach. Admixture-derived ancestry fractions for each patient were also interrogated. Independently, clinical and treatment information was retrospectively reviewed for 1234 patients in a de-identified US-based clinicogenomic database. Prevalence of gene alterations, including actionable gene alterations, was assessed across ancestries (n=11 741). Furthermore, real-world treatment patterns and overall survival was assessed in the subset of patients with linked clincogenomic information (n=1234). FINDINGS The CGP cohort included 1422 (12%) men of African ancestry and 9244 (79%) men of European ancestry; the clinicogenomic database cohort included 130 (11%) men of African ancestry and 1017 (82%) men of European ancestry. Men of African ancestry received more lines of therapy before CGP than men of European ancestry (median of two lines [IQR 0-8] vs one line [0-10], p=0·029). In genomic analyses, ancestry-specific mutational landscapes were observed, but the prevalence of alterations in AR, the DNA damage response pathway, and other actionable genes were similar across ancestries. Similar genomic landscapes were observed in analyses that accounted for admixture-derived ancestry fractions. After undergoing CGP, men of African ancestry were less likely to receive a clinical study drug compared with men of European ancestry (12 [10%] of 118 vs 246 [26%] of 938, p=0·0005). INTERPRETATION Similar rates of gene alterations with therapy implications suggest that differences in actionable genes (including AR and DNA damage response pathway genes) might not be a main driver of disparities across ancestries in advanced prostate cancer. Later CGP utilisation and a lower rate of clinical trial enrolment observed in men of African ancestry could affect genomics, outcomes, and disparities. FUNDING American Society for Radiation Oncology, Department of Defense, Flatiron Health, Foundation Medicine, Prostate Cancer Foundation, and Sylvester Comprehensive Cancer Center.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryon Graf
- Foundation Medicine, Cambridge, MA, USA
| | | | - Erin Kobetz
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | | | - Crystal Seldon
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | | | | | - Brandon A Mahal
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| |
Collapse
|
11
|
Telisnor G, DeRemer DL, Frimpong E, Agyare E, Allen J, Ricks-Santi L, Han B, George T, Rogers SC. Review of genetic and pharmacogenetic differences in cytotoxic and targeted therapies for pancreatic cancer in African Americans. J Natl Med Assoc 2023; 115:164-174. [PMID: 36801148 PMCID: PMC10639003 DOI: 10.1016/j.jnma.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer mortality and the incidence is projected to increase by 2030. Despite recent advances in its treatment, African Americans have a 50-60% higher incidence and 30% higher mortality rate when compared to European Americans possibly resulting from differences in socioeconomic status, access to healthcare, and genetics. Genetics plays a role in cancer predisposition, response to cancer therapeutics (pharmacogenetics), and in tumor behavior, making some genes targets for oncologic therapeutics. We hypothesize that the germline genetic differences in predisposition, drug response, and targeted therapies also impact PDAC disparities. To demonstrate the impact of genetics and pharmacogenetics on PDAC disparities, a review of the literature was performed using PubMed with variations of the following keywords: pharmacogenetics, pancreatic cancer, race, ethnicity, African, Black, toxicity, and the FDA-approved drug names: Fluoropyrimidines, Topoisomerase inhibitors, Gemcitabine, Nab-Paclitaxel, Platinum agents, Pembrolizumab, PARP-inhibitors, and NTRK fusion inhibitors. Our findings suggest that the genetic profiles of African Americans may contribute to disparities related to FDA approved chemotherapeutic response for patients with PDAC. We recommend a strong focus on improving genetic testing and participation in biobank sample donations for African Americans. In this way, we can improve our current understanding of genes that influence drug response for patients with PDAC.
Collapse
Affiliation(s)
- Guettchina Telisnor
- College of Pharmacy, CaRE(2) Health Equity Center, University of Florida, Gainesville, FL, USA
| | - David L DeRemer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Esther Frimpong
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - Edward Agyare
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida Agricultural and Mechanical University, Tallahassee, FL, USA
| | - John Allen
- College of Pharmacy, CaRE(2) Health Equity Center, University of Florida, Gainesville, FL, USA
| | - Luisel Ricks-Santi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bo Han
- Department of Surgery, College of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thomas George
- Division of Hematology and Oncology, College of Medicine, University of Florida, 600 SW Archer Road, PO BOX 100278, Gainesville, FL 32610- 0278, USA
| | - Sherise C Rogers
- Division of Hematology and Oncology, College of Medicine, University of Florida, 600 SW Archer Road, PO BOX 100278, Gainesville, FL 32610- 0278, USA.
| |
Collapse
|
12
|
Ohbe H, Hachiya T, Yamaji T, Nakano S, Miyamoto Y, Sutoh Y, Otsuka-Yamasaki Y, Shimizu A, Yasunaga H, Sawada N, Inoue M, Tsugane S, Iwasaki M. Development and validation of genome-wide polygenic risk scores for predicting breast cancer incidence in Japanese females: a population-based case-cohort study. Breast Cancer Res Treat 2023; 197:661-671. [PMID: 36538246 DOI: 10.1007/s10549-022-06843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This study aimed to develop an ancestry-specific polygenic risk scores (PRSs) for the prediction of breast cancer events in Japanese females and validate it in a longitudinal cohort study. METHODS Using publicly available summary statistics of female breast cancer genome-wide association study (GWAS) of Japanese and European ancestries, we, respectively, developed 31 candidate genome-wide PRSs using pruning and thresholding (P + T) and LDpred methods with varying parameters. Among the candidate PRS models, the best model was selected using a case-cohort dataset (63 breast cancer cases and 2213 sub-cohorts of Japanese females during a median follow-up of 11.9 years) according to the maximal predictive ability by Harrell's C-statistics. The best-performing PRS for each derivation GWAS was evaluated in another independent case-cohort dataset (260 breast cancer cases and 7845 sub-cohorts of Japanese females during a median follow-up of 16.9 years). RESULTS For the best PRS model involving 46,861 single nucleotide polymorphisms (SNPs; P + T method with PT = 0.05 and R2 = 0.2) derived from Japanese-ancestry GWAS, the Harrell's C-statistic was 0.598 ± 0.018 in the evaluation dataset. The age-adjusted hazard ratio for breast cancer in females with the highest PRS quintile compared with those in the lowest PRS quintile was 2.47 (95% confidence intervals, 1.64-3.70). The PRS constructed using Japanese-ancestry GWAS demonstrated better predictive performance for breast cancer in Japanese females than that using European-ancestry GWAS (Harrell's C-statistics 0.598 versus 0.586). CONCLUSION This study developed a breast cancer PRS for Japanese females and demonstrated the usefulness of the PRS for breast cancer risk stratification.
Collapse
Affiliation(s)
- Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tsuyoshi Hachiya
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan.
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Shiori Nakano
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshihisa Miyamoto
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoichi Sutoh
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Yayoi Otsuka-Yamasaki
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Atsushi Shimizu
- Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Shiwa, Iwate, 028-3694, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Manami Inoue
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Prevention, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, 162-8636, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.,Division of Cohort Research, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | | |
Collapse
|
13
|
Park SY, Setiawan VW, White LR, Wu AH, Cheng I, Haiman CA, Wilkens LR, Le Marchand L, Lim U. Modifying effects of race and ethnicity and APOE on the association of physical activity with risk of Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:507-517. [PMID: 35476309 PMCID: PMC9810117 DOI: 10.1002/alz.12677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION We investigated whether the protective association of physical activity with risk of Alzheimer's disease and related dementias (ADRD) has genetic or behavioral variations. METHODS In the Multiethnic Cohort, we analyzed moderate or vigorous physical activity (MVPA) reported at ages 45 to 75 among 88,047 participants in relation to 13,039 incident diagnoses of late-onset ADRD identified in Medicare claims (1999 to 2014), by five racial and ethnic groups, hours sitting, and in a subset (16%), apolipoprotein E (APOE) genotype. RESULTS MVPA was inversely associated with ADRD (hazard ratio for ≥14 vs <2.5 hours/week: 0.83, 95% confidence interval [CI]: 0.76 to 0.90 in men; 0.88, 5% CI: 0.81 to 0.95 in women). The association was inverse in all racial and ethnic groups except Black participants (P-heterogeneity = 0.52), but stronger in individuals with lower levels of sitting duration or those who do not carry the APOE e4 risk allele. DISCUSSION The different effects of physical activity by sitting duration and APOE genotype warrant further research.
Collapse
Affiliation(s)
- Song-Yi Park
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Veronica Wendy Setiawan
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Lon R. White
- Pacific Health Research and Education Institute, Honolulu, Hawaii, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Anna H. Wu
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Christopher A. Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Lynne R. Wilkens
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Loїc Le Marchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, USA
| | - Unhee Lim
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
14
|
A Genome-Wide Association Study Identified Novel Genetic Susceptibility Loci for Oral Cancer in Taiwan. Int J Mol Sci 2023; 24:ijms24032789. [PMID: 36769103 PMCID: PMC9917812 DOI: 10.3390/ijms24032789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Taiwan has the highest incidence rate of oral cancer in the world. Although oral cancer is mostly an environmentally induced cancer, genetic factors also play an important role in its etiology. Genome-wide association studies (GWAS) have identified nine susceptibility regions for oral cancers in populations of European descent. In this study, we performed the first GWAS of oral cancer in Taiwan with 1529 cases and 44,572 controls. We confirmed two previously reported loci on the 6p21.33 (HLA-B) and 6p21.32 (HLA-DQ gene cluster) loci, highlighting the importance of the human leukocyte antigen and, hence, the immunologic mechanisms in oral carcinogenesis. The TERT-CLMPT1L locus on 5p15.33, the 4q23 ADH1B locus, and the LAMC3 locus on 9q34.12 were also consistent in the Taiwanese. We found two new independent loci on 6p21.32, rs401775 in SKIV2L gene and rs9267798 in TNXB gene. We also found two suggestive novel Taiwanese-specific loci near the TPRS1 gene on 8q23.3 and in the TMED3 gene on 15q25.1. This study identified both common and unique oral cancer susceptibility loci in the Taiwanese as compared to populations of European descent and shed significant light on the etiology of oral cancer in Taiwan.
Collapse
|
15
|
Ng CCY, Lim S, Lim AH, Md Nasir ND, Zhang J, Rajasegaran V, Lee JY, Kok JST, Thike AA, Lim JX, Weng R, Yee S, Choudhury Y, Chan JY, Tan PH, Tan MH, Teh BT. A comprehensive next generation sequencing tissue assay for Asian-prevalent cancers—Analytical validation and performance evaluation with clinical samples. Front Mol Biosci 2022; 9:963243. [PMID: 36213130 PMCID: PMC9532579 DOI: 10.3389/fmolb.2022.963243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: A well-validated diagnostic assay with curated biomarkers complements clinicopathological factors to facilitate early diagnosis and ensure timely treatment delivery. This study focuses on an Asian-centric cancer diagnostic assay designed and thoroughly validated against commercially available standard references and a cohort of over 200 clinical specimens spanning 12 diverse Asian-centric cancer types. Methods: The assay uses hybrid-capture probes capable of profiling DNA aberrations from 572 cancer-related genes and 91 RNA fusion partners. The panel can detect clinically-tractable biomarkers such as microsatellite instability (MSI) and tumor mutation burden (TMB). Results: Analytical evaluation demonstrated 100% specificity and 99.9% sensitivity within a ≥5% VAF limit of detection (LoD) for SNV/Indels. RNA-based fusion features an LoD of ≥5 copies per nanogram input when evaluated against commercial references. Excellent linearity and concordance were observed when benchmarking against orthogonal methods in identifying MSI status, TMB scores and RNA fusions. Actionable genetic alterations were identified in 65% of the clinical samples. Conclusion: These results demonstrate a molecular diagnostic assay that accurately detects genomic alterations and complex biomarkers. The data also supports an excellent performance of this assay for making critical diagnoses and well-informed therapeutic decisions in Asian prevalent cancers.
Collapse
Affiliation(s)
- Cedric Chuan-Young Ng
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Sandy Lim
- Diagnostics Development Hub (DxD Hub), A National Platform Hosted by A*STAR, Singapore, Singapore
| | - Abner Herbert Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Nur Diyana Md Nasir
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Jingxian Zhang
- Diagnostics Development Hub (DxD Hub), A National Platform Hosted by A*STAR, Singapore, Singapore
| | - Vikneswari Rajasegaran
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Jessica Sook Ting Kok
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | | | - Ruifen Weng
- Diagnostics Development Hub (DxD Hub), A National Platform Hosted by A*STAR, Singapore, Singapore
| | - Sidney Yee
- Diagnostics Development Hub (DxD Hub), A National Platform Hosted by A*STAR, Singapore, Singapore
| | | | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
- Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Min-Han Tan
- Lucence Diagnostics Pte Ltd, Singapore, Singapore
- *Correspondence: Bin Tean Teh, ; Min-Han Tan,
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Bin Tean Teh, ; Min-Han Tan,
| |
Collapse
|
16
|
Zhou H, Vasiliou V. Alcohol Use and Use Disorder and Cancer Risk: Perspective on Causal Inference. Complex Psychiatry 2022; 8:9-12. [PMID: 36601413 PMCID: PMC9669948 DOI: 10.1159/000526407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA
- *Hang Zhou,
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Byun J, Han Y, Li Y, Xia J, Long E, Choi J, Xiao X, Zhu M, Zhou W, Sun R, Bossé Y, Song Z, Schwartz A, Lusk C, Rafnar T, Stefansson K, Zhang T, Zhao W, Pettit RW, Liu Y, Li X, Zhou H, Walsh KM, Gorlov I, Gorlova O, Zhu D, Rosenberg SM, Pinney S, Bailey-Wilson JE, Mandal D, de Andrade M, Gaba C, Willey JC, You M, Anderson M, Wiencke JK, Albanes D, Lam S, Tardon A, Chen C, Goodman G, Bojeson S, Brenner H, Landi MT, Chanock SJ, Johansson M, Muley T, Risch A, Wichmann HE, Bickeböller H, Christiani DC, Rennert G, Arnold S, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Andrew AS, Kiemeney LA, Shen H, Zienolddiny S, Grankvist K, Johansson M, Caporaso N, Cox A, Hong YC, Yuan JM, Lazarus P, Schabath MB, Aldrich MC, Patel A, Lan Q, Rothman N, Taylor F, Kachuri L, Witte JS, Sakoda LC, Spitz M, Brennan P, Lin X, McKay J, Hung RJ, Amos CI. Cross-ancestry genome-wide meta-analysis of 61,047 cases and 947,237 controls identifies new susceptibility loci contributing to lung cancer. Nat Genet 2022; 54:1167-1177. [PMID: 35915169 PMCID: PMC9373844 DOI: 10.1038/s41588-022-01115-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
To identify new susceptibility loci to lung cancer among diverse populations, we performed cross-ancestry genome-wide association studies in European, East Asian and African populations and discovered five loci that have not been previously reported. We replicated 26 signals and identified 10 new lead associations from previously reported loci. Rare-variant associations tended to be specific to populations, but even common-variant associations influencing smoking behavior, such as those with CHRNA5 and CYP2A6, showed population specificity. Fine-mapping and expression quantitative trait locus colocalization nominated several candidate variants and susceptibility genes such as IRF4 and FUBP1. DNA damage assays of prioritized genes in lung fibroblasts indicated that a subset of these genes, including the pleiotropic gene IRF4, potentially exert effects by promoting endogenous DNA damage.
Collapse
Affiliation(s)
- Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yafang Li
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jun Xia
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erping Long
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiyeon Choi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | - Wen Zhou
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Zhuoyi Song
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ann Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | - Christine Lusk
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | | | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zhao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rowland W Pettit
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Liu
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xihao Li
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ivan Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Olga Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dakai Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susan M Rosenberg
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Susan Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - James C Willey
- The University of Toledo College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Research Institute, Houston, TX, USA
| | | | - John K Wiencke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephan Lam
- Department of Integrative Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Public Health Department, University of Oviedo, ISPA and CIBERESP, Asturias, Spain
| | - Chu Chen
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stig Bojeson
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mattias Johansson
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Thomas Muley
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Angela Risch
- Division of Cancer Epigenomics, DKFZ - German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biosciences and Medical Biology, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - David C Christiani
- Department of Epidemiology, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- University of Kentucky, Markey Cancer Center, Lexington, KY, USA
| | - John K Field
- Roy Castle Lung Cancer Research Programme, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjay Shete
- Department of Biostatistics, University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | | | - Geoffrey Liu
- University Health Network- The Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Departments of Epidemiology and Community and Family Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P. R. China
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Cox
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Melinda C Aldrich
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alpa Patel
- American Cancer Society, Atlanta, GA, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Taylor
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Margaret Spitz
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Paul Brennan
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Xihong Lin
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - James McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
McClintock NC, Ayabe RI, Salas Parra RD, Kaji AH, Orozco JIJ, Marzese DM, Samuels E, Stern SL, Dauphine C, Ozao-Choy JJ. A Microcosm of Disparities in Breast Cancer: Comparison Between a Private Hospital and a Safety-Net County Hospital Within Los Angeles County. Am Surg 2022; 88:1653-1656. [PMID: 33629873 DOI: 10.1177/0003134821998668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Breast cancer survival is improving due to early detection and treatment advances. However, racial/ethnic differences in tumor biology, stage, and mortality remain. The objective of this study was to analyze presumed disparities at a local level. METHODS Breast cancer patients at a county hospital and private hospital from 2010 to 2012 were retrospectively reviewed. Demographic, clinical, pathologic, and surgical data were collected. Comparisons were made between hospital cohorts and between racial/ethnic groups from both hospitals combined. RESULTS 754 patients were included (322 from county hospital and 432 from private hospital). All patients were female. The median age was 54 years at county hospital and 60 years at private hospital (P < .0001). Racial/ethnic minorities comprised 85% of county hospital patients vs. 12% of private hospital patients (P < .0001). County hospital patients had a higher grade, clinical/pathologic stage, HER2-positive rate, and mastectomy rate. Compared to other racial/ethnic groups, non-Hispanic white women were more likely to have lower grade and ER-positive tumors. Hispanic/Latina women were younger and were more likely to have HER2-positive tumors. Both Hispanic/Latina and non-Hispanic black women presented at higher clinical stages and were more likely to undergo neoadjuvant chemotherapy and mastectomy. DISCUSSION At county hospital compared to private hospital, the proportion of racial/ethnic minorities was higher, and patients presented at younger ages with more aggressive tumors and more advanced disease. The racial/ethnic disparities that were identified locally are largely consistent with those identified in national database studies. These marked differences at hospitals within a diverse city highlight the need for further research into the disparities.
Collapse
Affiliation(s)
| | - Reed I Ayabe
- 21640Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | - Amy H Kaji
- 21640Harbor-UCLA Medical Center, Torrance, CA, USA
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Javier I J Orozco
- Saint John's Cancer Institute (formerly know as John Wayne Cancer Institute), 20279Santa Monica, CA, USA
| | - Diego M Marzese
- Saint John's Cancer Institute (formerly know as John Wayne Cancer Institute), 20279Santa Monica, CA, USA
- Cancer Biology Group, 20279Balearic Islands Health Research Institute (IDISBA), Palma, Spain
| | - Estela Samuels
- Saint John's Cancer Institute (formerly know as John Wayne Cancer Institute), 20279Santa Monica, CA, USA
| | - Stacey L Stern
- Saint John's Cancer Institute (formerly know as John Wayne Cancer Institute), 20279Santa Monica, CA, USA
| | - Christine Dauphine
- 21640Harbor-UCLA Medical Center, Torrance, CA, USA
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Junko J Ozao-Choy
- 21640Harbor-UCLA Medical Center, Torrance, CA, USA
- Los Angeles Biomedical Research Institute, Torrance, CA, USA
| |
Collapse
|
19
|
Fernández-Santiago R, Sharma M. What have we learned from genome-wide association studies (GWAS) in Parkinson's disease? Ageing Res Rev 2022; 79:101648. [PMID: 35595184 DOI: 10.1016/j.arr.2022.101648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/01/2022]
Abstract
After fifteen years of genome-wide association studies (GWAS) in Parkinson's disease (PD), what have we learned? Addressing this question will help catalogue the progress made towards elucidating disease mechanisms, improving the clinical utility of the identified loci, and envisioning how we can harness the strides to develop translational GWAS strategies. Here we review the advances of PD GWAS made to date while critically addressing the challenges and opportunities for next-generation GWAS. Thus, deciphering the missing heritability in underrepresented populations is currently at the reach of hand for a truly comprehensive understanding of the genetics of PD across the different ethnicities. Moreover, state-of-the-art GWAS designs hold a true potential for enhancing the clinical applicability of genetic findings, for instance, by improving disease prediction (PD risk and progression). Lastly, advanced PD GWAS findings, alone or in combination with clinical and environmental parameters, are expected to have the capacity for defining patient enriched cohorts stratified by genetic risk profiles and readily available for neuroprotective clinical trials. Overall, envisioning future strategies for advanced GWAS is currently timely and can be instrumental in providing novel genetic readouts essential for a true clinical translatability of PD genetic findings.
Collapse
|
20
|
Fejerman L, Ramirez AG, Nápoles AM, Gomez SL, Stern MC. Cancer Epidemiology in Hispanic Populations: What Have We Learned and Where Do We Need to Make Progress? Cancer Epidemiol Biomarkers Prev 2022; 31:932-941. [PMID: 35247883 DOI: 10.1158/1055-9965.epi-21-1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The Hispanic/Latino(x) population (H/L) in the United States of America is heterogeneous and fast growing. Cancer is the number one cause of death among H/Ls, accounting for 21% of deaths. Whereas for the most common cancers, incidence rates are lower in H/Ls compared with non-H/L White (NHW) individuals, H/Ls have a higher incidence of liver, stomach, cervical, penile, and gallbladder cancers. H/L patients tend to be diagnosed at more advanced stages for breast, colorectal, prostate, and lung cancers, and melanoma compared with NHW individuals. Etiologic and cancer outcomes research among H/Ls lags other populations. In this review, we provide a summary of challenges, opportunities, and research priorities related to cancer etiology, cancer outcomes, and survivorship to make progress in addressing scientific gaps. Briefly, we prioritize the need for more research on determinants of obesity, nonalcoholic fatty liver disease and its progression to liver cancer, stomach and gallbladder cancers, and pediatric acute lymphoblastic leukemia. We emphasize the need to improve cancer screening, early detection of cancer, and survivorship care. We highlight critical resources needed to make progress in cancer epidemiologic studies among H/L populations, including the importance of training the next generation of cancer epidemiologists conducting research in H/Ls.
Collapse
Affiliation(s)
- Laura Fejerman
- Department of Public Health Sciences, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Amelie G Ramirez
- Department of Population Health Sciences, School of Medicine, Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Anna María Nápoles
- Division of Intramural Research, National Institute on Minority Health and Health Disparities, NIH, Bethesda, Maryland
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Mariana C Stern
- Department of Population and Public Health Sciences, Department of Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
Soewito S, Wyatt R, Berenson E, Poullard N, Gessay S, Mette L, Marin E, Shelby K, Alvarez E, Choi BY, Aviles C, Pulido-Saldivar AM, Otto PM, Jatoi I, Ramamurthy C, Ignatius M, Kaklamani VG, Tomlinson GE. Disparities in Cancer Genetic Testing and Variants of Uncertain Significance in the Hispanic Population of South Texas. JCO Oncol Pract 2022; 18:e805-e813. [PMID: 35544645 PMCID: PMC10166383 DOI: 10.1200/op.22.00090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Racial and ethnic disparities have included a lack of access to both genetic testing and research, resulting in poor understanding of the genomic architecture in under-represented populations. The South Texas population is primarily of Hispanic background and has been largely devoid of genetic services. We extended access to this underserved population and uncovered genetic variants previously not observed, emphasizing the need to continually improve both genomic databases and clarification of variant significance to provide meaningful patient counseling. METHODS This study consisted of a retrospective cohort review of patients seen through a cancer genetics education and service program across 24 counties in South Texas. In total, 1,595 individuals were identified as appropriate for cancer genetic counseling and 1,377 completed genetic testing. RESULTS Eighty percent of those receiving genetic counseling self-identified as Hispanic, 16% as non-Hispanic White (NHW), 3% as African American, and 1% as other race/ethnicity. Of reported variants, 18.8% were pathogenic and 13.7% were reported as a variant of uncertain significance (VUS). VUS was reported in 17.2% of the Hispanic individuals compared with 9% NHW (P = .005). CONCLUSION Individuals of Hispanic ethnicity were significantly more likely to harbor a VUS compared with NHW. The extended reach into our regional communities revealed a gap in the ability to accurately interpret genomic variation with implications for advising patients on screening, prevention, and management strategies. A higher percentage of VUS also emphasizes the challenge of continued follow-up amid existing barriers that led to disparities in access. As understanding of the variants develops, hopefully gaps in knowledge of the genomic landscape will be lessened with increased clarity to provide accurate cancer risk assessment and recommendations for implementing prevention initiatives.
Collapse
Affiliation(s)
| | - Rachel Wyatt
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
| | - Emily Berenson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
| | | | - Shawn Gessay
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Present address: PreventionGenetics, Marshfield, WI
| | - Lindsey Mette
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Present address: Invitae, San Francisco, CA
| | - Elena Marin
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Kristin Shelby
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Elise Alvarez
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
| | - Byeong Yeob Choi
- Department of Population Health Sciences, UT Health San Antonio TX, San Antonio, TX
| | - Clarissa Aviles
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | - Anna Maria Pulido-Saldivar
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
- UT Laredo Campus, UT Health San Antonio, Laredo, TX
| | - Pamela M. Otto
- Department of Radiology, UT Health San Antonio, San Antonio, TX
| | - Ismail Jatoi
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Department of Surgical Oncology, UT Health San Antonio, San Antonio, TX
| | | | - Myron Ignatius
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| | | | - Gail E. Tomlinson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, TX
| |
Collapse
|
22
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
23
|
Lord BD, Martini RN, Davis MB. Understanding how genetic ancestry may influence cancer development. Trends Cancer 2022; 8:276-279. [PMID: 35027335 DOI: 10.1016/j.trecan.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023]
Abstract
Of the multifactorial determinants that lead to cancer health disparities among race groups, quantified genetic ancestry has begun to expand our knowledge beyond self-reported race. However, it is essential to study these biological determinants in the context of social determinants to truly improve clinical tools and achieve equitable survival outcomes.
Collapse
Affiliation(s)
- Brittany D Lord
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Rachel N Martini
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA
| | - Melissa B Davis
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA; Englander Institute of Precision Medicine, Weill Cornell Medical College, New York, NY, USA; New York Genome Center, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
24
|
Zhang W, Nicholson T, Zhang K. Deciphering the polygenic basis of racial disparities in prostate cancer by an integrative analysis of genomic and transcriptomic data. Cancer Prev Res (Phila) 2021; 15:161-171. [PMID: 34965922 DOI: 10.1158/1940-6207.capr-21-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer (PCa) prevalence in African Americans (AAs) is over 1.5 times the prevalence in European Americans (EAs). Among over a hundred index risk SNPs for PCa, only a few can be verified using the available AAs' data. Their relevance to the prevalence inequality and other racial disparities has not been fully determined. We investigated this issue by an integrative analysis of five public datasets. We categorized the datasets into two classes. The training class consisted of the datasets generated by three genome-wide association studies. The test class contained the TCGA prostate carcinoma data and the data of African and European super-populations in the 1000-Genome project. The polygenic risk scores (PRS) of test samples for cancer occurrence were calculated according to the effects of genetic variants estimated from the training samples. We obtained the following findings. Africans' PRSs are higher than Europeans' scores (p << 0.01); AA patients' PRSs are higher than EA patients' scores (p<3×10-9); the patients with tumors presenting fusion or abnormal expression in ERG and other ETS family genes have lower PRSs than the patients without such aberrations (p < 7×10-5); five tumor progression-related genes have the expression levels being significantly correlated with PRS (FDR<0.01). Additional simulation analysis shows that the high PCa prevalence in African populations makes it challenging to identify individual risk variants using African men's data. The index risk SNPs-based PRS is compatible with the observed racial disparity in PCa prevalence and ETS abnormal cancers may be less heritable compared to other subtypes.
Collapse
Affiliation(s)
- Wensheng Zhang
- Xavier NIH RCMI Center of Cancer Research, Xavier Univ. of Louisana
| | | | - Kun Zhang
- Xavier NIH RCMI Center of Cancer Research, Xavier University of Louisiana
| |
Collapse
|
25
|
|
26
|
Cheng ES, Weber M, Steinberg J, Yu XQ. Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chin J Cancer Res 2021; 33:548-562. [PMID: 34815629 PMCID: PMC8580800 DOI: 10.21147/j.issn.1000-9604.2021.05.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, accounting for 1.8 million deaths in 2020. While the vast majority are caused by tobacco smoking, 15%-25% of all lung cancer cases occur in lifelong never-smokers. The International Agency for Research on Cancer (IARC) has classified multiple agents with sufficient evidence for lung carcinogenesis in humans, which include tobacco smoking, as well as several environmental exposures such as radon, second-hand tobacco smoke, outdoor air pollution, household combustion of coal and several occupational hazards. However, the IARC evaluation had not been stratified based on smoking status, and notably lung cancer in never-smokers (LCINS) has different epidemiological, clinicopathologic and molecular characteristics from lung cancer in ever-smokers. Among several risk factors proposed for the development of LCINS, environmental factors have the most available evidence for their association with LCINS and their roles cannot be overemphasized. Additionally, while initial genetic studies largely focused on lung cancer as a whole, recent studies have also identified genetic risk factors for LCINS. This article presents an overview of several environmental factors associated with LCINS, and some of the emerging evidence for genetic factors associated with LCINS. An increased understanding of the risk factors associated with LCINS not only helps to evaluate a never-smoker's personal risk for lung cancer, but also has important public health implications for the prevention and early detection of the disease. Conclusive evidence on causal associations could inform longer-term policy reform in a range of areas including occupational health and safety, urban design, energy use and particle emissions, and the importance of considering the impacts of second-hand smoke in tobacco control policy.
Collapse
Affiliation(s)
- Elvin S Cheng
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Marianne Weber
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Julia Steinberg
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Xue Qin Yu
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| |
Collapse
|
27
|
Du Z, Gao G, Adedokun B, Ahearn T, Lunetta KL, Zirpoli G, Troester MA, Ruiz-Narváez EA, Haddad SA, PalChoudhury P, Figueroa J, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Mancuso N, Press MF, Deming SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbe O, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Sandler DP, Taylor JA, Wang Q, Weinberg CR, Kitahara CM, Blot W, Nathanson KL, Hennis A, Nemesure B, Ambs S, Sucheston-Campbell LE, Bensen JT, Chanock SJ, Olshan AF, Ambrosone CB, Olopade OI, Yarney J, Awuah B, Wiafe-Addai B, Conti DV, Palmer JR, Garcia-Closas M, Huo D, Haiman CA. Evaluating Polygenic Risk Scores for Breast Cancer in Women of African Ancestry. J Natl Cancer Inst 2021; 113:1168-1176. [PMID: 33769540 PMCID: PMC8418423 DOI: 10.1093/jnci/djab050] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Polygenic risk scores (PRSs) have been demonstrated to identify women of European, Asian, and Latino ancestry at elevated risk of developing breast cancer (BC). We evaluated the performance of existing PRSs trained in European ancestry populations among women of African ancestry. METHODS We assembled genotype data for women of African ancestry, including 9241 case subjects and 10 193 control subjects. We evaluated associations of 179- and 313-variant PRSs with overall and subtype-specific BC risk. PRS discriminatory accuracy was assessed using area under the receiver operating characteristic curve. We also evaluated a recalibrated PRS, replacing the index variant with variants in each region that better captured risk in women of African ancestry and estimated lifetime absolute risk of BC in African Americans by PRS category. RESULTS For overall BC, the odds ratio per SD of the 313-variant PRS (PRS313) was 1.27 (95% confidence interval [CI] = 1.23 to 1.31), with an area under the receiver operating characteristic curve of 0.571 (95% CI = 0.562 to 0.579). Compared with women with average risk (40th-60th PRS percentile), women in the top decile of PRS313 had a 1.54-fold increased risk (95% CI = 1.38-fold to 1.72-fold). By age 85 years, the absolute risk of overall BC was 19.6% for African American women in the top 1% of PRS313 and 6.7% for those in the lowest 1%. The recalibrated PRS did not improve BC risk prediction. CONCLUSION The PRSs stratify BC risk in women of African ancestry, with attenuated performance compared with that reported in European, Asian, and Latina populations. Future work is needed to improve BC risk stratification for women of African ancestry.
Collapse
Affiliation(s)
- Zhaohui Du
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Babatunde Adedokun
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Parichoy PalChoudhury
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Esther M John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Bernstein
- Division of Biomarkers of Early Detection and Prevention Department of Population Sciences, Beckman Research Institute of the City of Hope, City of Hope Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, Sylvester Comprehensive Cancer Center University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Nyante
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Department of Population Science, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine and Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Sandra L Deming
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbe
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anselm Hennis
- Chronic Disease Research Centre and Faculty of Medical Sciences, University of the West Indies, Bridgetown, Barbados
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| |
Collapse
|
28
|
Adedokun B, Du Z, Gao G, Ahearn TU, Lunetta KL, Zirpoli G, Figueroa J, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming-Halverson SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbede O, Blot W, Troester MA, Nathanson KL, Hennis A, Nemesure B, Ambs S, Fiorica PN, Sucheston-Campbell LE, Bensen JT, Kushi LH, Torres-Mejia G, Hu D, Fejerman L, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Wang Q, Sandler DP, Taylor JA, O'Brien KM, Kitahara CM, Falusi AG, Babalola C, Yarney J, Awuah B, Addai-Wiafe B, Chanock SJ, Olshan AF, Ambrosone CB, Conti DV, Ziv E, Olopade OI, Garcia-Closas M, Palmer JR, Haiman CA, Huo D. Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women. Nat Commun 2021; 12:4198. [PMID: 34234117 PMCID: PMC8263739 DOI: 10.1038/s41467-021-24327-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.
Collapse
Affiliation(s)
- Babatunde Adedokun
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhaohui Du
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Jonine Figueroa
- Usher Institute and CRUK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Bernstein
- Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Nyante
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandra L Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anselm Hennis
- University of the West Indies, Bridgetown, Barbados
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lara E Sucheston-Campbell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gabriela Torres-Mejia
- Center for Population Health Research, Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Adeyinka G Falusi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chinedum Babalola
- Department of Pharmaceutical Chemistry, University of Ibadan, Ibadan, Oyo, Nigeria
| | | | | | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David V Conti
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Dezheng Huo
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Özgöz A, Mutlu Içduygu F, Yükseltürk A, Samli H, Hekimler Öztürk K, Baskan Z, Tütüncü I. Postmenopausal estrogen receptor positive breast cancer and obesity associated gene variants. EXCLI JOURNAL 2021; 20:1133-1144. [PMID: 34345232 PMCID: PMC8326496 DOI: 10.17179/excli2020-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022]
Abstract
Obesity is one of the most important health risks in postmenopausal women. Molecular pathways that are connected with obesity are believed to interact with the pathogenesis of breast cancer (BC). The aim of this research was to study the polymorphisms of two obesity-associated genes ADIPOQ and FTO that are also related to the pathogenesis of BC. Obesity-associated gene polymorphisms ADIPOQ rs1501299 and rs2241766, and FTO rs1477196, rs7206790, rs8047395, and rs9939609 were studied in 101 Turkish postmenopausal estrogen receptor-positive BC patients and 100 healthy control individuals. ADIPOQ rs1501299 was detected to be associated with protection against BC. The ADIPOQ rs1501299 TT genotype, the rs2241766 GT genotype and the G allele were found to be significantly higher in the control group. In addition, ADIPOQ rs1501299 polymorphism was protective in the recessive model and rs2241766 polymorphism was protective in the dominant model. While none of the FTO gene polymorphisms were found to be associated with BC, the frequencies of rs9939609 A allele and rs7206790 G allele were correlated with body mass index (BMI) in BC patients. ADIPOQ rs1501299 TT genotype, rs2241766 GT genotype, and G allele might be protective against BC in the Turkish population but this conclusion needs to be further verified.
Collapse
Affiliation(s)
- Asuman Özgöz
- Kastamonu School of Medicine, Department of Medical Genetics, Kastamonu University, Kastamonu, Turkey
| | - Fadime Mutlu Içduygu
- School of Medicine, Department of Medical Genetics, Giresun University, Giresun, Turkey
| | - Aysegül Yükseltürk
- Fazil Boyner Faculty of Health Sciences, Department of Nutrition and Dietetics, Kastamonu University, Kastamonu, Turkey
| | - Hale Samli
- School of Veterinary Medicine, Department of Genetics, Uludag University, Bursa, Turkey
| | - Kuyas Hekimler Öztürk
- School of Medicine, Department of Medical Genetics, Süleyman Demirel University, Isparta, Turkey
| | - Zuhal Baskan
- Department of Medical Oncology, Acibadem Bursa Hospital, 16110 Bursa, Turkey
| | - Ilknur Tütüncü
- Fazil Boyner Faculty of Health Sciences, Department of Nutrition and Dietetics, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
30
|
Mongkolrob R, Tharabenjasin P, Bualuang A, Jarjanazi H, Pabalan N. Influence of Lysyl oxidase Polymorphisms in Cancer Risk: An Updated Meta-analysis. Genet Test Mol Biomarkers 2021; 25:411-418. [PMID: 34042515 DOI: 10.1089/gtmb.2020.0342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: The aim of this study was to investigate associations between polymorphisms in the Lysyl oxidase (LOX) gene with susceptibility to cancer. The role of LOX in carcinogenesis prompted several association studies in various cancer types; however the outcomes of these studies have inconsistent. Thus, we performed a meta-analysis to obtain more precise estimates. Materials and Methods: A literature search yielded 14 articles from which we examined five cancer groups: breast, bone, lung, gastrointestinal, and gynecological cancers. For each cancer group, pooled odds ratios (ORs) and confidence intervals (95% CIs) were calculated using standard genetic models. High significance (p-value for association [pa] < 0.00001), homogeneity (I2 = 0%), and high precision of effects (CI difference [CID] <1.0 [upper CI - lower CI]) comprised the three criteria for strength of evidence. We used sensitivity analysis to assess robustness of the outcomes. Results: We generated 28 comparisons from which 13 were significant (pa < 0.05), indicating increased risk, (OR >1.00) found in all cancer groups except breast (pa = 0.10-0.91). Of the 13, three met all criteria (core) for strength of evidence (pa < 0.00001, CIDs 0.49-0.56 and I2 = 0%), found in dominant/codominant models of gynecological cancers (ORs 1.52-1.62, 95% CIs 1.26-1.88) and codominant model of lung cancer (OR 1.44, 95% CI 1.19-1.74). These three were deemed robust. Conclusion: Based on the three core outcomes, associations of LOX 473G/A with lung, ovarian, and cervical cancers indicate 1.4-1.6-fold increased risks, underpinned by robustness and high statistical power at the aggregate level.
Collapse
Affiliation(s)
- Rungrawee Mongkolrob
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
| | - Phuntila Tharabenjasin
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
| | - Aporn Bualuang
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
| | - Hamdi Jarjanazi
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change, Toronto, Canada
| | - Noel Pabalan
- Chulabhorn International College of Medicine, Thammasat University, PathumThani, Thailand
| |
Collapse
|
31
|
Sud A, Turnbull C, Houlston R. Will polygenic risk scores for cancer ever be clinically useful? NPJ Precis Oncol 2021; 5:40. [PMID: 34021222 PMCID: PMC8139954 DOI: 10.1038/s41698-021-00176-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| |
Collapse
|
32
|
Mulford AJ, Wing C, Dolan ME, Wheeler HE. Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations. Hum Mol Genet 2021; 30:305-317. [PMID: 33575800 DOI: 10.1093/hmg/ddab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
Most cancer chemotherapeutic agents are ineffective in a subset of patients; thus, it is important to consider the role of genetic variation in drug response. Lymphoblastoid cell lines (LCLs) in 1000 Genomes Project populations of diverse ancestries are a useful model for determining how genetic factors impact the variation in cytotoxicity. In our study, LCLs from three 1000 Genomes Project populations of diverse ancestries were previously treated with increasing concentrations of eight chemotherapeutic drugs, and cell growth inhibition was measured at each dose with half-maximal inhibitory concentration (IC50) or area under the dose-response curve (AUC) as our phenotype for each drug. We conducted both genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) within and across ancestral populations. We identified four unique loci in GWAS and three genes in TWAS to be significantly associated with the chemotherapy-induced cytotoxicity within and across ancestral populations. In the etoposide TWAS, increased STARD5 predicted expression associated with decreased etoposide IC50 (P = 8.5 × 10-8). Functional studies in A549, a lung cancer cell line, revealed that knockdown of STARD5 expression resulted in the decreased sensitivity to etoposide following exposure for 72 (P = 0.033) and 96 h (P = 0.0001). By identifying loci and genes associated with cytotoxicity across ancestral populations, we strive to understand the genetic factors impacting the effectiveness of chemotherapy drugs and to contribute to the development of future cancer treatment.
Collapse
Affiliation(s)
- Ashley J Mulford
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudia Wing
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - M Eileen Dolan
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Heather E Wheeler
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA.,Program in Bioinformatics, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
33
|
Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, Davis M, de Smith AJ, Dutil J, Figueiredo JC, Fox R, Graves KD, Gomez SL, Llera A, Neuhausen SL, Newman L, Nguyen T, Palmer JR, Palmer NR, Pérez-Stable EJ, Piawah S, Rodriquez EJ, Sanabria-Salas MC, Schmit SL, Serrano-Gomez SJ, Stern MC, Weitzel J, Yang JJ, Zabaleta J, Ziv E, Fejerman L. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer 2021; 124:315-332. [PMID: 32901135 PMCID: PMC7852513 DOI: 10.1038/s41416-020-01038-6] [Citation(s) in RCA: 519] [Impact Index Per Article: 129.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.
Collapse
Affiliation(s)
- Valentina A Zavala
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Luis Carvajal-Carmona
- University of California Davis Comprehensive Cancer Center and Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | | | - Marcia R Cruz-Correa
- Department of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, Puerto Rico
| | - Melissa Davis
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Jane C Figueiredo
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rena Fox
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kristi D Graves
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Scarlett Lin Gomez
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Llera
- Laboratorio de Terapia Molecular y Celular, IIBBA, Fundación Instituto Leloir, CONICET, Buenos Aires, Argentina
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lisa Newman
- Division of Breast Surgery, Department of Surgery, NewYork-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
- Interdisciplinary Breast Program, New York-Presbyterian/Weill Cornell Medical Center, New York, NY, USA
| | - Tung Nguyen
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Nynikka R Palmer
- Department of Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, San Francisco, CA, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Office of the Director, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| | - Sorbarikor Piawah
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Erik J Rodriquez
- Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Silvia J Serrano-Gomez
- Grupo de investigación en biología del cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Mariana C Stern
- Departments of Preventive Medicine and Urology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey Weitzel
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center LSUHSC, New Orleans, LA, USA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
34
|
Mehrzad J, Dayyani M, Erfanian-Khorasani M. The independent and combined effects of selected risk factors and Arg399Gln XRCC1 polymorphism in the risk of colorectal cancer among an Iranian population. Med J Islam Repub Iran 2020; 34:75. [PMID: 33306066 PMCID: PMC7711031 DOI: 10.34171/mjiri.34.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/07/2022] Open
Abstract
Background: Several environmental and genetic factors have contributed to the development of colorectal cancer (CRC). We aimed to investigate the independent and combined effects of some selected risk factors and Arg399Gln XRCC1 polymorphism on CRC.
Methods: A total of 180 patients with CRC and 160 healthy individuals who were matched for sex, age, and place of residence (Northeast of Iran) participated in this case-control study. Before collecting blood samples and filling out questionnaires, a written consent form was obtained from all participants. Genotypes were determined by RFLP-PCR. The comparison of genotype and allele frequencies was performed using p value based on the results of chi-square test. The odds ratios (OR) and 95% confidence intervals (CI) were calculated by employing a logistic regression model. All statistical calculations were performed using SPSS. Each of the 2- sided p values less than 0.05 were considered statistically significant.
Results: The level of literacy, physical activity, consumption of vegetables and fruits, and tea intake of the patients were significantly lower than healthy individuals, but gastrointestinal disorders, family history of cancer, BMI, and fast food consumption were significantly higher in cases than in controls. No significant difference was observed between the 2 groups regarding smoking, opioid addiction, alcohol consumption, diet, fish consumption, and liquid intake, using the kitchen hood, diabetes, and cardiovascular disease. Arg/Gln + Gln/Gln and Arg/Gln genotypes were involved in increased CRC risk (The crude OR =1.781 with a 95% CI of 1.156-2.744 and OR = 1.690 with a 95% CI of 0.787-3.630). Also, Gln/Gln genotype was more frequent in CRC group than in control group. However, none of the risk factors interacted with polymorphism, and thus did not have an effect on CRC.
Conclusion: Some risk factors, such as reducing the consumption of vegetables and fruits or reducing physical activity as well as polymorphism of the XRCC1 Arg399Gln alone, increase the risk of CRC, but they do not interact with each other.
Collapse
Affiliation(s)
- Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Medical Sciences Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahdieh Dayyani
- Radiation Oncology Department, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | | |
Collapse
|
35
|
Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB, Pitteloud N, Chouchane L. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med 2020; 18:472. [PMID: 33298113 PMCID: PMC7725219 DOI: 10.1186/s12967-020-02658-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and leading to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host and the exposome-a combination of environmental drivers, including diet, lifestyle, pollutants and other factors throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular disorders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual's biology, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, therapeutics and prognostication through the use of large complex datasets that incorporate individual gene, function, and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence (AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven technologies, such as AI, in preventing, treating and reversing lifestyle-related diseases.
Collapse
Affiliation(s)
- Murugan Subramanian
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, USA.,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Anne Wojtusciszyn
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucie Favre
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
| | - Sabri Boughorbel
- Clinical Bioinformatics Section, Research Division, Sidra Medicine, Doha, Qatar
| | - Jingxuan Shan
- Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medicine, 45 E 69th Street, Suite 432, New York, NY, 10021, USA
| | - Khaled B Letaief
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Nelly Pitteloud
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
| | - Lotfi Chouchane
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, USA. .,Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar. .,Department of Genetic Medicine, Weill Cornell Medicine, 45 E 69th Street, Suite 432, New York, NY, 10021, USA.
| |
Collapse
|
36
|
Bensouilah FZ, Chellat-Rezgoune D, Garcia-Gonzalez MA, Carrera N, Abadi N, Dahdouh A, Satta D. Association of single nucleotide polymorphisms with renal cell carcinoma in Algerian population. AFRICAN JOURNAL OF UROLOGY 2020. [DOI: 10.1186/s12301-020-00055-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Renal cell carcinoma (RCC) is a common malignant tumor of the urinary system. The etiology of RCC is a complex interaction between environmental and multigenetic factors. Genome-wide association studies have identified new susceptibility risk loci for RCC. We examined associations of genetic variants of genes that are involved in metabolism, DNA repair and oncogenes with renal cancer risk. A total of 14 single nucleotide polymorphisms (SNPs) in 11 genes (VEGF, VHL, ATM, FAF1, LRRIQ4, RHOBTB2, OBFC1, DPF3, ALDH9A1 and EPAS1) were examined.
Methods
The current case–control study included 87 RCC patients and 114 controls matched for age, gender and ethnic origin. The 14 tag-SNPs were genotyped by Sequenom MassARRAY® iPLEX using blood genomic DNA.
Results
Genotype CG and allele G of ATM rs1800057 were significantly associated with RCC susceptibility (p = 0.043; OR = 8.47; CI = 1.00–71.76). Meanwhile, we found that genotype AA of rs67311347 polymorphism could increase the risk of RCC (p = 0.03; OR = 2.95; IC = 1.10–7.89). While, genotype TT and T allele of ALDH9A1 rs3845536 were observed to approach significance for a protective role against RCC (p = 0.007; OR = 0.26; CI = 0.09–0.70).
Conclusion
Our results indicate that ATM rs1800057 may have an effect on the risk of RCC, and suggest that ALDH9A1 was a protective factor against RCC in Algerian population.
Collapse
|
37
|
Behar-Horenstein L, Warren RC, Setiawan VW, Perkins C, Schmittgen TD. Enhancing African American Participation in Biospecimens: A Case in Point for Pancreatic Cancer. Cancer Epidemiol Biomarkers Prev 2020; 29:10.1158/1538-7755.DISP20-PO-236. [PMID: 34296063 PMCID: PMC8294622 DOI: 10.1158/1538-7755.disp20-po-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diseases of the pancreas (i.e. chronic pancreatitis, diabetes, and pancreatic cancer) disproportionally affect the African American community. Challenges associated with engaging the African American community in biospecimen research are longstanding. We surveyed a number of pancreas-related biobanks, and data repositories for African American representation. While some of the biobanks and databases surveyed contain biospecimens and data from African American donors at levels that reflect minority representation among the general population, others do not. A number of factors have historically contributed to reduced participation of the African Americans community in biospecimen donation including medical mistrust, lack of transparency, fear, and a poor knowledge and understanding about the use of biospecimens for research. Suggestions for increasing African American participation in organ and biospecimen donation include educational interventions, particularly in community groups, and providing printed and online recruitment materials to patients, patient advocates, and care partners. Increasing awareness of the many benefits of biospecimen donation among African Americans will positively affect health disparities research into pancreatic cancer and other diseases.
Collapse
Affiliation(s)
- Linda Behar-Horenstein
- Colleges of Education, University of Florida, Gainesville, FL, USA
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center
| | | | - V. Wendy Setiawan
- College of Medicine, University of Southern California, Los Angeles, CA, USA
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center
| | - Corey Perkins
- Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thomas D. Schmittgen
- Pharmacy, University of Florida, Gainesville, FL, USA
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center
| |
Collapse
|
38
|
Prediction of gastric cancer risk: association between ZBTB20 genetic variance and gastric cancer risk in Chinese Han population. Biosci Rep 2020; 40:226430. [PMID: 32936247 PMCID: PMC7517264 DOI: 10.1042/bsr20202102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Gastric cancer (GC) is a complex multifactorial disease. Previous studies have revealed genetic variations associated with the risk of gastric cancer. The purpose of the present study was to determine the correlation between single-nucleotide polymorphisms (SNPs) of ZBTB20 and the risk of gastric cancer in Chinese Han population. Methods: We conducted a ‘case–control’ study involving 509 GC patients and 507 healthy individuals. We selected four SNPs of ZBTB20 (10934270 T/C, rs9288999 G/A, rs9841504 G/C and rs73230612 C/T), and used logistic regression to analyze the relationship between those SNPs and GC risk under different genetic models; multi-factor dimensionality reduction (MDR) was used to analyze the interaction of “SNP–SNP” in gastric cancer risk; ANOVA and univariate analysis were used to analyze the differences in clinical characteristics among different genotypes. Results: Our results showed that ZBTB20 rs9288999 is a protective factor for the risk of gastric cancer in multiple genetic models, of which the homozygous model is the most significant (OR = 0.48, P=0.0003); we also found that rs9288999 showed a significant correlation with reducing the risk of gastric cancer in different subgroups (BMI; age; gender; smoking or drinking status; adenocarcinoma); rs9841504 is associated with increased GC risk in the participants with BMI>24 kg/m2; rs9841504 and rs73230612 are certainly associated with clinical characteristics of platelet and carbohydrate antigen 242, respectively. Conclusion: Our results suggest that ZBTB20 rs9288999 may be important for reducing the risk of GC in the Chinese Han population.
Collapse
|
39
|
Fiorica PN, Schubert R, Morris JD, Abdul Sami M, Wheeler HE. Multi-ethnic transcriptome-wide association study of prostate cancer. PLoS One 2020; 15:e0236209. [PMID: 32986714 PMCID: PMC7521738 DOI: 10.1371/journal.pone.0236209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
The genetic risk for prostate cancer has been governed by a few rare variants with high penetrance and over 150 commonly occurring variants with lower impact on risk; however, most of these variants have been identified in studies containing exclusively European individuals. People of non-European ancestries make up less than 15% of prostate cancer GWAS subjects. Across the globe, incidence of prostate cancer varies with population due to environmental and genetic factors. The discrepancy between disease incidence and representation in genetics highlights the need for more studies of the genetic risk for prostate cancer across diverse populations. To better understand the genetic risk for prostate cancer across diverse populations, we performed PrediXcan and GWAS in a case-control study of 4,769 self-identified African American (2,463 cases and 2,306 controls), 2,199 Japanese American (1,106 cases and 1,093 controls), and 2,147 Latin American (1,081 cases and 1,066 controls) individuals from the Multiethnic Genome-wide Scan of Prostate Cancer. We used prediction models from 46 tissues in GTEx version 8 and five models from monocyte transcriptomes in the Multi-Ethnic Study of Atherosclerosis. Across the three populations, we predicted 19 gene-tissue pairs, including five unique genes, to be significantly (lfsr < 0.05) associated with prostate cancer. One of these genes, NKX3-1, replicated in a larger European study. At the SNP level, 110 SNPs met genome-wide significance in the African American study while 123 SNPs met significance in the Japanese American study. Fine mapping revealed three significant independent loci in the African American study and two significant independent loci in the Japanese American study. These identified loci confirm findings from previous GWAS of prostate cancer in diverse populations while PrediXcan-identified genes suggest potential new directions for prostate cancer research in populations across the globe.
Collapse
Affiliation(s)
- Peter N. Fiorica
- Department of Chemistry & Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ryan Schubert
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
- Department of Statistics, Loyola University Chicago, Chicago, IL, United States of America
| | - John D. Morris
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
| | - Mohammed Abdul Sami
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Heather E. Wheeler
- Department of Chemistry & Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
- Program in Bioinformatics, Loyola University Chicago, Chicago, IL, United States of America
- Department of Public Health, Loyola University Chicago, Chicago, IL, United States of America
| |
Collapse
|
40
|
Lin Y, Nakatochi M, Hosono Y, Ito H, Kamatani Y, Inoko A, Sakamoto H, Kinoshita F, Kobayashi Y, Ishii H, Ozaka M, Sasaki T, Matsuyama M, Sasahira N, Morimoto M, Kobayashi S, Fukushima T, Ueno M, Ohkawa S, Egawa N, Kuruma S, Mori M, Nakao H, Adachi Y, Okuda M, Osaki T, Kamiya S, Wang C, Hara K, Shimizu Y, Miyamoto T, Hayashi Y, Ebi H, Kohmoto T, Imoto I, Kasugai Y, Murakami Y, Akiyama M, Ishigaki K, Matsuda K, Hirata M, Shimada K, Okusaka T, Kawaguchi T, Takahashi M, Watanabe Y, Kuriki K, Kadota A, Okada R, Mikami H, Takezaki T, Suzuki S, Yamaji T, Iwasaki M, Sawada N, Goto A, Kinoshita K, Fuse N, Katsuoka F, Shimizu A, Nishizuka SS, Tanno K, Suzuki K, Okada Y, Horikoshi M, Yamauchi T, Kadowaki T, Yu H, Zhong J, Amundadottir LT, Doki Y, Ishii H, Eguchi H, Bogumil D, Haiman CA, Le Marchand L, Mori M, Risch H, Setiawan VW, Tsugane S, Wakai K, Yoshida T, Matsuda F, Kubo M, Kikuchi S, Matsuo K. Genome-wide association meta-analysis identifies GP2 gene risk variants for pancreatic cancer. Nat Commun 2020; 11:3175. [PMID: 32581250 PMCID: PMC7314803 DOI: 10.1038/s41467-020-16711-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in Japan. To identify risk loci, we perform a meta-analysis of three genome-wide association studies comprising 2,039 pancreatic cancer patients and 32,592 controls in the Japanese population. Here, we identify 3 (13q12.2, 13q22.1, and 16p12.3) genome-wide significant loci (P < 5.0 × 10−8), of which 16p12.3 has not been reported in the Western population. The lead single nucleotide polymorphism (SNP) at 16p12.3 is rs78193826 (odds ratio = 1.46, 95% confidence interval = 1.29-1.66, P = 4.28 × 10−9), an Asian-specific, nonsynonymous glycoprotein 2 (GP2) gene variant. Associations between selected GP2 gene variants and pancreatic cancer are replicated in 10,822 additional cases and controls of East Asian origin. Functional analyses using cell lines provide supporting evidence of the effect of rs78193826 on KRAS activity. These findings suggest that GP2 gene variants are probably associated with pancreatic cancer susceptibility in populations of East Asian ancestry. Previous genome-wide association studies have identified risk loci for pancreatic cancer but were centered on individuals of European ancestry. Here the authors identify GP2 gene variants associated with pancreatic cancer susceptibility in populations of East Asian ancestry.
Collapse
Affiliation(s)
- Yingsong Lin
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Masahiro Nakatochi
- Division of Public Health Informatics, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan. .,Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, 461-8673, Japan.
| | - Yasuyuki Hosono
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Descriptive Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Akihito Inoko
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Pathology, Aichi Medical University School of Medicine, Nagakute, 480-1195, Japan
| | - Hiromi Sakamoto
- Genetics Division, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumie Kinoshita
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 461-8673, Japan
| | - Yumiko Kobayashi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 461-8673, Japan
| | | | - Masato Ozaka
- Department of Hepato-biliary-pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Takashi Sasaki
- Department of Hepato-biliary-pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Masato Matsuyama
- Department of Hepato-biliary-pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Naoki Sasahira
- Department of Hepato-biliary-pancreatic Medicine, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Manabu Morimoto
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Taito Fukushima
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Shinichi Ohkawa
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Yokohama, 241-8515, Japan
| | - Naoto Egawa
- Department of Gastroenterology, Tokyo Metropolitan Hiroo Hospital, Tokyo, 150-0013, Japan
| | - Sawako Kuruma
- Department of Gastroenterology, Tokyo Metropolitan Komagome Hospital, Tokyo, 113-8677, Japan
| | - Mitsuru Mori
- Hokkaido Chitose College of Rehabilitation, Hokkaido, 066-0055, Japan
| | - Haruhisa Nakao
- Division of Hepatology and Pancreatology, Aichi Medical University School of Medicine, Nagakute, 480-1195, Japan
| | | | - Masumi Okuda
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, 181-8611, Japan
| | - Chaochen Wang
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Kazuo Hara
- Department of Gastroenterology, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Yasuhiro Shimizu
- Department of Gastroenterological Surgery, Aichi Cancer Center Hospital, Nagoya, 464-8681, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yuko Hayashi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Hiromichi Ebi
- Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics, Tokushima University Graduate School of Medicine, Tokushima, 770-8503, Japan.,Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Issei Imoto
- Division of Molecular Genetics, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan
| | - Yumiko Kasugai
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan.,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Makoto Hirata
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kazuaki Shimada
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Meiko Takahashi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshiyuki Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Otsu, 520-2192, Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Taiki Yamaji
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Norie Sawada
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Atsushi Goto
- Division of Epidemiology, Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Satoshi S Nishizuka
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, Iwate, 028-3694, Japan.,Department of Hygiene and Preventive Medicine, School of Medicine, Iwate Medicalm University, Iwate, 028-3694, Japan
| | - Ken Suzuki
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Momoko Horikoshi
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Centre for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - David Bogumil
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeless, CA, 90033, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeless, CA, 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Harvey Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, 06520, USA
| | - Veronica W Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeless, CA, 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shoichiro Tsugane
- Center for Public Health Sciences, National Cancer Center, Tokyo, 104-0045, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Teruhiko Yoshida
- Genetics Division, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Shogo Kikuchi
- Department of Public Health, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681, Japan. .,Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
41
|
Shieh Y, Fejerman L, Lott PC, Marker K, Sawyer SD, Hu D, Huntsman S, Torres J, Echeverry M, Bohórquez ME, Martínez-Chéquer JC, Polanco-Echeverry G, Estrada-Flórez AP, Haiman CA, John EM, Kushi LH, Torres-Mejía G, Vidaurre T, Weitzel JN, Zambrano SC, Carvajal-Carmona LG, Ziv E, Neuhausen SL. A Polygenic Risk Score for Breast Cancer in US Latinas and Latin American Women. J Natl Cancer Inst 2020; 112:590-598. [PMID: 31553449 PMCID: PMC7301155 DOI: 10.1093/jnci/djz174] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/23/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND More than 180 single nucleotide polymorphisms (SNPs) associated with breast cancer susceptibility have been identified; these SNPs can be combined into polygenic risk scores (PRS) to predict breast cancer risk. Because most SNPs were identified in predominantly European populations, little is known about the performance of PRS in non-Europeans. We tested the performance of a 180-SNP PRS in Latinas, a large ethnic group with variable levels of Indigenous American, European, and African ancestry. METHODS We conducted a pooled case-control analysis of US Latinas and Latin American women (4658 cases and 7622 controls). We constructed a 180-SNP PRS consisting of SNPs associated with breast cancer risk (P < 5 × 10-8). We evaluated the association between the PRS and breast cancer risk using multivariable logistic regression, and assessed discrimination using an area under the receiver operating characteristic curve. We also assessed PRS performance across quartiles of Indigenous American genetic ancestry. All statistical tests were two-sided. RESULTS Of 180 SNPs tested, 142 showed directionally consistent associations compared with European populations, and 39 were nominally statistically significant (P < .05). The PRS was associated with breast cancer risk, with an odds ratio per SD increment of 1.58 (95% confidence interval [CI = 1.52 to 1.64) and an area under the receiver operating characteristic curve of 0.63 (95% CI = 0.62 to 0.64). The discrimination of the PRS was similar between the top and bottom quartiles of Indigenous American ancestry. CONCLUSIONS The 180-SNP PRS predicts breast cancer risk in Latinas, with similar performance as reported for Europeans. The performance of the PRS did not vary substantially according to Indigenous American ancestry.
Collapse
Affiliation(s)
- Yiwey Shieh
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Laura Fejerman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Paul C Lott
- UC Davis Genome Center, University of California, Davis, Davis, CA
| | - Katie Marker
- School of Public Health, University of California, Berkeley; Berkeley, CA
| | | | - Donglei Hu
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Scott Huntsman
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Magdalena Echeverry
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | - Mabel E Bohórquez
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | | | - Ana P Estrada-Flórez
- UC Davis Genome Center, University of California, Davis, Davis, CA
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Facultades de Ciencias y Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Christopher A Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Esther M John
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Lawrence H Kushi
- UC Davis Genome Center, University of California, Davis, Davis, CA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | | | | | - Jeffrey N Weitzel
- Division of Clinical Genetics, City of Hope National Medical Center, Duarte, CA
| | | | - Luis G Carvajal-Carmona
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA
- Population Science and Health Disparities Program, University of California Davis Comprehensive Cancer Center, Sacramento, CA
| | - Elad Ziv
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
42
|
Du Z, Hopp H, Ingles SA, Huff C, Sheng X, Weaver B, Stern M, Hoffmann TJ, John EM, Van Den Eeden SK, Strom S, Leach RJ, Thompson IM, Witte JS, Conti DV, Haiman CA. A genome-wide association study of prostate cancer in Latinos. Int J Cancer 2020; 146:1819-1826. [PMID: 31226226 PMCID: PMC7028127 DOI: 10.1002/ijc.32525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022]
Abstract
Latinos represent <1% of samples analyzed to date in genome-wide association studies of cancer. The clinical value of genetic information in guiding personalized medicine in populations of non-European ancestry will require additional discovery and risk locus characterization efforts across populations. In the present study, we performed a GWAS of prostate cancer (PrCa) in 2,820 Latino PrCa cases and 5,293 controls to search for novel PrCa risk loci and to examine the generalizability of known PrCa risk loci in Latino men. We also conducted a genetic admixture-mapping scan to identify PrCa risk alleles associated with local ancestry. Genome-wide significant associations were observed with 84 variants all located at the known PrCa risk regions at 8q24 (128.484-128.548) and 10q11.22 (MSMB gene). In admixture mapping, we observed genome-wide significant associations with local African ancestry at 8q24. Of the 162 established PrCa risk variants that are common in Latino men, 135 (83.3%) had effects that were directionally consistent as previously reported, among which 55 (34.0%) were statistically significant with p < 0.05. A polygenic risk model of the known PrCa risk variants showed that, compared to men with average risk (25th-75th percentile of the polygenic risk score distribution), men in the top 10% had a 3.19-fold (95% CI: 2.65, 3.84) increased PrCa risk. In conclusion, we found that the known PrCa risk variants can effectively stratify PrCa risk in Latino men. Larger studies in Latino populations will be required to discover and characterize genetic risk variants for PrCa and improve risk stratification for this population.
Collapse
Affiliation(s)
- Zhaohui Du
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Hannah Hopp
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Sue A. Ingles
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Chad Huff
- The University of Texas MD Anderson Cancer CenterHoustonTX
| | - Xin Sheng
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Brandi Weaver
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - Mariana Stern
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
| | - Thomas J. Hoffmann
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCA
| | - Esther M. John
- Department of Medicine and Stanford Cancer InstituteStanford University School of MedicineStanfordCA
| | - Stephen K. Van Den Eeden
- Division of Research, Kaiser Permanente, Northern CaliforniaOaklandCA
- Department of UrologyUniversity of California San FranciscoSan FranciscoCA
| | - Sara Strom
- The University of Texas MD Anderson Cancer CenterHoustonTX
| | - Robin J. Leach
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - Ian M. Thompson
- Department of UrologyUniversity of Texas Health Science CenterSan AntonioTX
| | - John S. Witte
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCA
- Institute for Human GeneticsUniversity of California, San FranciscoSan FranciscoCA
- Department of UrologyUniversity of California San FranciscoSan FranciscoCA
| | - David V. Conti
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
- Center for Genetic EpidemiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| | - Christopher A. Haiman
- Department of Preventative Medicine, Keck School of MedicineUniversity of Southern California, Norris Comprehensive Cancer CenterLos AngelesCA
- Center for Genetic EpidemiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
43
|
Yap YS, Lu YS, Tamura K, Lee JE, Ko EY, Park YH, Cao AY, Lin CH, Toi M, Wu J, Lee SC. Insights Into Breast Cancer in the East vs the West: A Review. JAMA Oncol 2019; 5:1489-1496. [PMID: 31095268 DOI: 10.1001/jamaoncol.2019.0620] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance During the past few decades, the incidence of breast cancer (BC) has been increasing rapidly in East Asia, and BC is currently the most common cancer in several countries. The rising incidence is likely related to changing lifestyle and environmental factors in addition to the increase in early diagnosis with BC awareness and screening. The understanding and management of BC are generally based on research and data from the West. However, emerging differences in BC epidemiology and tumor and host biology in Asian populations may be clinically relevant. Observations A higher proportion of premenopausal BCs occur in Asia, although this factor is possibly an age-cohort effect. Although the relative frequencies of different immunohistochemical subtypes of BC may be similar between the East and West, the higher prevalence of luminal B subtypes with more frequent mutations in TP53 may be confounded by disparities in early detection. In addition, Asian BCs appear to harbor a more immune-active microenvironment than BCs in the West. The spectra of germline mutations in BC predisposition genes and single-nucleotide polymorphisms contributing to BC risk vary with ethnicity as well. Differences in tolerability of certain cytotoxic and targeted agents used in BC treatment may be associated with pharmacogenomic factors, whereas the lower body mass of the average woman in East Asia may contribute to higher toxicities from drugs administered at fixed doses. Phenotypic characteristics, such as lower breast volume, may influence the type of surgery performed in East Asian women. On the other hand, increased breast density may affect the sensitivity of mammography in detecting BCs, limiting the benefits of screening mammography. Conclusions and Relevance Breast cancer has become a major health problem in Asia. The inclusion of more women from Asia in clinical trials and epidemiologic and translational studies may help unravel the interethnic heterogeneity of BCs and elucidate the complex interplay between environmental and intrinsic factors in its pathogenesis. These insights may help to refine prevention, diagnosis, and management strategies for BC in the setting of ethnic diversity.
Collapse
Affiliation(s)
- Yoon-Sim Yap
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Jeong Eon Lee
- Breast Division, Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Eun Young Ko
- Department of Radiology, Samsung Medical Center, Seoul, South Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Seoul, South Korea
| | - A-Yong Cao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Masakazu Toi
- Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore.,Cancer Science Institute, National University of Singapore, Singapore
| |
Collapse
|
44
|
Wang Y, Bromberg Y. Identifying mutation-driven changes in gene functionality that lead to venous thromboembolism. Hum Mutat 2019; 40:1321-1329. [PMID: 31144782 PMCID: PMC6745089 DOI: 10.1002/humu.23824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/26/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Venous thromboembolism (VTE) is a common hematological disorder. VTE affects millions of people around the world each year and can be fatal. Earlier studies have revealed the possible VTE genetic risk factors in Europeans. The 2018 Critical Assessment of Genome Interpretation (CAGI) challenge had asked participants to distinguish between 66 VTE and 37 non-VTE African American (AA) individuals based on their exome sequencing data. We used variants from AA VTE association studies and VTE genes from DisGeNET database to evaluate VTE risk via four different approaches; two of these methods were most successful at the task. Our best performing method represented each exome as a vector of predicted functional effect scores of variants within the known genes. These exome vectors were then clustered with k-means. This approach achieved 70.8% precision and 69.7% recall in identifying VTE patients. Our second-best ranked method had collapsed the variant effect scores into gene-level function changes, using the same vector clustering approach for patient/control identification. These results show predictability of VTE risk in AA population and highlight the importance of variant-driven gene functional changes in judging disease status. Of course, more in-depth understanding of AA VTE pathogenicity is still needed for more precise predictions.
Collapse
Affiliation(s)
- Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey
- Department of Genetics, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
45
|
Claude L, Jouglar E, Duverge L, Orbach D. Update in pediatric nasopharyngeal undifferentiated carcinoma. Br J Radiol 2019; 92:20190107. [PMID: 31322911 DOI: 10.1259/bjr.20190107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many of the principles established in adults with undifferentiated nasopharyngeal carcinoma (NPC) apply to children, adolescents and young adults. However, NPC in young patients should be distinguished from the adult form by several points. This review focuses mainly on differences between adult and pediatric NPC. The role of biology and genetics in pediatric NPC is discussed. Systemic treatment modalities including type of chemotherapy induction, timing of treatment, role of immunotherapy as adjuvant treatment, or in relapsing/ metastatic diseases are reported. Radiation modalities (doses, techniques…) in children are also reviewed. Long-term effects including secondary cancers are finally be discussed in this young NPC population.
Collapse
Affiliation(s)
- Line Claude
- Department of radiotherapy, Centre Léon Bérard, Lyon, France
| | - Emmanuel Jouglar
- Department of radiotherapy, Institut de Cancérologie de l'Ouest - Centre René Gauducheau, Saint-Herblain, France
| | - Loig Duverge
- Department of radiotherapy, Centre Léon Bérard, Lyon, France.,Department of radiotherapy, Centre Eugène Marquis, Rennes, France
| | - Daniel Orbach
- SIREDO oncology center (Care, Innovation and Research for Children, Adolescents and Young Adults with cancer), Institut Curie, PSL university, Paris, France
| |
Collapse
|
46
|
O'Mara TA, Glubb DM, Kho PF, Thompson DJ, Spurdle AB. Genome-Wide Association Studies of Endometrial Cancer: Latest Developments and Future Directions. Cancer Epidemiol Biomarkers Prev 2019; 28:1095-1102. [DOI: 10.1158/1055-9965.epi-18-1031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/29/2018] [Accepted: 04/19/2019] [Indexed: 11/16/2022] Open
|
47
|
Dutil J, Chen Z, Monteiro AN, Teer JK, Eschrich SA. An Interactive Resource to Probe Genetic Diversity and Estimated Ancestry in Cancer Cell Lines. Cancer Res 2019; 79:1263-1273. [PMID: 30894373 DOI: 10.1158/0008-5472.can-18-2747] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 12/26/2018] [Indexed: 12/21/2022]
Abstract
Recent work points to a lack of diversity in genomics studies from genome-wide association studies to somatic (tumor) genome analyses. Yet, population-specific genetic variation has been shown to contribute to health disparities in cancer risk and outcomes. Immortalized cancer cell lines are widely used in cancer research, from mechanistic studies to drug screening. Larger collections of cancer cell lines better represent the genomic heterogeneity found in primary tumors. Yet, the genetic ancestral origin of cancer cell lines is rarely acknowledged and often unknown. Using genome-wide genotyping data from 1,393 cancer cell lines from the Catalogue of Somatic Mutations in Cancer (COSMIC) and Cancer Cell Line Encyclopedia (CCLE), we estimated the genetic ancestral origin for each cell line. Our data indicate that cancer cell line collections are not representative of the diverse ancestry and admixture characterizing human populations. We discuss the implications of genetic ancestry and diversity of cellular models for cancer research and present an interactive tool, Estimated Cell Line Ancestry (ECLA), where ancestry can be visualized with reference populations of the 1000 Genomes Project. Cancer researchers can use this resource to identify cell line models for their studies by taking ancestral origins into consideration.
Collapse
Affiliation(s)
- Julie Dutil
- Cancer Biology Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico.
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alvaro N Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
48
|
Modeling Heterogeneity in the Genetic Architecture of Ethnically Diverse Groups Using Random Effect Interaction Models. Genetics 2019; 211:1395-1407. [PMID: 30796011 PMCID: PMC6456318 DOI: 10.1534/genetics.119.301909] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
In humans, most genome-wide association studies have been conducted using data from Caucasians and many of the reported findings have not replicated in other populations. This lack of replication may be due to statistical issues (small sample sizes or confounding) or perhaps more fundamentally to differences in the genetic architecture of traits between ethnically diverse subpopulations. What aspects of the genetic architecture of traits vary between subpopulations and how can this be quantified? We consider studying effect heterogeneity using Bayesian random effect interaction models. The proposed methodology can be applied using shrinkage and variable selection methods, and produces useful information about effect heterogeneity in the form of whole-genome summaries (e.g., the proportions of variance of a complex trait explained by a set of SNPs and the average correlation of effects) as well as SNP-specific attributes. Using simulations, we show that the proposed methodology yields (nearly) unbiased estimates when the sample size is not too small relative to the number of SNPs used. Subsequently, we used the methodology for the analyses of four complex human traits (standing height, high-density lipoprotein, low-density lipoprotein, and serum urate levels) in European-Americans (EAs) and African-Americans (AAs). The estimated correlations of effects between the two subpopulations were well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heterogeneity varied between traits and SNP sets. Height showed less differences in SNP effects between AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited a greater extent of effect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity across SNPs, suggesting that effect heterogeneity varies between regions of the genome.
Collapse
|
49
|
Identification of novel common breast cancer risk variants at the 6q25 locus among Latinas. Breast Cancer Res 2019; 21:3. [PMID: 30642363 PMCID: PMC6332913 DOI: 10.1186/s13058-018-1085-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer is a partially heritable trait and genome-wide association studies (GWAS) have identified over 180 common genetic variants associated with breast cancer. We have previously performed breast cancer GWAS in Latinas and identified a strongly protective single nucleotide polymorphism (SNP) at 6q25, with the protective minor allele originating from indigenous American ancestry. Here we report on fine mapping of the 6q25 locus in an expanded sample of Latinas. Methods We performed GWAS in 2385 cases and 6416 controls who were either US Latinas or Mexican women. We replicated the top SNPs in 2412 cases and 1620 controls of US Latina, Mexican, and Colombian women. In addition, we validated the top novel variants in studies of African, Asian and European ancestry. In each dataset we used logistic regression models to test the association between SNPs and breast cancer risk and corrected for genetic ancestry using either principal components or genetic ancestry inferred from ancestry informative markers using a model-based approach. Results We identified a novel set of SNPs at the 6q25 locus associated with genome-wide levels of significance (p = 3.3 × 10− 8 - 6.0 × 10− 9) not in linkage disequilibrium (LD) with variants previously reported at this locus. These SNPs were in high LD (r2 > 0.9) with each other, with the top SNP, rs3778609, associated with breast cancer with an odds ratio (OR) and 95% confidence interval (95% CI) of 0.76 (0.70–0.84). In a replication in women of Latin American origin, we also observed a consistent effect (OR 0.88; 95% CI 0.78–0.99; p = 0.037). We also performed a meta-analysis of these SNPs in East Asians, African ancestry and European ancestry populations and also observed a consistent effect (rs3778609, OR 0.95; 95% CI 0.91–0.97; p = 0.0017). Conclusion Our study adds to evidence about the importance of the 6q25 locus for breast cancer susceptibility. Our finding also highlights the utility of performing additional searches for genetic variants for breast cancer in non-European populations. Electronic supplementary material The online version of this article (10.1186/s13058-018-1085-9) contains supplementary material, which is available to authorized users.
Collapse
|