1
|
Yue Z, He S, Wang J, Jiang Q, Wang H, Wu J, Li C, Wang Z, He X, Jia N. Glyceollins from soybean: Their pharmacological effects and biosynthetic pathways. Heliyon 2023; 9:e21874. [PMID: 38034638 PMCID: PMC10682181 DOI: 10.1016/j.heliyon.2023.e21874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Flavonoids are a highly abundant class of secondary metabolites present in plants. Isoflavonoids, in particular, are primarily synthesized in leguminous plants within the subfamily Papilionoideae. Numerous reports have established the favorable role of isoflavonoids in preventing a range of human diseases. Among the isoflavonoid components, glyceollins are synthesized specifically in soybean plants and have displayed promising effects in mitigating the occurrence and progression of breast and ovarian cancers as well as other diseases. Consequently, glyceollins have become a sought-after natural component for promoting women's health. In recent years, extensive research has focused on investigating the molecular mechanism underlying the preventative properties of glyceollins against various diseases. Substantial progress has also been made toward elucidating the biosynthetic pathway of glyceollins and exploring potential regulatory factors. Herein, we provide a review of the research conducted on glyceollins since their discovery five decades ago (1972-2023). We summarize their pharmacological effects, biosynthetic pathways, and advancements in chemical synthesis to enhance our understanding of the molecular mechanisms of their function and the genes involved in their biosynthetic pathway. Such knowledge may facilitate improved glyceollin synthesis and the creation of health products based on glyceollins.
Collapse
Affiliation(s)
- Zhiyong Yue
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Shanhong He
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jinpei Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Qi Jiang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Hanping Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Jia Wu
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
- Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Chenxi Li
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Zixian Wang
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Xuan He
- School of Engineering, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| | - Nannan Jia
- School of Medicine, Xi'an International University, 18 Yudou Road, Yanta District, Xi'an Shaanxi, 710077, China
| |
Collapse
|
2
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
3
|
Patel JR, Banjara B, Ohemeng A, Davidson AM, Boué SM, Burow ME, Tilghman SL. Novel Therapeutic Combination Targets the Growth of Letrozole-Resistant Breast Cancer through Decreased Cyclin B1. Nutrients 2023; 15:1632. [PMID: 37049472 PMCID: PMC10097176 DOI: 10.3390/nu15071632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
As breast cancer cells transition from letrozole-sensitive to letrozole-resistant, they over-express epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), and human epidermal growth factor receptor 2 (HER2) while acquiring enhanced motility and epithelial-to-mesenchymal transition (EMT)-like characteristics that are attenuated and reversed by glyceollin treatment, respectively. Interestingly, glyceollin inhibits the proliferation and tumor progression of triple-negative breast cancer (TNBC) and estrogen-independent breast cancer cells; however, it is unlikely that a single phytochemical would effectively target aromatase-inhibitor (AI)-resistant metastatic breast cancer in the clinical setting. Since our previous report indicated that the combination of lapatinib and glyceollin induced apoptosis in hormone-dependent AI-resistant breast cancer cells, we hypothesized that combination therapy would also be beneficial for hormone independent letrozole-resistant breast cancer cells (LTLT-Ca) compared to AI-sensitive breast cancer cells (AC-1) by decreasing the expression of proteins associated with proliferation and cell cycle progression. While glyceollin + lapatinib treatment caused comparable inhibitory effects on the proliferation and migration in both cell lines, combination treatment selectively induced S and G2/M phase cell cycle arrest of the LTLT-Ca cells, which was mediated by decreased cyclin B1. This phenomenon may represent a unique opportunity to design novel combinatorial therapeutic approaches to target hormone-refractory breast tumors.
Collapse
Affiliation(s)
- Jankiben R. Patel
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Bipika Banjara
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Afia Ohemeng
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - A. Michael Davidson
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Stephen M. Boué
- Southern Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - Matthew E. Burow
- Section of Hematology and Medical Oncology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Syreeta L. Tilghman
- Division of Basic Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
4
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
5
|
Pham TH, Lecomte S, Le Guevel R, Lardenois A, Evrard B, Chalmel F, Ferriere F, Balaguer P, Efstathiou T, Pakdel F. Characterization of Glyceollins as Novel Aryl Hydrocarbon Receptor Ligands and Their Role in Cell Migration. Int J Mol Sci 2020; 21:ijms21041368. [PMID: 32085612 PMCID: PMC7072876 DOI: 10.3390/ijms21041368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Recent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines. The docking experiments predicted that GI and GII can enter into the AhR binding pocket, but their interactions with the amino acids of the binding site differ, in part, from those interacting with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Both GI and GII were able to weakly and partially activate AhR, with GII being more potent. The results from the transcriptome assays showed that approximately 10% of the genes regulated by TCDD were also modified by both GI and GII, which could have either antagonistic or synergistic effects upon TCDD activation. In addition, we report here, on the basis of phenotype, that GI and GII inhibit the migration of triple-negative (ER-, PgR-, HER2NEU-) MDA-MB-231 breast cancer cells, and that they inhibit the expression of genes which code for important regulators of cell migration and invasion in cancer tissues. In conclusion, GI and GII are AhR ligands that should be further investigated to determine their usefulness in cancer treatments.
Collapse
Affiliation(s)
- Thu Ha Pham
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - Sylvain Lecomte
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - Remy Le Guevel
- ImPACcell platform (SFR Biosit), Univ Rennes, 35000 Rennes, France;
| | - Aurélie Lardenois
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - François Ferriere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090 Montpellier, France;
| | - Theo Efstathiou
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 Rue Jules Maillard de la Gournerie, 35012 Rennes CEDEX, France;
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -UMR_S1085, F-35000 Rennes, France; (T.H.P.); (S.L.); (A.L.); (B.E.); (F.C.); (F.F.)
- Correspondence: ; Tel.: +33-(0)22-323-5132
| |
Collapse
|
6
|
Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov 2019; 14:667-682. [PMID: 31070059 DOI: 10.1080/17460441.2019.1613370] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hypoxia is one of the intrinsic features of solid tumors, and it is always associated with aggressive phenotypes, including resistance to radiation and chemotherapy, metastasis, and poor patient prognosis. Hypoxia manifests these unfavorable effects through activation of a family of transcription factors, Hypoxia-inducible factors (HIFs) play a pivotal role in the adaptation of tumor cells to hypoxic and nutrient-deprived conditions by upregulating the transcription of several pro-oncogenic genes. Several advanced human cancers share HIFs activation as a final common pathway. Areas covered: This review highlights the role and regulation of the HIF-1/2 in cancers and alludes on the biological complexity and redundancy of HIF-1/2 regulation. Moreover, this review summarizes recent insights into the therapeutic approaches targeting the HIF-1/2 pathway. Expert opinion: More studies are needed to unravel the extensive complexity of HIFs regulation and to develop more precise anticancer treatments. Inclusion of HIF-1/2 inhibitors to the current chemotherapy regimens has been proven advantageous in numerous reported preclinical studies. The combination therapy ideally should be personalized based on the type of mutations involved in the specific cancers, and it might be better to include two drugs that inhibit HIF-1/2 activity by synergistic molecular mechanisms.
Collapse
Affiliation(s)
- Najah Albadari
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Shanshan Deng
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Wei Li
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
7
|
Jahan MA, Kovinich N. Acidity stress for the systemic elicitation of glyceollin phytoalexins in soybean plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1604018. [PMID: 30985226 PMCID: PMC6619962 DOI: 10.1080/15592324.2019.1604018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 05/04/2023]
Abstract
Glyceollins are the major pathogen- and stress-inducible natural products (phytoalexins) of soybean that possess broad-spectrum anticancer and neuroprotective properties. Yet like other phytoalexins, glyceollins are difficult to obtain because they are typically biosynthesized only transiently and in low amounts in plant tissues. We recently identified acidity stress (pH 3.0 growth medium) as an elicitor that exerted prolonged (week-long) inductive effects on glyceollin biosynthesis and identified the NAC family TF gene GmNAC42-1 that activates glyceollin biosynthesis in response to acidity stress or WGE from the soybean pathogen Phytophthora sojae. GmNAC42-1 was annotated as an SAR gene and SAR genes were statistically overrepresented in the transcriptomic response to acidity stress suggesting that acidity stress triggers the systemic elicitation of glyceollin biosynthesis. Here, we demonstrate that acidity stress acts as a systemic elicitor when provided to soybean roots. Acidity stress preferentially elicited specific glyceollins in different soybean organs with exceptionally high yields of glyceollin I in root tissues.
Collapse
Affiliation(s)
- Md Asraful Jahan
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Nik Kovinich
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
8
|
Oh J, Jang CH, Kim JS. Soy-derived phytoalexins: mechanism of in vivo biological effectiveness in spite of their low bioavailability. Food Sci Biotechnol 2019; 28:1-6. [PMID: 30815288 DOI: 10.1007/s10068-018-0498-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
The well-demonstrated bioefficacy of phytochemicals in spite of their paradoxically low bioavailability has long puzzled scientists. Glyceollins, a family of soy-derived phytoalexins, have been reported to exert a variety of biological effects in vitro and in vivo systems in spite of poor systemic bioavailability after oral administration, suggesting that secondary messengers generated in gastrointestinal tract would transfer signals to target organs and tissues to manifest any effect. This review focuses on the potential mechanisms of how the poorly bioavailable glyceollins could still exert in vivo biological effects.
Collapse
Affiliation(s)
- Jisun Oh
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Chan Ho Jang
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jong-Sang Kim
- 1School of Food Science and Biotechnology (BK21 PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea.,2Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
9
|
Pham TH, Lecomte S, Efstathiou T, Ferriere F, Pakdel F. An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms. Nutrients 2019; 11:E79. [PMID: 30609801 PMCID: PMC6357109 DOI: 10.3390/nu11010079] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biologically active plant-based compounds, commonly referred to as phytochemicals, can influence the expression and function of various receptors and transcription factors or signaling pathways that play vital roles in cellular functions and are then involved in human health and diseases. Thus, phytochemicals may have a great potential to prevent and treat chronic diseases. Glyceollins, a group of phytoalexins that are isolated from soybeans, have attracted attention because they exert numerous effects on human functions and diseases, notably anticancer effects. In this review, we have presented an update on the effects of glyceollins in relation to their potential beneficial roles in human health. Despite a growing number of studies suggesting that this new family of phytochemicals can be involved in critical cellular pathways, such as estrogen receptor, protein kinase, and lipid kinase signaling pathways, future investigations will be needed to better understand their molecular mechanisms and their specific significance in biomedical applications.
Collapse
Affiliation(s)
- Thu Ha Pham
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Sylvain Lecomte
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Theo Efstathiou
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex, France.
| | - Francois Ferriere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
10
|
Yamamoto T, Sakamoto C, Tachiwana H, Kumabe M, Matsui T, Yamashita T, Shinagawa M, Ochiai K, Saitoh N, Nakao M. Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through Eleanor non-coding RNA. Sci Rep 2018; 8:15202. [PMID: 30315184 PMCID: PMC6185934 DOI: 10.1038/s41598-018-33227-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/18/2018] [Indexed: 12/21/2022] Open
Abstract
Long-term estrogen deprivation (LTED) of an estrogen receptor (ER) α-positive breast cancer cell line recapitulates cancer cells that have acquired estrogen-independent cell proliferation and endocrine therapy resistance. Previously, we have shown that a cluster of non-coding RNAs, Eleanors (ESR1 locus enhancing and activating non-coding RNAs) formed RNA cloud and upregulated the ESR1 gene in the nuclei of LTED cells. Eleanors were inhibited by resveratrol through ER. Here we prepared another polyphenol, glyceollin I from stressed soybeans, and identified it as a major inhibitor of the Eleanor RNA cloud and ESR1 mRNA transcription. The inhibition was independent of ER, unlike one by resveratrol. This was consistent with a distinct tertiary structure of glyceollin I for ER binding. Glyceollin I preferentially inhibited the growth of LTED cells and induced apoptosis. Our results suggest that glyceollin I has a novel role in LTED cell inhibition through Eleanors. In other words, LTED cells or endocrine therapy-resistant breast cancer cells may be ready for apoptosis, which can be triggered with polyphenols both in ER-dependent and ER-independent manners.
Collapse
Affiliation(s)
- Tatsuro Yamamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chiyomi Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Hiroaki Tachiwana
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Mitsuru Kumabe
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Toshiro Matsui
- Faculty of Agriculture, Graduate School of Kyushu University, 744 Mototoka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadatoshi Yamashita
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura-shi, Chiba, 285-0801, Japan
| | - Masatoshi Shinagawa
- Kajitsudo Co., Ltd, 1155-5, Tabaru, Mashiki-machi, Kamimashiki-gun, Kumamoto, 861-2202, Japan
| | - Koji Ochiai
- Kajitsudo Co., Ltd, 1155-5, Tabaru, Mashiki-machi, Kamimashiki-gun, Kumamoto, 861-2202, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
11
|
Bamji SF, Rouchka E, Zhang Y, Li X, Kalbfleisch T, Corbitt C. Next generation sequencing analysis of soy glyceollins and 17-β estradiol: Effects on transcript abundance in the female mouse brain. Mol Cell Endocrinol 2018; 471:15-21. [PMID: 28483703 DOI: 10.1016/j.mce.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
Glyceollins (Glys) are produced by soy plants in response to stress and are known for their anti-estrogenic activity both in vivo and in vitro in cancer cell lines as well as peripheral tissues. Glys can also exhibit non-estrogen receptor (ER) mediated effects. The effects of Glys on gene expression in the brain are still unclear. For this study, 17-β estradiol (E2) or placebo slow-release pellets were implanted into ovariectomized CFW mice followed by 11 days of exposure to either Glys or vehicle i.p. injections. We then examined the female mouse brain transcriptome using paired-end RNA sequencing (RNA-Seq) on the Illumina GAIIx platform. The goal of this study was to compare and contrast the results obtained from RNA-Seq with the results from our previous whole brain microarray experiment, which indicated that Glys potentially act through both ER-mediated and non-ER-mediated mechanisms, exhibiting a gene expression profile distinct from E2-treated groups. Our results suggest that the transcripts regulated by both E2 and Glys alone or in combination annotated to similar pathway maps and networks in both microarray and RNA-Seq experiments. Additionally, unlike our microarray data analysis, RNA-Seq enabled the detection of treatment effects on low expression transcripts of interest (e.g., prolactin and growth hormone). Collectively, our results suggest that depending on the gene, Glys can regulate expression independently of E2 action, similarly to E2, or oppose E2's effects in the female mouse brain.
Collapse
Affiliation(s)
- Sanaya F Bamji
- Department of Biology, University of Louisville, United States
| | - Eric Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, United States
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, United States
| | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, United States; Department of Bioinformatics and Biostatistics, University of Louisville, United States
| | - Ted Kalbfleisch
- Department of Biochemistry & Molecular Genetics, University of Louisville, United States
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, United States.
| |
Collapse
|
12
|
Montes-Grajales D, Martínez-Romero E, Olivero-Verbel J. Phytoestrogens and mycoestrogens interacting with breast cancer proteins. Steroids 2018; 134:9-15. [PMID: 29608946 DOI: 10.1016/j.steroids.2018.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
Breast cancer is a highly heterogeneous disease influenced by the hormonal microenvironment and the most common malignancy in women worldwide. Some phytoestrogens and mycoestrogens have been epidemiologically linked as risk factors or protectors, however their mechanisms of action are complex and not fully understood. The aim of this study was to predict the potential of 36 natural xenoestrogens to interact with 189 breast cancer proteins using AutoDock Vina. In order to validate our protocol, an in silico docking pose and binding site determination was compared with the crystallographic structure and the power of prediction to distinguish between ligand and decoys was evaluated through a receiver operating characteristic curve (ROC) of the resultant docking affinities and in vitro data. The best affinity score was obtained for glyceollin III interacting with the sex hormone binding globulin (-11.9 Kcal/mol), a plasma steroid transport protein that regulates sex steroids bioavailability. Other natural xenoestrogens such as beta-carotene, chrysophanol 8-O-beta-d-glucopyranoside and glyceollin I, also presented good affinity for proteins related to this disease and the validation was successful. This study may help to prioritize compounds for toxicity tests or drug development from natural scaffolds, and to elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia; Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México UNAM, Cuernavaca-Morelos 62210, Mexico
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México UNAM, Cuernavaca-Morelos 62210, Mexico
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia.
| |
Collapse
|
13
|
Peng Q, Zhang M, Gao L, Eromosele O, Qiao Y, Shi B. Effects of alginate oligosaccharides with different molecular weights and guluronic to mannuronic acid ratios on glyceollin induction and accumulation in soybeans. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:1850-1858. [PMID: 29666538 PMCID: PMC5897307 DOI: 10.1007/s13197-018-3101-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
Alginate oligosaccharides (AOs) are linear oligosaccharides with alternating sequences of mannuronic acid (M) and guluronic acid (G) residues. AOs can be used as a safe elicitor to induce glyceollins, which have many human health benefits, in soybean seeds. In this research, four AO fractions with different chemical structures and molecular weights were separated, purified, and then characterized by NMR spectroscopy and ESI-MS. With a 4,5-unsaturated hexuronic acid residue (△) at the non-reducing terminus, the structures of these four AO fractions were △G, △MG, △GMG and △MGGG, which exhibited glyceollin-inducing activities of 1.2339, 0.3472, 0.6494 and 1.0611 (mg/g dry weight) in soybean seeds, respectively. The results demonstrated that a larger molecular weight or a higher G/M ratio might correlate with a higher glyceollin-inducing activity. Moreover, the alginate disaccharide △G could be introduced as relatively safe and efficient elicitor of high glyceollin content in soybeans.
Collapse
Affiliation(s)
- Qing Peng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Mimin Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Long Gao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Ojokoh Eromosele
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yu Qiao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bo Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
14
|
Paterni I, Granchi C, Minutolo F. Risks and benefits related to alimentary exposure to xenoestrogens. Crit Rev Food Sci Nutr 2018; 57:3384-3404. [PMID: 26744831 DOI: 10.1080/10408398.2015.1126547] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Xenoestrogens are widely diffused in the environment and in food, thus a large portion of human population worldwide is exposed to them. Among alimentary xenoestrogens, phytoestrogens (PhyEs) are increasingly being consumed because of their potential health benefits, although there are also important risks associated to their ingestion. Furthermore, other xenoestrogens that may be present in food are represented by other chemicals possessing estrogenic activities, that are commonly defined as endocrine disrupting chemicals (EDCs). EDCs pose a serious health concern since they may cause a wide range of health problems, starting from pre-birth till adult lifelong exposure. We herein provide an overview of the main classes of xenoestrogens, which are classified on the basis of their origin, their structures and their occurrence in the food chain. Furthermore, their either beneficial or toxic effects on human health are discussed in this review.
Collapse
Affiliation(s)
- Ilaria Paterni
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy
| | | | - Filippo Minutolo
- a Dipartimento di Farmacia , Università di Pisa , Pisa , Italy.,b Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute," Università di Pisa , Pisa , Italy
| |
Collapse
|
15
|
Bamji SF, Corbitt C. Glyceollins: Soybean phytoalexins that exhibit a wide range of health-promoting effects. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
16
|
Lecomte S, Chalmel F, Ferriere F, Percevault F, Plu N, Saligaut C, Surel C, Lelong M, Efstathiou T, Pakdel F. Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells. Cell Commun Signal 2017; 15:26. [PMID: 28666461 PMCID: PMC5493871 DOI: 10.1186/s12964-017-0182-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/20/2017] [Indexed: 12/28/2022] Open
Abstract
Background Estrogen receptors (ER) α and β are found in both women and men in many tissues, where they have different functions, including having roles in cell proliferation and differentiation of the reproductive tract. In addition to estradiol (E2), a natural hormone, numerous compounds are able to bind ERs and modulate their activities. Among these compounds, phytoestrogens such as isoflavones, which are found in plants, are promising therapeutics for several pathologies. Glyceollins are second metabolites of isoflavones that are mainly produced in soybean in response to an elicitor. They have potentially therapeutic actions in breast cancer by reducing the proliferation of cancer cells. However, the molecular mechanisms driving these effects remain elusive. Methods First, to determine the proliferative or anti-proliferative effects of glyceollins, in vivo and in vitro approaches were used. The length of epithelial duct in mammary gland as well as uterotrophy after treatment by E2 and glyceollins and their effect on proliferation of different breast cell line were assessed. Secondly, the ability of glyceollin to activate ER was assessed by luciferase assay. Finally, to unravel molecular mechanisms involved by glyceollins, transcriptomic analysis was performed on MCF-7 breast cancer cells. Results In this study, we show that synthetic versions of glyceollin I and II exert anti-proliferative effects in vivo in mouse mammary glands and in vitro in different ER-positive and ER-negative breast cell lines. Using transcriptomic analysis, we produce for the first time an integrated view of gene regulation in response to glyceollins and reveal that these phytochemicals act through at least two major pathways. One pathway involving FOXM1 and ERα is directly linked to proliferation. The other involves the HIF family and reveals that stress is a potential factor in the anti-proliferative effects of glyceollins due to its role in increasing the expression of REDD1, an mTORC1 inhibitor. Conclusion Overall, our study clearly shows that glyceollins exert anti-proliferative effects by reducing the expression of genes encoding cell cycle and mitosis-associated factors and biomarkers overexpressed in cancers and by increasing the expression of growth arrest-related genes. These results reinforce the therapeutic potential of glyceollins for breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0182-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvain Lecomte
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - Frederic Chalmel
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Viral and Chemical Environment & Reproduction, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - François Ferriere
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - Frederic Percevault
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - Nicolas Plu
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012, Rennes Cedex, France
| | - Christian Saligaut
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - Claire Surel
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012, Rennes Cedex, France
| | - Marie Lelong
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France
| | - Theo Efstathiou
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012, Rennes Cedex, France
| | - Farzad Pakdel
- Institut de Recherche en Santé-Environnement-Travail (IRSET), University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France. .,Inserm U1085, Team Transcription, Environment and Cancer, 9 Avenue du Pr Léon Bernard, 35000, Rennes, France.
| |
Collapse
|
17
|
Wang J, Song C, Tang H, Zhang C, Tang J, Li X, Chen B, Xie X. miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of triple-negative breast cancer. Breast Cancer Res 2017. [PMID: 28629464 PMCID: PMC5477310 DOI: 10.1186/s13058-017-0865-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Different breast cancer subtypes show distinct tropisms for sites of metastasis. Notably, the lung is the most common site for the first distant recurrence in triple-negative breast cancer (TNBC). The identification of novel biomarkers for lung metastasis is of great importance to improving the outcome of TNBC. In this study, we sought to identify a microRNA (miRNA)-based biomarker and therapeutic target for lung metastasis of TNBC. Methods A total of 669 patients without de novo stage IV TNBC were recruited for this study. miRNA profiling was conducted in the discovery cohort. Diagnostic accuracy and prognostic values of candidate miRNAs were evaluated in the training and validation cohorts, respectively. The biological functions of candidate miRNAs, as well as potential targets, were further evaluated through bioinformatic analysis as well as by performing in vitro and in vivo assays. Results In the discovery set, we found that miR-629-3p was specifically upregulated in both metastatic foci (fold change 144.16, P < 0.0001) and primary tumors (fold change 74.37, P = 0.004) in patients with lung metastases. In the training set, the ROC curve showed that miR-629-3p yielded high diagnostic accuracy in discriminating patients with lung metastasis from patients without recurrence (AUC 0.865, 95% CI 0.800–0.930, P < 0.0001). Although miR-629-3p predicted poor overall survival and disease-free survival in the validation set, it failed to show significance after multivariate analysis. Notably, logistic regression analyses confirmed that miR-629-3p was an independent risk factor for lung metastasis (OR 4.1, 95% CI 2.5–6.6, P < 0.001). Inhibition of miR-629-3p drastically attenuated the viability and migration of TNBC cells, and it markedly suppressed lung metastasis in vivo. Furthermore, we identified the leukemia inhibitory factor receptor (LIFR), a well-known metastatic suppressive gene, to be a direct target of miR-629-3p. Conclusions miR-629-3p may serve as a novel biomarker and potential therapeutic target for lung metastases of TNBC mediated via LIFR. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0865-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Wang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China.
| | - Cailu Song
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Chao Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Jun Tang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Xing Li
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Bo Chen
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No.651 Dongfeng East Road, Yuexiu District, Guangzhou, Guangdong, 510060, People's Republic of China.
| |
Collapse
|
18
|
Bateman ME, Strong AL, Hunter RS, Bratton MR, Komati R, Sridhar J, Riley KE, Wang G, Hayes DJ, Boue SM, Burow ME, Bunnell BA. Osteoinductive effects of glyceollins on adult mesenchymal stromal/stem cells from adipose tissue and bone marrow. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 27:39-51. [PMID: 28314478 DOI: 10.1016/j.phymed.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/04/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND While current therapies for osteoporosis focus on reducing bone resorption, the development of therapies to regenerate bone may also be beneficial. Promising anabolic therapy candidates include phytoestrogens, such as daidzein, which effectively induce osteogenesis of adipose-derived stromal cells (ASCs) and bone marrow stromal cells (BMSCs). PURPOSE To investigate the effects of glyceollins, structural derivatives of daidzein, on osteogenesis of ASCs and BMSCs. STUDY DESIGN Herein, the osteoinductive effects of glyceollin I and glyceollin II were assessed and compared to estradiol in ASCs and BMSCs. The mechanism by which glyceollin II induces osteogenesis was further examined. METHODS The ability of glyceollins to promote osteogenesis of ASCs and BMSCs was evaluated in adherent and scaffold cultures. Relative deposition of calcium was analyzed using Alizarin Red staining, Bichinchoninic acid Protein Assay, and Alamar Blue Assay. To further explore the mechanism by which glyceollin II exerts its osteoinductive effects, docking studies of glyceollin II, RNA isolation, cDNA synthesis, and quantitative RT-PCR (qPCR) were performed. RESULTS In adherent cultures, ASCs and BMSCs treated with estradiol, glyceollin I, or glyceollin II demonstrated increased calcium deposition relative to vehicle-treated cells. During evaluation on PLGA scaffolds seeded with ASCs and BMSCs, glyceollin II was the most efficacious in inducing ASC and BMSC osteogenesis compared to estradiol and glyceollin I. Dose-response analysis in ASCs and BMSCs revealed that glyceollin II has the highest potency at 10nM in adherent cultures and 1µM in tissue scaffold cultures. At all doses, osteoinductive effects were attenuated by fulvestrant, suggesting that glyceollin II acts at least in part through estrogen receptor-mediated pathways to induce osteogenesis. Analysis of gene expression demonstrated that, similar to estradiol, glyceollin II induces upregulation of genes involved in osteogenic differentiation. CONCLUSION The ability of glyceollin II to induce osteogenic differentiation in ASCs and BMSCs indicates that glyceollins hold the potential for the development of pharmacological interventions to improve clinical outcomes of patients with osteoporosis.
Collapse
Affiliation(s)
- Marjorie E Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ryan S Hunter
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melyssa R Bratton
- Cell and Molecular Biology Core Facility, Xavier University of Louisiana, New Orleans, LA, USA
| | - Rajesh Komati
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Kevin E Riley
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Daniel J Hayes
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, USA
| | - Stephen M Boue
- Southern Regional Research Center, US Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA; Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA USA.
| |
Collapse
|
19
|
Park IS, Kim HJ, Jeong YS, Kim WK, Kim JS. Differential abilities of Korean soybean varieties to biosynthesize glyceollins by biotic and abiotic elicitors. Food Sci Biotechnol 2017; 26:255-261. [PMID: 30263536 DOI: 10.1007/s10068-017-0034-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/17/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022] Open
Abstract
Glyceollins synthesized in soybeans that are exposed to biotic or abiotic stress have been reported to have health benefits. Considering that glyceollins are de novo synthesized from daidzein via several enzymatic steps and that isoflavone concentration widely varies among soybean varieties, the abilities of 60 soybean cultivars to synthesize glyceollins were compared under different elicitation conditions. Soybeans accumulated glyceollins differentially depending upon the cultivar when elicited with Aspergillus sojae. Contrary to our hypothesis that high isoflavone varieties may accumulate glyceollins more efficiently upon elicitation, glyceollin accumulation in response to fungal elicitation was not related with the concentration of either total isoflavones or daidzein in soybeans. Rather the glyceollin levels were significantly affected by soybean cultivar and most effectively increased by fungal infection. The data suggest that the selection of a strong fungal elicitor and a soybean cultivar with genotype that highly expresses the genes involved in glyceollin biosynthesis is essential for efficient glyceollin production.
Collapse
Affiliation(s)
- In Sil Park
- 1School of Food Science and Technology (BK21 program), Kyungpook National University, Daegu, 41566 Korea
| | - Hyo Jung Kim
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongbuk, 38540 Korea
| | - Yeon-Shin Jeong
- 3Department of Farm Management, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566 Korea
| | - Woo-Keun Kim
- 4System Toxicology Research Center, Korea Institute of Toxicology, Daejeon, 34114 Korea
| | - Jong-Sang Kim
- 1School of Food Science and Technology (BK21 program), Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
20
|
Martin EC, Conger AK, Yan TJ, Hoang VT, Miller DFB, Buechlein A, Rusch DB, Nephew KP, Collins-Burow BM, Burow ME. MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett 2017; 591:382-392. [PMID: 28008602 DOI: 10.1002/1873-3468.12538] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNA molecules involved in the regulation of gene expression and play critical roles in human malignancies. Next-generation sequencing analysis of the MCF-7 breast cancer cell line overexpressing miR-335-5p and miR-335-3p demonstrated that the miRNA duplex repressed genes involved in the ERα signaling pathway, and enhanced resistance of MCF-7 cells to the growth inhibitory effects of tamoxifen. These data suggest that despite its conventional role in tumor suppression, the miR-335 transcript can also play an oncogenic role in promoting agonistic estrogen signaling in a cancerous setting.
Collapse
Affiliation(s)
- Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University and LSU Agricultural Center, Baton Rouge, LA, USA
| | - Adrienne K Conger
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - David F B Miller
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Douglas B Rusch
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Kenneth P Nephew
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA.,Department of Pharmacology, Tulane University, New Orleans, LA, USA.,Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
21
|
Ryu R, Jeong TS, Kim YJ, Choi JY, Cho SJ, Kwon EY, Jung UJ, Ji HS, Shin DH, Choi MS. Beneficial Effects of Pterocarpan-High Soybean Leaf Extract on Metabolic Syndrome in Overweight and Obese Korean Subjects: Randomized Controlled Trial. Nutrients 2016; 8:E734. [PMID: 27869712 PMCID: PMC5133118 DOI: 10.3390/nu8110734] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022] Open
Abstract
Pterocarpans are known to have antifungal and anti-inflammatory properties. However, little is known about the changes in transcriptional profiles in response to a pterocarpan-high soybean leaf extract (PT). Therefore, this study investigated the effects of PT on blood glucose and lipid levels, as well as on the inflammation-related gene expression based on a peripheral blood mononuclear cells (PBMCs) mRNA sequencing analysis in Korean overweight and obese subjects with mild metabolic syndrome. The participants were randomly assigned to two groups and were administered either placebo (starch, 3 g/day) or PT (2 g/day) for 12 weeks. The PT intervention did not change body weight, body fat percentage and body mass index (BMI). However, PT significantly decreased the glycosylated hemoglobin (HbA1c), plasma glucose, free fatty acid, total cholesterol, and non-HDL cholesterol levels after 12 weeks. Furthermore, PT supplementation significantly lowered the homeostatic index of insulin resistance, as well as the plasma levels of inflammatory markers. Finally, the mRNA sequencing analysis revealed that PT downregulated genes related to immune responses. PT supplementation is beneficial for the improvement of metabolic syndrome by altering the fasting blood and plasma glucose, HbA1c, plasma lipid levels and inflammation-related gene expression in PBMCs.
Collapse
Affiliation(s)
- Ri Ryu
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Tae-Sook Jeong
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
| | - Ye Jin Kim
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Ji-Young Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Su-Jung Cho
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Young Kwon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Hyeon-Seon Ji
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Dong-Ha Shin
- Insect Biotech Co., Ltd., Daejeon 305-811, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
22
|
Biersack B. Current state of phenolic and terpenoidal dietary factors and natural products as non-coding RNA/microRNA modulators for improved cancer therapy and prevention. Noncoding RNA Res 2016; 1:12-34. [PMID: 30159408 PMCID: PMC6096431 DOI: 10.1016/j.ncrna.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023] Open
Abstract
The epigenetic regulation of cancer cells by small non-coding RNA molecules, the microRNAs (miRNAs), has raised particular interest in the field of oncology. These miRNAs play crucial roles concerning pathogenic properties of cancer cells and the sensitivity of cancer cells towards anticancer drugs. Certain miRNAs are responsible for an enhanced activity of drugs, while others lead to the formation of tumor resistance. In addition, miRNAs regulate survival and proliferation of cancer cells, in particular of cancer stem-like cells (CSCs), that are especially drug-resistant and, thus, cause tumor relapse in many cases. Various small molecule compounds were discovered that target miRNAs that are known to modulate tumor aggressiveness and drug resistance. This review comprises the effects of naturally occurring small molecules (phenolic compounds and terpenoids) on miRNAs involved in cancer diseases.
Collapse
Key Words
- 1,25-D, 1,25-dihydroxyvitamin D3
- 18-AGA, 18α-glycyrrhetinic acid
- 3,6-DHF, 3,6-dihydroxyflavone
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- CAPE, caffeic acid phenethyl ester
- CDODA-Me, methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
- Dox, doxorubicin
- EGCG, (−)-epigallocatechin-3-O-gallate
- MicroRNA
- PEG, polyethylene glycol
- PPAP, polycyclic polyprenylated acylphloroglucinol
- Polyphenols
- RA, retinoic acid
- ROS, reactive oxygen species
- TQ, thymoquinone
- Terpenes
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
23
|
Rhodes LV, Martin EC, Segar HC, Miller DFB, Buechlein A, Rusch DB, Nephew KP, Burow ME, Collins-Burow BM. Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget 2016; 6:16638-52. [PMID: 26062653 PMCID: PMC4599295 DOI: 10.18632/oncotarget.3184] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/23/2015] [Indexed: 12/31/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) involves loss of an epithelial phenotype and activation of a mesenchymal one. Enhanced expression of genes associated with a mesenchymal transition includes ZEB1/2, TWIST, and FOXC1. miRNAs are known regulators of gene expression and altered miRNA expression is known to enhance EMT in breast cancer. Here we demonstrate that the tumor suppressive miRNA family, miR-200, is not expressed in triple negative breast cancer (TNBC) cell lines and that miR-200b-3p over-expression represses EMT, which is evident through decreased migration and increased CDH1 expression. Despite the loss of migratory capacity following re-expression of miR-200b-3p, no subsequent loss of the conventional miR-200 family targets and EMT markers ZEB1/2 was observed. Next generation RNA-sequencing analysis showed that enhanced expression of pri-miR-200b lead to ectopic expression of both miR-200b-3p and miR-200b-5p with multiple isomiRs expressed for each of these miRNAs. Furthermore, miR-200b-5p was expressed in the receptor positive, epithelial breast cancer cell lines but not in the TNBC (mesenchymal) cell lines. In addition, a compensatory mechanism for miR-200b-3p/200b-5p targeting, where both miRNAs target the RHOGDI pathway leading to non-canonical repression of EMT, was demonstrated. Collectively, these data are the first to demonstrate dual targeting by miR-200b-3p and miR-200b-5p and a previously undescribed role for microRNA processing and strand expression in EMT and TNBC, the most aggressive breast cancer subtype.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Elizabeth C Martin
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - H Chris Segar
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - David F B Miller
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Aaron Buechlein
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Douglas B Rusch
- Indiana University Center for Genomics and Bioinformatics, Bloomington, IN, USA
| | - Kenneth P Nephew
- Medical Sciences and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA.,Department of Pharmacology, Tulane University, New Orleans, LA, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
24
|
Chimezie C, Ewing A, Schexnayder C, Bratton M, Glotser E, Skripnikova E, Sá P, Boué S, Stratford RE. Glyceollin Effects on MRP2 and BCRP in Caco-2 Cells, and Implications for Metabolic and Transport Interactions. J Pharm Sci 2016; 105:972-981. [PMID: 26296158 DOI: 10.1002/jps.24605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 12/28/2022]
Abstract
Glyceollins are phytoalexins produced in soybeans under stressful growth conditions. On the basis of prior evaluations, they show potential to treat multiple diseases, including certain cancers, Type 2 diabetes, and cardiovascular conditions. The aim of the present study was to expand on recent studies designed to initially characterize the intestinal disposition of glyceollins. Specifically, studies were undertaken in Caco-2 cells to evaluate glyceollins' effects on apical efflux transporters, namely, MRP2 and BCRP, which are the locus of several intestinal drug-drug and drug-food interactions. 5- (and 6)-carboxy-2',7'-dichloroflourescein (CDF) was used to provide a readout on MRP2 activity, whereas BODIPY-prazosin provided an indication of BCRP alteration. Glyceollins were shown to reverse MRP2-mediated CDF transport asymmetry in a concentration-dependent manner, with activity similar to the MRP2 inhibitor, MK-571. Likewise, they demonstrated concentration-dependent inhibition of BCRP-mediated efflux of BODIPY-prazosin with a potency similar to that of Ko143. Glyceollin did not appreciably alter MRP2 or BCRP expression following 24 h of continuous exposure. The possibility that glyceollin mediated inhibition of genistein metabolite efflux by either transporter was evaluated. However, results demonstrated an interaction at the level of glyceollin inhibition of genistein metabolism rather than inhibition of metabolite transport.
Collapse
Affiliation(s)
- Chukwuemezie Chimezie
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Adina Ewing
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Chandler Schexnayder
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Melyssa Bratton
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Glotser
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Elena Skripnikova
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Pedro Sá
- Universidade Federal do Vale do São Francisco, Petrolina, PE 56403-917, Brazil
| | - Stephen Boué
- Southern Regional Research Center, U.S.D.A., New Orleans, Louisiana 70124
| | - Robert E Stratford
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125.
| |
Collapse
|
25
|
Genistein and Glyceollin Effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010017. [PMID: 26703673 PMCID: PMC4730408 DOI: 10.3390/ijerph13010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
The goal of the present study was to determine the effects of glyceollins on intestinal ABCC2 (ATP Binding Cassette C2, multidrug resistance protein 2, MRP2) and ABCG2 (ATP Binding Cassette G2, breast cancer resistance protein, BCRP) function using the Caco-2 cell intestinal epithelial cell model. Glyceollins are soy-derived phytoestrogens that demonstrate anti-proliferative activity in several sources of cancer cells. 5 (and 6)-carboxy-2′,7′-dichloroflourescein (CDF) was used as a prototypical MRP2 substrate; whereas BODIPY-prazosin provided an indication of BCRP function. Comparison studies were conducted with genistein. Glyceollins were shown to inhibit MRP2-mediated CDF transport, with activity similar to the MRP2 inhibitor, MK-571. They also demonstrated concentration-dependent inhibition BCRP-mediated efflux of BODIPY-prazosin, with a potency similar to that of the recognized BCRP inhibitor, Ko143. In contrast, genistein did not appear to alter MRP2 activity and even provided a modest increase in BCRP efflux of BODIPY-prazosin. In particular, glyceollin inhibition of these two important intestinal efflux transporters suggests the potential for glyceollin to alter the absorption of other phytochemicals with which it might be co-administered as a dietary supplement, as well as alteration of the absorption of pharmaceuticals that may be administered concomitantly.
Collapse
|
26
|
Glyceollin I Reverses Epithelial to Mesenchymal Transition in Letrozole Resistant Breast Cancer through ZEB1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010010. [PMID: 26703648 PMCID: PMC4730401 DOI: 10.3390/ijerph13010010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/20/2015] [Accepted: 08/24/2015] [Indexed: 01/01/2023]
Abstract
Although aromatase inhibitors are standard endocrine therapy for postmenopausal women with early-stage metastatic estrogen-dependent breast cancer, they are limited by the development of drug resistance. A better understanding of this process is critical towards designing novel strategies for disease management. Previously, we demonstrated a global proteomic signature of letrozole-resistance associated with hormone-independence, enhanced cell motility and implications of epithelial mesenchymal transition (EMT). Letrozole-resistant breast cancer cells (LTLT-Ca) were treated with a novel phytoalexin, glyceollin I, and exhibited morphological characteristics synonymous with an epithelial phenotype and decreased proliferation. Letrozole-resistance increased Zinc Finger E-Box Binding Homeobox 1 (ZEB1) expression (4.51-fold), while glyceollin I treatment caused a -3.39-fold reduction. Immunofluorescence analyses resulted of glyceollin I-induced increase and decrease in E-cadherin and ZEB1, respectively. In vivo studies performed in ovariectomized, female nude mice indicated that glyceollin treated tumors stained weakly for ZEB1 and N-cadherin and strongly for E-cadherin. Compared to letrozole-sensitive cells, LTLT-Ca cells displayed enhanced motility, however in the presence of glyceollin I, exhibited a 68% and 83% decrease in invasion and migration, respectively. These effects of glyceollin I were mediated in part by inhibition of ZEB1, thus indicating therapeutic potential of glyceollin I in targeting EMT in letrozole resistant breast cancer.
Collapse
|
27
|
Bamji SF, Page RB, Patel D, Sanders A, Alvarez AR, Gambrell C, Naik K, Raghavan AM, Burow ME, Boue SM, Klinge CM, Ivanova M, Corbitt C. Soy glyceollins regulate transcript abundance in the female mouse brain. Funct Integr Genomics 2015; 15:549-61. [PMID: 25953511 PMCID: PMC4561188 DOI: 10.1007/s10142-015-0442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Glyceollins (Glys), produced by soy plants in response to stress, have anti-estrogenic activity in breast and ovarian cancer cell lines in vitro and in vivo. In addition to known anti-estrogenic effects, Gly exhibits mechanisms of action not involving estrogen receptor (ER) signaling. To date, effects of Gly on gene expression in the brain are unknown. For this study, we implanted 17-β estradiol (E2) or placebo slow-release pellets into ovariectomized CFW mice followed by 11 days of exposure to Gly or vehicle i.p. injections. We then performed a microarray on total RNA extracted from whole-brain hemispheres and identified differentially expressed genes (DEGs) by a 2 × 2 factorial ANOVA with an false discovery rate (FDR) = 0.20. In total, we identified 33 DEGs with a significant E2 main effect, 5 DEGs with a significant Gly main effect, 74 DEGs with significant Gly and E2 main effects (but no significant interaction term), and 167 DEGs with significant interaction terms. Clustering across all DEGs revealed that transcript abundances were similar between the E2 + Gly and E2-only treatments. However, gene expression after Gly-only treatment was distinct from both of these treatments and was generally characterized by higher transcript abundance. Collectively, our results suggest that whether Gly acts in the brain through ER-dependent or ER-independent mechanisms depends on the target gene.
Collapse
Affiliation(s)
- Sanaya F. Bamji
- Department of Biology, University of Louisville, Louisville KY 40292
| | - Robert B. Page
- Department of Biology, College of St. Benedict & St. John’s University, Collegeville, MN 56321
| | - Dharti Patel
- Department of Biology, University of Louisville, Louisville KY 40292
| | - Alexia Sanders
- Department of Biology, University of Louisville, Louisville KY 40292
| | | | - Caitlin Gambrell
- Department of Biology, University of Louisville, Louisville KY 40292
| | - Kuntesh Naik
- Department of Biology, University of Louisville, Louisville KY 40292
| | | | | | - Stephen M. Boue
- Southern Regional Research Center, USDA, New Orleans, LA 70124
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville KY 40292
| | - Margarita Ivanova
- Department of Biochemistry & Molecular Biology, University of Louisville, Louisville KY 40292
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, Louisville KY 40292
| |
Collapse
|
28
|
Bratton MR, Martin EC, Elliott S, Rhodes LV, Collins-Burow BM, McLachlan JA, Wiese TE, Boue SM, Burow ME. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer. J Steroid Biochem Mol Biol 2015; 150:17-23. [PMID: 25771071 PMCID: PMC4424142 DOI: 10.1016/j.jsbmb.2014.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 12/22/2014] [Accepted: 12/29/2014] [Indexed: 01/07/2023]
Abstract
An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in response to anti-estrogens. Here we demonstrate glyceollin, an activated soy compound, has anti-estrogen effects in breast cancers. We demonstrate through estrogen response element luciferase and phosphorylation-ER mutants that the effects of glyceollin arise from mechanisms distinct from conventional endocrine therapies. We show that glyceollin suppresses estrogen response element activity; however, it does not affect ER-alpha (α) phosphorylation levels. Additionally we show that glyceollin suppresses the phosphorylation of proteins known to crosstalk with ER signaling, specifically we demonstrate an inhibition of ribosomal protein S6 kinase, 70 kDa (p70S6) phosphorylation following glyceollin treatment. Our data suggests a mechanism for glyceollin inhibition of ERα through the induced suppression of p70S6 and demonstrates novel mechanisms for ER inhibition.
Collapse
Affiliation(s)
- Melyssa R Bratton
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Lyndsay V Rhodes
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States
| | - John A McLachlan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States
| | - Thomas E Wiese
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, United States
| | - Stephen M Boue
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, LA, United States
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, United States; Department of Pharmacology, Tulane University, New Orleans, LA, United States; The Center for Bioenvironmental Research, Tulane University, New Orleans, LA, United States.
| |
Collapse
|
29
|
Lee SH, Jee JG, Bae JS, Liu KH, Lee YM. A group of novel HIF-1α inhibitors, glyceollins, blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J Cell Physiol 2015; 230:853-62. [PMID: 25204544 DOI: 10.1002/jcp.24813] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/05/2014] [Indexed: 12/17/2022]
Abstract
Glyceollins, a group of phytoalexins isolated from soybean, are known to exhibit anticancer, antiestrogenic, and antiangiogenic activities. However, whether glyceollins regulate tumor growth through regulation of hypoxia-inducible factor (HIF)-1α has not been investigated. We determined whether and how glyceollins regulate the synthesis and stability of HIF-1α. Quantitative real-time PCR revealed that glyceollins inhibited the expression of HIF-1-induced genes such as vascular endothelial growth factor (VEGF) in cancer cells. Enzyme-linked immunosorbent assay and reporter luciferase assay showed that glyceollins decreased VEGF secretion and its promoter activity, respectively. Treatment of various cancer cells with 0.5-100 µM glyceollins under hypoxic conditions reduced the expression of HIF-1α. Glyceollins blocked translation of HIF-1α by inhibiting the PI3K/AKT/mTOR pathway under hypoxic conditions. Glyceollins decreased the stability of HIF-1α after treatment with cycloheximide, a protein synthesis inhibitor, and increased the ubiquitination of HIF-1α after treatment with MG132, a proteasome inhibitor. Glyceollins blocked the interaction of Hsp90 with HIF-1α, as shown by immunoprecipitation assay. Chemical binding of Hsp90 with glyceollins, as confirmed by computational docking analysis, was stronger than that with geldanamycin at the HSP90 ATP-binding pocket. We found that glyceollins decreased microvessel density, as well as expression of phosphorylated AKT/mTOR and the Hsp90 client protein CDK4, in solid tumor tissues. Glyceollins potently inhibited HIF-1α synthesis and decreased its stability by blocking the PI3K/AKT/mTOR pathway and HSP90 binding activity, respectively. These results may provide new perspectives into potential therapeutic application of glyceollins for the prevention and treatment of hypervascularized diseases and into the mechanism of their anticancer activity.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Martin EC, Rhodes LV, Elliott S, Krebs AE, Nephew KP, Flemington EK, Collins-Burow BM, Burow ME. microRNA regulation of mammalian target of rapamycin expression and activity controls estrogen receptor function and RAD001 sensitivity. Mol Cancer 2014; 13:229. [PMID: 25283550 PMCID: PMC4203920 DOI: 10.1186/1476-4598-13-229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/24/2014] [Indexed: 01/28/2023] Open
Abstract
Background The AKT/mammalian target of rapamycin (mTOR) signaling pathway is regulated by 17α-estradiol (E2) signaling and mediates E2-induced proliferation and progesterone receptor (PgR) expression in breast cancer. Methods and results Here we use deep sequencing analysis of previously published data from The Cancer Genome Atlas to demonstrate that expression of a key component of mTOR signaling, rapamycin-insensitive companion of mTOR (Rictor), positively correlated with an estrogen receptor-α positive (ERα+) breast tumor signature. Through increased microRNA-155 (miR-155) expression in the ERα+ breast cancer cells we demonstrate repression of Rictor enhanced activation of mTOR complex 1 (mTORC1) signaling with both qPCR and western blot. miR-155-mediated mTOR signaling resulted in deregulated ERα signaling both in cultured cells in vitro and in xenografts in vivo in addition to repressed PgR expression and activity. Furthermore we observed that miR-155 enhanced mTORC1 signaling (observed through western blot for increased phosphorylation on mTOR S2448) and induced inhibition of mTORC2 signaling (evident through repressed Rictor and tuberous sclerosis 1 (TSC1) gene expression). mTORC1 induced deregulation of E2 signaling was confirmed using qPCR and the mTORC1-specific inhibitor RAD001. Co-treatment of MCF7 breast cancer cells stably overexpressing miR-155 with RAD001 and E2 restored E2-induced PgR gene expression. RAD001 treatment of SCID/CB17 mice inhibited E2-induced tumorigenesis of the MCF7 miR-155 overexpressing cell line. Finally we demonstrated a strong positive correlation between Rictor and PgR expression and a negative correlation with Raptor expression in Luminal B breast cancer samples, a breast cancer histological subtype known for having an altered ERα-signaling pathway. Conclusions miRNA mediated alterations in mTOR and ERα signaling establishes a new mechanism for altered estrogen responses independent of growth factor stimulation. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-229) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
31
|
Kim HJ, Jung CL, Jeong YS, Kim JS. Soybean-derived glyceollins induce apoptosis through ROS generation. Food Funct 2014; 5:688-95. [PMID: 24513878 DOI: 10.1039/c3fo60379b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glyceollins, which are synthesized from daidzein in soybeans infected with fungi, have been shown to have anti-fungal effects and antioxidant properties. However, the anti-proliferative mechanism of glyceollins against tumor cells is unknown. Glyceollin-induced apoptosis was evidenced by a decrease in cell viability and mitochondrial membrane potential, and an increase in early redistribution of plasma membrane phosphatidylserine, the sub G1 phase, and DNA fragmentation in hepa1c1c7 cells. Western blot analysis showed that treatment of the hepa1c1c7 cells with the glyceollins decreased the expression of pro-caspase-3, Bcl-2, and cell cycle-related proteins, but increased the expression of p21 and p27, and cytochrome C release into cytosol. At a concentration of 6 μg mL(-1) or higher, glyceollins significantly stimulated the production of reactive oxygen species (ROS), which appear to be responsible for the apoptotic activity of the compounds. Our present study demonstrated that the high dose of glyceollins possibly caused apoptosis in mouse hepatoma cells through the production of ROS, suggesting the potential to exploit glyceollins as anti-tumorigenic agents.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Research Institute for Biological Functions, Chubu University, Kasugai, Japan
| | | | | | | |
Collapse
|
32
|
Chimezie C, Ewing AC, Quadri SS, Cole RB, Boué SM, Omari CF, Bratton M, Glotser E, Skripnikova E, Townley I, Stratford RE. Glyceollin transport, metabolism, and effects on p-glycoprotein function in Caco-2 cells. J Med Food 2014; 17:462-71. [PMID: 24476214 PMCID: PMC3993029 DOI: 10.1089/jmf.2013.0115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anticancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intestinal transport and metabolism, and their potential effects on P-glycoprotein (Pgp) in Caco-2 cells. At 10 and 25 μM, glyceollin permeability was 2.4±0.16×10(-4) cm/sec and 2.1±0.15×10(-4) cm/sec, respectively, in the absorptive direction. Basolateral to apical permeability at 25 μM was 1.6±0.10×10(-4) cm/sec. Results suggest high absorption potential of glyceollin by a passive-diffusion-dominated mechanism. A sulfate conjugate at the phenolic hydroxyl position was observed following exposure to Caco-2 cells. In contrast to verapamil inhibition of the net secretory permeability of rhodamine 123 (R123) and its enhancement of calcein AM uptake into Caco-2 cells, neither glyceollin nor genistein inhibited Pgp (MDR1; ABCB1) up to 300 μM. There was no significant change in MDR1 mRNA expression, Pgp protein expression, or R123 transport in cells exposed to glyceollin or genistein for 24 h up to 100 μM. Collectively, these results suggest that glyceollin has the potential to be well absorbed, but that, similar to the isoflavone genistein, its absorption may be reduced substantially by intestinal metabolism; further, they indicate that glyceollin does not appear to alter Pgp function in Caco-2 cells.
Collapse
Affiliation(s)
- Chukwuemezie Chimezie
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Adina C. Ewing
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Syeda S. Quadri
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
| | - Richard B. Cole
- Department of Chemistry, University of New Orleans, New Orleans, Louisiana, USA
- Laboratory of Organic and Biological Structural Chemistry, Université Pierre et Marie Curie (Paris 6), Paris, France
| | - Stephen M. Boué
- Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| | - Christopher F. Omari
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Melyssa Bratton
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Elena Glotser
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Elena Skripnikova
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Ian Townley
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Robert E. Stratford
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| |
Collapse
|
33
|
Quadri S, Stratford RE, Boué SM, Cole RB. Identification of glyceollin metabolites derived from conjugation with glutathione and glucuronic acid in male ZDSD rats by online liquid chromatography-electrospray ionization tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2692-700. [PMID: 24617284 PMCID: PMC3983382 DOI: 10.1021/jf403498f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 02/08/2014] [Accepted: 02/18/2014] [Indexed: 05/24/2023]
Abstract
Glyceollin-related metabolites produced in rats following oral glyceollin administration were screened in plasma, feces, and urine, and these metabolites were identified by precursor and product ion scanning using liquid chromatography coupled online with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Precursor ion scanning in the negative ion (NI) mode was used to identify all glyceollin metabolites based on production of a diagnostic radical product ion (m/z 148) upon decomposition. Using this approach, precursor peaks of interest were found at m/z 474 and 531. Tandem mass spectra of these two peaks allowed us to characterize them as byproducts of glutathione conjugation. The peak at m/z 474 was identified as the deprotonated cysteinyl conjugate of glyceollins with an addition of an oxygen atom, whereas m/z 531 was identified as the deprotonated cysteinylglyceine glyceollin conjugate plus an oxygen. These results were confirmed by positive ion (PI) mode analyses. Mercapturic acid conjugates of glyceollins were also identified in NI mode. In addition, glucuronidation of glyceollins was observed, giving a peak at m/z 513 corresponding to the deprotonated conjugate. Production of glucuronic acid conjugates of glyceollins was confirmed in vitro in rat liver microsomes. Neither glutathione conjugation byproducts nor glucuronic acid conjugates of glyceollins have been previously reported.
Collapse
Affiliation(s)
- Syeda
S. Quadri
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
| | - Robert E. Stratford
- College
of Pharmacy, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, United States
| | - Stephen M. Boué
- Southern Regional
Research Center, U.S.D.A., 1100 Robert
E. Lee Blvd. New Orleans, Louisiana 70124, United States
| | - Richard B. Cole
- Department
of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, Louisiana 70148, United States
- Institut
Parisien de Chimie Moléculaire (UMR 8232), Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
34
|
Kohno Y, Koso M, Kuse M, Takikawa H. Formal synthesis of soybean phytoalexin glyceollin I. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
|
36
|
Zhang C, Zhai W, Xie Y, Chen Q, Zhu W, Sun X. Mesenchymal stem cells derived from breast cancer tissue promote the proliferation and migration of the MCF-7 cell line in vitro.. Oncol Lett 2013; 6:1577-1582. [PMID: 24260049 PMCID: PMC3833946 DOI: 10.3892/ol.2013.1619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/25/2013] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are critical in promoting cancer progression, including tumor growth and metastasis. MSCs, as a subpopulation of cells found in the tumor microenvironment, have been isolated from several tumor tissues, but have not been isolated from breast cancer tissue to date. Therefore, the purpose of this study was to isolate MSCs from primary human breast cancer tissue, and to study the effect of breast cancer MSCs (BC-MSCs) on the proliferation and migration of the MCF-7 cell line in vitro. MSCs were isolated and identified from primary breast cancer tissue obtained from 9 patients. The MCF-7 cell line was treated with 10 and 20% breast cancer-associated MSC (BC-MSC)-conditioned medium (CM) for 10–48 h, and changes in proliferation and migration were observed. Furthermore, we investigated the migration of 10 and 20% CM concentrations on MCF-7 through a scratch wound assay and a transwell migration assay. We successfully isolated and identified MSCs from primary breast cancer tissues. BC-MSCs showed characteristics similar to those of bone marrow MSCs, and possessed the capability of multipotential differentiation into osteoblasts and adipocytes. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that 10 and 20% CM concentrations increased the proliferation of MCF-7 cells to different levels. The results also revealed a greater increase in different levels compared with the control group. In conclusion, MSCs were confirmed to exist in human breast cancer tissues, and BC-MSCs may promote the proliferation and migration of breast cancer cells.
Collapse
Affiliation(s)
- Chunfu Zhang
- The Second People's Hospital of Kunshan, Kunshan, Jiangsu 215300, P.R. China ; School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | | | | | | | | | | |
Collapse
|
37
|
Choi JH, Nguyen MP, Jung SY, Kwon SM, Jee JG, Bae JS, Lee S, Lee MY, Lee YM. Inhibitory effect of glyceollins on vasculogenesis through suppression of endothelial progenitor cell function. Mol Nutr Food Res 2013; 57:1762-71. [PMID: 23784812 DOI: 10.1002/mnfr.201200826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2023]
Abstract
SCOPE Endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells, and have the ability to differentiate into mature endothelial cells and contribute to neovascularization. Glyceollins are a type of phytoalexin produced in soybeans under stress conditions. The aim of this study is to determine the effect of glyceollin treatment on EPCs during early tumor vasculogenesis. METHODS AND RESULTS We found that glyceollin treatment significantly decreased the number of EPC colony-forming units in human cord blood-derived AC133⁺ cells and mouse bone-marrow-derived c-Kit⁺/Sca-1⁺/Lin⁻ cells. Glyceollin treatment diminished the number of lineage-committed EPC cells in a dose-dependent manner (1-20 μM). Glyceollin treatment inhibited EPC migration, tube formation and the mRNA expression of angiopoietin-1 (Ang-1), Tie-2, stromal-derived factor-1 (SDF-1), C-X-C-chemokine receptor-4 (CXCR4), and endothelial nitric oxide synthase (eNOS) in cultured EPCs. Glyceollin treatment suppressed activation of Akt, Erk, and eNOS induced by SDF-1α or vascular endothelial growth factor (VEGF). Treatment with 10 mg/kg glyceollins significantly reduced the number of tumor-induced circulating EPCs and the incorporation of EPCs into neovessels in bone marrow transplanted mice. CONCLUSION These results suggest that glyceollins inhibit the function of EPCs in tumor neovascularization. Glyceollins from soybean elicitation could be beneficial in prevention of cancer development via vasculogenesis.
Collapse
Affiliation(s)
- Jin-Hwa Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Korea; School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Changes in L-phenylalanine ammonia-lyase activity and isoflavone phytoalexins accumulation in soybean seedlings infected with Sclerotinia sclerotiorum. Open Life Sci 2013. [DOI: 10.2478/s11535-013-0201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSoybean [Glycine max (L.) Merr.] cultivars (Meli, Alisa, Sava and 1511/99) were grown up to V1 phase (first trifoliate and one node above unifoliate) and then inoculated with Sclerotinia sclerotiorum (Lib.) de Bary under controlled conditions. Changes in L-phenylalanine ammonia-lyase (PAL) activity and isoflavone phytoalexins were recorded 12, 24, 48 and 72 h after the inoculation. Results showed an increase in PAL activity in all four examined soybean cultivars 48 h after the inoculation, being the highest in Alisa (2-fold higher). Different contents of total daidzein, genistein, glycitein and coumestrol were detected in all samples. Alisa and Sava increased their total isoflavone content (33.9% and 6.2% higher than control, respectively) as well as 1511/99, although 48 h after the inoculation its content decreased significantly. Meli exhibited the highest rate of coumestrol biosynthesis (72 h after the inoculation) and PAL activity (48 h after the inoculation). All investigated cultivars are invariably susceptible to this pathogen. Recorded changes could point to possible differences in mechanisms of tolerance among them.
Collapse
|
39
|
Tilghman SL, Rhodes LV, Bratton MR, Carriere P, Preyan LC, Boue SM, Vasaitis TS, McLachlan JA, Burow ME. Phytoalexins, miRNAs and breast cancer: a review of phytochemical-mediated miRNA regulation in breast cancer. J Health Care Poor Underserved 2013; 24:36-46. [PMID: 23395943 DOI: 10.1353/hpu.2013.0036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is growing interest in the diverse signaling pathways that regulate and affect breast tumorigenesis, including the role of phytochemicals and the emerging role of microRNAs (miRNAs). Recent studies demonstrate that miRNAs regulate fundamental cellular and developmental processes at the transcriptional and translational level under normal and disease conditions. While there is growing evidence to support the role of phytoalexin-mediated miRNA regulation of cancer, few reports address this role in breast cancer. Recent reports by our group and others demonstrate that natural products, including stilbenes, curcumin, and glyceollins, could alter the expression of specific miRNAs, which may lead to increased sensitivity of cancer cells to conventional anti-cancer agents and, therefore, hormone-dependent and hormone-independent tumor growth inhibition. This review will discuss how dietary intake of natural products, by regulating specific miRNAs, contribute to the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Eromosele O, Bo S, Ping L. Induction of phytochemical glyceollins accumulation in soybean following treatment with biotic elicitor (Aspergillus oryzae). J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
41
|
Malik N, Erhardt P. Synthesis of 6a-hydroxypterocarpans via intramolecular benzoin condensation. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Huang H, Xie Z, Boue SM, Bhatnagar D, Yokoyama W, Yu LL, Wang TTY. Cholesterol-lowering activity of soy-derived glyceollins in the golden Syrian hamster model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5772-82. [PMID: 23697397 DOI: 10.1021/jf400557p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hypercholesterolemia is one of the major factors contributing to the risk of cardiovascular disease (CVD), which is the leading cause of death in developed countries. Consumption of soy foods has been recognized to lower the risk of CVD, and phytochemicals in soy are believed to contribute to the health benefits. Glyceollin is one of the candidate phytochemicals synthesized in stressed soy that may account for many unique biological activities. In this study, the in vivo cholesterol-lowering effect of glyceollins was investigated. Male golden Syrian hamsters were fed diets including (1) 36 kcal% fat diet, (2) 36 kcal% fat diet containing 250 mg/kg diet glyceollins, or (3) chow for 28 days. Hepatic cholesterol esters and free cholesterol, hepatic total lipid content, plasma lipoproteins, fecal bile acid, fecal total cholesterol, and cholesterol metabolism related gene expressions were measured. Glyceollin supplementation led to significant reduction of plasma VLDL, hepatic cholesterol esters, and total lipid content. Consistent with changes in circulating cholesterol, glyceollin supplementation also altered expression of the genes related to cholesterol metabolism in the liver. In contrast, no change in plasma LDL and HDL, fecal bile acid, or cholesterol content was observed. The cholesterol-lowering effect of glyceollins appeared not to go through the increase of bile excretion. These results supported glyceollins' role as novel soy-derived cholesterol-lowering phytochemicals that may contribute to soy's health effects.
Collapse
Affiliation(s)
- Haiqiu Huang
- Department of Nutrition and Food Science, University of Maryland , College Park, Maryland 20742, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
Shin SH, Lee YM. Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways. Exp Mol Med 2013; 45:e17. [PMID: 23559126 PMCID: PMC3641398 DOI: 10.1038/emm.2013.20] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/11/2012] [Accepted: 12/26/2012] [Indexed: 12/17/2022] Open
Abstract
The anti-melanogenesis effect of glyceollins was examined by melanin synthesis, tyrosinase activity assay in zebrafish embryos and in B16F10 melanoma cells. When developing zebrafish embryos were treated with glyceollins, pigmentation of the embryos, melanin synthesis and tyrosinase activity were all decreased compared with control zebrafish embryos. In situ expression of a pigment cell-specific gene, Sox10, was dramatically decreased by glyceollin treatment in the neural tubes of the trunk region of the embryos. Stem cell factor (SCF)/c-kit signaling pathways as well as expression of microphthalmia-associated transcription factor (MITF) were determined by western blot analysis. Glyceollins inhibited melanin synthesis, as well as the expression and activity of tyrosinase induced by SCF, in a dose-dependent manner in B16F10 melanoma cells. Pretreatment of B16F10 cells with glyceollins dose-dependently inhibited SCF-induced c-kit and Akt phosphorylation. Glyceollins significantly impaired the expression and activity of MITF. An additional inhibitory function of glyceollins was to effectively downregulate intracellular cyclic AMP levels stimulated by SCF in B16F10 cells. Glyceollins have a depigmentation/whitening activity in vitro and in vivo, and that this effect may be due to the inhibition of SCF-induced c-kit and tyrosinase activity through the blockade of downstream signaling pathway.
Collapse
Affiliation(s)
- Sun-Hye Shin
- School of Life Sciences and Biotechnology, College of Natural Sciences, Daegu, Republic of Korea
| | - You-Mie Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Daegu, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
44
|
Quadri SS, Stratford RE, Boué SM, Cole RB. Screening and identification of glyceollins and their metabolites by electrospray ionization tandem mass spectrometry with precursor ion scanning. Anal Chem 2013; 85:1727-33. [PMID: 23294002 PMCID: PMC3593975 DOI: 10.1021/ac3030398] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A method has been developed for screening glyceollins and their metabolites based on precursor ion scanning. Under higher-energy collision conditions with the employment of a triple quadrupole mass spectrometer in the negative ion mode, deprotonated glyceollin precursors yield a diagnostic radical product ion at m/z 148. We propose this resonance-stabilized radical anion, formed in violation of the even-electron rule, to be diagnostic of glyceollins and glyceollin metabolites. Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) established that scanning for precursors of m/z 148 can identify glyceollins and their metabolites from plasma samples originating from rats dosed with glyceollins. Precursor peaks of interest were found at m/z 337, 353, 355, 417, and 433. The peak at m/z 337 corresponds to deprotonated glyceollins, whereas the others represent metabolites of glyceollins. Accurate mass measurement confirmed m/z 417 to be a sulfated metabolite of glyceollins. The peak at m/z 433 is also sulfated, but it contains an additional oxygen, as confirmed by accurate mass measurement. The latter metabolite differs from the former likely by the replacement of a hydrogen with a hydroxyl moiety. The peaks at m/z 353 and 355 are proposed to correspond to hydroxylated metabolites of glyceollins, wherein the latter additionally undergoes a double bond reduction.
Collapse
Affiliation(s)
- Syeda S Quadri
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, Louisiana 70148, United States
| | | | | | | |
Collapse
|
45
|
Lee SH, Lee J, Jung MH, Lee YM. Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways. Mol Nutr Food Res 2013; 57:225-34. [PMID: 23229497 DOI: 10.1002/mnfr.201200489] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/09/2012] [Accepted: 10/22/2012] [Indexed: 01/03/2023]
Abstract
SCOPE Glyceollins are a novel class of soybean phytoalexins with potential cancer-preventive and antiestrogenic effects. The angiogenic cascade during tumor development consists of the release of angiogenic factors and binding of angiogenic factors to receptors on endothelial cells to activate downstream signaling pathways. However, the potential medicinal value of glyceollins, especially in antiangiogenesis, remains unexplored. METHODS AND RESULTS Here, we investigated the antiangiogenic activity of glyceollins and their underlying mechanisms. Glyceollins inhibited vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) induced in vitro angiogenic activity. Glyceollins inhibited VEGF receptor-2 or FGF receptor-1 activity and their downstream signaling pathways such as extracellular regulated kinase 1/2, c-Jun N-terminal kinase, as well as p38 mitogen-activated protein kinase and focal adhesion kinase induced by VEGF or bFGF. Glyceollins significantly suppressed VEGF receptor-2 kinase activity assayed by the ELISA. Glyceollins significantly attenuated in vivo and ex vivo microvessel development in a dose-dependent manner and tumor growth by suppressing microvessel density in Lewis lung carcinoma (LLC) mouse xenograft. CONCLUSION Thus, glyceollins, elicited ingredients of soy source, target the signaling pathways mediated by VEGF or bFGF, providing new perspectives into potential therapeutics for preventing and treating hypervascularized diseases including cancer.
Collapse
Affiliation(s)
- Sun H Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
46
|
Antoon JW, White MD, Driver JL, Burow ME, Beckman BS. Sphingosine kinase isoforms as a therapeutic target in endocrine therapy resistant luminal and basal-A breast cancer. Exp Biol Med (Maywood) 2012; 237:832-44. [PMID: 22859737 DOI: 10.1258/ebm.2012.012028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sphingosine kinase signaling has become of increasing interest as a cancer target in recent years. Two sphingosine kinase inhibitors, sphingosine kinase inhibitor (SKI)-II and ABC294640, are promising as potential breast cancer therapies. However, evidence for their therapeutic properties in specific breast cancer subtypes is currently lacking. In this study, we characterize these drugs in luminal, endocrine-resistant (MDA-MB-361) and basal-A, triple-negative (MDA-MB-468) breast cancer cells and compare them with previously published data in other breast cancer cell models. Both SKI-II and ABC294640 demonstrated greater efficacy in basal-A compared with luminal breast cancer. ABC294640, in particular, induced apoptosis and blocked proliferation both in vitro and in vivo in this triple-negative breast cancer system. Furthermore, Sphk expression promotes survival and endocrine therapy resistance in previously sensitive breast cancer cells. Taken together, these results characterize sphingosine kinase inhibitors across breast cancer cell systems and demonstrate their therapeutic potential as anti-cancer agents.
Collapse
Affiliation(s)
- James W Antoon
- Tulane Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
47
|
Antoon JW, Lai R, Struckhoff AP, Nitschke AM, Elliott S, Martin EC, Rhodes LV, Yoon NS, Salvo VA, Shan B, Beckman BS, Nephew KP, Burow ME. Altered death receptor signaling promotes epithelial-to-mesenchymal transition and acquired chemoresistance. Sci Rep 2012; 2:539. [PMID: 22844580 PMCID: PMC3406343 DOI: 10.1038/srep00539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/18/2012] [Indexed: 11/09/2022] Open
Abstract
Altered death receptor signaling and resistance to subsequent apoptosis is an important clinical resistance mechanism. Here, we investigated the role of death receptor resistance in breast cancer progression. Resistance of the estrogen receptor alpha (ER)-positive, chemosensitive MCF7 breast cancer cell line to tumor necrosis factor (TNF) was associated with loss of ER expression and a multi-drug resistant phenotype. Changes in three major pathways were involved in this transition to a multidrug resistance phenotype: ER, Death Receptor and epithelial to mesenchymal transition (EMT). Resistant cells exhibited altered ER signaling, resulting in decreased ER target gene expression. The death receptor pathway was significantly altered, blocking extrinsic apoptosis and increasing NF-kappaB survival signaling. TNF resistance promoted EMT changes, resulting in a more aggressive phenotype. This first report identifying specific mechanisms underlying acquired resistance to TNF could lead to a better understanding of the progression of breast cancer in response to chemotherapy treatment.
Collapse
Affiliation(s)
- James W Antoon
- Departments of Pharmacology, Tulane University School of Medicine, Tulane Avenue, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Boué SM, Isakova IA, Burow ME, Cao H, Bhatnagar D, Sarver JG, Shinde KV, Erhardt PW, Heiman ML. Glyceollins, soy isoflavone phytoalexins, improve oral glucose disposal by stimulating glucose uptake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6376-82. [PMID: 22655912 DOI: 10.1021/jf301057d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Soy glyceollins, induced during stress, have been shown to inhibit cancer cell growth in vitro and in vivo. In the present study, we used prediabetic rats to examine the glyceollins effect on blood glucose. During an oral glucose tolerance test (OGTT), the blood glucose excursion was significantly decreased in the rats treated with oral administration of either 30 or 90 mg/kg glyceollins. Plasma analysis demonstrated that glyceollins are absorbed after oral administration, and duration of exposure extends from 20 min to at least 4 h postadministration. Exposure of 3T3-L1 adipocytes to glyceollins significantly increased both insulin-stimulated and basal glucose uptake. Basal glucose uptake was increased 1.5-fold by exposure to 5 μM glyceollin in a dose-response manner. Coincubation with insulin significantly stimulated maximal glucose uptake above basal uptake levels and tended to increase glucose uptake beyond the levels of either stimulus alone. On a molecular level, polymerase chain reaction showed significantly increased levels of glucose transporter GLUT4 mRNA in 3T3-L1 adipocytes, especially when the cells were exposed to 5 μM glyceollins for 3 h in vitro. It correlated with elevated protein levels of GLUT4 detected in the 5 μM glyceollin-treated cells. Thus, the simulative effect of the glyceollins on adipocyte glucose uptake was attributed to up-regulation of glucose transporters. These findings indicate potential benefits of the glyceollins as an intervention in prediabetic conditions as well as a treatment for type 1 and type 2 diabetes by increasing both the insulin-mediated and the basal, insulin-independent, glucose uptake by adipocytes.
Collapse
Affiliation(s)
- Stephen M Boué
- Southern Regional Research Center, U.S. Department of Agriculture , 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
McLachlan JA, Tilghman SL, Burow ME, Bratton MR. Environmental signaling and reproduction: a comparative biological and chemical perspective. Mol Cell Endocrinol 2012; 354:60-2. [PMID: 22178089 PMCID: PMC3641892 DOI: 10.1016/j.mce.2011.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Reproduction is a critical element of life. Self-propagation in all living organisms ranging from bacteria to humans involves numerous common strategies. Underlying all reproductive strategies is the essential need for signaling molecules to initiate and maintain the process. In this paper we use comparative biological and chemical approaches to explore the origins and distribution of estrogen signaling as a pathway common to many life forms. In the process we illuminate the mechanisms whereby environmental agents alter reproduction and development. These mechanisms involve altered signaling pathways within cells and shifts in the targets of the signaling pathways to include regulators of gene transcription normally associated with other pathways. We also stress the role of signal cross talk in mediating hormone action.
Collapse
Affiliation(s)
- John A. McLachlan
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Department of Ecology and Evolutionary Biology, Tulane University School of Science and Engineering, USA
| | - Syreeta L. Tilghman
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - Matthew E. Burow
- Department of Medicine, Division of Hematology and Oncology, Tulane University School of Medicine, USA
| | - Melyssa R. Bratton
- Environmental Signaling Laboratory, Tulane University, 1430 Tulane Ave., New Orleans, LA 70122, USA
- Department of Pharmacology, Tulane University School of Medicine, USA
- Corresponding author at: Department of Pharmacology, Tulane University,
School of Medicine, USA. Tel.: +1 504 988 6623. (M.R. Bratton)
| |
Collapse
|
50
|
YOON EUNKYUNG, KIM HYUNKYOUNG, CUI SONG, KIM YONGHOON, LEE SANGHAN. Soybean glyceollins mitigate inducible nitric oxide synthase and cyclooxygenase-2 expression levels via suppression of the NF-κB signaling pathway in RAW 264.7 cells. Int J Mol Med 2012; 29:711-7. [PMID: 22246209 PMCID: PMC3573752 DOI: 10.3892/ijmm.2012.887] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022] Open
Abstract
Glyceollins, produced to induce disease resistance responses against specific species, such as an incompatible pathogen Phytophthora sojae in soybeans, have the potential to exhibit anti-inflammatory activity in RAW 264.7 cells. To investigate the anti-inflammatory effects of elicited glyceollins via a signaling pathway, we studied the glyceollin signaling pathway using several assays including RNA and protein expression levels. We found that soybean glyceollins significantly reduced LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, as well as the expression of inducible ΝΟ synthase (iNOS) and cyclooxygenase-2 (COX-2) via the suppression of NF-κB activation. Glyceollins also inhibited the phosphorylation of IκBα kinase (IKK), the degradation of IκBα, and the formation of NF-κB-DNA binding complex in a dose-dependent manner. Furthermore, they inhibited pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-18, but increased the generation of the anti-inflammatory cytokine IL-10. Collectively, the present data show that glyceollins elicit potential anti-inflammatory effects by suppressing the NF-κB signaling pathway in RAW 264.7 cells.
Collapse
Affiliation(s)
- EUN-KYUNG YOON
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701
- N&B Co., Ltd., Techno Building, Kyungpook National University, Daegu 702-832, Republic of Korea
| | - HYUN-KYOUNG KIM
- N&B Co., Ltd., Techno Building, Kyungpook National University, Daegu 702-832, Republic of Korea
| | - SONG CUI
- N&B Co., Ltd., Techno Building, Kyungpook National University, Daegu 702-832, Republic of Korea
| | - YONG-HOON KIM
- N&B Co., Ltd., Techno Building, Kyungpook National University, Daegu 702-832, Republic of Korea
| | - SANG-HAN LEE
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu 702-701
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 702-701
| |
Collapse
|