1
|
Hegde M, Girisa S, Aswani BS, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Harnessing potential role of gangliosides in immunomodulation and cancer therapeutics. Life Sci 2024; 351:122786. [PMID: 38848944 DOI: 10.1016/j.lfs.2024.122786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Gangliosides represent glycolipids containing sialic acid residues, present on the cell membrane with glycan residues exposed to the extracellular matrix (ECM), while the ceramides are anchored within the membrane. These molecules play a critical role in pathophysiological processes such as host-pathogen interactions, cell-cell recognition, signal transduction, cell adhesion, motility, and immunomodulation. Accumulated evidence suggests the overexpression of gangliosides on tumor tissues in comparison to healthy human tissues. These tumor-associated gangliosides have been implicated in various facets of tumor biology, including cell motility, differentiation, signaling, immunosuppression, angiogenesis, and metastasis. Consequently, these entities emerge as attractive targets for immunotherapeutic interventions. Notably, the administration of antibodies targeting gangliosides has demonstrated cytotoxic effects on cancer cells that exhibit an overexpression of these glycolipids. Passive immunotherapy approaches utilizing murine or murine/human chimeric anti-ganglioside antibodies have been explored as potential treatments for diverse cancer types. Additionally, vaccination strategies employing tumor-associated gangliosides in conjunction with adjuvants have entered the realm of promising techniques currently undergoing clinical trials. The present comprehensive review encapsulates the multifaceted roles of gangliosides in tumor initiation, progression, immunosuppression, and metastasis. Further, an overview is provided of the correlation between the expression status of gangliosides in normal and tumor cells and its impact on cancer patient survival. Furthermore, the discussion extends to ongoing and completed clinical trials employing diverse strategies to target gangliosides, elucidating their effectiveness in treating cancers. This emerging discipline is expected to supply substantial impetus for the establishment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam 781039, India.
| |
Collapse
|
2
|
Hein V, Baeza-Kallee N, Bertucci A, Colin C, Tchoghandjian A, Figarella-Branger D, Tabouret E. GD3 ganglioside is a promising therapeutic target for glioma patients. Neurooncol Adv 2024; 6:vdae038. [PMID: 38590763 PMCID: PMC11000324 DOI: 10.1093/noajnl/vdae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive primary brain tumor in adults. Currently, no curative treatment is available. Despite first-line treatment composed by the association of surgery, radiotherapy, and chemotherapy, relapse remains inevitable in a median delay of 6 to 10 months. Improving patient management and developing new therapeutic strategies are therefore a critical medical need in neuro-oncology. Gangliosides are sialic acid-containing glycosphingolipids, the most abundant in the nervous system, representing attractive therapeutic targets. The ganglioside GD3 is highly expressed in neuroectoderm-derived tumors such as melanoma and neuroblastoma, but also in gliomas. Moreover, interesting results, including our own, have reported the involvement of GD3 in the stemness of glioblastoma cells. In this review, we will first describe the characteristics of the ganglioside GD3 and its enzyme, the GD3 synthase (GD3S), including their biosynthesis and metabolism. Then, we will detail their expression and role in gliomas. Finally, we will summarize the current knowledge regarding the therapeutic development opportunities against GD3 and GD3S.
Collapse
Affiliation(s)
- Victoria Hein
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
| | - Nathalie Baeza-Kallee
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Alexandre Bertucci
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
| | - Carole Colin
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | - Aurélie Tchoghandjian
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| | | | - Emeline Tabouret
- Aix-Marseille Université, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- APHM, CHU Timone, Service de Neuro-Oncologie, MarseilleFrance
- Aix-Marseille Univ, Réseau Préclinique et Translationnel de Recherche en Neuro-oncologie PETRA, Plateforme PETRA“TECH” and Plateforme PE”TRANSLA,”Marseille, France
| |
Collapse
|
3
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
4
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
5
|
Giussani P, Prinetti A, Tringali C. The Role of Sphingolipids in Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22126492. [PMID: 34204326 PMCID: PMC8234743 DOI: 10.3390/ijms22126492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is now considered an innovative and strong strategy to beat metastatic, drug-resistant, or relapsing tumours. It is based on the manipulation of several mechanisms involved in the complex interplay between cancer cells and immune system that culminates in a form of immune-tolerance of tumour cells, favouring their expansion. Current immunotherapies are devoted enforcing the immune response against cancer cells and are represented by approaches employing vaccines, monoclonal antibodies, interleukins, checkpoint inhibitors, and chimeric antigen receptor (CAR)-T cells. Despite the undoubted potency of these treatments in some malignancies, many issues are being investigated to amplify the potential of application and to avoid side effects. In this review, we discuss how sphingolipids are involved in interactions between cancer cells and the immune system and how knowledge in this topic could be employed to enhance the efficacy of different immunotherapy approaches. In particular, we explore the following aspects: how sphingolipids are pivotal components of plasma membranes and could modulate the functionality of surface receptors expressed also by immune cells and thus their functionality; how sphingolipids are related to the release of bioactive mediators, sphingosine 1-phosphate, and ceramide that could significantly affect lymphocyte egress and migration toward the tumour milieu, in addition regulating key pathways needed to activate immune cells; given the renowned capability of altering sphingolipid expression and metabolism shown by cancer cells, how it is possible to employ sphingolipids as antigen targets.
Collapse
|
6
|
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing Infectious Diseases Vaccines Against Cancer. Front Oncol 2021; 11:688755. [PMID: 34055652 PMCID: PMC8155725 DOI: 10.3389/fonc.2021.688755] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccines used to prevent infections have long been known to stimulate immune responses to cancer as illustrated by the approval of the Bacillus Calmette-Guérin (BCG) vaccine to treat bladder cancer since the 1970s. The recent approval of immunotherapies has rejuvenated this research area with reports of anti-tumor responses with existing infectious diseases vaccines used as such, either alone or in combination with immune checkpoint inhibitors. Here, we have reviewed and summarized research activities using approved vaccines to treat cancer. Data supporting a cancer therapeutic use was found for 16 vaccines. For 10 (BCG, diphtheria, tetanus, human papillomavirus, influenza, measles, pneumococcus, smallpox, typhoid and varicella-zoster), clinical trials have been conducted or are ongoing. Within the remaining 6, preclinical evidence supports further evaluation of the rotavirus, yellow fever and pertussis vaccine in carefully designed clinical trials. The mechanistic evidence for the cholera vaccine, combined with the observational data in colorectal cancer, is also supportive of clinical translation. There is limited data for the hepatitis B and mumps vaccine (without measles vaccine). Four findings are worth highlighting: the superiority of intravesical typhoid vaccine instillations over BCG in a preclinical bladder cancer model, which is now the subject of a phase I trial; the perioperative use of the influenza vaccine to limit and prevent the natural killer cell dysfunction induced by cancer surgery; objective responses following intratumoral injections of measles vaccine in cutaneous T-cell lymphoma; objective responses induced by human papillomavirus vaccine in cutaneous squamous cell carcinoma. All vaccines are intended to induce or improve an anti-tumor (immune) response. In addition to the biological and immunological mechanisms that vary between vaccines, the mode of administration and sequence with other (immuno-)therapies warrant more attention in future research.
Collapse
|
7
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
8
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Hossain F, Andreana PR. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals (Basel) 2019; 12:ph12020084. [PMID: 31167407 PMCID: PMC6631729 DOI: 10.3390/ph12020084] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells of diverse origins express extracellular tumor-specific carbohydrate antigens (TACAs) because of aberrant glycosylation. Overexpressed TACAs on the surface of tumor cells are considered biomarkers for cancer detection and have always been prioritized for the development of novel carbohydrate-based anti-cancer vaccines. In recent years, progress has been made in developing synthetic, carbohydrate-based antitumor vaccines to improve immune responses associated with targeting these specific antigens. Tumor cells also exhaust more energy for proliferation than normal cells, by consuming excessive amounts of glucose via overexpressed sugar binding or transporting receptors located in the cellular membrane. Furthermore, inspired by the Warburg effect, glycoconjugation strategies of anticancer drugs have gained considerable attention from the scientific community. This review highlights a small cohort of recent efforts which have been made in carbohydrate-based cancer treatments, including vaccine design and the development of glycoconjugate prodrugs, glycosidase inhibiting iminosugars, and early cancer diagnosis.
Collapse
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| | - Peter R Andreana
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
10
|
Wang H, Yang YF, Wang W, Guan B, Xun M, Zhang H, Wang ZL, Zhao Y. [Construction and verification of anti-MM scFv-tP fusion protein expression vector]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:1149-1155. [PMID: 28951354 PMCID: PMC6765493 DOI: 10.3969/j.issn.1673-4254.2017.09.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To construct an expression vector of anti-MM scFv-tP fusion protein and test its expression efficiency and function. METHODS The truncated protamine (tP) gene sequence was added to the gene of single chain antibody against the specific antigen on the surface of malignant melanoma tumor cells using PCR. A GST-fusion expression vector was constructed and the soluable protein was expressed in the E.coli system. After cleavage and purification, the purified fusion protein was obtained. The binding activity of Anti-MM scFv-tP and siRNA was detected by EMSA. Flow cytometry and confocal microscopy were used to detect the cell surface antigen binding activity of the fusion protein. RESULTS The expression vector of Anti-MM scFv-tP fusion protein was successfully constructed. The soluable protein could be expressed in the E.coli system, and the purified fusion protein was obtained. The anti-MM scFv-tP fusion protein retained siRNA binding ability and could directly target malignant melanoma (MM) LiBr cells. CONCLUSION The recombinant GST- Anti-MM-scFv-tp expression vector was successfully constructed. The fusion protein retains siRNA binding ability and can directly target LiBr cells to provide a reliable tool for further study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Dermatology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI, Luiten RM. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol 2015; 33:773-81. [PMID: 25605840 DOI: 10.1200/jco.2014.57.4756] [Citation(s) in RCA: 436] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Vitiligo-like depigmentation in patients with melanoma may be associated with more favorable clinical outcome. We conducted a systematic review of patients with stage III to IV melanoma treated with immunotherapy to determine the cumulative incidence of vitiligo-like depigmentation and the prognostic value of vitiligo development on survival. METHODS We systemically searched and selected all studies on melanoma immunotherapy that reported on autoimmune toxicity and/or vitiligo between 1995 and 2013. Methodologic quality of each study was appraised using adapted criteria for systematic reviews in prognostic studies. Random-effect models were used to calculate summary estimates of the cumulative incidence of vitiligo-like depigmentation across studies. The prognostic value of vitiligo-like depigmentation on survival outcome was assessed using random-effects Cox regression survival analyses. RESULTS One hundred thirty-seven studies were identified comprising 139 treatment arms (11 general immune stimulation, 84 vaccine, 28 antibody-based, and 16 adoptive transfer) including a total of 5,737 patients. The overall cumulative incidence of vitiligo was 3.4% (95% CI, 2.5% to 4.5%). In 27 studies reporting individual patient data, vitiligo development was significantly associated with both progression-free-survival (hazard ratio [HR], 0.51; 95% CI, 0.32 to 0.82; P < .005) and overall survival (HR, 0.25; 95% CI, 0.10 to 0.61; P < .003), indicating that these patients have two to four times less risk of disease progression and death, respectively, compared with patients without vitiligo development. CONCLUSION Although vitiligo occurs only in a low percentage of patients with melanoma treated with immunotherapy, our findings suggest clear survival benefit in these patients. Awareness of vitiligo induction in patients with melanoma is important as an indicator of robust antimelanoma immunity and associated improved survival.
Collapse
Affiliation(s)
- Hansje-Eva Teulings
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Jacqueline Limpens
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sophia N Jansen
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aeilko H Zwinderman
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Johannes B Reitsma
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Phyllis I Spuls
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rosalie M Luiten
- Hansje-Eva Teulings, Jacqueline Limpens, Sophia N. Jansen, Aeilko H. Zwinderman, Johannes B. Reitsma, Phyllis I. Spuls, and Rosalie M. Luiten, Academic Medical Centre, University of Amsterdam, Amsterdam; Johannes B. Reitsma, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
12
|
Kieber-Emmons T, Saha S, Pashov A, Monzavi-Karbassi B, Murali R. Carbohydrate-mimetic peptides for pan anti-tumor responses. Front Immunol 2014; 5:308. [PMID: 25071769 PMCID: PMC4075079 DOI: 10.3389/fimmu.2014.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022] Open
Abstract
Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate-peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somdutta Saha
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anastas Pashov
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
13
|
Andrews MC, Woods K, Cebon J, Behren A. Evolving role of tumor antigens for future melanoma therapies. Future Oncol 2014; 10:1457-68. [DOI: 10.2217/fon.14.84] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT: Human tumor rejection antigens recognized by T lymphocytes were first defined in the early 1990s and the identification of shared tumor-restricted antigens sparked hopes for the development of a therapeutic vaccination to treat cancer, including melanoma. Despite decades of intense preclinical and clinical research, the success of anticancer vaccines based on these antigens has been limited. While melanoma is a highly immunogenic tumor, the ability to prime immunity with vaccines has not generally translated into objective disease regression. However, with the development of small molecules targeting oncogenic proteins, such as V600-mutated BRAF, and immune checkpoint inhibitors with demonstrable long-lasting clinical benefit, new opportunities for antigen-targeted directed therapies are emerging.
Collapse
Affiliation(s)
- Miles C Andrews
- Ludwig Institute for Cancer Research Ltd, Olivia Newton-John Cancer & Wellness Centre, Cancer Immunobiology, Heidelberg, VIC, Australia
- Medical Oncology, Joint Ludwig–Austin Oncology Unit, Austin Health, Victoria, Australia
| | - Katherine Woods
- Ludwig Institute for Cancer Research Ltd, Olivia Newton-John Cancer & Wellness Centre, Cancer Immunobiology, Heidelberg, VIC, Australia
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research Ltd, Olivia Newton-John Cancer & Wellness Centre, Cancer Immunobiology, Heidelberg, VIC, Australia
- Medical Oncology, Joint Ludwig–Austin Oncology Unit, Austin Health, Victoria, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research Ltd, Olivia Newton-John Cancer & Wellness Centre, Cancer Immunobiology, Heidelberg, VIC, Australia
| |
Collapse
|
14
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Pilla L, Valenti R, Marrari A, Patuzzo R, Santinami M, Parmiani G, Rivoltini L. Vaccination: role in metastatic melanoma. Expert Rev Anticancer Ther 2014; 6:1305-18. [PMID: 16925496 DOI: 10.1586/14737140.6.8.1305] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Based on the poor impact on overall survival obtained by systemic chemotherapy in metastatic melanoma and the identification of many melanoma antigens recognized by T cells, in the last decade many efforts have been devoted to the development of active specific immunotherapy as a promising systemic treatment for this neoplastic disease. A number of Phase I-II clinical trials have been performed with different vaccination approaches that included whole tumor cells, antigen peptides, antigen-pulsed dendritic cells, recombinant viruses, plasmids or naked DNA, and heat-shock proteins. Despite some promising immunological and clinical results obtained in these studies, melanoma-specific vaccines have altogether failed to prove their efficacy in the few large Phase III randomized clinical trials performed. Nonetheless, the possibility of activating the human immune system to recognize and destroy tumor cells remains a challenging investigative field, considering that the new knowledge of the intricate cellular and molecular mechanisms that regulate the immune function and tumor-host interactions may allow the development of new clinically relevant melanoma vaccination strategies.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Istituto Nazionale per lo Studio e la Cura dei Tumori, Unit of Immunotherapy of Human Tumors, Via Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Huang YL, Wu CY. Carbohydrate-based vaccines: challenges and opportunities. Expert Rev Vaccines 2014; 9:1257-74. [DOI: 10.1586/erv.10.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Fournier P, Schirrmacher V. Randomized clinical studies of anti-tumor vaccination: state of the art in 2008. Expert Rev Vaccines 2014; 8:51-66. [DOI: 10.1586/14760584.8.1.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Bobowski M, Vincent A, Steenackers A, Colomb F, Van Seuningen I, Julien S, Delannoy P. Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFκB binding to ST8SIA1 promoter. PLoS One 2013; 8:e62559. [PMID: 23626833 PMCID: PMC3633854 DOI: 10.1371/journal.pone.0062559] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/23/2013] [Indexed: 12/13/2022] Open
Abstract
Recent data have underlined a possible role of G(D3) synthase (GD3S) and complex gangliosides in Estrogen Receptor (ER) negative breast cancer progression. Here, we describe the main transcript of the GD3S coding gene ST8SIA1 expressed in breast tumors. We characterized the corresponding core promoter in Hs578T breast cancer cells and showed that estradiol decreases ST8SIA1 mRNA expression in ER-positive MCF-7 cells and ERα-transfected ER-negative Hs578T cells. The activity of the core promoter sequence of ST8SIA1 is also repressed by estradiol. The core promoter of ST8SIA1 contains two putative Estrogen Response Elements (ERE) that were not found to be involved in the promoter activity pathway. However, NFκB was shown to be involved in ST8SIA1 transcriptional activation and we demonstrated that estradiol prevents NFκB to bind to ST8SIA1 core promoter in ERα expressing breast cancer cells by inhibiting p65 and p50 nucleus localization. The activation of NFκB pathway in ER-negative tumors, due to the absence of estradiol signaling, might explain the overexpression of G(D3) synthase in this tumor subtype.
Collapse
Affiliation(s)
- Marie Bobowski
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Audrey Vincent
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Agata Steenackers
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Florent Colomb
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Isabelle Van Seuningen
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Sylvain Julien
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Philippe Delannoy
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
- * E-mail:
| |
Collapse
|
19
|
Abstract
Carbohydrate signatures on tumor cells have functional implications in tumor growth and metastasis and constitute valuable tools in cancer diagnosis and immunotherapy. Increasing data regarding the mechanisms by which they are recognized by the immune system are facilitating the design of more efficient immunotherapeutic protocols based on cancer-associated glycan structures. Recent molecular and proteomic studies revealed that carbohydrates are recognized, not only by B cells and antibodies, but also by cells from the innate arm of immunity, as well as by T cells, and are able to induce specific T-cell immunity and cytotoxicity. In this review, we discuss and update the different strategies targeting tumor-associated carbohydrate antigens that are being evaluated for antitumor immunotherapy, an approach that will be highly relevant, especially when combined with other strategies, in the future fight against cancer.
Collapse
Affiliation(s)
- Teresa Freire
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
| | - Eduardo Osinaga
- UdelaR, Facultad de Medicina, Dept. Inmunobiología, Gral. Flores 2125, 11800, Montevideo, Uruguay
- Institut Pasteur Montevideo, Laboratorio de Glicobiología e Inmunología tumoral, Mataojo 2020, 11400, Montevideo, Uruguay
| |
Collapse
|
20
|
Durrant LG, Noble P, Spendlove I. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 2012; 167:206-15. [PMID: 22235996 DOI: 10.1111/j.1365-2249.2011.04516.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research into aberrant glycosylation and over-expression of glycolipids on the surface of the majority of cancers, coupled with a knowledge of glycolipids as functional molecules involved in a number of cellular physiological pathways, has provided a novel area of targets for cancer immunotherapy. This has resulted in the development of a number of vaccines and monoclonal antibodies that are showing promising results in recent clinical trials.
Collapse
Affiliation(s)
- L G Durrant
- Academic Department of Clinical Oncology, Molecular Medical Sciences, City Hospital, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
21
|
Cazet A, Bobowski M, Rombouts Y, Lefebvre J, Steenackers A, Popa I, Guérardel Y, Le Bourhis X, Tulasne D, Delannoy P. The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology 2012; 22:806-16. [PMID: 22301273 DOI: 10.1093/glycob/cws049] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have recently established and characterized cellular clones deriving from MDA-MB-231 breast cancer cells that express the human G(D3) synthase (GD3S), the enzyme that controls the biosynthesis of b- and c-series gangliosides. The GD3S positive clones show a proliferative phenotype in the absence of serum or growth factors and an increased tumor growth in severe immunodeficient mice. This phenotype results from the constitutive activation of the receptor tyrosine kinase c-Met in spite of the absence of ligand and subsequent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt pathways. Here, we show by mass spectrometry analysis of total glycosphingolipids that G(D3) and G(D2) are the main gangliosides expressed by the GD3S positive clones. Moreover, G(D2) colocalized with c-Met at the plasma membrane and small interfering RNA silencing of the G(M2)/G(D2) synthase efficiently reduced the expression of G(D2) as well as c-Met phosphorylation and reversed the proliferative phenotype. Competition assays using anti-G(D2) monoclonal antibodies also inhibit proliferation and c-Met phosphorylation of GD3S positive clones in serum-free conditions. Altogether, these results demonstrate the involvement of the disialoganglioside G(D2) in MDA-MB-231 cell proliferation via the constitutive activation of c-Met. The accumulation of G(D2) in c-Met expressing cells could therefore reinforce the tumorigenicity and aggressiveness of breast cancer tumors.
Collapse
Affiliation(s)
- Aurélie Cazet
- Université Lille Nord de France, F-59000 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hennings L, Artaud C, Jousheghany F, Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Carbohydrate mimetic peptides augment carbohydrate-reactive immune responses in the absence of immune pathology. Cancers (Basel) 2011; 3:4151-69. [PMID: 24213131 PMCID: PMC3763416 DOI: 10.3390/cancers3044151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.
Collapse
Affiliation(s)
- Leah Hennings
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
24
|
Klein O, Schmidt C, Knights A, Davis ID, Chen W, Cebon J. Melanoma vaccines: developments over the past 10 years. Expert Rev Vaccines 2011; 10:853-73. [PMID: 21692705 DOI: 10.1586/erv.11.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Decades of preclinical evaluation and clinical trials into melanoma vaccines have yielded spectacular progress in our understanding of melanoma antigens and the immune mechanisms of tumor rejection. Key insights and the results of their clinical evaluation are reviewed in this article. Unfortunately, durable clinical benefit following vaccination remains uncommon. Two recent clinical advances that will impact on melanoma vaccine development are trials with inhibitors of CTLA-4 and oncogenic BRAF. Long-term therapeutic control of melanoma will require integration of specific active immunotherapy with these emerging successful therapies from the disparate fields of immune regulation and signal transduction.
Collapse
Affiliation(s)
- Oliver Klein
- Ludwig Institute for Cancer Research, Austin Branch, Austin Hospital, Studley Road, Heidelberg, Victoria, 3084, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Cancer immunotherapy consists of approaches that modify the host immune system, and/or the utilization of components of the immune system, as cancer treatment. During the past 25 years, 17 immunologic products have received regulatory approval based on anticancer activity as single agents and/or in combination with chemotherapy. These include the nonspecific immune stimulants BCG and levamisole; the cytokines interferon-α and interleukin-2; the monoclonal antibodies rituximab, ofatumumab, alemtuzumab, trastuzumab, bevacizumab, cetuximab, and panitumumab; the radiolabeled antibodies Y-90 ibritumomab tiuxetan and I-131 tositumomab; the immunotoxins denileukin diftitox and gemtuzumab ozogamicin; nonmyeloablative allogeneic transplants with donor lymphocyte infusions; and the anti-prostate cancer cell-based therapy sipuleucel-T. All but two of these products are still regularly used to treat various B- and T-cell malignancies, and numerous solid tumors, including breast, lung, colorectal, prostate, melanoma, kidney, glioblastoma, bladder, and head and neck. Positive randomized trials have recently been reported for idiotype vaccines in lymphoma and a peptide vaccine in melanoma. The anti-CTLA-4 monoclonal antibody ipilumumab, which blocks regulatory T-cells, is expected to receive regulatory approval in the near future, based on a randomized trial in melanoma. As the fourth modality of cancer treatment, biotherapy/immunotherapy is an increasingly important component of the anticancer armamentarium.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Cancer Institute of Hoag Hospital , Newport Beach, California 92658, USA.
| |
Collapse
|
26
|
Kotlan B, Stroncek DF, Marincola FM. Intravenous immunoglobulin-based immunotherapy: an arsenal of possibilities for patients and science. Immunotherapy 2011; 1:995-1015. [PMID: 20635915 DOI: 10.2217/imt.09.67] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of intravenous immunoglobulin (IVIG) concentrated from pooled healthy donors' plasma has gained increasing popularity. IVIG therapy has become important as a replacement therapy in primary and acquired humoral immunodeficiencies, and it has been extended to autoimmune, neurodegenerative and inflammatory conditions and transplantation therapy. Recurrent pregnancy failure and cancer are rather new platforms, where IVIG has shown its beneficial effects. This manuscript is focused on these two off-labelled usages. The immunomodulatory mechanisms of IVIG therapy appear as a coordinated orchestration of different functions, resulting in a synergistic effect. Treatment monitoring and detailed molecular analyses reveal how such treatments may interfere with disease pathogenesis. These finding may foster the development of novel therapeutic and/or preventive strategies. Studying this field with bidirectional bench-to-bedside and bedside-to-bench approaches fit well into 'the two-way road' paradigm of translational medicine.
Collapse
Affiliation(s)
- Beatrix Kotlan
- Center of Surgical & Molecular Tumorpathology National Institute of Oncology, Rath Gy street 7-9, Budapest 1122, Hungary.
| | | | | |
Collapse
|
27
|
Ramos AS, Parise CB, Travassos LR, Han SW, de Campos-Lima PO, de Moraes JZ. The idiotype (Id) cascade in mice elicited the production of anti-R24 Id and anti-anti-Id monoclonal antibodies with antitumor and protective activity against human melanoma. Cancer Sci 2010; 102:64-70. [PMID: 21070480 DOI: 10.1111/j.1349-7006.2010.01771.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gangliosides have been considered as potential targets for immunotherapy because they are overexpressed on the surface of melanoma cells. However, immunization with purified gangliosides results in a very poor immune response, usually mediated by IgM antibodies. To overcome this limitation, we immunized mice with R24, a monoclonal antibody (mAb) that recognizes the most tumor-restricted ganglioside (GD3); our goal was to obtain anti-idiotype (Id) antibodies bearing the internal image of GD3. Animals produced anti-Id and anti-anti-Id antibodies. Both anti-Id and anti-anti-Id antibodies were able to inhibit mAb R24 binding to GD3. In addition, the anti-anti-Id antibodies were shown to recognize GD3 directly. Anti-Id and anti-anti-Id mAb were then selected from two fusion experiments for evaluation. The most interesting finding emerged from the characterization of the anti-anti-Id mAb 5.G8. It was shown to recognize two different GD3-expressing human melanoma cell lines in vitro and to mediate tumor cell cytotoxicity by complement activation and antibody-dependent cellular cytotoxicity. The biological activity of the anti-anti-Id mAb was also tested in a mouse tumor model, in which it was shown to be a powerful growth inhibitor of melanoma cells. Thus, activity of the anti-anti-Id mAb 5.G8 matched that of the prototypic anti-GD3 mAb R24 both in vitro and in vivo. Altogether, our results indicate that the idiotype approach might produce high affinity, specific and very efficient antitumor immune responses.
Collapse
Affiliation(s)
- Angelita S Ramos
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Usuki S, Taguchi K, Thompson SA, Chapman PB, Yu RK. Novel anti-idiotype antibody therapy for lipooligosaccharide-induced experimental autoimmune neuritis: use relevant to Guillain-Barré syndrome. J Neurosci Res 2010; 88:1651-63. [PMID: 20077429 DOI: 10.1002/jnr.22330] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Campylobacteriosis is a frequent antecedent event in Guillain-Barré syndrome (GBS), inducing high-titer serum antibodies for ganglioside antigens in the peripheral nervous system (PNS). Molecular mimicry between the lipooligosaccharide (LOS) component of Campylobacter jejuni and human peripheral nerve gangliosides is believed to play an important role in the pathogenesis of GBS. Conventional treatment strategies for patients with GBS include plasmapheresis, intravenous immunoglobulin (IVIG), and immunosuppression, which are invasive or relatively ineffective. In this study, we used our animal model of GBS, in which Lewis rats were immunized with GD3-like LOS isolated from C.jejuni. The animals developed anti-GD3 ganglioside antibodies and manifested neuromuscular dysfunction. To develop novel therapeutic strategies, we treated the animals by intraperitoneal administration of an anti-GD3 antiidiotype monoclonal antibody (BEC2) that specifically interacts with the pathogenic antibody. The treated animals had a remarkable reduction of anti-GD3 antibody titers and improvement of motor nerve functions. The results suggest that ganglioside mimics, such as antiidiotype antibodies, may be powerful reagents for therapeutic intervention in GBS by neutralizing specific pathogenic antiganglioside antibodies.
Collapse
Affiliation(s)
- S Usuki
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2697, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
30
|
Mackiewicz J, Mackiewicz A. Design of clinical trials for therapeutic cancer vaccines development. Eur J Pharmacol 2009; 625:84-9. [PMID: 19835869 DOI: 10.1016/j.ejphar.2009.09.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022]
Abstract
Advances in molecular and cellular biology as well as biotechnology led to definition of a group of drugs referred to as medicinal products of advanced technologies. It includes gene therapy products, somatic cell therapeutics and tissue engineering. Therapeutic cancer vaccines including whole cell tumor cells vaccines or gene modified whole cells belong to somatic therapeutics and/or gene therapy products category. The drug development is a multistep complex process. It comprises of two phases: preclinical and clinical. Guidelines on preclinical testing of cell based immunotherapy medicinal products have been defined by regulatory agencies and are available. However, clinical testing of therapeutic cancer vaccines is still under debate. It presents a serious problem since recently clinical efficacy of the number of cancer vaccines has been demonstrated that focused a lot of public attention. In general clinical testing in the current form is very expensive, time consuming and poorly designed what may lead to overlooking of products clinically beneficial for patients. Accordingly regulatory authorities and researches including Cancer Vaccine Clinical Trial Working Group proposed three regulatory solutions to facilitate clinical development of cancer vaccines: cost-recovery program, conditional marketing authorization, and a new development paradigm. Paradigm includes a model in which cancer vaccines are investigated in two types of clinical trials: proof-of-principle and efficacy. The proof-of-principle trial objectives are: safety; dose selection and schedule of vaccination; and demonstration of proof-of-principle. Efficacy trials are randomized clinical trials with objectives of demonstrating clinical benefit either directly or through a surrogate. The clinical end points are still under debate.
Collapse
Affiliation(s)
- Jacek Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences and Greater Poland Cancer Center, Poznan, Poland
| | | |
Collapse
|
31
|
Abstract
Over the last century, vaccine studies have demonstrated that the human immune system, with appropriate help, can limit or prevent infection against otherwise lethal pathogens. Encouraged by these results, success in animal models and numerous well-documented reports of immune-mediated melanoma regression in humans, investigators developed melanoma vaccines. However, despite considerable laboratory evidence for vaccine-induced immune responses, clinical responses remain poor. Recent studies have elucidated several mechanisms that hinder or prevent the creation of successful vaccines and suggest novel approaches to overcome these barriers. Unraveling the mechanisms of autoimmunity, dendritic cell activation, regulatory T cells and Toll-like receptors will generate novel vaccines that, when used in conjunction with standard adjuvant therapies, may result in improved clinical outcomes. The objective of this review is to provide an overall summary of recent clinical trials with melanoma vaccines and highlight novel vaccine strategies to evaluate in the near future.
Collapse
Affiliation(s)
- Lee B Riley
- St Luke's Cancer Center, St Luke's Hospital and Health Network, 801 Ostrum Street, Bethlehem, PA 18015, USA.
| | | |
Collapse
|
32
|
Schlom J, Gulley JL, Arlen PM. Paradigm shifts in cancer vaccine therapy. Exp Biol Med (Maywood) 2008; 233:522-34. [PMID: 18375829 DOI: 10.3181/0708-mr-226] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cancer vaccines constitute a unique therapeutic modality in that they initiate a dynamic process involving the host's immune response. Consequently, (a) repeated doses (vaccinations) over months may be required before patient clinical benefit is observed and (b) there most likely will be a "dynamic balance" between the induction and maintenance of host immune response elements to the vaccinations vs. host/tumor factors that have the potential to diminish those responses. Thus "patient response" in the form of disease stabilization and prolonged survival may be more appropriate to monitor than strictly adhering to "tumor response" in the form of Response Criteria In Solid Tumors (RECIST) criteria. This can be manifested in the form of enhanced patient benefit to subsequent therapies following vaccine therapy. This article will review these phenomena unique to cancer vaccines with emphasis on prostate cancer vaccines as a prototype for vaccine therapy. The unique features of this modality require the consideration of paradigm shifts both in the way cancer vaccine clinical trials are designed and in the way patient benefit is evaluated.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, CCR, NCI, 10 Center Drive, Room 8B09, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
33
|
Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, Parmiani G, Tosti G, Kirkwood JM, Hoos A, Yuh L, Gupta R, Srivastava PK. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 2008; 26:955-62. [PMID: 18281670 DOI: 10.1200/jco.2007.11.9941] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the antitumor activity of vitespen (autologous, tumor- derived heat shock protein gp96 peptide complexes) by determining whether patients with stage IV melanoma treated with vitespen experienced longer overall survival than patients treated with physician's choice. PATIENTS AND METHODS Patients (N = 322) were randomly assigned 2:1 to receive vitespen or physician's choice (PC) of a treatment containing one or more of the following: dacarbazine, temozolomide, interleukin-2, or complete tumor resection. This open-label trial was conducted at 71 centers worldwide. Patients were monitored for safety and overall survival. RESULTS Therapy with vitespen is devoid of significant toxicity. Patients randomly assigned to the vitespen arm received variable number of injections (range, 0 to 87; median, 6) in part because of the autologous nature of vitespen therapy. Intention-to-treat analysis showed that overall survival in the vitespen arm is statistically indistinguishable from that in the PC arm. Exploratory landmark analyses show that patients in the M1a and M1b substages receiving a larger number of vitespen immunizations survived longer than those receiving fewer such treatments. Such difference was not detected for substage M1c patients. CONCLUSION These results are consistent with the immunologic mechanism of action of vitespen, indicating delayed onset of clinical activity after exposure to the vaccine. The results suggest patients with M1a and M1b disease who are able to receive 10 or more doses of vitespen as the candidate population for a confirmatory study.
Collapse
|
34
|
Abstract
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.
Collapse
Affiliation(s)
- Albert Morales
- Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital, Clínic i Provincial, Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Kudela P, Paukner S, Mayr UB, Cholujova D, Kohl G, Schwarczova Z, Bizik J, Sedlak J, Lubitz W. Effective gene transfer to melanoma cells using bacterial ghosts. Cancer Lett 2007; 262:54-63. [PMID: 18164809 DOI: 10.1016/j.canlet.2007.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 10/21/2022]
Abstract
Bacterial ghosts (BG) are cell envelopes preparations of Gram-negative bacteria devoid of cytoplasmic content produced by controlled expression of PhiX174 plasmid-encoded lysis gene E. Eight melanoma cell lines were investigated for their capacity to bind and phagocyte BG derived from Escherichia coli NM522 and Mannheimia haemolytica A23. High capability to bind BG was observed in almost all of the analyzed cell lines, furthermore cells were able to take up BG independently of the used bacterial species. Further, transfection efficiency of BG loaded with DNA in vitro was measured. The Bowes cells exhibited a high expression level of GFP and the incubation of cells with plasmid loaded BG led up to 82% transfection efficiency.
Collapse
Affiliation(s)
- Pavol Kudela
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska, Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Congy-Jolivet N, Probst A, Watier H, Thibault G. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Crit Rev Oncol Hematol 2007; 64:226-33. [PMID: 17716905 DOI: 10.1016/j.critrevonc.2007.06.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/01/2007] [Accepted: 06/14/2007] [Indexed: 11/17/2022] Open
Abstract
Naked therapeutic recombinant monoclonal antibodies (mAbs) are bifunctional molecules. On the one hand, they recognize their antigen through the variable regions of the antigen binding portion (Fab). The recombinant mAb binding to a soluble or a membrane antigen may interfere with one or several functions of this antigen, leading to the therapeutic effect. On the other hand, since their crystalisable portion (Fc) is humanized (usually IgG1), they interact efficiently with human Fc-binding molecules, such as C1q and receptors for the Fc portion of IgG (FcgammaR). Thus, they initiate the classical pathway of complement and activate FcgammaR-expressing cells. The recruitment of these patient immune effector functions is essential in the therapeutic effect of several recombinant mAbs used in oncology. The aim of this review is to describe the main mechanisms of action of recombinant mAbs in relation to this structural and functional duality.
Collapse
Affiliation(s)
- Nicolas Congy-Jolivet
- Université François Rabelais de Tours, EA 3853 Immuno-Pharmaco-Génétique des Anticorps thérapeutiques, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | | | | | | |
Collapse
|
37
|
Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA. Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 2006; 55:1491-503. [PMID: 16485128 PMCID: PMC11030856 DOI: 10.1007/s00262-006-0138-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/30/2005] [Indexed: 11/30/2022]
Abstract
Survivin is a member of the inhibitor of apoptosis protein family. Gliomas and many other tumors express survivin at high levels; whereas, normal fully differentiated cells generally do not. Therefore, survivin represents a tumor-specific target for cancer vaccine therapy. It has been shown that it is possible to produce a MHC-I-restricted cellular immunologic response to survivin vaccines. To study differences in immunogenicity between murine and human survivin proteins, we vaccinated C57BL/6 mice with bone marrow dendritic cells (BMDC) transfected with expression vectors containing the murine and human survivin genes. Mice vaccinated with BMDCs expressing a truncated human survivin protein developed cytotoxic T lymphocyte to subcutaneous GL261 glioma cells and exhibited prolonged tumor-free survival compared to mice vaccinated with BMDCs transfected with vector alone (P<0.01). While mice challenged with intracerebral GL261 cells had increased survival, no cures were observed. In contrast, vaccinated mice that fully resisted subcutaneous tumor challenge were rendered resistant to intracerebral GL261 re-challenge. BMDCs transfected with the full-length human survivin molecule were significantly more effective at prolonging survival than BMDCs expressing the full-length murine survivin gene (P=0.0175). Therefore, xenogeneic differences between human and murine sequences might be exploited to develop more immunogenic tumor vaccines.
Collapse
Affiliation(s)
- Michael J Ciesielski
- Departments of Neurosurgery and Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Milner RJ, Salute M, Crawford C, Abbot JR, Farese J. The immune response to disialoganglioside GD3 vaccination in normal dogs: a melanoma surface antigen vaccine. Vet Immunol Immunopathol 2006; 114:273-84. [PMID: 17027091 DOI: 10.1016/j.vetimm.2006.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 08/14/2006] [Accepted: 08/23/2006] [Indexed: 11/19/2022]
Abstract
As a result of its metastatic potential, canine malignant melanoma like its human counterpart like its human counter part, has a poor response to conventional treatment protocols. This prompted us to investigate the possibility of enhancing the immune response against the melanoma cell surface antigen, disialoganglioside GD3. Initially a flow cytometric study was designed in which the incidence of GD3 on the cell surface, recognized by the monoclonal antibody Mel-1 (R24), was established in canine melanoma cell lines. Results from the flow cytometry found GD3 to be highly expressed (94.2%) in six out of seven canine melanoma cell lines. Since it was thus potentially a good target, a study in which normal dogs were vaccinated intradermally with a vaccine containing GD3 plus adjuvants was designed. The adjuvant included CpG oligodeoxynucleotide (CpG-ODN) sequences and RIBI-adjuvant, which are known to target toll-like receptors (TLR) of the innate immune system. From a cohort of 10 dogs, 4 were vaccinated 3 times, at 4 weekly intervals with GD3 plus adjuvant, and 4 received only RIBI-adjuvant, and 2 phosphate buffered saline. Caliper measurements were collected to assess skin reaction at the vaccination site and sera assayed for IgM and IgG antibodies against GD3 and cell-mediated cytotoxicity against a melanoma cell line. Results from the study found significant differences (P<0.05) in the vaccine site reactions, IgM/IgG levels and cell-mediated cytotoxicity in the vaccinated versus unvaccinated dogs. The addition of CpG-ODN sequences and increasing GD3 concentration in the vaccine increased the inflammation response at the injection site. GD3 IgG and IgM antibodies in vaccinated dogs showed increasing titers over time and achieved significance at weeks 9 and 12, respectively. Cell-mediated cytotoxicity was only detected in peripheral blood mononuclear cells from vaccinated dogs. In conclusion, by combining the tumor antigen GD3 (a known weak self-antigen) and an adjuvant, tolerance was overcome by an innate and adaptive immune response in this population of normal dogs.
Collapse
Affiliation(s)
- R J Milner
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Florida, USA.
| | | | | | | | | |
Collapse
|
39
|
Guthmann MD, Castro MA, Cinat G, Venier C, Koliren L, Bitton RJ, Vázquez AM, Fainboim L. Cellular and humoral immune response to N-Glycolyl-GM3 elicited by prolonged immunotherapy with an anti-idiotypic vaccine in high-risk and metastatic breast cancer patients. J Immunother 2006; 29:215-23. [PMID: 16531822 DOI: 10.1097/01.cji.0000188502.11348.34] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, the immunogenicity and toxicity profile of 1E10, an anti-idiotypic vaccine mimicking the N-glycolyl-GM3 ganglioside, was investigated with an extended vaccination protocol. The year-long vaccination scheme consisted of 6 biweekly intradermal injections (induction phase), followed by 10 monthly boosters (maintenance). Nineteen patients with high-risk (stage III) or metastatic breast cancer were vaccinated with different dose levels of 1E10 (0.5, 1, and 2 mg). The humoral and cellular responses to 1E10 and the targeted ganglioside were assessed at baseline and throughout the treatment. Local skin reactions represented the most common adverse event (National Cancer Institute Toxicity Criteria (NCIC) grades I and II), followed by mild flu-like symptoms lasting for 1 to 2 days. Two patients were removed from the study because of vaccine-related hypersensitivity reactions. A third patient was removed from the study after a transient loss of consciousness with uncertain relation to the vaccine. All patients showed a strong antibody response to the targeted ganglioside. In addition, ganglioside-specific T-cell responses were recorded in 5 of 13 evaluable patients. Vaccination with 1E10 was immunogenic and relatively well tolerated. Because similar results were observed with the 3 tested dose levels, the 0.5-mg dose level was selected for future trials.
Collapse
Affiliation(s)
- Marcelo D Guthmann
- Hospital de Clínicas José de San Martín, University of Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Luo W, Ko E, Hsu JCF, Wang X, Ferrone S. Targeting Melanoma Cells with Human High Molecular Weight-Melanoma Associated Antigen-Specific Antibodies Elicited by a Peptide Mimotope: Functional Effects. THE JOURNAL OF IMMUNOLOGY 2006; 176:6046-54. [PMID: 16670313 DOI: 10.4049/jimmunol.176.10.6046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human high molecular weight-melanoma associated Ag (HMW-MAA) mimics have been shown to elicit HMW-MAA-specific humoral immune responses that appear to be clinically beneficial. This finding has stimulated interest in characterizing the mechanism(s) underlying the ability of the elicited Abs to exert an anti-tumor effect. To address this question, in the present study, we have generated HMW-MAA-specific Abs by sequentially immunizing rabbits with the peptide P763.74, which mimics the HMW-MAA determinant recognized by mAb 763.74, and with HMW-MAA(+) melanoma cells. HMW-MAA-specific Abs isolated from immunized rabbits mediated cell-dependent cytotoxicity but did not mediate complement-dependent cytotoxicity of HMW-MAA(+) melanoma cells. These Abs also effectively inhibited spreading, migration and Matrigel invasion of HMW-MAA(+) melanoma cells. Besides contributing to our understanding of the role of HMW-MAA in the biology of melanoma cells, these results suggest that both immunological and nonimmunological mechanisms underlie the beneficial clinical effects associated with the induction of HMW-MAA-specific Abs in melanoma patients immunized with a HMW-MAA mimic.
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
41
|
Mager DL. Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 2006; 4:14. [PMID: 16566840 PMCID: PMC1479838 DOI: 10.1186/1479-5876-4-14] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 03/28/2006] [Indexed: 01/28/2023] Open
Abstract
Research has found that certain bacteria are associated with human cancers. Their role, however, is still unclear. Convincing evidence links some species to carcinogenesis while others appear promising in the diagnosis, prevention or treatment of cancers. The complex relationship between bacteria and humans is demonstrated by Helicobacter pylori and Salmonella typhi infections. Research has shown that H. pylori can cause gastric cancer or MALT lymphoma in some individuals. In contrast, exposure to H. pylori appears to reduce the risk of esophageal cancer in others. Salmonella typhi infection has been associated with the development of gallbladder cancer; however S. typhi is a promising carrier of therapeutic agents for melanoma, colon and bladder cancers. Thus bacterial species and their roles in particular cancers appear to differ among different individuals. Many species, however, share an important characteristic: highly site-specific colonization. This critical factor may lead to the development of non-invasive diagnostic tests, innovative treatments and cancer vaccines.
Collapse
Affiliation(s)
- D L Mager
- The Forsyth Institute, 140 The Fenway, Boston, MA, USA.
| |
Collapse
|
42
|
Giaccone G, Debruyne C, Felip E, Chapman PB, Grant SC, Millward M, Thiberville L, D'addario G, Coens C, Rome LS, Zatloukal P, Masso O, Legrand C. Phase III study of adjuvant vaccination with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisation for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol 2005; 23:6854-64. [PMID: 16192577 DOI: 10.1200/jco.2005.17.186] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Bec2 is an anti-idiotypic antibody that mimics GD3, a ganglioside that is expressed on the surface of tumor cells and is of neuroectodermal origin. We assessed whether Bec2/bacille Calmette-Guerin (BCG) vaccination prolongs survival in patients with limited-disease small-cell lung cancer (SCLC) after a major response to chemotherapy and chest radiation. PATIENTS AND METHODS Patients were randomly assigned to receive five vaccinations of Bec2 (2.5 mg)/BCG vaccine or follow-up. Vaccination was given over a 10-week period. The sample size was targeted to detect an increase in median survival of 40% after random assignment, and stratification was by performance status, response, and institution. Quality of life was assessed by using the European Organisation for Research and Treatment of Cancer instrument. Humoral response was assessed in patients who received vaccination. RESULTS A total of 515 patients were randomly assigned. The primary toxicities of vaccination were transient skin ulcerations and mild flu-like symptoms. There was no improvement in survival, progression-free survival, or quality of life in the vaccination arm. Median survival from randomization was 16.4 and 14.3 months in the observation and vaccination arms (P = .28), respectively. Among vaccinated patients, a trend toward prolonged survival was observed in those (one third) who developed a humoral response (P = .085). Multivariate analysis showed a positive impact on survival by prior treatment with concomitant chemoradiotherapy, prophylactic cranial irradiation, female sex, low lactate dehydrogenase, and normal platelets. CONCLUSION Vaccination with Bec2/BCG has no impact on outcome of patients with limited-disease SCLC responding to combined-modality treatment. Vaccination strategies in SCLC may still be warranted using vaccines that produce a better immunologic response.
Collapse
Affiliation(s)
- Giuseppe Giaccone
- Division of Medical Oncology, Vrije Universiteit Medical Center, 1117 De Boelelaan, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Luiten RM, Kueter EWM, Mooi W, Gallee MPW, Rankin EM, Gerritsen WR, Clift SM, Nooijen WJ, Weder P, van de Kasteele WF, Sein J, van den Berk PCM, Nieweg OE, Berns AM, Spits H, de Gast GC. Immunogenicity, including vitiligo, and feasibility of vaccination with autologous GM-CSF-transduced tumor cells in metastatic melanoma patients. J Clin Oncol 2005; 23:8978-91. [PMID: 16260696 DOI: 10.1200/jco.2005.01.6816] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To determine the feasibility, toxicity, and immunologic effects of vaccination with autologous tumor cells retrovirally transduced with the GM-CSF gene, we performed a phase I/II vaccination study in stage IV metastatic melanoma patients. PATIENTS AND METHODS Sixty-four patients were randomly assigned to receive three vaccinations of high-dose or low-dose tumor cells at 3-week intervals. Tumor cell vaccine preparation succeeded for 56 patients (88%), but because of progressive disease, the well-tolerated vaccination was completed in only 28 patients. We analyzed the priming of T cells against melanoma antigens, MART-1, tyrosinase, gp100, MAGE-A1, and MAGE-A3 using human leukocyte antigen/peptide tetramers and functional assays. RESULTS The high-dose vaccination induced the infiltration of T cells into the tumor tissue. Three of 14 patients receiving the high-dose vaccine showed an increase in MART-1- or gp100-specific T cells in the peripheral blood during vaccination. Six patients experienced disease-free survival for more than 5 years, and two of these patients developed vitiligo at multiple sites after vaccination. MART-1- and gp100-specific T cells were found infiltrating in vitiligo skin. Upon vaccination, the T cells acquired an effector phenotype and produced interferon-gamma on specific antigenic stimulation. CONCLUSION We conclude that vaccination with GM-CSF-transduced autologous tumor cells has limited toxicity and can enhance T-cell activation against melanocyte differentiation antigens, which can lead to vitiligo. Whether the induction of autoimmune vitiligo may prolong disease-free survival of metastatic melanoma patients who are surgically rendered as having no evidence of disease before vaccination is worthy of further investigation.
Collapse
Affiliation(s)
- Rosalie M Luiten
- Clinical Immunotherapy, Department of Medical Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Luo W, Hsu JCF, Tsao CY, Ko E, Wang X, Ferrone S. Differential Immunogenicity of Two Peptides Isolated by High Molecular Weight-Melanoma-Associated Antigen-Specific Monoclonal Antibodies with Different Affinities. THE JOURNAL OF IMMUNOLOGY 2005; 174:7104-10. [PMID: 15905554 DOI: 10.4049/jimmunol.174.11.7104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peptide mimics isolated from phage display peptide libraries by panning with self-tumor-associated Ag (TAA)-specific mAbs are being evaluated as immunogens to implement active specific immunotherapy. Although TAA-specific mAb are commonly used to isolate peptide mimics, no information is available regarding the Ab characteristics required to isolate immunogenic TAA peptide mimics. To address this question, we have used mAb 763.74 and mAb GH786, which recognize the same or spatially close antigenic determinant(s) of the human high m.w.-melanoma-associated Ag (HMW-MAA), although with different affinity. mAb 763.74 affinity is higher than that of mAb GH786. Panning of phage display peptide libraries with mAb 763.74 and mAb GH786 resulted in the isolation of peptides P763.74 and PGH786, respectively. When compared for their ability to induce HMW-MAA-specific immune responses in BALB/c mice, HMW-MAA-specific Ab titers were significantly higher in mice immunized with P763.74 than in those immunized with PGH786. The HMW-MAA-specific Ab titers were markedly increased by a booster with HMW-MAA-bearing melanoma cells, an effect that was significantly higher in mice primed with P763.74 than in those primed with PGH786. Lastly, P763.74, but not PGH786, induced a delayed-type hypersensitivity response to HMW-MAA-bearing melanoma cells. These findings suggest that affinity for TAA is a variable to take into account when selecting mAb to isolate peptide mimics from a phage display peptide library.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Adoptive Transfer
- Animals
- Antibodies, Neoplasm/metabolism
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Binding Sites, Antibody
- Cell Line, Tumor
- Humans
- Hypersensitivity, Delayed/immunology
- Immunization, Secondary
- Inovirus/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Mimicry/immunology
- Molecular Weight
- Peptide Fragments/administration & dosage
- Peptide Fragments/chemical synthesis
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Peptide Library
Collapse
Affiliation(s)
- Wei Luo
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|