1
|
Chen X, Varma G, Davies F, Morgan G. Approach to High-Risk Multiple Myeloma. Hematol Oncol Clin North Am 2024; 38:497-510. [PMID: 38195306 DOI: 10.1016/j.hoc.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Improving the outcome of high-risk myeloma (HRMM) is a key therapeutic aim for the next decade. To achieve this aim, it is necessary to understand in detail the genetic drivers underlying this clinical behavior and to target its biology therapeutically. Advances have already been made, with a focus on consensus guidance and the application of novel immunotherapeutic approaches. Cases of HRMM are likely to have impaired prognosis even with novel strategies. However, if disease eradication and minimal disease states are achieved, then cure may be possible.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gaurav Varma
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Faith Davies
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA
| | - Gareth Morgan
- Center Blood Cancer, Perlmutter Cancer Center, New York University, NYCLangone, Room# 496, Medical Science Building 4th Floor, 540 1st Avenue, New York, NY 10016, USA.
| |
Collapse
|
2
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
3
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|
4
|
Abdollahi P, Köhn M, Børset M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett 2020; 501:105-113. [PMID: 33290866 DOI: 10.1016/j.canlet.2020.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.
Collapse
Affiliation(s)
- Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Clinic of Medicine, St. Olavs Hospital, Trondheim, Norway; Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Maja Köhn
- Faculty of Biology, Institute of Biology III, University of Freiburg, 79104, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| | - Magne Børset
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Immunology and Transfusion Medicine, St. Olavs Hospital, Trondheim, Norway.
| |
Collapse
|
5
|
Zeissig MN, Zannettino ACW, Vandyke K. Tumour Dissemination in Multiple Myeloma Disease Progression and Relapse: A Potential Therapeutic Target in High-Risk Myeloma. Cancers (Basel) 2020; 12:cancers12123643. [PMID: 33291672 PMCID: PMC7761917 DOI: 10.3390/cancers12123643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Like in solid cancers, the process of dissemination is a critical feature of disease progression in the blood cancer multiple myeloma. At diagnosis, myeloma patients have cancer that has spread throughout the bone marrow, with patients with more disseminatory myeloma having worse outcomes for their disease. In this review, we discuss the current understanding of the mechanisms that underpin the dissemination process in multiple myeloma. Furthermore, we discuss the potential for the use of therapies that target the dissemination process as a novel means of improving outcomes for multiple myeloma patients. Abstract Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the presence of MM PCs at multiple sites throughout the bone marrow. Increased numbers of peripheral blood MM PCs are associated with rapid disease progression, shorter time to relapse and are a feature of advanced disease. In this review, the current understanding of the process of MM PC dissemination and the extrinsic and intrinsic factors potentially driving it are addressed through analysis of patient-derived MM PCs and MM cell lines as well as mouse models of homing and dissemination. In addition, we discuss how patient cytogenetic subgroups that present with highly disseminated disease, such as t(4;14), t(14;16) and t(14;20), suggest that intrinsic properties of MM PC influence their ability to disseminate. Finally, we discuss the possibility of using therapeutic targeting of tumour dissemination to slow disease progression and prevent overt relapse.
Collapse
Affiliation(s)
- Mara N. Zeissig
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Andrew C. W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
- Central Adelaide Local Health Network, Adelaide 5000, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide 5000, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Australia, Adelaide 5005, Australia; (M.N.Z.); (A.C.W.Z.)
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-8-8128-4694
| |
Collapse
|
6
|
Cheong CM, Mrozik KM, Hewett DR, Bell E, Panagopoulos V, Noll JE, Licht JD, Gronthos S, Zannettino ACW, Vandyke K. Twist-1 is upregulated by NSD2 and contributes to tumour dissemination and an epithelial-mesenchymal transition-like gene expression signature in t(4;14)-positive multiple myeloma. Cancer Lett 2020; 475:99-108. [PMID: 32014459 DOI: 10.1016/j.canlet.2020.01.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Approximately 15% of patients with multiple myeloma (MM) harbour the t(4;14) chromosomal translocation, leading to the overexpression of the histone methyltransferase NSD2. Patients with this translocation display increased tumour dissemination, accelerated disease progression and rapid relapse. Using publicly available gene expression profile data from NSD2high (n = 135) and NSD2low (n = 878) MM patients, we identified 39 epithelial-mesenchymal transition (EMT)-associated genes which are overexpressed in NSD2high MM plasma cells. In addition, our analyses identified Twist-1 as a key transcription factor upregulated in NSD2high MM patients and t(4;14)-positive cell lines. Overexpression and knockdown studies confirmed that Twist-1 is involved in driving the expression of EMT-associated genes in the human MM cell line KMS11 and promoted the migration of myeloma cell lines in vitro. Notably, Twist-1 overexpression in the mouse MM cell line 5TGM1 significantly increased tumour dissemination in an intratibial tumour model. These findings demonstrate that Twist-1, downstream of NSD2, contributes to the induction of an EMT-like signature in t(4;14)-positive MM and enhances the dissemination of MM plasma cells in vivo, which may, in part, explain the aggressive disease features associated with t(4;14)-positive MM.
Collapse
Affiliation(s)
- Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Elyse Bell
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Jonathan D Licht
- Departments of Medicine, Biochemistry and Molecular Biology and University of Florida Health Cancer Center, The University of Florida, Gainesville, FL, USA
| | - Stan Gronthos
- Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia; Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, Australia.
| |
Collapse
|
7
|
Adamia S, Abiatari I, Amin SB, Fulciniti M, Minvielle S, Li C, Moreau P, Avet-Loiseau H, Munshi NC, Anderson KC. The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia 2020; 34:167-179. [PMID: 31182781 PMCID: PMC6901818 DOI: 10.1038/s41375-019-0498-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Over the last few years, a detailed map of genetic and epigenetic lesions that underlie multiple myeloma (MM) has been created. Regulation of microRNA (miR)-dependent gene expression and mRNA splicing play significant roles in MM pathogenesis; however, to date an interplay between these processes is not yet delineated. Here we investigated miR-mediated regulation of splicing networks at the transcriptome level. Our studies show that a significant number (78%) of miRs which are either up- or down-regulated in patient CD138+ MM cells, but not in healthy donors (HD) CD138+ plasma cells (PC), target genes involved in early stages of pre-mRNA splicing. We also identified deregulated miRs that target core splicing factors (SF) and modifiers (SM, enhancers/silencers) which cause altered splicing in MM. Our studies suggest that Let-7f, in combination other miRs which are frequently and significantly deregulated in patients with overt MM, targets genes that regulate intron excision. Importantly, deregulated expression of certain miRs in MM promote increased intron retention, a novel characteristic of the MM genome, by inducing deregulated expression of the genes that regulate the splicing network. Our studies, therefore, provide the rationale for therapeutically targeting deregulated miRs to reverse aberrant splicing and improve patient outcome in MM.
Collapse
Affiliation(s)
- Sophia Adamia
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ivane Abiatari
- Institute of Medical Research, Ilia State University, Tbilisi, Georgia
| | - Samir B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mariateresa Fulciniti
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Cheng Li
- Peking University, School of Life Sciences, Beijing, China
| | - Philippe Moreau
- Laboratory of Hematology, University Hospital, Nantes, France
| | | | - Nikhil C Munshi
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
9
|
Chattopadhyay S, Thomsen H, da Silva Filho MI, Weinhold N, Hoffmann P, Nöthen MM, Marina A, Jöckel KH, Schmidt B, Pechlivanis S, Langer C, Goldschmidt H, Hemminki K, Försti A. Enrichment of B cell receptor signaling and epidermal growth factor receptor pathways in monoclonal gammopathy of undetermined significance: a genome-wide genetic interaction study. Mol Med 2018; 24:30. [PMID: 30134812 PMCID: PMC6016882 DOI: 10.1186/s10020-018-0031-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/27/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent identification of 10 germline variants predisposing to monoclonal gammopathy of undetermined significance (MGUS) explicates genetic dependency of this asymptomatic precursor condition with multiple myeloma (MM). Yet much of genetic burden as well as functional links remain unexplained. We propose a workflow to expand the search for susceptibility loci with genome-wide interaction and for subsequent identification of genetic clusters and pathways. METHODS Polygenic interaction analysis on 243 cases/1285 controls identified 14 paired risk loci belonging to unique chromosomal bands which were then replicated in two independent sets (case only study, 82 individuals; case/control study 236 cases/ 2484 controls). Further investigation on gene-set enrichment, regulatory pathway and genetic network was carried out with stand-alone in silico tools separately for both interaction and genome-wide association study-detected risk loci. RESULTS Intronic-PREX1 (20q13.13), a reported locus predisposing to MM was confirmed to have contribution to excess MGUS risk in interaction with SETBP1, a well-established candidate predisposing to myeloid malignancies. Pathway enrichment showed B cell receptor signaling pathway (P < 5.3 × 10- 3) downstream to allograft rejection pathway (P < 5.6 × 10- 4) and autoimmune thyroid disease pathway (P < 9.3 × 10- 4) as well as epidermal growth factor receptor regulation pathway (P < 2.4 × 10- 2) to be differentially regulated. Oncogene ALK and CDH2 were also identified to be moderately interacting with rs10251201 and rs16966921, two previously reported risk loci for MGUS. CONCLUSIONS We described novel pathways and variants potentially causal for MGUS. The methodology thus proposed to facilitate our search streamlines risk locus-based interaction, genetic network and pathway enrichment analyses.
Collapse
Affiliation(s)
- Subhayan Chattopadhyay
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Research Center, University of Bonn, Bonn, Germany
| | - Arendt Marina
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sonali Pechlivanis
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Langer
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
- National Centre of Tumor Diseases, Heidelberg, Germany
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| |
Collapse
|
10
|
Szalat R, Avet-Loiseau H, Munshi NC. Gene Expression Profiles in Myeloma: Ready for the Real World? Clin Cancer Res 2016; 22:5434-5442. [PMID: 28151711 PMCID: PMC5546147 DOI: 10.1158/1078-0432.ccr-16-0867] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022]
Abstract
Multiple myeloma is a plasma cell malignancy characterized by molecular and clinical heterogeneity. The outcome of the disease has been dramatically improved with the advent of new drugs in the past few years. However, even in this context of increasing therapeutic options, important challenges remain, such as accurately evaluating patients' prognosis and predicting sensitivity to specific treatments and drug combinations. Transcriptomic studies have largely contributed to help decipher multiple myeloma complexity, characterizing multiple myeloma subgroups distinguished by different outcomes. Microarrays and, more recently, RNA sequencing allow evaluation of expression of coding and noncoding genes, alternate splicing events, mutations, and novel transcriptome modifiers, providing new information regarding myeloma biology, prognostication, and therapy. In this review, we discuss the role and impact of gene expression profiling studies in myeloma. Clin Cancer Res; 22(22); 5434-42. ©2016 AACR SEE ALL ARTICLES IN THIS CCR FOCUS SECTION, "MULTIPLE MYELOMA MULTIPLYING THERAPIES".
Collapse
Affiliation(s)
- Raphael Szalat
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Herve Avet-Loiseau
- Centre de Recherche en Cancerologie de Toulouse, Institut National de la Sante et de la Recherche Medicale, Toulouse, France.
| | - Nikhil C Munshi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Boston Veterans Administration Healthcare System, Boston, Massachusetts
| |
Collapse
|
11
|
Identification of subtype specific miRNA-mRNA functional regulatory modules in matched miRNA-mRNA expression data: multiple myeloma as a case. BIOMED RESEARCH INTERNATIONAL 2015; 2015:501262. [PMID: 25874214 PMCID: PMC4385567 DOI: 10.1155/2015/501262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/19/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022]
Abstract
Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs) through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM), to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.
Collapse
|
12
|
Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, Blackstock WP, Chng WJ. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in T(4;14) multiple myeloma. Oncotarget 2014; 4:1008-18. [PMID: 23900284 PMCID: PMC3759662 DOI: 10.18632/oncotarget.1049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is characterized by recurrent chromosomal translocations. MMSET, identified by its fusion to the IgH locus in t(4;14) MM, is universally overexpressed in t(4;14) MM. In order to identify cell surface biomarkers associated with t(4;14) MM for small molecule or antibody based therapies, we knocked down MMSET expression with shRNA and generated a cell line pair from KMS11, a t(4;14) MM cell line. We used quantitative mass spectrometry to identify plasma membrane proteins associated with MMSET overexpression. Using this approach, 50 cell surface proteins were identified as differentially expressed between KMS11 and KMS11/shMMSET. Western blot and flow cytometry analysis indicated SLAMF7 was over-expressed in t(4;14) MM cell lines and down-regulated by MMSET shRNAs. SLAMF7 expression was also confirmed in primary t(4;14) MM samples by flow cytometry analysis. Quantitative RT-PCR and ChIP analysis indicated MMSET might regulate the transcription level of SLAMF7 and be an important functional element for SLAMF7 promoter activity. Furthermore, SLAMF7 shRNA could induce G1 arrest or apoptosis and reduce clonogenetic capacity in t(4;14) MM cells. Overall, these results illustrated SLAMF7 might be a novel cell surface protein associated with t(4;14) MM. It is potential to develop t(4;14) MM targeted therapy by SLAMF7 antibody mediated drug delivery.
Collapse
Affiliation(s)
- Zhigang Xie
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chung TH, Chng WJ. Clinical utility and implementation of gene-expression profiling in myeloma: current status and challenges. Int J Hematol Oncol 2012. [DOI: 10.2217/ijh.12.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Multiple myeloma, a neoplasm of terminally differentiated plasma cell, is the second most frequent hematological malignancy after non-Hodgkin’s lymphoma. Gene-expression profiling is a powerful and sensitive tool that can detect global transcriptional changes in cells. This technology has been applied in myeloma studies in the last decade in diverse areas such as understanding molecular pathogenesis, role of microenvironment, molecular heterogeneity, prognosis prediction and identification of novel therapeutic targets. In this review, we will briefly retrace the achievements and consider the future perspectives of gene-expression profiling in multiple myeloma research.
Collapse
Affiliation(s)
- Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Haematology–Oncology, National University Cancer Institute of Singapore, National University Health System, NUHS Tower Block, Level 7, 1E Lower Kent Ridge Road, Singapore 119228, Singapore
| |
Collapse
|
14
|
Chu L, Su MY, Maggi LB, Lu L, Mullins C, Crosby S, Huang G, Chng WJ, Vij R, Tomasson MH. Multiple myeloma-associated chromosomal translocation activates orphan snoRNA ACA11 to suppress oxidative stress. J Clin Invest 2012; 122:2793-806. [PMID: 22751105 DOI: 10.1172/jci63051] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/02/2012] [Indexed: 12/20/2022] Open
Abstract
The histone methyltransferase WHSC1 (also known as MMSET) is overexpressed in multiple myeloma (MM) as a result of the t(4;14) chromosomal translocation and in a broad variety of other cancers by unclear mechanisms. Overexpression of WHSC1 did not transform wild-type or tumor-prone primary hematopoietic cells. We found that ACA11, an orphan box H/ACA class small nucleolar RNA (snoRNA) encoded within an intron of WHSC1, was highly expressed in t(4;14)-positive MM and other cancers. ACA11 localized to nucleoli and bound what we believe to be a novel small nuclear ribonucleoprotein (snRNP) complex composed of several proteins involved in postsplicing intron complexes. RNA targets of this uncharacterized snRNP included snoRNA intermediates hosted within ribosomal protein (RP) genes, and an RP gene signature was strongly associated with t(4;14) in patients with MM. Expression of ACA11 was sufficient to downregulate RP genes and other snoRNAs implicated in the control of oxidative stress. ACA11 suppressed oxidative stress, afforded resistance to chemotherapy, and increased the proliferation of MM cells, demonstrating that ACA11 is a critical target of the t(4;14) translocation in MM and suggesting an oncogenic role in other cancers as well.
Collapse
Affiliation(s)
- Liang Chu
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Johnson SK, Heuck CJ, Albino AP, Qu P, Zhang Q, Barlogie B, Shaughnessy JD. The use of molecular-based risk stratification and pharmacogenomics for outcome prediction and personalized therapeutic management of multiple myeloma. Int J Hematol 2011; 94:321-333. [PMID: 22002477 DOI: 10.1007/s12185-011-0948-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Despite improvement in therapeutic efficacy, multiple myeloma (MM) remains incurable with a median survival of approximately 10 years. Gene-expression profiling (GEP) can be used to elucidate the molecular basis for resistance to chemotherapy through global assessment of molecular alterations that exist at diagnosis, after therapeutic treatment and that evolve during tumor progression. Unique GEP signatures associated with recurrent chromosomal translocations and ploidy changes have defined molecular classes with differing clinical features and outcomes. When compared to other stratification systems the GEP70 test remained a significant predictor of outcome, reduced the number of patients classified with a poor prognosis, and identified patients at increased risk of relapse despite their standard clinico-pathologic and genetic findings. GEP studies of serial samples showed that risk increases over time, with relapsed disease showing GEP shifts toward a signature of poor outcomes. GEP signatures of myeloma cells after therapy were prognostic for event-free and overall survival and thus may be used to identify novel strategies for overcoming drug resistance. This brief review will focus on the use of GEP of MM to define high-risk myeloma, and elucidate underlying mechanisms that are beginning to change clinical decision-making and inform drug design.
Collapse
Affiliation(s)
- Sarah K Johnson
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christoph J Heuck
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | | | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - John D Shaughnessy
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA. .,Donna D and Donald M Lambert Laboratory for Myeloma Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
Groen RWJ, de Rooij MFM, Kocemba KA, Reijmers RM, de Haan-Kramer A, Overdijk MB, Aalders L, Rozemuller H, Martens ACM, Bergsagel PL, Kersten MJ, Pals ST, Spaargaren M. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation. Haematologica 2011; 96:1653-61. [PMID: 21828122 DOI: 10.3324/haematol.2010.038133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays a critical role in sustaining the growth and survival of myeloma cells during tumor progression. Identification and functional analysis of the (adhesion) molecules involved in this interaction will provide important insights into the pathogenesis of multiple myeloma. DESIGN AND METHODS Multiple myeloma cell lines and patients' samples were analyzed for expression of the adhesion molecule N-cadherin by immunoblotting, flow cytometry, immunofluorescence microscopy, immunohistochemistry and expression microarray. In addition, by means of blocking antibodies and inducible RNA interference we studied the functional consequence of N-cadherin expression for the myeloma cells, by analysis of adhesion, migration and growth, and for the bone marrow microenvironment, by analysis of osteogenic differentiation. RESULTS The malignant plasma cells in approximately half of the multiple myeloma patients, belonging to specific genetic subgroups, aberrantly expressed the homophilic adhesion molecule N-cad-herin. N-cadherin-mediated cell-substrate or homotypic cell-cell adhesion did not contribute to myeloma cell growth in vitro. However, N-cadherin directly mediated the bone marrow localization/retention of myeloma cells in vivo, and facilitated a close interaction between myeloma cells and N-cadherin-positive osteoblasts. Furthermore, this N-cadherin-mediated interaction contributed to the ability of myeloma cells to inhibit osteoblastogenesis. CONCLUSIONS Taken together, our data show that myeloma cells frequently display aberrant expression of N-cadherin and that N-cadherin mediates the interaction of myeloma cells with the bone marrow microenvironment, in particular the osteoblasts. This N-cadherin-mediated interaction inhibits osteoblast differentiation and may play an important role in the pathogenesis of myeloma bone disease.
Collapse
Affiliation(s)
- Richard W J Groen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sawyer JR. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 2011; 204:3-12. [PMID: 21356186 DOI: 10.1016/j.cancergencyto.2010.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 11/01/2010] [Indexed: 12/28/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by very complex cytogenetic and molecular genetic aberrations. In newly diagnosed symptomatic patients, the modal chromosome number is usually either hyperdiploid with multiple trisomies or hypodiploid with one of several types of immunoglobulin heavy chain (Ig) translocations. The chromosome ploidy status and Ig rearrangements are two genetic criteria that are used to help stratify patients into prognostic groups based on the findings of conventional cytogenetics and fluorescence in situ hybridization (FISH). In general, the hypodiploid group with t(4;14)(p16;q32) or t(14;16)(q32;q23) is considered a high-risk group, while the hyperdiploid patients with t(11;14)(q13;q32) are considered a better prognostic group. As the disease progresses, it becomes more proliferative and develops a number of secondary chromosome aberrations. These secondary aberrations commonly involve MYC rearrangements, del(13q), del(17p), and the deletion of 1p and/or amplification of 1q. Of the secondary aberrations, del(17p) is consistently associated with poor prognosis. All of these cytogenetic aberrations and many additional ones are now identified by means of high resolution molecular profiling. Gene expression profiling (GEP), array comparative genomic hybridization (aCGH), and single-nucleotide polymorphism (SNP) arrays have been able to identify novel genetic aberration patterns that have previously gone unrecognized. With the integration of data from these profiling techniques, new subclassifications of MM have been proposed which define distinct molecular genetic subgroups. In this review, the findings from conventional cytogenetics, interphase FISH, GEP, aCGH, and SNP profiles are described to provide the conceptual framework for defining the emerging molecular genetic subgroups with prognostic significance.
Collapse
Affiliation(s)
- Jeffrey R Sawyer
- Department of Pathology and Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
18
|
Ailawadhi S, Masood A, Sher T, Miller KC, Wood M, Lee K, Chanan-Khan A. Treatment options for multiple myeloma patients with high-risk disease. Med Oncol 2010. [DOI: 10.1007/s12032-010-9521-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther 2010; 125:105-17. [DOI: 10.1016/j.pharmthera.2009.10.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 12/23/2022]
|
20
|
Zhou Y, Barlogie B, Shaughnessy JD. The molecular characterization and clinical management of multiple myeloma in the post-genome era. Leukemia 2009; 23:1941-56. [PMID: 19657360 DOI: 10.1038/leu.2009.160] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cancer-causing mutations disrupt coordinated, precise programs of gene expression that govern cell growth and differentiation. Microarray-based gene-expression profiling (GEP) is a powerful tool to globally analyze these changes to study cancer biology and clinical behavior. Despite overwhelming genomic chaos in multiple myeloma (MM), expression patterns within tumor samples are remarkably stable and reproducible. Unique expression patterns associated with recurrent chromosomal translocations and ploidy changes defined molecular classes with differing clinical features and outcomes. Combined molecular techniques also dissected two distinct, reproducible forms of hyperdiploid disease and have molecularly defined MM with high risk for poor clinical outcome. GEP is now used to risk-stratify patients with newly diagnosed MM. Groups with high-risk features are evident in all GEP-defined MM classes, and GEP studies of serial samples showed that risk increases over time, with relapsed disease showing dramatic GEP shifts toward a signature of poor outcomes. This suggests a common mechanism of disease evolution and potentially reflects preferential expansion of therapy-resistant cells. Correlating GEP-defined disease class and risk with outcomes of therapeutic regimens reveals class-specific benefits for individual agents, as well as mechanistic insights into drug sensitivity and resistance. Here, we review modern genomics contributions to understanding MM pathogenesis, prognosis, and therapy.
Collapse
Affiliation(s)
- Y Zhou
- Donna D and Donald M Lambert Laboratory for Myeloma Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
21
|
Silvestris F, Cafforio P, Calvani N, De Matteo M, Lombardi L, Dammacco F. In-vitro functional phenotypes of plasma cell lines from patients with multiple myeloma. Leuk Lymphoma 2009; 47:1921-31. [PMID: 17065007 DOI: 10.1080/10428190600649521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Seven plasma cell lines from patients with smoldering (group A) and overt myeloma (group B) were investigated for both phenotypic markers and in-vitro properties, including sensitivity to apoptosis, cytotoxicity, cell adhesion, chemotaxis and bone interaction. Cell lines from group A underwent apoptosis whereas those from group B were apparently resistant, promoted cytotoxicity in target cells and enhanced both adhesion and migratory functions upon appropriate activators. In addition, MCC-2, a group B cell line from a patient with severe osteolytic disease of the skeleton produced erosive lacunae on bone substrates, whereas this effect was almost absent with cell lines from group A. Concurrent deregulation of relative markers, in combination with peculiar properties including resistance to apoptosis and high cytotoxic potential, as well as adhesion, chemotaxis and bone pathophysiology interactions, may thus identify myeloma cells with aggressive phenotype driving these biological activities in vitro and perhaps in vivo.
Collapse
Affiliation(s)
- Franco Silvestris
- Department of Internal Medicine and Oncology (DIMO), University of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Enzastaurin is a novel antineoplastic and antiangiogenic agent that acts through inhibition of protein kinase C (PKC). OBJECTIVE This review summarizes the scientific rationale and current clinical evidence for the use of enzastaurin in oncology. METHODS We performed a systematic review of the literature using the keywords protein kinase C-beta and enzastaurin in order to characterize the therapeutic target PKC-beta. We then reviewed the in-vitro, Phase I, and Phase II data for enzastaurin with a focus on hematologic malignancies. RESULTS/CONCLUSIONS After preliminary Phase I trials established a favorable toxicity profile, enzastaurin has been studied in completed and ongoing Phase II and III studies in solid and hematologic malignancies, including B-cell lymphomas where the rationale for its use is most promising.
Collapse
Affiliation(s)
- Yi-Bin Chen
- Dana Farber Cancer Institute, Massachusetts General Hospital, GRB 740, 44 Binney Street, Boston, MA 02115, USA
| | | |
Collapse
|
23
|
Abstract
D-cyclins are regulators of cell division that act in a complex with cyclin-dependent kinases to commit cells to a program of DNA replication. D-cyclins are overexpressed in many tumors, including multiple myeloma and leukemia, and contribute to disease progression and chemoresistance. To better understand the role and impact of D-cyclins in hematologic malignancies, we conducted a high throughput screen for inhibitors of the cyclin D2 promoter and identified the drug cyproheptadine. In myeloma and leukemia cells, cyproheptadine decreased expression of cyclins D1, D2, and D3 and arrested these cells in the G(0)/G(1) phase. After D-cyclin suppression, cyproheptadine induced apoptosis in myeloma and leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. In mouse models of myeloma and leukemia, cyproheptadine inhibited tumor growth without significant toxicity. Cyproheptadine-induced apoptosis was preceded by activation of the mitochondrial pathway of caspase activation and was independent of the drug's known activity as an H1 histamine and serotonin receptor antagonist. Thus, cyproheptadine represents a lead for a novel therapeutic agent for the treatment of malignancy. Because the drug is well tolerated and already approved in multiple countries for clinical use as an antihistamine and appetite stimulant, it could be moved directly into clinical trials for cancer.
Collapse
|
24
|
The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 2007; 111:3145-54. [PMID: 18156491 DOI: 10.1182/blood-2007-06-092122] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MMSET, identified by its fusion to the IgH locus in t(4;14)-associated multiple myeloma, possesses domains found within chromatin regulators, including the SET domain. MMSET protein is overexpressed and highly associated with chromatin in myeloma cell lines carrying t(4;14). MMSET possesses methyltransferase activity for core histone H3 lysine 4 and histone 4 lysine 20, whereas MMSET made in cells only modified H4. Segments of MMSET fused to the Gal4 DNA binding domain repressed transcription of a chromatin-embedded Gal4 reporter gene. MMSET-mediated repression was associated with increased H4K20 methylation gene and loss of histone acetylation. Consistent with this repressive activity, MMSET could form a complex with HDAC1 and HDAC2, mSin3a, and the histone demethylase LSD1, suggesting that it is a component of corepressor complexes. Furthermore, MMSET coexpression enhances HDAC1- and HDAC2-mediated repression in transcriptional reporter assays. Finally, shRNA-mediated knockdown of MMSET compromised viability of a myeloma cell line, suggesting a biologic role for the protein in malignant cell growth. Collectively, these data suggest that, by acting directly as a modifier of chromatin as well as through binding of other chromatin-modifying enzymes, MMSET influences gene expression and potentially acts as a pathogenic agent in multiple myeloma.
Collapse
|
25
|
Abstract
Many oncogenes, growth factor, cytokine and cell-cycle genes are regulated post-transcriptionally. The major mechanism is by controlling the rate of mRNA turnover for transcripts bearing destabilizing cis-elements. To date, only a handful of regulatory factors have been identified that appear to control a large pool of target mRNAs, suggesting that a slight perturbation in the control mechanism may generate wide-ranging effects that could contribute to the development of a complex disorder such as cancer. In support of this view, mRNA turnover responds to signalling pathways that are often overactive in cancer, suggesting a post-transcriptional component in addition to the well-recognised transcriptional aspect of oncogenesis. Here the authors review examples of deregulated post-transcriptional control in oncogenesis, discuss post-transcriptionally regulated transcripts of oncologic significance, and consider the key role of signalling pathways in linking both processes and as an enticing therapeutic prospect.
Collapse
Affiliation(s)
- Don Benjamin
- Institute for Medical Microbiology, Petersplatz 10, 4001 Basel, Switzerland.
| | | |
Collapse
|
26
|
The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 2007; 111:856-64. [PMID: 17942756 DOI: 10.1182/blood-2007-05-088674] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by recurrent chromosomal translocations. Patients with t(4;14)(p16;q32) are the worst prognostic subgroup in MM, although the basis for this poor prognosis is unknown. The t(4;14) is unusual in that it involves 2 potential target genes: fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET). MMSET is universally overexpressed in t(4;14) MM, whereas FGFR3 expression is lost in one-third of cases. Nonetheless, the role of MMSET in t(4;14) MM has remained unclear. Here we demonstrate a role for MMSET in t(4;14) MM cells. Down-regulation of MMSET expression in MM cell lines by RNA interference and by selective disruption of the translocated MMSET allele using gene targeting dramatically reduced colony formation in methylcellulose but had only modest effects in liquid culture. In addition, MMSET knockdown led to cell-cycle arrest of adherent MM cells and reduced the ability of MM cells to adhere to extracellular matrix. Finally, MMSET knockdown and knockout reduced tumor formation by MM xenografts. These results provide the first direct evidence that MMSET plays a significant role in t(4;14) MM and suggest that therapies targeting this gene could impact this particular subset of poor-prognosis patients.
Collapse
|
27
|
Podar K, Raab MS, Chauhan D, Anderson KC. The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opin Investig Drugs 2007; 16:1693-707. [PMID: 17922632 DOI: 10.1517/13543784.16.10.1693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The protein kinase C (PKC) family, the most prominent target of tumor-promoting phorbol esters, is functionally linked to cell differentiation, growth, survival, migration and tumorigenesis and so mediates tumor cell proliferation, survival, multidrug resistance, invasion, metastasis and tumor angiogenesis. Therefore, targeting PKC isozymes may represent an attractive target for novel anticancer therapies. Recent preclinical and clinical studies using the macrocyclic bisindolylmaleimide enzastaurin or the N-benzylstaurosporine midostaurin demonstrate promising activity of PKC inhibitors in a variety of tumors, including diffuse large B-cell lymphoma, multiple myeloma and Waldenstroem's macroglobulinemia. However, our knowledge of PKCs in tumorigenesis is still only partial and each PKC isoform may contribute to tumorigenesis in a distinct way. Specifically, PKC isoforms have vastly different roles, which vary depending on expression levels of organ and tissue distribution, cell type, intracellular localization, protein-protein and lipid-protein interactions and the biologic environment. Although PKC activation generally positively affects tumor cell growth, motility, invasion and metastasis, recent reports show that many PKCs can also have negative effects. Therefore, it is necessary to further dissect the relative contribution of PKC isozymes in the development and progression of specific tumors in order to identify therapeutic opportunities, using either PKC inhibitors or PKC activators.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
Multiple myeloma (MM) remains incurable, but recent advances in genomics and proteomics have allowed for advances in our understanding of disease pathogenesis, identified novel therapeutic targets, allowed for molecular classification, and provided the scientific rationale for combining targeted therapies to increase tumor cell cytotoxicity and abrogate drug resistance. Besides these advances, recognition of the role of the bone marrow (BM) milieu in conferring growth, survival, and drug resistance in MM cells, both in laboratory and animal models, has allowed for the establishment of a new treatment paradigm targeting the tumor cell and its microenvironment to overcome drug resistance and improve patient outcomes in MM. In particular, thalidomide, bortezomib, and lenalidamide all overcome conventional drug resistance, not only by directly inducing tumor cell cytotoxicity, but by inhibiting adhesion of MM cells to BM. This abrogates constitutive and MM-binding-induced transcription and secretion of cytokines, inhibits angiogenesis, and augments host anti-MM immunity. These three drugs have rapidly translated from bench to bedside and in treatment protocols of MM, first in patients with relapsed refractory disease, and then alone and in combination in newly diagnosed patients. Promising novel targeted agents include the novel proteasome inhibitor NPI-0052 and the heat shock protein inhibitor KOS-953. Importantly, gene-array, proteomic, and cell-signaling studies have not only helped to identify in vivo mechanisms of action and drug resistance to novel agents, but also aided in the design of promising combination-therapy protocols.
Collapse
Affiliation(s)
- Kenneth C Anderson
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Lombardi L, Poretti G, Mattioli M, Fabris S, Agnelli L, Bicciato S, Kwee I, Rinaldi A, Ronchetti D, Verdelli D, Lambertenghi-Deliliers G, Bertoni F, Neri A. Molecular characterization of human multiple myeloma cell lines by integrative genomics: Insights into the biology of the disease. Genes Chromosomes Cancer 2007; 46:226-38. [PMID: 17171682 DOI: 10.1002/gcc.20404] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
To investigate the patterns of genetic lesions in a panel of 23 human multiple myeloma cell lines (HMCLs), we made a genomic integrative analysis involving FISH, and both gene expression and genome-wide profiling approaches. The expression profiles of the genes targeted by the main IGH translocations showed that the WHSC1/MMSET gene involved in t(4;14)(p16;q32) was expressed at different levels in all of the HMCLs, and that the expression of the MAF gene was not restricted to the HMCLs carrying t(14;16)(q32;q23). Supervised analyses identified a limited number of genes specifically associated with t(4;14) and involved in different biological processes. The signature related to MAF/MAFB expression included the known MAF target genes CCND2 and ITGB7, as well as genes controlling cell shape and cell adhesion. Genome-wide DNA profiling allowed the identification of a gain on chromosome arm 1q in 88% of the analyzed cell lines, together with recurrent gains on 8q, 18q, 7q, and 20q; the most frequent deletions affected 1p, 13q, 17p, and 14q; and almost all of the cell lines presented LOH on chromosome 13. Two hundred and twenty-two genes were found to be simultaneously overexpressed and amplified in our panel, including the BCL2 locus at 18q21.33. Our data further support the evidence of the genomic complexity of multiple myeloma and reinforce the role of an integrated genomic approach in improving our understanding of the molecular pathogenesis of the disease. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.
Collapse
Affiliation(s)
- Luigia Lombardi
- Centro di Genetica Molecolare ed Espressione Genica, Fondazione IRCCS Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Keats JJ, Reiman T, Belch AR, Pilarski LM. Ten years and counting: so what do we know about t(4;14)(p16;q32) multiple myeloma. Leuk Lymphoma 2007; 47:2289-300. [PMID: 17107900 DOI: 10.1080/10428190600822128] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Multiple myeloma is a genetically heterogenous disease with a wide variety of characterized genetic aberrations. Until recently, the impact of these aberrations on patient outcome was not known. However, in the last 5-10 years, several genetic markers have been linked to patient outcome. One of the strongest predictors of outcome identified to date is t(4;14)(p16;q32). Although this translocation is tightly linked to chromosome 13 deletions, another poor prognosis marker, it is becoming apparent that the translocation and not the deletion of 13 is the important factor. Unfortunately, despite the known association with outcome, an understanding of the mechanism(s) whereby the translocation contributes to developing and maintaining this aggressive form of myeloma remains elusive.
Collapse
Affiliation(s)
- Jonathan J Keats
- Department of Oncology, University of Alberta & Cross Cancer Institute, Edmonton, Canada.
| | | | | | | |
Collapse
|
31
|
Podar K, Raab MS, Zhang J, McMillin D, Breitkreutz I, Tai YT, Lin BK, Munshi N, Hideshima T, Chauhan D, Anderson KC. Targeting PKC in multiple myeloma: in vitro and in vivo effects of the novel, orally available small-molecule inhibitor enzastaurin (LY317615.HCl). Blood 2006; 109:1669-77. [PMID: 17023575 PMCID: PMC1794057 DOI: 10.1182/blood-2006-08-042747] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In multiple myeloma (MM) protein kinase C (PKC) signaling pathways have been implicated in cell proliferation, survival, and migration. Here we investigated the novel, orally available PKC-inhibitor enzastaurin for its anti-MM activity. Enzastaurin specifically inhibits phorbol ester-induced activation of PKC isoforms, as well as phosphorylation of downstream signaling molecules MARCKS and PKCmu. Importantly, it also inhibits PKC activation triggered by growth factors and cytokines secreted by bone marrow stromal cells (BMSCs), costimulation with fibronectin, vascular endothelial growth factor (VEGF), or interleukin-6 (IL-6), as well as MM patient serum. Consequently, enzastaurin inhibits proliferation, survival, and migration of MM cell lines and MM cells isolated from multidrug-resistant patients and overcomes MM-cell growth triggered by binding to BMSCs and endothelial cells. Importantly, strong synergistic cytotoxicity is observed when enzastaurin is combined with bortezomib and moderate synergistic or additive effects when combined with melphalan or lenalidomide. Finally, tumor growth, survival, and angiogenesis are abrogated by enzastaurin in an in vivo xenograft model of human MM. Our results therefore demonstrate in vitro and in vivo efficacy of the orally available PKC inhibitor enzastaurin in MM and strongly support its clinical evaluation, alone or in combination therapies, to improve outcome in patients with MM.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Terpos E, Eleutherakis-Papaiakovou V, Dimopoulos MA. Clinical implications of chromosomal abnormalities in multiple myeloma. Leuk Lymphoma 2006; 47:803-14. [PMID: 16753864 DOI: 10.1080/10428190500464104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The adverse prognostic role of cytogenetic abnormalities has recently been established in plasma cell dyscrasias. Modern techniques such as fluorescence in situ hybridization and comparative genomic hybridization have revealed a higher incidence of cytogenetic abnormalities in patients with multiple myeloma (MM) compared to conventional cytogenetics. Hypodiploidy and chromosome 13 abnormalities are found in more than 50% of myeloma patients, representing well known factors with adverse prognosis. Rearrangements involving the switch regions of immunoglobulin heavy chain (IgH) gene at 14q32 with various partner genes represent the most common structural abnormalities, having an incidence of 70% in MM. Structural abnormalities of chromosomes 17 and 8 involving the p53 and c-myc genes are considered to be less frequent events, but carry a poor prognosis. New therapeutic approaches such as non-myeloablative allotransplantation and modern therapeutic agents (thalidomide, lenalidomide, and bortezomib) and their combinations give promise for an improved therapeutic management of patients with MM. The detection of t(4;14), t(14;16), deletion of chromosome 13 on metaphase analysis, or deletion of p53 by FISH will define high-risk prognostic groups that are not generally controlled with high-dose melphalan and autologous stem cell transplantation (ASCT), and should therefore be treated with more investigational therapies. Alternatively, eligible patients who do not have these poor risk factors are more likely to benefit from a high-dose, melphalan-based, regimen followed by ASCT.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Hematology, 251 General Airforce Hospital, Athens, Greece.
| | | | | |
Collapse
|
33
|
Masih-Khan E, Trudel S, Heise C, Li Z, Paterson J, Nadeem V, Wei E, Roodman D, Claudio JO, Bergsagel PL, Stewart AK. MIP-1alpha (CCL3) is a downstream target of FGFR3 and RAS-MAPK signaling in multiple myeloma. Blood 2006; 108:3465-71. [PMID: 16849642 DOI: 10.1182/blood-2006-04-017087] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Overexpression of fibroblast growth factor receptor 3 (FGFR3) is a hallmark of t(4;14) multiple myeloma (MM). To dissect the mechanism of FGFR3 oncogenesis in MM, we used 3 FGFR selective kinase inhibitors-CHIR258, PD173074, and SU5402-and FGFR3-specific siRNA to modulate FGFR3 activity. Conversely, the ligand FGF was used to stimulate FGFR3 function in human MM cells. The transcriptional response to FGFR3 modification was recorded, and gene expression changes common to all 5 modifiers were documented. Ten genes were commonly regulated. Macrophage inflammatory protein-1 alpha (MIP-1alpha) was the single most differentially altered gene. MIP-1 alpha promoter function, gene expression, and protein secretion were each down-regulated following inhibition of FGFR3 signaling. Down-regulation of MIP-1 alpha was not, however, observed following FGFR3 inhibition in MM cells with RAS mutations implicating RAS-MAPK in MIP-1 alpha regulation. As confirmation, inhibition of ERK1 also down-regulated MIP-1 alpha in FGFR3 inhibitor-resistant cells harboring RAS mutations. MIP-1 alpha is implicated in the survival and proliferation of MM cells and the pathogenesis of MM bone disease. Our observation is the first to directly link an initiating IgH translocation not only to MM-cell growth and survival but also to the disease-associated bone disease.
Collapse
Affiliation(s)
- Esther Masih-Khan
- Department of Medical Oncology, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hudlebusch HR, Theilgaard-Mönch K, Lodahl M, Johnsen HE, Rasmussen T. Identification of ID-1 as a potential target gene of MMSET in multiple myeloma. Br J Haematol 2005; 130:700-8. [PMID: 16115125 DOI: 10.1111/j.1365-2141.2005.05664.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The frequently detected t(4;14)(p16.3;q32) translocation in multiple myeloma (MM) results in a dysregulation of two potential oncogenes: multiple myeloma SET domain (MMSET) and fibroblast growth factor receptor 3 (FGFR3). As the expression of FGFR3 is undetectable in 30% of the t(4;14)+ MM patients, MMSET has been suggested to play an important role in the malignant transformation associated with the t(4;14) translocation. Screening with a real-time polymerase chain reaction (PCR) found complex expression patterns of the MMSET transcripts in fluorescence-activated cell sorted (FACS)-purified plasma cells (PCs) from 15 t(4;14)+ MM patients. In addition, potential target genes of MMSET type I and II were identified, using microarray analyses of MMSET transfected cell lines. Subsequently, the expression of potential target genes was verified by real-time PCR in FACS-purified PCs from 15 t(4;14)+ and 22 t(4;14)- MM patients. We suggest that the inhibitor of differentiation 1 (ID-1) is a target gene of MMSET, based on its upregulation in MMSET transfected cell lines and a significant association between the t(4;14) translocation and ID-1 expression in MM patients (P = 0.002). As high levels of ID-1 are associated with cancer, our findings indicate that MMSET promotes oncogenic transformation in t(4;14)+ MM patients by transcriptional activation of ID-1 expression.
Collapse
Affiliation(s)
- Heidi Rye Hudlebusch
- The Department of Haematology L, Herlev University Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | |
Collapse
|
35
|
Hideshima T, Chauhan D, Richardson P, Anderson KC. Identification and Validation of Novel Therapeutic Targets for Multiple Myeloma. J Clin Oncol 2005; 23:6345-50. [PMID: 16155018 DOI: 10.1200/jco.2005.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In vitro and in vivo models have been developed that have allowed for delineation of mechanisms of multiple myeloma (MM) cell homing to bone marrow (BM); tumor cell adhesion to extracellular matrix proteins and BM stromal cells; and cytokine-mediated growth, survival, drug resistance, and migration within the BM milieu. Delineation of the signaling cascades mediating these sequelae has identified multiple novel therapeutic targets in the tumor cell and its BM microenvironment. Importantly, novel therapies targeting the tumor cell and the BM, as well as those targeting the tumor cell or BM alone, can overcome the growth, survival, conventional drug resistance, and migration of MM cells bound to BM using both in vitro and in vivo severe combined immunodeficiency mouse models of human MM. These studies have translated rapidly from the bench to the bedside in derived clinical trials, and have already led to the United States Food and Drug Administration approval of the novel proteasome inhibitor bortezomib for treatment of relapsed/refractory MM. Novel agents will need to be combined to enhance cytotoxicity, avoid development of drug resistance, and allow for use of lower doses in combination therapies. Genomics, proteomics, and cell signaling studies have helped to identify in vivo mechanisms of sensitivity versus resistance to novel therapies, as well as aiding in the rational application of combination therapies. These studies have therefore provided the framework for a new treatment paradigm targeting the MM cell in its BM milieu to overcome drug resistance and improve patient outcome in MM.
Collapse
Affiliation(s)
- Teru Hideshima
- Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
36
|
Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, Verdelli D, Intini D, Nobili L, Cro L, Pruneri G, Callea V, Stelitano C, Maiolo AT, Lombardi L, Neri A. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24:2461-73. [PMID: 15735737 DOI: 10.1038/sj.onc.1208447] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.
Collapse
Affiliation(s)
- Michela Mattioli
- Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Slovak ML, Bedell V, Pagel K, Chang KL, Smith D, Somlo G. Targeting plasma cells improves detection of cytogenetic aberrations in multiple myeloma: phenotype/genotype fluorescence in situ hybridization. ACTA ACUST UNITED AC 2005; 158:99-109. [PMID: 15796956 DOI: 10.1016/j.cancergencyto.2005.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 11/21/2022]
Abstract
Standard fluorescence in situ hybridization (FISH) easily detects nonrandom karyotypic abnormalities in multiple myeloma (MM) at disease presentation, when tumor burden is high. In contrast, the detection of residual MM using the standard 200 unselected nonmitotic nuclei FISH approach correlates poorly with residual disease detected by morphology, flow cytometry, immunohistochemistry, or reverse-transcription polymerase chain reaction (RT-PCR). We have used sequential May-Grunwald Giemsa stain to identify plasma cell populations, followed by FISH analyses (target FISH or T-FISH) to detect immunoglobulin heavy-chain gene (IGH) rearrangements, 13q or 17p deletions, or hyperdiploidy. In this study, 115 samples were collected from 100 patients with MM regardless of treatment status. In this proof-of-principle prospective study, T-FISH detected MM in 52 samples (45%), a percentage similar to that obtained by pathology. Disease detection increased from 5.6% with standard FISH to 48% with T-FISH, and cell culture experiments showed that T-FISH consistently detected a clonal abnormality at dilutions of 10(-3). In five patients, T-FISH further identified myelodysplastic-associated karyotypic changes restricted to myeloid cells. Our observations suggest that T-FISH identifies cell lineage involvement of cytogenetic abnormalities, improves detection of low-level or residual MM, and may define the coexistence of hematologic karyotypic changes in individual patients.
Collapse
Affiliation(s)
- Marilyn L Slovak
- Division of Pathology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Chang H, Stewart AK, Qi XY, Li ZH, Yi QL, Trudel S. Immunohistochemistry accurately predicts FGFR3 aberrant expression and t(4;14) in multiple myeloma. Blood 2005; 106:353-5. [PMID: 15761022 DOI: 10.1182/blood-2005-01-0033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The t(4;14) translocation detected by fluorescence in situ hybridization (FISH) is an independent prognostic factor for an adverse outcome of multiple myeloma (MM). Because t(4;14) uniquely results in fibroblast growth factor receptor 3 (FGFR3) expression, decalcified, paraffin-embedded bone marrow biopsies were immunostained for FGFR3, and its expression was correlated with the t(4;14) status. FISH detected t(4;14) in 16 (19%) of 85 MM patient specimens, and immunocytochemistry detected aberrant FGFR3 expression in 13 (15%). Twelve (75%) t(4;14)-positive cases expressed FGFR3, and 12 (92%) FGFR3-positive cases harbored a t(4;14). FGFR3 expression and t(4;14) were strongly correlated (P < .001). FGFR3 expression by immunohistochemistry was associated with the immunoglobulin A (IgA) isotype (P < .001), a shorter progression-free survival (median, 11.5 versus 25.8 months; P < .001), and a shorter overall survival (median, 19.2 versus 46.3 months; P < .001).
Collapse
MESH Headings
- Adult
- Aged
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 4
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Testing
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Male
- Middle Aged
- Multiple Myeloma/diagnosis
- Multiple Myeloma/genetics
- Predictive Value of Tests
- Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Hong Chang
- Department of Laboratory Hematology, Princess Margaret Hospital/University Health Network, McLaughlin Center for Molecular Medicine, University of Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Keats JJ, Maxwell CA, Taylor BJ, Hendzel MJ, Chesi M, Bergsagel PL, Larratt LM, Mant MJ, Reiman T, Belch AR, Pilarski LM. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood 2005; 105:4060-9. [PMID: 15677557 PMCID: PMC1895072 DOI: 10.1182/blood-2004-09-3704] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a B-lineage malignancy characterized by diverse genetic subtypes and clinical outcomes. The recurrent immunoglobulin heavy chain (IgH) switch translocation, t(4;14)(p16;q32), is associated with poor outcome, though the mechanism is unclear. Quantitative reverse-transcription-polymerase chain reaction (RT-PCR) for proposed target genes on a panel of myeloma cell lines and purified plasma cells showed that only transcripts originating from the WHSC1/MMSET/NSD2 gene are uniformly dysregulated in all t(4;14)POS patients. The different transcripts detected, multiple myeloma SET domain containing protein (MMSET I), MMSET II, Exon 4a/MMSET III, and response element II binding protein (RE-IIBP), are produced by alternative splicing and alternative transcription initiation events. Translation of the various transcripts, including those from major breakpoint region 4-2 (MB4-2) and MB4-3 breakpoint variants, was confirmed by transient transfection and immunoblotting. Green fluorescent protein (GFP)-tagged MMSET I and II, corresponding to proteins expressed in MB4-1 patients, localized to the nucleus but not nucleoli, whereas the MB4-2 and MB4-3 proteins concentrate in nucleoli. Cloning and localization of the Exon 4a/MMSET III splice variant, which contains the protein segment lost in the MB4-2 variant, identified a novel protein domain that prevents nucleolar localization. Kinetic studies using photobleaching suggest that the breakpoint variants are functionally distinct from wild-type proteins. In contrast, RE-IIBP is universally dysregulated and also potentially functional in all t(4;14)POS patients irrespective of fibroblast growth factor receptor 3 (FGFR3) expression or breakpoint type.
Collapse
Affiliation(s)
- Jonathan J Keats
- Department of Oncology, University of Alberta & Cross Cancer Institute, 11560 University Ave, Edmonton, AB, T6G 1Z2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|