1
|
Park SY, Choi H, Choi SM, Wang S, Shim S, Jun W, Lee J, Chung JW. T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway. BMB Rep 2024; 57:305-310. [PMID: 38835117 PMCID: PMC11214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelialmesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway. [BMB Reports 2024; 57(6): 305-310].
Collapse
Affiliation(s)
- Soon Yong Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Hyeongrok Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Soo Min Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Seungwon Wang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju 52828, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315, Korea
| | - Jin Woong Chung
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
2
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
3
|
Hasan G, Hassan MI, Sohal SS, Shamsi A, Alam M. Therapeutic Targeting of Regulated Signaling Pathways of Non-Small Cell Lung Carcinoma. ACS OMEGA 2023; 8:26685-26698. [PMID: 37546685 PMCID: PMC10398694 DOI: 10.1021/acsomega.3c02424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common cancer globally. Phytochemicals and small molecule inhibitors significantly prevent varying types of cancers, including NSCLC. These therapeutic molecules serve as important sources for new drugs that interfere with cellular proliferation, apoptosis, metastasis, and angiogenesis by regulating signaling pathways. These molecules affect several cellular signaling cascades, including p53, NF-κB, STAT3, RAS, MAPK/ERK, Wnt, and AKT/PI3K, and are thus implicated in the therapeutic management of cancers. This review aims to describe the bioactive compounds and small-molecule inhibitors, their anticancer action, and targeting cellular signaling cascades in NSCLC. We highlighted the therapeutic potential of Epigallocatechin gallate (EGCG), Perifosine, ABT-737, Thymoquinine, Quercetin, Venetoclax, Gefitinib, and Genistein. These compounds are implicated in the therapeutic management of NSCLC. This review further offers deeper mechanistic insights into different signaling pathways that could be targeted for NSCLC therapy by phytochemicals and small-molecule inhibitors.
Collapse
Affiliation(s)
- Gulam
Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sukhwinder Singh Sohal
- Respiratory
Translational Research Group, Department of Laboratory Medicine, School
of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| | - Manzar Alam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
4
|
Alam M, Hasan GM, Eldin SM, Adnan M, Riaz MB, Islam A, Khan I, Hassan MI. Investigating regulated signaling pathways in therapeutic targeting of non-small cell lung carcinoma. Biomed Pharmacother 2023; 161:114452. [PMID: 36878052 DOI: 10.1016/j.biopha.2023.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common malignancy worldwide. The signaling cascades are stimulated via genetic modifications in upstream signaling molecules, which affect apoptotic, proliferative, and differentiation pathways. Dysregulation of these signaling cascades causes cancer-initiating cell proliferation, cancer development, and drug resistance. Numerous efforts in the treatment of NSCLC have been undertaken in the past few decades, enhancing our understanding of the mechanisms of cancer development and moving forward to develop effective therapeutic approaches. Modifications of transcription factors and connected pathways are utilized to develop new treatment options for NSCLC. Developing designed inhibitors targeting specific cellular signaling pathways in tumor progression has been recommended for the therapeutic management of NSCLC. This comprehensive review provided deeper mechanistic insights into the molecular mechanism of action of various signaling molecules and their targeting in the clinical management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Muhammad Bilal Riaz
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdnask, Poland; Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
5
|
Ma J, Pang X, Li J, Zhang W, Cui W. The immune checkpoint expression in the tumor immune microenvironment of DLBCL: Clinicopathologic features and prognosis. Front Oncol 2022; 12:1069378. [PMID: 36561512 PMCID: PMC9763555 DOI: 10.3389/fonc.2022.1069378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background & aims The immune checkpoint recently provides a new strategy for the immunotherapy of malignant tumors. However, the role in the immune microenvironment of DLBCL is not completely clear. Methods We detected the expression of PD-1, LAG-3, TIM-3, and TIGIT on TILs and on tumor cells among 174 DLBCL patients by IHC. Results In TILs, the positive rates of PD-1, LAG-3, TIM-3 and TIGIT were 79.3%, 78.8%, 62.7% and 69.5%, respectively.TIM-3 and TIGIT were expressed in 44.8% and 45.4% of tumor cells. The expression of TIM-3 in TILs was significantly correlated with the Ann-Arbor stage (P=0.039). There was a positive correlation Between PD-1 and LAG-3 or TIM-3 and TIGIT.In addition, LAG-3 expression in TILs was associated with inferior prognosis.Multivariate analysis showed that PS score and R-CHOP therapy were independent risk factors for OS and PFS in patients with DLBCL (P=0.000). Conclusions The expression level of TIM-3 is closely related to the Ann-Arbor stage, which may be expected to be a new index to evaluate the invasiveness of DLBCL. PD-1 was correlated with the expression of LAG-3, and the high expression of LAG-3 and LAG-3/PD-1 predicted the poor prognosis of DLBCL. Therefore, LAG-3 may become a new target of immunotherapy, or be used in combination with PD-1 inhibitors to improve the drug resistance of current patients with DLBCL.
Collapse
|
6
|
Zhao Z, Liu X, Hou M, Zhou R, Wu F, Yan J, Li W, Zheng Y, Zhong Q, Chen Y, Yin L. Endocytosis-Independent and Cancer-Selective Cytosolic Protein Delivery via Reversible Tagging with LAT1 substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110560. [PMID: 35789055 DOI: 10.1002/adma.202110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Protein drugs targeting intracellular machineries have shown profound therapeutic potentials, but their clinical utilities are greatly hampered by the lack of efficient cytosolic delivery techniques. Existing strategies mainly rely on nanocarriers or conjugated cell-penetrating peptides (CPPs), which often have drawbacks such as materials complexity/toxicity, lack of cell specificity, and endolysosomal entrapment. Herein, a unique carrier-free approach is reported for mediating cancer-selective and endocytosis-free cytosolic protein delivery. Proteins are sequentially modified with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate as the H2 O2 -responsive domain and 3,4-dihydroxy-l-phenylalanine as the substrate of l-type amino acid transporter 1 (LAT1). Thus, the pro-protein can be directly transported into tumor cells by overexpressed LAT1 on cell membranes, bypassing endocytosis and endolysosomal entrapment. In the cytosol, overproduced H2 O2 restores the protein structure and activity. Using this technique, versatile proteins are delivered into tumor cells with robust efficiency, including toxins, enzymes, CRISPR-Cas9 ribonucleoprotein, and antibodies. Furthermore, intravenously injected pro-protein of saporin shows potent anticancer efficacy in 4T1-tumor-bearing mice, without provoking systemic toxicity. Such a facile and versatile pro-protein platform may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Ziyin Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xun Liu
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Mengying Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jing Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Wei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yujia Zheng
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Qinmeng Zhong
- College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123, China
| | - Yongbing Chen
- Department of Thoracic Surgery, Suzhou Key Laboratory of Thoracic Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Liu X, Zhao Z, Wu F, Chen Y, Yin L. Tailoring Hyperbranched Poly(β-amino ester) as a Robust and Universal Platform for Cytosolic Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108116. [PMID: 34894367 DOI: 10.1002/adma.202108116] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/26/2021] [Indexed: 05/24/2023]
Abstract
Cytosolic protein delivery is a prerequisite for protein-based biotechnologies and therapeutics on intracellular targets. Polymers that can complex with proteins to form nano-assemblies represent one of the most important categories of materials, because of the ease of nano-fabrication, high protein loading efficiency, no need for purification, and maintenance of protein bioactivity. Stable protein encapsulation and efficient intracellular liberation are two critical yet opposite processes toward cytosolic delivery, and polymers that can resolve these two conflicting challenges are still lacking. Herein, hyperbranched poly(β-amino ester) (HPAE) with backbone-embedded phenylboronic acid (PBA) is developed to synchronize these two processes, wherein PBA enhanced protein encapsulation via nitrogen-boronate (N-B) coordination while triggered polymer degradation and protein release upon oxidation by H2 O2 in cancer cells. Upon optimization of the branching degree, charge density, and PBA distribution, the best-performing A2-B3-C2-S2 -P2 is identified, which mediates robust delivery of various native proteins/peptides with distinct molecular weights (1.6-430 kDa) and isoelectric points (4.1-10.3) into cancer cells, including enzymes, toxins, antibodies, and CRISPR-Cas9 ribonucleoproteins (RNPs). Moreover, A2-B3-C2-S2 -P2 mediates effective cytosolic delivery of saporin both in vitro and in vivo to provoke remarkable anti-tumor efficacy. Such a potent and universal platform holds transformative potentials for protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Fan Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
8
|
Phosphorylation of RCC1 on Serine 11 Facilitates G1/S Transition in HPV E7-Expressing Cells. Biomolecules 2021; 11:biom11070995. [PMID: 34356619 PMCID: PMC8301946 DOI: 10.3390/biom11070995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.
Collapse
|
9
|
Liu L, Yan H, Ruan M, Yang H, Wang L, Lei B, Sun X, Chang C, Huang G, Xie W. An AKT/PRMT5/SREBP1 axis in lung adenocarcinoma regulates de novo lipogenesis and tumor growth. Cancer Sci 2021; 112:3083-3098. [PMID: 34033176 PMCID: PMC8353903 DOI: 10.1111/cas.14988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Protein kinase B (AKT) hyperactivation and de novo lipogenesis are both common in tumor progression. Sterol regulatory element‐binding protein 1 (SREBP1) is the master regulator for tumor lipid metabolism, and protein arginine methyltransferase 5 (PRMT5) is an enzyme that can catalyze symmetric dimethyl arginine (SDMA) modification of the mature form of SREBP1 (mSREBP1) to induce its hyperactivation. Here, we report that SDMA‐modified mSREBP1 (mSREBP1‐SDMA) was overexpressed and correlated with Ser473‐phosphorylated AKT (AKT‐473P) expression and poor patient outcomes in human lung adenocarcinomas. Furthermore, patients with AKT‐473P and mSREBP1‐SDMA coexpression showed the worst prognosis. Mechanistic investigation revealed that AKT activation upregulated SREBP1 at both the transcriptional and post‐translational levels, whereas PRMT5 knockdown reversed AKT signaling‐mediated mSREBP1 ubiquitin‐proteasome pathway stabilization at the post‐translational level. Meanwhile, AKT activation promoted nuclear PRMT5 to the cytoplasm without changing total PRMT5 expression, and the transported cytoplasmic PRMT5 (cPRMT5) induced by AKT activation showed a strong mSREBP1‐binding ability. Immunohistochemical assay indicated that AKT‐473P and mSREBP1‐SDMA were positively correlated with cPRMT5 in lung adenocarcinomas, and high cPRMT5 levels in tumors were associated with poor patient outcomes. Additionally, PRMT5 knockdown reversed AKT activation‐induced lipid synthesis and growth advantage of lung adenocarcinoma cells both in vitro and in vivo. Finally, we defined an AKT/PRMT5/SREBP1 axis involved in de novo lipogenesis and the growth of lung cancer. Our data also support that cPRMT5 is a potential therapeutic target for hyperactive AKT‐driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center, Shanghai Chest Hospital, Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
10
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2021; 60:1821-1830. [PMID: 33034131 PMCID: PMC7855684 DOI: 10.1002/anie.202010412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Indexed: 01/29/2023]
Abstract
The primary impediments in developing large antibodies as drugs against intracellular targets involve their low transfection efficiency and suitable reversible encapsulation strategies for intracellular delivery with retention of biological activity. To address this, we outline an electrostatics-enhanced covalent self-assembly strategy to generate polymer-protein/antibody nanoassemblies. Through structure-activity studies, we down-select the best performing self-immolative pentafluorophenyl containing activated carbonate polymer for bioconjugation. With the help of an electrostatics-aided covalent self-assembly approach, we demonstrate efficient encapsulation of medium to large proteins (HRP, 44 kDa and β-gal, 465 kDa) and antibodies (ca. 150 kDa). The designed polymeric nanoassemblies are shown to successfully traffic functional antibodies (anti-NPC and anti-pAkt) to cytosol to elicit their bioactivity towards binding intracellular protein epitopes and inducing apoptosis.
Collapse
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts, Amherst, MA, 01003, USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
11
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Ishida Y, Kakiuchi N, Yoshida K, Inoue Y, Irie H, Kataoka TR, Hirata M, Funakoshi T, Matsushita S, Hata H, Uchi H, Yamamoto Y, Fujisawa Y, Fujimura T, Saiki R, Takeuchi K, Shiraishi Y, Chiba K, Tanaka H, Otsuka A, Miyano S, Kabashima K, Ogawa S. Unbiased Detection of Driver Mutations in Extramammary Paget Disease. Clin Cancer Res 2020; 27:1756-1765. [PMID: 33323405 DOI: 10.1158/1078-0432.ccr-20-3205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Extramammary Paget disease (EMPD) is an uncommon skin malignancy whose genetic alterations are poorly characterized. Previous reports identified mutations in chromatin remodeling genes and PIK3CA. In order to unambiguously determine driver mutations in EMPD, we analyzed 87 EMPD samples using exome sequencing in combination with targeted sequencing. EXPERIMENTAL DESIGN First, we analyzed 37 EMPD samples that were surgically resected using whole-exome sequencing. Based on several in silico analysis, we built a custom capture panel of putative driver genes and analyzed 50 additional formalin-fixed, paraffin-embedded samples using target sequencing. ERBB2 expression was evaluated by HER2 immunohisotochemistry. Select samples were further analyzed by fluorescence in situ hybridization. RESULTS A median of 92 mutations/sample was identified in exome analysis. A union of driver detection algorithms identified ERBB2, ERBB3, KMT2C, TP53, PIK3CA, NUP93, AFDN, and CUX1 as likely driver mutations. Copy-number alteration analysis showed regions spanning CDKN2A as recurrently deleted, and ERBB2 as recurrently amplified. ERBB2, ERBB3, and FGFR1 amplification/mutation showed tendency toward mutual exclusivity. Copy-number alteration load was associated with likelihood to recur. Mutational signatures were dominated by aging and APOBEC activation and lacked evidence of ultraviolet radiation. HER2 IHC/fluorescence in situ analysis validated ERBB2 amplification but was underpowered to detect mutations. Tumor heterogeneity in terms of ERBB2 amplification status was observed in some cases. CONCLUSIONS Our comprehensive, unbiased analysis shows EMPD is characterized by alterations involving the PI3K-AKT pathway. EMPD is distinct from other skin cancers in both molecular pathways altered and etiology behind mutagenesis.
Collapse
Affiliation(s)
- Yoshihiro Ishida
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yoshikage Inoue
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Hiroyuki Irie
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuki R Kataoka
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Hiroo Hata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Uchi
- Department of Dermato-Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | | | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryunosuke Saiki
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese, Foundation for Cancer Research, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese, Foundation for Cancer Research, Tokyo, Japan
| | - Yuichi Shiraishi
- Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Kenichi Chiba
- Section of Genome Analysis Platform, Center for Cancer Genomic and Advanced Therapeutics, National Cancer Center, Tokyo, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non‐Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts Amherst MA 01003 USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
14
|
Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin β4. Carbohydr Polym 2020; 239:116168. [PMID: 32414450 DOI: 10.1016/j.carbpol.2020.116168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Great efforts have been paid to develop methodologies for cancer stem-like cell (CSLC) isolation in anti-cancer research. The major obstacle lies in the lack of generic biomarkers for different cancer types and the requirement of complicated immuno-labeling procedures. The purpose of this study is to establish a label-free platform for CSLC isolation using pH-responsive chitosan. Based on the adhesive heterogeneity, 15.7 ± 1.9 % of human non-small cell lung cancer (NSCLC) cell line A549 detached from the chitosan substrate following medium pH elevation from 6.99 to 7.65 within 1 h. As a result, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including self-renewal, invasive and metastatic potential, therapeutic-resistance, colony formation in vitro, as well as nude mice xenograft in vivo for tumorigenesis, in comparison with their high-adhesive counterpart. Furthermore, integrin β4 is decisive in controlling CSLC detachment of NSCLC. Conclusively, this pH-dependent isolation provides new insights into biomaterial-based CSLC isolation.
Collapse
|
15
|
Abstract
With the discovery of rapamycin 45 years ago, studies in the mechanistic target of rapamycin (mTOR) field started 2 decades before the identification of the mTOR kinase. Over the years, studies revealed that the mTOR signaling is a master regulator of homeostasis and integrates a variety of environmental signals to regulate cell growth, proliferation, and metabolism. Deregulation of mTOR signaling, particularly hyperactivation, frequently occurs in human tumors. Recent advances in molecular profiling have identified mutations or amplification of certain genes coding proteins involved in the mTOR pathway (eg, PIK3CA, PTEN, STK11, and RICTOR) as the most common reasons contributing to mTOR hyperactivation. These genetic alterations of the mTOR pathway are frequently observed in lung neoplasms and may serve as a target for personalized therapy. mTOR inhibitor monotherapy has met limited clinical success so far; however, rational drug combinations are promising to improve efficacy and overcome acquired resistance. A better understanding of mTOR signaling may have the potential to help translation of mTOR pathway inhibitors into the clinical setting.
Collapse
|
16
|
Wang Q, Zhang H, Liang Y, Jiang H, Tan S, Luo F, Yuan Z, Chen Y. A Novel Method to Efficiently Highlight Nonlinearly Expressed Genes. Front Genet 2020; 10:1410. [PMID: 32082366 PMCID: PMC7006292 DOI: 10.3389/fgene.2019.01410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/27/2019] [Indexed: 12/15/2022] Open
Abstract
For precision medicine, there is a need to identify genes that accurately distinguish the physiological state or response to a particular therapy, but this can be challenging. Many methods of analyzing differential expression have been established and applied to this problem, such as t-test, edgeR, and DEseq2. A common feature of these methods is their focus on a linear relationship (differential expression) between gene expression and phenotype. However, they may overlook nonlinear relationships due to various factors, such as the degree of disease progression, sex, age, ethnicity, and environmental factors. Maximal information coefficient (MIC) was proposed to capture a wide range of associations of two variables in both linear and nonlinear relationships. However, with MIC it is difficult to highlight genes with nonlinear expression patterns as the genes giving the most strongly supported hits are linearly expressed, especially for noisy data. It is thus important to also efficiently identify nonlinearly expressed genes in order to unravel the molecular basis of disease and to reveal new therapeutic targets. We propose a novel nonlinearity measure called normalized differential correlation (NDC) to efficiently highlight nonlinearly expressed genes in transcriptome datasets. Validation using six real-world cancer datasets revealed that the NDC method could highlight nonlinearly expressed genes that could not be highlighted by t-test, MIC, edgeR, and DEseq2, although MIC could capture nonlinear correlations. The classification accuracy indicated that analysis of these genes could adequately distinguish cancer and paracarcinoma tissue samples. Furthermore, the results of biological interpretation of the identified genes suggested that some of them were involved in key functional pathways associated with cancer progression and metastasis. All of this evidence suggests that these nonlinearly expressed genes may play a central role in regulating cancer progression.
Collapse
Affiliation(s)
- Qifei Wang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Haojian Zhang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Yuqing Liang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Heling Jiang
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Siqiao Tan
- School of Information Science and Technology, Hunan Agricultural University, Changsha, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, United States
| | - Zheming Yuan
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| | - Yuan Chen
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University, Changsha, China
| |
Collapse
|
17
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Zhu H, Wu C, Wu T, Xia W, Ci S, He W, Zhang Y, Li L, Zhou S, Zhang J, Edick AM, Zhang A, Pan FY, Hu Z, He L, Guo Z. Inhibition of AKT Sensitizes Cancer Cells to Antineoplastic Drugs by Downregulating Flap Endonuclease 1. Mol Cancer Ther 2019; 18:2407-2420. [DOI: 10.1158/1535-7163.mct-18-1215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/10/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
|
19
|
Revathidevi S, Munirajan AK. Akt in cancer: Mediator and more. Semin Cancer Biol 2019; 59:80-91. [PMID: 31173856 DOI: 10.1016/j.semcancer.2019.06.002] [Citation(s) in RCA: 400] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Akt is a serine/threonine kinase and it participates in the key role of the PI3K signaling pathway. The Akt can be activated by a wide range of growth signals and the biochemical mechanisms leading to Akt activation are well defined. Once activated, Akt modulates the function of many downstream proteins involved in cellular survival, proliferation, migration, metabolism, and angiogenesis. The Akt is a central node of many signaling pathways and it is frequently deregulated in many types of human cancers. In this review, we provide an overview of Akt function and its role in the hallmarks of human cancer. We also discussed various mechanisms of Akt dysregulation in cancers, including epigenetic modifications like methylation, post-transcriptional non-coding RNAs-mediated regulation, and the overexpression and mutation.
Collapse
Affiliation(s)
- Sundaramoorthy Revathidevi
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 113, Tamil Nadu, India.
| |
Collapse
|
20
|
Jiang M, Zhou LY, Xu N, An Q. Hydroxysafflor yellow A inhibited lipopolysaccharide-induced non-small cell lung cancer cell proliferation, migration, and invasion by suppressing the PI3K/AKT/mTOR and ERK/MAPK signaling pathways. Thorac Cancer 2019; 10:1319-1333. [PMID: 31055884 PMCID: PMC6558494 DOI: 10.1111/1759-7714.13019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic inflammation plays a significant role in the occurrence and development of non-small cell lung cancer (NSCLC). Hydroxysafflor yellow A (HSYA), a chemical compound of the yellow color pigments extracted from the safflower, has been widely used in clinical treatment with positive antioxidation, anti-inflammation, and antitumor effects. However, the role and underlying mechanisms of HYSA on development and progress in inflammation-mediated NSCLC are unknown. METHODS Cell counting kit-8, colony formation, EdU, cell apoptosis, wound healing, Transwell migration and invasion, and enzyme-linked immunosorbent assays; flow cytometry; and Western blotting were conducted using human NSCLC cell lines A549 and H1299. RESULTS Lipopolysaccharide (LPS) significantly promoted the proliferation and enhanced colony formation of A549 and H1299 cells, while HYSA notably reversed the effects of LPS. HYSA induced apoptosis of LPS-mediated A549 and H1299 cells in a dose dependent manner; and remarkably suppressed migration, invasion, and epithelial-mesenchymal transition (EMT), significantly regulated production of LPS-induced inflammation cytokines, and downregulated protein expression of PI3K/Akt/mTOR and ERK/MAPK signaling pathways in LPS-induced A549 and H1299 cells. Furthermore, PI3K (LY294002) and ERK (SCH772984) inhibitors remarkably inhibited proliferation, migration, invasion, and EMT, and induced apoptosis in LPS-mediated A549 and H1299 cells. These effects were even more obvious in the presence of HYSA and LY294002 or SCH772984 compared to those of either agent alone. CONCLUSION HYSA suppressed LPS-mediated proliferation, migration, invasion, and EMT in A549 and H1299 cells by inhibiting the PI3K/Akt/mTOR and ERK/MAPK signaling pathways, indicating that HYSA may be a potential candidate to treat inflammation-mediated NSCLC.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Yang Zhou
- Department of Respiratory Medicine, Huai'an Second People's Hospital of Jiangsu, Huaian, China
| | - Nan Xu
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qing An
- Department of Traditional Chinese Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Phosphorylated-Akt overexpression is associated with a higher risk of brain metastasis in patients with non-small cell lung cancer. Biochem Biophys Rep 2019; 18:100625. [PMID: 30976664 PMCID: PMC6444023 DOI: 10.1016/j.bbrep.2019.100625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/03/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Brain metastasis (BM) of non-small cell lung cancer (NSCLC) is relatively common and has a poor prognosis. Moreover, identifying which patients are more likely to develop BM is challenging. Akt, a serine/threonine-specific protein kinase, can be activated in various tumors, including lung cancer, and may be associated with poor prognosis. Here, we used immunohistochemistry to evaluate phosphorylated-Akt (p-Akt) expression in tumor tissues of 99 NSCLC patients. We also analyzed the genotype of the patients for two single nucleotide polymorphisms (SNPs) of the AKT1 gene, rs2498804 and rs2494732. We found that p-Akt expression differs between NSCLC patients and correlates with the risk of BM. Indeed, patients exhibiting medium to high p-Akt expression had a higher incidence of BM than those exhibiting low to no p-Akt expression (39% vs 16%). Our data also show that patients with the rs2498804 GT/GG and rs2494732 CT/TT variant genotypes were more likely to exhibit higher levels of p-Akt expression than those with the rs2498804 TT and rs2494732 CC variant genotypes (35% vs. 24% and 37% vs. 25%, respectively). Our results suggest that the level of expression of p-Akt, which may be affected by the AKT1 genotype, is correlated with the risk of BM. However, further studies are needed to establish p-Akt as a predictive marker for BM in NSCLC patients.
Collapse
|
22
|
Luo J, Chimge NO, Zhou B, Flodby P, Castaldi A, Firth AL, Liu Y, Wang H, Yang C, Marconett CN, Crandall ED, Offringa IA, Frenkel B, Borok Z. CLDN18.1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro. Int J Cancer 2018; 143:3169-3180. [PMID: 30325015 PMCID: PMC6263834 DOI: 10.1002/ijc.31734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
Claudins are a family of transmembrane proteins integral to the structure and function of tight junctions (TJ). Disruption of TJ and alterations in claudin expression are important features of invasive and metastatic cancer cells. Expression of CLDN18.1, the lung-specific isoform of CLDN18, is markedly decreased in lung adenocarcinoma (LuAd). Furthermore, we recently observed that aged Cldn18 -/- mice have increased propensity to develop LuAd. We now demonstrate that CLDN18.1 expression correlates inversely with promoter methylation and with LuAd patient mortality. In addition, when restored in LuAd cells that have lost expression, CLDN18.1 markedly attenuates malignant properties including xenograft tumor growth in vivo as well as cell proliferation, migration, invasion and anchorage-independent colony formation in vitro. Based on high throughput analyses of Cldn18 -/- murine lung alveolar epithelial type II cells, as well as CLDN18.1-repleted human LuAd cells, we hypothesized and subsequently confirmed by Western analysis that CLDN18.1 inhibits insulin-like growth factor-1 receptor (IGF-1R) and AKT phosphorylation. Consistent with recent data in Cldn18 -/- knockout mice, expression of CLDN18.1 in human LuAd cells also decreased expression of transcriptional co-activator with PDZ-binding motif (TAZ) and Yes-associated protein (YAP) and their target genes, contributing to its tumor suppressor activity. Moreover, analysis of LuAd cells in which YAP and/or TAZ are silenced with siRNA suggests that inhibition of TAZ, and possibly YAP, is also involved in CLDN18.1-mediated AKT inactivation. Taken together, these data indicate a tumor suppressor role for CLDN18.1 in LuAd mediated by a regulatory network that encompasses YAP/TAZ, IGF-1R and AKT signaling.
Collapse
Affiliation(s)
- Jiao Luo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Nyam-Osor Chimge
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Beiyun Zhou
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Per Flodby
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Alessandra Castaldi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Amy L. Firth
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yixin Liu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Hongjun Wang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
| | - Chenchen Yang
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Crystal N. Marconett
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Edward D. Crandall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Ite A. Offringa
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Baruch Frenkel
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Hastings Center for Pulmonary Research, University of Southern California, Los Angeles, CA, USA
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Qiu BQ, Zhang PF, Xiong D, Xu JJ, Long X, Zhu SQ, Ye XD, Wu Y, Pei X, Zhang XM, Wu YB. CircRNA fibroblast growth factor receptor 3 promotes tumor progression in non-small cell lung cancer by regulating Galectin-1-AKT/ERK1/2 signaling. J Cell Physiol 2018; 234:11256-11264. [PMID: 30565694 DOI: 10.1002/jcp.27783] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
Abstract
The dysregulation of circular RNA (circRNA) expression is involved in the progression of several cancers, including non-small cell lung cancer (NSCLC). However, the role and underlying molecular mechanisms of circRNA FGFR3 (circFGFR3) in NSCLC progression remains unknown. Here, we used quantitative real-time polymerase chain reaction to validate that circFGFR3 expression was higher in NSCLC tissues than in the paratumor tissues. Furthermore, our study indicated that the forced circFGFR3 expression promoted NSCLC cell invasion and proliferation. Mechanistically, we found that circFGFR3 promoted NSCLC cell invasion and proliferation via competitively combining with miR-22-3p to facilitate the galectin-1 (Gal-1), p-AKT, and p-ERK1/2 expressions. Clinically, we revealed that the high circFGFR3 expression correlates with the poor clinical outcomes in patients with NSCLC. Together, these data provide mechanistic insights into the circFGFR3-mediated regulation of both the AKT and ERK1/2 signaling pathways by sponging miR-22-3p and increasing Gal-1 expression.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dian Xiong
- Department of Thoracic Surgery, The Central Hospital of Xuhui District, Shanghai, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xu-Dong Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yin Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Awasthi S, Singhal SS, Singhal J, Nagaprashantha L, Li H, Yuan YC, Liu Z, Berz D, Igid H, Green WC, Tijani L, Tonk V, Rajan A, Awasthi Y, Singh SP. Anticancer activity of 2'-hydroxyflavanone towards lung cancer. Oncotarget 2018; 9:36202-36219. [PMID: 30546837 PMCID: PMC6281421 DOI: 10.18632/oncotarget.26329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we found that 2'-hydroxyflavonone (2HF), a citrus flavonoid, inhibits the growth of renal cell carcinoma in a VHL-dependent manner. This was associated with the inhibition of glutathione S-transferases (GSTs), the first step enzyme of the mercapturic acid pathway that catalyzes formation of glutathione-electrophile conjugates (GS-E). We studied 2HF in small cell (SCLC) and non-small cell (NSCLC) lung cancer cell lines for sensitivity to 2HF antineoplastic activity and to determine the role of the GS-E transporter Rlip (Ral-interacting protein; RLIP76; RALBP1) in the mechanism of action of 2HF. Our results show that 2HF induced apoptosis in both histological types of lung cancer and inhibited proliferation and growth through suppression of CDK4, CCNB1, PIK3CA, AKT and RPS6KB1 (P70S6K) signaling. Increased E-cadherin and reduced fibronectin and vimentin indicated inhibition of epithelial-mesenchymal transition. Additionally, 2HF inhibited efflux of doxorubicin and increased its accumulation in the cells, but did not add to the transport inhibitory effect of anti-Rlip antibodies alone. Binding of Rlip to 2HF was evident from successful purification of Rlip by 2HF affinity chromatography. Consistent with increased drug accumulation, combined treatment with 1-chloro-2, 4-dinitrobenzene, reduced the GI50 of 2HF by an order of magnitude. Results of in-vivo nude mouse xenograft studies of SCLC and NSCLC, which showed that orally administered 2HF inhibited growth of both histological types of lung cancer, confirmed in-vitro study results. Our result suggest that Rlip inhibition is likely a mechanism of action. Our findings are basis of proposing 2HF as therapeutic or preventative drug for lung cancer.
Collapse
Affiliation(s)
- Sanjay Awasthi
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Sharad S. Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jyotsana Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Lokesh Nagaprashantha
- Department of Medical Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hongzhi Li
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Yate-Ching Yuan
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zheng Liu
- Bioinformatics Core Facility, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - David Berz
- Beverly Hills Cancer Center, Los Angeles, CA 90211, USA
| | - Henry Igid
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - William C. Green
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Lukman Tijani
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Vijay Tonk
- Department of Pediatrics, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Aditya Rajan
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | - Yogesh Awasthi
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sharda P. Singh
- Division of Hematology and Oncology, Department of Internal Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
25
|
Huang L, Liu J, Zhang XO, Sibley K, Najjar SM, Lee MM, Wu Q. Inhibition of protein arginine methyltransferase 5 enhances hepatic mitochondrial biogenesis. J Biol Chem 2018; 293:10884-10894. [PMID: 29773653 DOI: 10.1074/jbc.ra118.002377] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) regulates gene expression either transcriptionally by symmetric dimethylation of arginine residues on histones H4R3, H3R8, and H2AR3 or at the posttranslational level by methylation of nonhistone target proteins. Although emerging evidence suggests that PRMT5 functions as an oncogene, its role in metabolic diseases is not well-defined. We investigated the role of PRMT5 in promoting high-fat-induced hepatic steatosis. A high-fat diet up-regulated PRMT5 levels in the liver but not in other metabolically relevant tissues such as skeletal muscle or white and brown adipose tissue. This was associated with repression of master transcription regulators involved in mitochondrial biogenesis. In contrast, lentiviral short hairpin RNA-mediated reduction of PRMT5 significantly decreased phosphatidylinositol 3-kinase/AKT signaling in mouse AML12 liver cells. PRMT5 knockdown or knockout decreased basal AKT phosphorylation but boosted the expression of peroxisome proliferator-activated receptor α (PPARα) and PGC-1α with a concomitant increase in mitochondrial biogenesis. Moreover, by overexpressing an exogenous WT or enzyme-dead mutant PRMT5 or by inhibiting PRMT5 enzymatic activity with a small-molecule inhibitor, we demonstrated that the enzymatic activity of PRMT5 is required for regulation of PPARα and PGC-1α expression and mitochondrial biogenesis. Our results suggest that targeting PRMT5 may have therapeutic potential for the treatment of fatty liver.
Collapse
Affiliation(s)
- Lei Huang
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Jehnan Liu
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606
| | - Xiao-Ou Zhang
- the Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Katelyn Sibley
- the Department of Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, and
| | - Sonia M Najjar
- the Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio 43606.,the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| | - Mary M Lee
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| | - Qiong Wu
- From the Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655,
| |
Collapse
|
26
|
Lusche DF, Buchele EC, Russell KB, Soll BA, Vitolo MI, Klemme MR, Wessels DJ, Soll DR. Overexpressing TPTE2 ( TPIP), a homolog of the human tumor suppressor gene PTEN, rescues the abnormal phenotype of the PTEN-/- mutant. Oncotarget 2018; 9:21100-21121. [PMID: 29765523 PMCID: PMC5940379 DOI: 10.18632/oncotarget.24941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/06/2018] [Indexed: 11/25/2022] Open
Abstract
One possible approach to normalize mutant cells that are metastatic and tumorigenic, is to upregulate a functionally similar homolog of the mutated gene. Here we have explored this hypothesis by generating an overexpressor of TPTE2 (TPIP), a homolog of PTEN, in PTEN-/- mutants, the latter generated by targeted mutagenesis of a human epithelial cell line. Overexpression of TPTE2 normalized phenotypic changes associated with the PTEN mutation. The PTEN-/- -associated changes rescued by overexpressing TPTE2 included 1) accelerated wound healing in the presence or absence of added growth factors (GFs), 2) increased division rates on a 2D substrate in the presence of GFs, 3) adhesion and viability on a 2D substrate in the absence of GFs, 4) viability in a 3D Matrigel model in the absence of GFs and substrate adhesion 5) loss of apoptosis-associated annexin V cell surface binding sites. The results justify further exploration into the possibility that upregulating TPTE2 by a drug may reverse metastatic and tumorigenic phenotypes mediated in part by a mutation in PTEN. This strategy may also be applicable to other tumorigenic mutations in which a homolog to the mutated gene is present and can substitute functionally.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Emma C. Buchele
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Kanoe B. Russell
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Benjamin A. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Michele I. Vitolo
- Greenebaum Cancer Center, The University of Maryland, Baltimore, Maryland, Baltimore, 21201 MD, USA
| | - Michael R. Klemme
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - Deborah J. Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| | - David R. Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, 52242 IA, USA
| |
Collapse
|
27
|
Pentimalli F, Forte IM, Esposito L, Indovina P, Iannuzzi CA, Alfano L, Costa C, Barone D, Rocco G, Giordano A. RBL2/p130 is a direct AKT target and is required to induce apoptosis upon AKT inhibition in lung cancer and mesothelioma cell lines. Oncogene 2018; 37:3657-3671. [PMID: 29606701 DOI: 10.1038/s41388-018-0214-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/30/2017] [Accepted: 02/03/2018] [Indexed: 12/29/2022]
Abstract
The retinoblastoma (RB) protein family includes RB1/p105, RBL1/p107, and RBL2/p130, which are key factors in cell-cycle regulation and stand at the crossroads of multiple pathways dictating cell fate decisions. The role of RB proteins in apoptosis is controversial because they can inhibit or promote apoptosis depending on the context, on the apoptotic stimuli and on their intrinsic status, impacting on the response to antitumoral treatments. Here we identified RBL2/p130 as a direct substrate of the AKT kinase, a key antiapoptotic factor hyperactive in multiple cancer types. We showed that RBL2/p130 and AKT1 physically interact and AKT phosphorylates RBL2/p130 Ser941, located in the pocket domain, but not when this residue is mutated into Ala. We found that pharmacological inhibition of AKT, through the highly selective AKT inhibitor VIII (AKTiVIII), impairs RBL2/p130 Ser941 phosphorylation and increases RBL2/p130 stability, mRNA expression and nuclear levels in both lung cancer and mesothelioma cell lines, mirroring the more extensively studied effects on the p27 cell-cycle inhibitor. Consistently, AKT inhibition reduced cell viability, induced cell accumulation in G0/G1, and triggered apoptosis, which proved to be largely dependent on RBL2/p130 itself, as shown upon RBL2/p130 silencing. AKT inhibition induced RBL2/p130-dependent apoptosis also in HEK-293 cells, in which re-expression of a short hairpin-resistant RBL2/p130 was able to rescue AKTiVIII-induced apoptosis upon RBL2/p130 silencing. Our data also showed that the combination of AKT and cyclin-dependent kinases (CDK) inhibitors, which converge on the re-activation of RBL2/p130 antitumoral potential, could be a promising anticancer strategy.
Collapse
Affiliation(s)
- Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.
| | - Iris M Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Luca Esposito
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Scienceand Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Carmelina A Iannuzzi
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Caterina Costa
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy
| | - Daniela Barone
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS, "Fondazione G. Pascale", 80131, Napoli, Italy.,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy
| | - Gaetano Rocco
- Division of Thoracic Surgery, Department of Thoracic Surgery and Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale"; IRCCS, 80131, Napoli, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Scienceand Technology, Temple University, Philadelphia, PA, 19122, USA. .,Department of Medicine, Surgery and Neuroscience, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
28
|
Almahli H, Hadchity E, Jaballah MY, Daher R, Ghabbour HA, Kabil MM, Al-Shakliah NS, Eldehna WM. Development of novel synthesized phthalazinone-based PARP-1 inhibitors with apoptosis inducing mechanism in lung cancer. Bioorg Chem 2018; 77:443-456. [PMID: 29453076 DOI: 10.1016/j.bioorg.2018.01.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 11/30/2022]
Abstract
Herein we report the synthesis of two series of 4-phenylphthalazin-1-ones 11a-i and 4- benzylphthalazin-1-ones 16a-h as anti-lung adenocarcinoma agents with potential inhibitory activity against PARP-1. All the newly synthesized phthalazinones were evaluated for their anti-proliferative activity against A549 lung carcinoma cell line. Phthalazinones 11c-i and 16b, c showed significant cytotoxic activity against A549 cells at different concentrations (0.1, 1 and 10 μM) for two time intervals (24 h and 48 h). These nine phthalazinones were further examined for their inhibitory activity towards PARP-1. Compound 11c emerged as the most potent PARP-1 inhibitor with IC50 value of 97 nM, compared to that of Olaparib (IC50 = 139 nM). Furthermore, all these nine phthalazinones passed the filters of Lipinski and Veber rules, and predicted to have good pharmacokinetics properties in a theoretical kinetic study. On the other hand, western blotting in A549 cells revealed the enhanced expression of the cleaved PARP-1, alongside, with the reduced expression of pro-caspase-3 and phosphorylated AKT. In addition, ELISA assay confirmed the up-regulation of active caspase-3 and caspase-9 levels compared to the control, suggesting the activation of the apoptotic machinery in the A549 cells. Finally, molecular docking of 11c into PARP-1 active site (PDB: 5WRZ) was performed to explore the probable binding mode.
Collapse
Affiliation(s)
- Hadia Almahli
- University of Oxford, Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, OX1 3TA, Oxford, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, P.O. Box 11829, Badr City, Cairo, Egypt
| | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat, Lebanon
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, Egypt
| | - Racha Daher
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat, Lebanon
| | - Hazem A Ghabbour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Maha M Kabil
- Department of Infection Control, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
29
|
Abstract
Akt/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. Akt is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473). Several studies have found Akt2 to be amplified or overexpressed at the mRNA level in various tumor cell lines and in a number of human malignancies such as colon, pancreatic and breast cancers. Nevertheless, activation of Akt isoforms by phosphorylation appears to be more clinically significant than Akt2 amplification or overexpression. Many studies in the past 4–5 years have revealed a prognostic and/or predictive role of Akt phosphorylation in breast, prostate and non-small cell lung cancer. Several publications suggest a role of phosphorylated Akt also in endometrial, pancreatic, gastric, tongue and renal cancer. However, different types of assays were used in these studies. Before assessment of P-Akt can be incorporated into routine clinical practice, all aspects of the assay methodology will have to be standardized.
Collapse
Affiliation(s)
- J. Cicenas
- Evolutionary Biology, Zoological Institute, University of Basel, Basel - Switzerland
| |
Collapse
|
30
|
Co-expression of PD-L1 and p-AKT is associated with poor prognosis in diffuse large B-cell lymphoma via PD-1/PD-L1 axis activating intracellular AKT/mTOR pathway in tumor cells. Oncotarget 2017; 7:33350-62. [PMID: 27147575 PMCID: PMC5078100 DOI: 10.18632/oncotarget.9061] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
Programmed death-1 (PD-1) /programmed death-ligand 1 (PD-L1) engagement usually leads to diminished antitumor T-cell responses, which mediates the immune escape of tumor cells. However, little is known whether PD-1/PD-L1 could directly activates intracellular oncogenic signaling pathways in tumor cells. The purpose of this study is to investigate whether intracellular AKT/mTOR signaling could be directly activated by PD-1/PD-L1 during the malignant progression in diffuse large B-cell lymphoma (DLBCL). Detection of the expression of PD-L1 and p-AKT by immunohistochemistry (IHC) showed that both proteins were overexpressed in 54% and 48% DLBCL cases, respectively. Spearman test showed that PD-L1 expression was correlated with p-AKT expression (R=0.244, χ2=5.962; P=0.017) and the expression of PD-L1 and p-AKT were also correlated with clinic-pathological characteristics. In addition, survival analysis showed that DLBCL patients who co-expressed PD-L1 and p-AKT had significantly poorer outcome than patients with single positive or both negative expression (P<0.05). In vitro, total PD-L1 and membrane PD-L1 (mPD-L1) proteins were overexpressed in five DLBCL cell lines by western blot and flow cytometry. We observed that AKT/mTOR pathway was activated in DLBCL cells after stimulated with human recombination PD-1/Fc. Taken together, these results suggested that the combination of PD-1/PD-L1 antibodies and AKT/mTOR inhibitor might be a promising and novel therapeutic approach for DLBCL in the future.
Collapse
|
31
|
Kim SY, Kim HJ, Byeon HK, Kim DH, Kim CH. FOXO3 induces ubiquitylation of AKT through MUL1 regulation. Oncotarget 2017; 8:110474-110489. [PMID: 29299162 PMCID: PMC5746397 DOI: 10.18632/oncotarget.22793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
AKT (also known as protein kinase B, PKB) plays an important role in cell survival or tumor progression. For these reasons, AKT is an emerging target for cancer therapeutics. Previously our studies showed that mitochondrial E3 ubiquitin protein ligase 1 (MUL1, also known as MULAN/GIDE/MAPL) is suppressed in head and neck cancer (HNC) and acts as negative regulator against AKT. However, the MUL1 regulatory mechanisms remain largely unknown. Here we report that cisplatin (CDDP) induces thyroid cancer cell death through MUL1-AKT axis. Specifically, CDDP-induced MUL1 leads to ubiquitylation of active form of AKT. We also observed that the role of forkhead box O3 (FOXO3) is pivotal in CDDP-induced MUL1 regulation. FOXO3 knock-downed cells show resistance against CDDP-mediated MUL1-AKT axis. CDDP-mediated intracellular ROS increment plays an important role in FOXO3-MUL1-AKT signal pathway. The data provide compelling evidence to support the idea that the regulation of FOXO3-MUL1-AKT axis can be a novel strategy for the treatment of HNC with CDDP.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dae Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
33
|
Chandrasekaran B, Tyagi A, Sharma AK, Cai L, Ankem M, Damodaran C. Molecular insights: Suppression of EGFR and AKT activation by a small molecule in non-small cell lung cancer. Genes Cancer 2017; 8:713-724. [PMID: 29234489 PMCID: PMC5724805 DOI: 10.18632/genesandcancer.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) activation events and the mammalian target of rampamycin (mTOR) are considered important therapeutic targets in alleviating cancer conditions. The current treatment paradigm has shifted to personalized treatment strategies with tyrosine kinase inhibitors (TKIs) or anaplastic lymphoma kinase (ALK) inhibitors, due to low survival rates in non-small cell lung cancer (NSCLC) in terms of the prevailing platinum-based therapy. In the present study, we examined the anticancer potential of Verrucarin J (VJ), a small molecule, in NSCLC cell lines (H460 and A549). The small molecule significantly inhibited cell growth, proliferation, colony forming ability, and induced apoptosis in both lung cancer cell lines. The inhibitory effects on EGFR (pEGFR –tyr1173) and AKT (pAKT Serine473) signaling, downregulates downstream pro-survival signaling (mTOR and NF-κB) in cancer cell lines. In addition, VJ abrogated invasive and migratory potential of A549 and H460 cells. We also observed a downregulation of mesenchymal markers such as N-cadherin, Slug, β-catenin, and vimentin expression in both cell lines. Our results suggest that VJ inhibited cancer cell growth and could be a potent molecule to inhibit EGFR and AKT signaling in NSCLC.
Collapse
Affiliation(s)
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State University, Hershey, PA, USA
| | - Lu Cai
- Pediatrics Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, USA
| | - Murali Ankem
- Department of Urology, University of Louisville, Louisville, KY, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
34
|
Toxicological effects of NCKU-21, a phenanthrene derivative, on cell growth and migration of A549 and CL1-5 human lung adenocarcinoma cells. PLoS One 2017; 12:e0185021. [PMID: 28945763 PMCID: PMC5612657 DOI: 10.1371/journal.pone.0185021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
Background Chemotherapy insensitivity continues to pose significant challenges for treating non-small cell lung cancer (NSCLC). The purposes of this study were to investigate whether 3,6-dimethoxy-1,4,5,8-phenanthrenetetraone (NCKU-21) has potential activity to induce effective toxicological effects in different ethnic NSCLC cell lines, A549 and CL1-5 cells, and to examine its anticancer mechanisms. Methods Mitochondrial metabolic activity and the cell-cycle distribution were analyzed using an MTT assay and flow cytometry in NCKU-21-treated cells. NCKU-21-induced cell apoptosis was verified by Annexin V-FITC/propidium iodide (PI) double-staining and measurement of caspase-3 activity. Western blotting and wound-healing assays were applied to respectively evaluate regulation of signaling pathways and cell migration by NCKU-21. Molecular interactions between target proteins and NCKU-21 were predicted and performed by molecular docking. A colorimetric screening assay kit was used to evaluate potential regulation of matrix metalloproteinase-9 (MMP-9) activity by NCKU-21. Results Results indicated that NCKU-21 markedly induced cytotoxic effects that reduced cell viability via cell apoptosis in tested NSCLC cells. Activation of AMP-activated protein kinase (AMPK) and p53 protein expression also increased in both NSCLC cell lines stimulated with NCKU-21. However, repression of PI3K-AKT activation by NCKU-21 was found in CL1-5 cells but not in A549 cells. In addition, increases in phosphatidylserine externalization and caspase-3 activity also confirmed the apoptotic effect of NCKU-21 in both NSCLC cell lines. Moreover, cell migration and translational levels of the gelatinases, MMP-2 and MMP-9, were obviously reduced in both NSCLC cell lines after incubation with NCKU-21. Experimental data obtained from molecular docking suggested that NCKU-21 can bind to the catalytic pocket of MMP-9. However, the in vitro enzyme activity assay indicated that NCKU-21 has the potential to increase MMP-9 activity. Conclusions Our results suggest that NCKU-21 can effectively reduce cell migration and induce apoptosis in A549 and CL1-5 cells, the toxicological effects of which may be partly modulated through PI3K-AKT inhibition, AMPK activation, an increase in the p53 protein, and gelatinase inhibition.
Collapse
|
35
|
Xie Y, Lv D, Wang W, Ye M, Chen X, Yang H. High PHLPP1 expression levels predicts longer time of acquired resistance to EGFR tyrosine kinase inhibitors in patients with lung adenocarcinoma. Oncotarget 2017; 8:59000-59007. [PMID: 28938613 PMCID: PMC5601709 DOI: 10.18632/oncotarget.19777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Background In spite of an initial good response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in lung adenocarcinoma patients, resistance to treatment eventually occurs. Epidermal growth factor receptor (EGFR) activation stimulates Ras/Raf/Erk/MAPK and influences PI3K/Akt pathways, respectively. PHLPP negatively regulates PI3K/Akt and the RAF/RAS/ERK signaling pathways. Our study aimed to investigate the association between PH domain leucine-rich-repeats protein phosphatase (PHLPP) expression levels and the acquired resistance to EGFR TKIs in lung adenocarcinoma. Results High expression levels of PHLPP1 and PHLPP2 were detected in 69.3% and 61.3%, respectively, of patients with lung adenocarcinoma. Patients with high expression levels of PHLPP1 showed significantly longer median progression-free survival and overall survival than those with low expression levels of PHLPP1 (29 months versus 11 months, and 36 months versus 19 months respectively) (p = 0.0050 and p = 0.0052). PHLPP1, but not PHLPP2, protein expression levels was negatively correlated with p-Akt (473) and p-Erk1/2. The PHLPP1 expression levels were correlated with Progression-free survival and overall survival (p = 0.001 and p = 0.000). Materials and Methods We recruited 75 patients with advanced lung adenocarcinoma receiving EGFR TKIs treatment. The expression levels of PHLPP1, PHLPP2, p-AKT(S473) and p-ERK1/2 were assessed using tissue immunostaining. The association of PHLPP expression levels with clinicopathological parameters and disease prognosis was analyzed. Conclusions This study suggests that high expression levels of PHLPP1 predict a better survival from target therapy and a longer time of acquired resistance to EGFR TKIs in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Youyou Xie
- Laboratory of Cellular and Molecular Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Dongqing Lv
- Department of Pulmonary Medicine, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Wei Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Minhua Ye
- Department of Thoracic Surgery, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Xiaofeng Chen
- Enze Medical Research Center, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China.,Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| |
Collapse
|
36
|
Vo TTL, Park JH, Seo JH, Lee EJ, Choi H, Bae SJ, Le H, An S, Lee HS, Wee HJ, Kim KW. ARD1-mediated aurora kinase A acetylation promotes cell proliferation and migration. Oncotarget 2017; 8:57216-57230. [PMID: 28915666 PMCID: PMC5593637 DOI: 10.18632/oncotarget.19332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Aurora kinase A (AuA) is a prerequisite for centrosome maturation, separation, and mitotic spindle assembly, thus, it is essential for cell cycle regulation. Overexpression of AuA is implicated in poor prognosis of many types of cancer. However, the regulatory mechanisms underlying the functions of AuA are still not fully understood. Here, we report that AuA colocalizes with arrest defective protein 1 (ARD1) acetyltransferase during cell division and cell migration. Additionally, AuA is acetylated by ARD1 at lysine residues at positions 75 and 125. The double mutations at K75/K125 abolished the kinase activity of AuA. Moreover, the double mutant AuA exhibited diminished ability to promote cell proliferation and cell migration. Mechanistic studies revealed that AuA acetylation at K75/K125 promoted cell proliferation via activation of cyclin E/CDK2 and cyclin B1. In addition, AuA acetylation stimulated cell migration by activating the p38/AKT/MMP-2 pathway. Our findings indicate that ARD1-mediated acetylation of AuA enhances cell proliferation and migration, and probably contributes to cancer development.
Collapse
Affiliation(s)
- Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoon Choi
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang Le
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sunho An
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and The Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
37
|
Cromie MM, Liu Z, Gao W. Epigallocatechin-3-gallate augments the therapeutic effects of benzo[a]pyrene-mediated lung carcinogenesis. Biofactors 2017; 43:529-539. [PMID: 28247504 PMCID: PMC5554095 DOI: 10.1002/biof.1355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022]
Abstract
Our previous study found curcumin and vitamin E to have protective effects against benzo[a]pyrene (BaP) exposure in human normal lung epithelial BEAS-2B cells. The first objective of this study was to determine whether epigallocatechin-3-gallate (EGCG) elicited the same response. Co-treatment with 5 µM BaP and 20 µM EGCG in BEAS-2B promoted a significant reduction in cell viability and greater G2/M cell cycle arrest, induction of ROS, and reductions in BaP-induced CYP1A1/CYP1B1/COMT, EGFR, p-Akt (Ser473), p-p53 (Thr55), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Based on these findings, the second objective was to extend the investigation by developing a novel BaP-transformed BEAS-2B cell line, BEAS-2BBaP , to examine the effects of EGCG when co-administered with gefitinib, an EGFR tyrosine kinase inhibitor. Cell colony formation assay demonstrated in vitro tumorigenic potential of BEAS-2BBaP , which had an overexpression of EGFR. Viability testing revealed gefitinib co-treatment with EGCG resulted in more cell death compared with gefitinib alone. Co-treated cells had greater reductions in gefitinib-induced CYP1A1/CYB1B1, EGFR, cyclin D1, p-Akt (Ser473), and survivin mRNA/protein expression, as well as an increase in p-p53 (Ser15). Therefore, EGCG was found to promote greater cytotoxicity to BEAS-2B co-treated with BaP and BEAS-2BBaP upon gefitinib co-treatment through regulating metabolism enzymes and signaling pathways involving EGFR and p53. These findings suggest that EGCG did not act as a protective compound in BEAS-2B after acute BaP exposure, but has the potential to be a useful adjuvant chemotherapeutic compound when coupled with gefitinib for chemosensitization. © 2017 BioFactors, 43(4):529-539, 2017.
Collapse
Affiliation(s)
| | | | - Weimin Gao
- Corresponding Author: Weimin Gao, MD, PhD, Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Box 41163, Lubbock, TX 79409. Tel: 806-834-6518; Fax: 806-885-2132;
| |
Collapse
|
38
|
Srinual S, Chanvorachote P, Pongrakhananon V. Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int J Oncol 2017; 50:1341-1351. [DOI: 10.3892/ijo.2017.3879] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/06/2017] [Indexed: 11/06/2022] Open
|
39
|
Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR mediated lung tumorigenesis. Oncotarget 2016; 7:3297-316. [PMID: 26654940 PMCID: PMC4823107 DOI: 10.18632/oncotarget.6489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023] Open
Abstract
AKT is a serine-threonine kinase that becomes hyperactivated in a number of cancers including lung cancer. Based on AKT's association with malignancy, molecules targeting AKT have entered clinical trials for solid tumors including lung cancer. However, the AKT inhibitors being evaluated in clinical trials indiscriminately inhibit all three AKT isoforms (AKT1-3) and it remains unclear whether AKT isoforms have overlapping or divergent functions. Using a transgenic mouse model where IGF-IR overexpression drives lung tumorigenesis, we found that loss of Akt1 inhibited while loss of Akt2 enhanced lung tumor development. Lung tumors that developed in the absence of Akt2 were less likely to appear as discrete nodules and more frequently displayed a dispersed growth pattern. RNA sequencing revealed a number of genes differentially expressed in lung tumors lacking Akt2 and five of these genes, Actc1, Bpifa1, Mmp2, Ntrk2, and Scgb3a2 have been implicated in human lung cancer. Using 2 human lung cancer cell lines, we observed that a selective AKT1 inhibitor, A-674563, was a more potent regulator of cell survival than the pan-AKT inhibitor, MK-2206. This study suggests that compounds selectively targeting AKT1 may prove more effective than compounds that inhibit all three AKT isoforms at least in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ritesh Briah
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger A Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
40
|
Li T, Chen X, Chen X, Ma DL, Leung CH, Lu JJ. Platycodin D potentiates proliferation inhibition and apoptosis induction upon AKT inhibition via feedback blockade in non-small cell lung cancer cells. Sci Rep 2016; 6:37997. [PMID: 27897231 PMCID: PMC5126555 DOI: 10.1038/srep37997] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
AKT is the frequently overexpressed and constitutively active kinase within NSCLC cells and recognized as a promising target for NSCLC treatment. However, AKT inhibition relieves the feedback inhibition of upstream receptor tyrosine kinases (RTKs) that may weaken the efficiency of AKT inhibitors. Platycodin D (PD), isolated from widely-used traditional Chinese medicine Platycodonis Radix, is now found to remarkably enhance the anti-proliferative effect of AKT inhibitors. In this study, combinatorial activity of AKT inhibitor MK2206 and PD on cell proliferation, apoptosis and related signaling were disclosed. Long-term AKT inhibition induced up-regulation of RTKs, including EGFR and HER-2. Co-treatment of MK2206 with PD could abolish this feedback survival through decrease of EGFR, HER-2, and p-AKT, and profound inhibition of 4E-BP1, leading to an amplified anti-proliferative and apoptotic activity in NSCLC cells. Similarly, feedback activation in response to reduction of AKT expression by small interfering RNA (siRNA) was also blocked by PD and apoptotic effect was further enhanced. Thus, PD potentiated proliferative inhibition and apoptotic induction of both AKT inhibitor and siRNA. These findings also reveal the limitations of suppressing feedback-regulated pathways by monotherapy and establish a mechanistic rationale for a novel combination approach targeting AKT for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
41
|
Wang S, Song X, Li X, Zhao X, Chen H, Wang J, Wu J, Gao Z, Qian J, Han B, Bai C, Li Q, Lu D. RICTOR polymorphisms affect efficiency of platinum-based chemotherapy in Chinese non-small-cell lung cancer patients. Pharmacogenomics 2016; 17:1637-1647. [PMID: 27676404 DOI: 10.2217/pgs-2016-0070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM We investigated the association between RICTOR polymorphisms and clinical outcomes of platinum-based chemotherapy for Chinese non-small-cell lung cancer patients. MATERIALS & METHODS Ten tag SNPs were genotyped in 1004 patients to assess their association with clinical benefit, overall survival, progression-free survival, gastrointestinal toxicity, neutropenia, anemia and thrombocytopenia. RESULTS rs6878291 was significantly associated with clinical benefit (odds ratio: 2.037; p = 0.001) and reduced progression-free survival (hazard ratio: 1.461; p = 0.001). Stratified analysis showed that their most significant interaction was in nonsmokers. No association was observed between SNPs and other clinical outcomes. CONCLUSION The study showed evidences for RICTOR polymorphisms' role in platinum-based chemotherapy efficiency, which could provide new insight to lung cancer management.
Collapse
Affiliation(s)
- Shiming Wang
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao Song
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Crime SceneEvidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
| | - Xueying Zhao
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Junjie Wu
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China.,Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Zhiqiang Gao
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ji Qian
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxue Bai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Pneumology, Changhai Hospital of Shanghai, Second Military Medical University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering & MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am J Med Sci 2016; 352:507-516. [PMID: 27865299 DOI: 10.1016/j.amjms.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite advances in its prevention and management, the prognosis of patients with lung cancer remains poor. Therefore, much attention is being given to factors that contribute to the development of this disease, the mechanisms that drive oncogenesis and tumor progression and the search for novel targets that could lead to the development of more effective treatments. One cellular pathway implicated in lung cancer development and progression is that of the mammalian target of rapamycin. Studies involving human tissues have linked lung cancer with abnormalities in this pathway. Furthermore, studies in vitro and in vivo using animal models of lung cancer reveal that targeting this pathway might represent an effective means of treating this disease. As a result, there is significant effort invested in the development of drugs targeting mammalian target of rapamycin and related pathways in the clinical setting.
Collapse
|
43
|
Oh AY, Jung YS, Kim J, Lee JH, Cho JH, Chun HY, Park S, Park H, Lim S, Ha NC, Park JS, Park CS, Song GY, Park BJ. Inhibiting DX2-p14/ARF Interaction Exerts Antitumor Effects in Lung Cancer and Delays Tumor Progression. Cancer Res 2016; 76:4791-804. [PMID: 27302160 DOI: 10.1158/0008-5472.can-15-1025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/03/2016] [Indexed: 11/16/2022]
Abstract
The aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) splice variant designated DX2 is induced by cigarette smoke carcinogens and is often detected in human lung cancer specimens. However, the function of DX2 in lung carcinogenesis is obscure. In this study, we found that DX2 expression was induced by oncogenes in human lung cancer tissues and cells. DX2 prevented oncogene-induced apoptosis and senescence and promoted drug resistance by directly binding to and inhibiting p14/ARF. Through chemical screening, we identified SLCB050, a novel compound that blocks the interaction between DX2 and p14/ARF in vitro and in vivo SLCB050 reduced the viability of human lung cancer cells, especially small cell lung cancer cells, in a p14/ARF-dependent manner. Moreover, in a mouse model of K-Ras-driven lung tumorigenesis, ectopic expression of DX2 induced small cell and non-small cell lung cancers, both of which could be suppressed by SLCB050 treatment. Taken together, our findings show how DX2 promotes lung cancer progression and how its activity may be thwarted as a strategy to treat patients with lung cancers exhibiting elevated DX2 levels. Cancer Res; 76(16); 4791-804. ©2016 AACR.
Collapse
Affiliation(s)
- Ah-Young Oh
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South)
| | - Youn Sang Jung
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South)
| | - Jiseon Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (South)
| | - Jee-Hyun Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (South)
| | - Jung-Hyun Cho
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South)
| | - Ho-Young Chun
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South)
| | - Soyoung Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South)
| | - Hyunchul Park
- Forensic DNA Division, National Forensic Service, Wonju, Republic of Korea (South)
| | - Sikeun Lim
- Forensic DNA Division, National Forensic Service, Wonju, Republic of Korea (South)
| | - Nam-Chul Ha
- Program in Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea (South)
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi Do, Republic of Korea (South)
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi Do, Republic of Korea (South)
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea (South).
| | - Bum-Joon Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea (South).
| |
Collapse
|
44
|
Kohnoh T, Hashimoto N, Ando A, Sakamoto K, Miyazaki S, Aoyama D, Kusunose M, Kimura M, Omote N, Imaizumi K, Kawabe T, Hasegawa Y. Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Cancer Cell Int 2016; 16:33. [PMID: 27095949 PMCID: PMC4836157 DOI: 10.1186/s12935-016-0308-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Background Persistent hypoxia stimulation, one of the most critical microenvironmental factors, accelerates the acquisition of epithelial–mesenchymal transition (EMT) phenotypes in lung cancer cells. Loss of phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression might accelerate the development of lung cancer in vivo. Recent studies suggest that tumor microenvironmental factors might modulate the PTEN activity though a decrease in total PTEN expression and an increase in phosphorylation of the PTEN C-terminus (p-PTEN), resulting in the acquisition of the EMT phenotypes. Nevertheless, it is not known whether persistent hypoxia can modulate PTEN phosphatase activity or whether hypoxia-induced EMT phenotypes are negatively regulated by the PTEN phosphatase activity. We aimed to investigate hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Methods Western blotting was performed in five lung cancer cell lines to evaluate total PTEN expression levels and the PTEN activation. In a xenograft model of lung cancer cells with endogenous PTEN expression, the PTEN expression was evaluated by immunohistochemistry. To examine the effect of hypoxia on phenotypic alterations in lung cancer cells in vitro, the cells were cultured under hypoxia. The effect of unphosphorylated PTEN (PTEN4A) induction on hypoxia-induced EMT phenotypes was evaluated, by using a Dox-dependent gene expression system. Results Lung cancer cells involving the EMT phenotypes showed a decrease in total PTEN expression and an increase in p-PTEN. In a xenograft model, loss of PTEN expression was observed in the tumor lesions showing tissue hypoxia. Persistent hypoxia yielded an approximately eight-fold increase in the p-PTEN/PTEN ratio in vitro. PTEN4A did not affect stabilization of hypoxia-inducible factor 1α. PTEN4A blunted hypoxia-induced EMT via inhibition of β-catenin translocation into the cytoplasm and nucleus. Conclusion Our study strengthens the therapeutic possibility that compensatory induction of unphosphorylated PTEN may inhibit the acquisition of EMT phenotypes in lung cancer cells under persistent hypoxia.
Collapse
Affiliation(s)
- Takashi Kohnoh
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Shinichi Miyazaki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Daisuke Aoyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Masaaki Kusunose
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Motohiro Kimura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Norihito Omote
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and Allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| |
Collapse
|
45
|
Puglisi M, Stewart A, Thavasu P, Frow M, Carreira S, Minchom A, Punwani R, Bhosle J, Popat S, Ratoff J, de Bono J, Yap TA, O''Brien M, Banerji U. Characterisation of the Phosphatidylinositol 3-Kinase Pathway in Non-Small Cell Lung Cancer Cells Isolated from Pleural Effusions. Oncology 2016; 90:280-8. [PMID: 27082424 DOI: 10.1159/000444928] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We hypothesised that it was possible to quantify phosphorylation of important nodes in the phosphatidylinositol 3-kinase (PI3K) pathway in cancer cells isolated from pleural effusions of patients with non-small cell lung cancer (NSCLC) and study their correlation to somatic mutations and clinical outcomes. MATERIALS AND METHODS Cells were immunomagnetically separated from samples of pleural effusion in patients with NSCLC. p-AKT, p-S6K and p-GSK3β levels were quantified by ELISA; targeted next-generation sequencing was used to characterise mutations in 26 genes. RESULTS It was possible to quantify phosphoproteins in cells isolated from 38/43 pleural effusions. There was a significant correlation between p-AKT and p-S6K levels [r = 0.85 (95% confidence interval 0.73-0.92), p < 0.0001], but not p-AKT and p-GSK3β levels [r = 0.19 (95% confidence interval -0.16 to 0.5), p = 0.3]. A wide range of mutations was described and p-S6K was higher in samples that harboured at least one mutation compared to those that did not (p = 0.03). On multivariate analysis, p-S6K levels were significantly associated with poor survival (p < 0.01). CONCLUSION Our study has shown a correlation between p-AKT levels and p-S6K, but not GSK3β, suggesting differences in regulation of the distal PI3K pathway by AKT. Higher p-S6K levels were associated with adverse survival, making it a critically important target in NSCLC.
Collapse
|
46
|
Saeed N, Shridhar R, Hoffe S, Almhanna K, Meredith KL. AKT expression is associated with degree of pathologic response in adenocarcinoma of the esophagus treated with neoadjuvant therapy. J Gastrointest Oncol 2016; 7:158-65. [PMID: 27034781 DOI: 10.3978/j.issn.2078-6891.2015.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Neoadjuvant chemoradiation (NCRT) has become standard in the treatment of locally advanced esophageal adenocarcinoma (EAC) with survival correlated to degree of pathologic response. The phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (AKT)/mTOR pathway plays an important role in tumorgenesis and resistance. We sought to elucidate the role of this pathway in patients with EAC who received NCRT. METHODS After IRB approval, a prospective trial was initiated in which patients with EAC underwent endoscopic biopsies of normal and tumor tissue prior to instituting NCRT. Patients then proceeded to esophagectomy. The pre-treatment tissues underwent gene expression profiling. SAM method was used to analyze expression of AKT within normal and tumor tissue. Expression was then correlated to degree of pathologic response. RESULTS One-hundred patients were consented for the study, of which 67 met final eligibility. Nineteen patient's tumors ultimately underwent gene expression profiling via microarray. The differential expression of all AKT isoforms in tumor tissue was markedly overexpressed compared to normal tissue (P=6×10(-5)). There were 3 patients designated as pNR, 6 as pPR, and 10 as pCR. Partial and non-responders had higher expressions of AKT compared to pCR with the non-responders consistently illustrated the highest expression of AKT (P=0.02). There was a significant correlation between individual isoforms of AKT-1, AKT-2, and AKT-3 and degree of pathologic response (P=0.002, 0.04, and 0.04 respectively). CONCLUSIONS AKT is overexpressed in patients with AC of the esophagus. Moreover, pathologic response to NCRT may be correlated with degree of AKT expression. Additional data is needed to clarify this relationship to potentially add targeted therapies to the neoadjuvant regimen.
Collapse
Affiliation(s)
- Nadia Saeed
- 1 Department of Gastrointestinal Oncology, 2 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA ; 3 Department of Surgery, College of Medicine Florida State University, FL, USA
| | - Ravi Shridhar
- 1 Department of Gastrointestinal Oncology, 2 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA ; 3 Department of Surgery, College of Medicine Florida State University, FL, USA
| | - Sarah Hoffe
- 1 Department of Gastrointestinal Oncology, 2 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA ; 3 Department of Surgery, College of Medicine Florida State University, FL, USA
| | - Khaldoun Almhanna
- 1 Department of Gastrointestinal Oncology, 2 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA ; 3 Department of Surgery, College of Medicine Florida State University, FL, USA
| | - Kenneth L Meredith
- 1 Department of Gastrointestinal Oncology, 2 Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA ; 3 Department of Surgery, College of Medicine Florida State University, FL, USA
| |
Collapse
|
47
|
Liu W, Ning J, Li C, Hu J, Meng Q, Lu H, Cai L. Overexpression of Sphk2 is associated with gefitinib resistance in non-small cell lung cancer. Tumour Biol 2015; 37:6331-6. [PMID: 26628299 DOI: 10.1007/s13277-015-4480-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is the major cause of cancer-related death worldwide, and 80 % of them are non-small cell lung cancer (NSCLC) cases. Recent studies have shown that sphingosine kinase 2 (SphK2) could promote tumor progression; however, whether SphK2 could affect the chemoresistance of NSCLC to chemotherapy remains unclear. To determine whether SphK2 serves as a potential therapeutic target of NSCLC, we utilized small interference RNA (siRNA) to knock down SphK2 expression in human NSCLC cells and analyzed their phenotypic changes. The data demonstrated that knockdown of SphK2 led to decreased proliferation and enhanced chemosensitivity and apoptosis to gefitinib in NSCLC cells. In this study, we describe the findings that overexpression of SphK2 promotes chemoresistance in NSCLC cells. Inhibition of SphK2 might be considered as a strategy in NSCLC treatment with gefitinib.
Collapse
Affiliation(s)
- Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China
| | - Jinfeng Ning
- The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, 150040, People's Republic of China
| | - Chunhong Li
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China
| | - Qingwei Meng
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China
| | - Hailing Lu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Haping Road 150, Harbin, 150040, People's Republic of China.
| |
Collapse
|
48
|
Lv D, Yang H, Wang W, Xie Y, Hu W, Ye M, Chen X. High PHLPP expression is associated with better prognosis in patients with resected lung adenocarcinoma. BMC Cancer 2015; 15:687. [PMID: 26463718 PMCID: PMC4604720 DOI: 10.1186/s12885-015-1711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/08/2015] [Indexed: 01/19/2023] Open
Abstract
Background PH domain Leucine-rich-repeats protein phosphatase (PHLPP) is a novel family of Ser/Thr protein dephosphatases that play a critical role in maintaining the balance in cell signaling. PHLPP negatively regulates PI3K/Akt and RAF/RAS/′ signaling activation, which is crucial in development, growth, and proliferation of lung cancer. The aim of this study was to investigate the association of PHLPP expression with biological behavior and prognosis of lung adenocarcinoma. Methods One hundred and fifty eight patients with pathologically documented stage I, II or IIIA lung adenocarcinoma were recruited in this study. Expression of PHLPP, p-AKT and p-ERK were evaluated by immunohistochemistry (IHC) in paraffin-embedded resected specimens. The correlation of their expression, which was dichotomized to low expression (a score of 0, 1) versus high expression (a score of 2, 3), with the clinicopathological parameters and prognosis of the patients also analyzed. Results High PHLPP expression rate in lung adenocarcinoma was 23.4 %. PHLPP expression level was significantly associated with tumor differentiation (p = 0.025) and tumor stage (p = 0.024). Patients with high expression of PHLPP showed significantly longer average survival time and higher 3 years survival rate than those with low expression of PHLPP (45 months versus 38 months, 85.8 % versus 73.5 % respectively) (Log rank test x2 = 7.086, p =0.008). A significant inverse correlation was observed between PHLPP expression and p-AKT (r = −0.523, p = 0.000) or p-ERK (r = −0.530, p = 0.000). Conclusion Our results suggest that high levels of PHLPP might reflect a less aggressive lung adenocarcinoma phenotype and predict better survival in patients with lung adenocarcinoma. PHLPP can be a potential prognostic marker to screen patients for favorable prognoses.
Collapse
Affiliation(s)
- Dongqing Lv
- Laboratory of Cellular and Molecular Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China. .,Department of Pulmonary Medicine, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Haihua Yang
- Laboratory of Cellular and Molecular Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China. .,Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Wei Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China. .,Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Youyou Xie
- Laboratory of Cellular and Molecular Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China. .,Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Wei Hu
- Laboratory of Cellular and Molecular Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China. .,Department of Radiation Oncology, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Minhua Ye
- Department of Thoracic Surgery, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| | - Xiaofeng Chen
- Enze Medical Research Center, Taizhou Hospital, Wenzhou Medical University, Zhejiang Province, 317000, China.
| |
Collapse
|
49
|
Gray JE, Infante JR, Brail LH, Simon GR, Cooksey JF, Jones SF, Farrington DL, Yeo A, Jackson KA, Chow KH, Zamek-Gliszczynski MJ, Burris HA. A first-in-human phase I dose-escalation, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2090314, a glycogen synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Invest New Drugs 2015; 33:1187-96. [PMID: 26403509 DOI: 10.1007/s10637-015-0278-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE LY2090314 (LY) is a glycogen synthase kinase 3 inhibitor with preclinical efficacy in xenograft models when combined with platinum regimens. A first-in-human phase 1 dose-escalation study evaluated the combination of LY with pemetrexed/carboplatin. PATIENTS AND METHODS Forty-one patients with advanced solid tumors received single-dose LY monotherapy lead-in and 37 patients received LY (10-120 mg) plus pemetrexed/carboplatin (500 mg/m(2) and 5-6 AUC, respectively) across 8 dose levels every 21 days. Primary objective was maximum tolerated dose (MTD) determination; secondary endpoints included safety, antitumor activity, pharmacokinetics, and beta-catenin pharmacodynamics. RESULTS MTD of LY with pemetrexed/carboplatin was 40 mg. Eleven dose-limiting toxicities (DLTs) occurred in ten patients. DLTs during LY monotherapy occurred at ≥ 40 mg: grade 2 visual disturbance (n = 1) and grade 3/4 peri-infusional thoracic pain during or shortly post infusion (n = 4; chest, upper abdominal, and back pain). Ranitidine was added after de-escalation to 80 mg LY to minimize peri-infusional thoracic pain. Following LY with pemetrexed/carboplatin therapy, DLTs included grade 3/4 thrombocytopenia (n = 4) and grade 4 neutropenia (n = 1). Best overall response by RECIST included 5 confirmed partial responses (non-small cell lung cancer [n = 3], mesothelioma, and breast cancer) and 19 patients having stable disease. Systemic LY exposure was approximately linear over dose range studied. Transient upregulation of beta-catenin measured in peripheral blood mononuclear cells (PBMCs) occurred at 40 mg LY. CONCLUSIONS The initial safety profile of LY2090314 was established. MTD LY dose with pemetrexed/carboplatin is 40 mg IV every 3 weeks plus ranitidine. Efficacy of LY plus pemetrexed/carboplatin requires confirmation in randomized trials.
Collapse
Affiliation(s)
- Jhanelle E Gray
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey R Infante
- Sarah Cannon Research Institute and Tennessee Oncology, 250 25th Avenue North, Suite 200, Nashville, TN, 37203, USA
| | - Les H Brail
- Eli Lilly and Company, Indianapolis, IN, USA
- Infinity Pharmaceuticals, Cambridge, MA, USA
| | | | | | - Suzanne F Jones
- Sarah Cannon Research Institute and Tennessee Oncology, 250 25th Avenue North, Suite 200, Nashville, TN, 37203, USA
| | | | - Adeline Yeo
- DOCS, San Diego, CA, USA
- Stat4ward LLC, Pittsburgh, PA, USA
| | | | - Kay H Chow
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Howard A Burris
- Sarah Cannon Research Institute and Tennessee Oncology, 250 25th Avenue North, Suite 200, Nashville, TN, 37203, USA.
| |
Collapse
|
50
|
Yu X, Yuan Y, Zhi X, Teng B, Chen X, Huang Q, Chen Y, Guan Z, Zhang Y. Correlation between the protein expression of A-kinase anchor protein 95, cyclin D3 and AKT and pathological indicators in lung cancer tissues. Exp Ther Med 2015; 10:1175-1181. [PMID: 26622460 DOI: 10.3892/etm.2015.2637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 02/13/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the correlation between the protein expression of A-kinase anchor protein 95 (AKAP95), cyclin D3 and AKT with pathological indicators in lung cancer tissues. Immunohistochemistry was used to detect the protein expression levels of the proteins in 51 lung cancer tissue samples and 15 pericarcinoma tissue samples. The percentage of cyclin D3 positive samples in the lung cancer and pericarcinoma tissues was 68.63 and 28.57%, respectively, and the difference was statistically significant (P<0.01). However, cyclin D3 expression was not shown to correlate with differentiation grade, histological type or lymph node metastasis. In addition, the percentage of AKT positive samples in the cancer and pericarcinoma tissues was 76.47 and 38.46%, respectively, and the difference was statistically significant (P<0.05). AKT expression was found to significantly correlate with the grade of cancer tissue differentiation (P<0.05); however, no correlations were observed with histological type or lymph node metastasis (P>0.05). AKAP95 expression was shown to correlate with cyclin D3 and AKT expression in the lung cancer tissue (P<0.05); however, there was no correlation between cyclin D3 and AKT expression. The present study provided evidence suggesting that AKAP95 may have a role in regulation of the cell cycle.
Collapse
Affiliation(s)
- Xiuyi Yu
- First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yangyang Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xuehong Zhi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Bogang Teng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiaoxuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Qian Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuexin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zhiyu Guan
- Department of Cardiovascular and Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yongxing Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| |
Collapse
|