1
|
Lv K, Yin T, Yu M, Chen Z, Zhou Y, Li F. Treatment Advances in EBV Related Lymphoproliferative Diseases. Front Oncol 2022; 12:838817. [PMID: 35515118 PMCID: PMC9063483 DOI: 10.3389/fonc.2022.838817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Epstein Barr virus (EBV) can affect 90% of the human population. It can invade B lymphocytes, T lymphocytes and natural killer cells of the host and remain in the host for life. The long latency and reactivation of EBV can cause malignant transformation, leading to various lymphoproliferative diseases (LPDs), including EBV-related B-cell lymphoproliferative diseases (EBV-B-LPDs) (for example, Burkitt lymphoma (BL), classic Hodgkin's lymphoma (cHL), and posttransplantation and HIV-related lymphoproliferative diseases) and EBV-related T-cell lymphoproliferative diseases (EBV-T/NK-LPDs) (for example, extranodal nasal type natural killer/T-cell lymphoma (ENKTCL), aggressive NK cell leukaemia (ANKL), and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS). EBV-LPDs are heterogeneous with different clinical features and prognoses. The treatment of EBV-LPDs is usually similar to that of EBV-negative lymphoma with the same histology and can include chemotherapy, radiotherapy, and hematopoietic stem cell transplant (HSCT). However, problems such as serious toxicity and drug resistance worsen the survival prognosis of patients. EBV expresses a variety of viral and lytic proteins that regulate cell cycle and death processes and promote the survival of tumour cells. Based on these characteristics, a series of treatment strategies for EBV in related malignant tumours have been developed, such as monoclonal antibodies, immune checkpoint inhibitors, cytotoxic T lymphocytes (CTLs) and epigenetic therapy. These new individualized therapies can produce highly specific killing effects on tumour cells, and nontumour cells can be protected from toxicity. This paper will focus on the latest progress in the treatment of EBV-LPDs based on pathological mechanisms.
Collapse
Affiliation(s)
- Kebing Lv
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Yin
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Yu
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Zhiwei Chen
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Yulan Zhou
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| | - Fei Li
- Center of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Hematology, Academy of Clinical Medicine of Jiangxi Province, Nanchang, China.,Clinical Research Center for Hematologic Disease of Jiangxi Province, Nanchang, China.,Institute of Lymphoma and Myeloma, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
The Central Role of the Ubiquitin-Proteasome System in EBV-Mediated Oncogenesis. Cancers (Basel) 2022; 14:cancers14030611. [PMID: 35158879 PMCID: PMC8833352 DOI: 10.3390/cancers14030611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Epstein–Barr virus (EBV) is the first discovered human tumor virus, which contributes to the oncogenesis of many human cancers. The ubiquitin–proteasome system is a key player during EBV-mediated oncogenesis and has been developed as a crucial therapeutic target for treatment. In this review, we briefly describe how EBV antigens can modulate the ubiquitin–proteasome system for targeted protein degradation and how they are regulated in the EBV life cycle to mediate oncogenesis. Additionally, the developed proteasome inhibitors are discussed for the treatment of EBV-associated cancers. Abstract Deregulation of the ubiquitin–proteasome system (UPS) plays a critical role in the development of numerous human cancers. Epstein–Barr virus (EBV), the first known human tumor virus, has evolved distinct molecular mechanisms to manipulate the ubiquitin–proteasome system, facilitate its successful infection, and drive opportunistic cancers. The interactions of EBV antigens with the ubiquitin–proteasome system can lead to oncogenesis through the targeting of cellular factors involved in proliferation. Recent studies highlight the central role of the ubiquitin–proteasome system in EBV infection. This review will summarize the versatile strategies in EBV-mediated oncogenesis that contribute to the development of specific therapeutic approaches to treat EBV-associated malignancies.
Collapse
|
3
|
Reid EG, Suazo A, Lensing SY, Dittmer DP, Ambinder RF, Maldarelli F, Gorelick RJ, Aboulafia D, Mitsuyasu R, Dickson MA, Wachsman W. Pilot Trial AMC-063: Safety and Efficacy of Bortezomib in AIDS-associated Kaposi Sarcoma. Clin Cancer Res 2020; 26:558-565. [PMID: 31624104 PMCID: PMC7034393 DOI: 10.1158/1078-0432.ccr-19-1044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE AIDS-related Kaposi sarcoma is often incompletely controlled, requiring serial therapies. Kaposi sarcoma herpesvirus (KSHV) induces transformation of endothelial cells, where it resides in a predominately latent state. We hypothesized proteasome inhibition would have direct antitumor activity, induce lytic activation of KSHV, and inhibit HIV infectivity, improving control of both Kaposi sarcoma and HIV. The primary objective was determining the MTD of bortezomib in AIDS-Kaposi sarcoma. Secondary objectives included estimating the impact of bortezomib on Kaposi sarcoma response, KSHV plasma DNA copy number (PDCN), and HIV viral loads (VL). PATIENTS AND METHODS A 3+3 dose escalation design was employed evaluating four dose levels of bortezomib (0.75, 1, 1.2, or 1.6 mg/m2) administered intravenously on days 1, 8, and 15 of 28-day cycles in patients with relapsed/refractory (r/r) AIDS-Kaposi sarcoma taking antiretroviral therapy. RESULTS Seventeen patients enrolled. No dose-limiting toxicities occurred and the MTD was not reached. The most common adverse events included diarrhea, fatigue and nausea. Among 15 evaluable patients, partial response (PR) occurred in nine (60%), with a PR rate of 83% in the 1.6 mg/m2 cohort; the remainder had stable disease (SD). Median time to response was 2.1 months. Median change in KSHV PDCN was significantly different between those with PR versus SD. During cycle 1, seven of 11 evaluable patients had decreases in HIV VL. CONCLUSIONS Bortezomib is well-tolerated and active in AIDS-Kaposi sarcoma. The 60% PR rate is notable given the dose-finding nature of the study in a r/r population. Changes in KSHV PDCN and HIV VL trended as hypothesized.
Collapse
Affiliation(s)
- Erin G Reid
- University of California, San Diego Moores Cancer Center, La Jolla, California.
| | - Adrienne Suazo
- University of California, San Diego Moores Cancer Center, La Jolla, California
| | - Shelly Y Lensing
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center at the University of North Carolina at Chapel Hill, North Carolina
| | | | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - David Aboulafia
- Floyd and Delores Jones Cancer Institute at Virginia Mason Medical Center, Seattle, Washington
| | - Ronald Mitsuyasu
- Center for AIDS Research and Education, University of California, Los Angeles, Los Angeles, California
| | - Mark A Dickson
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
4
|
Abstract
Molecular imaging enables both spatial and temporal understanding of the complex biologic systems underlying carcinogenesis and malignant spread. Single-photon emission tomography (SPECT) is a versatile nuclear imaging-based technique with ideal properties to study these processes in vivo in small animal models, as well as to identify potential drug candidates and characterize their antitumor action and potential adverse effects. Small animal SPECT and SPECT-CT (single-photon emission tomography combined with computer tomography) systems continue to evolve, as do the numerous SPECT radiopharmaceutical agents, allowing unprecedented sensitivity and quantitative molecular imaging capabilities. Several of these advances, their specific applications in oncology as well as new areas of exploration are highlighted in this chapter.
Collapse
Affiliation(s)
- Benjamin L Franc
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Carina Mari Aparici
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, H2232, MC 5281, Stanford, CA, 94305-5105, USA
| |
Collapse
|
5
|
Safety and efficacy of an oncolytic viral strategy using bortezomib with ICE/R in relapsed/refractory HIV-positive lymphomas. Blood Adv 2019; 2:3618-3626. [PMID: 30573564 DOI: 10.1182/bloodadvances.2018022095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
HIV-associated lymphomas (HALs) have high rates of latent infection by gammaherpesviruses (GHVs). We hypothesized that proteasome inhibition would induce lytic activation of GHVs and inhibit HIV infectivity via preservation of cytidine deaminase APOBEC3G, improving lymphoma control. We tested this oncolytic and antiviral strategy by using bortezomib combined with ifosfamide, carboplatin, and etoposide (ICE) alone or with rituximab (ICE/R) in relapsed/refractory HAL. A 3+3 dose-escalation design was used with a 7-day lead-in period of single-agent bortezomib. Bortezomib was administered intravenously on days 1 and 8 of each cycle at 1 of 4 dose levels: 0.7, 1.0, 1.3, or 1.5 mg/m2 ICE began day 8 of cycle 1 and day 1 of subsequent cycles. Rituximab was included on day 1 of cycles 2 to 6 for CD20+ lymphomas. Twenty-three patients were enrolled. The maximum tolerated dose of bortezomib was not reached. Grade 4 toxicities attributable to bortezomib were limited to myelosuppression. Responses occurred in 17 (77%) of 22 patients receiving any protocol therapy. The 1-year overall survival was 57%. After bortezomib alone, both patients with Kaposi sarcoma herpesvirus (KSHV)-positive lymphoma had more than a 1-log increase in KSHV viral load. In 12 patients with Epstein-Barr virus (EBV)-positive lymphoma, median values of EBV viral load increased. Undetectable HIV viremia at baseline in the majority of patients limited evaluation of HIV inhibition. APOBEC3G levels increased in 75% of evaluable patients. Bortezomib combined with ICE/R in patients with relapsed/refractory HAL is feasible with response and survival comparing favorably against previously reported second-line therapies. Changes in GHV viral loads and APOBEC3G levels trended as hypothesized. This trial was registered at www.clinicaltrials.gov as #NCT00598169.
Collapse
|
6
|
Wang Y, Li Y, Meng X, Duan X, Wang M, Chen W, Tang T, Li Y. Epstein-Barr Virus-Associated T-Cell Lymphoproliferative Disorder Presenting as Chronic Diarrhea and Intestinal Bleeding: A Case Report. Front Immunol 2018; 9:2583. [PMID: 30519236 PMCID: PMC6251325 DOI: 10.3389/fimmu.2018.02583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 12/27/2022] Open
Abstract
Systemic Epstein-Barr virus-positive T-cell lymphoproliferative childhood disease (EBV+ T-LPD) is extremely rare. Primary acute or chronic active Epstein-Barr virus infection triggers EBV+ T-LPD's onset and the disease involves clonal proliferation of infected T-cells with activated cytotoxic phenotype. The adult-onset EBV+ T-LPD (ASEBV+ T-LPD) is even rarer and needs to be extensively studied. Further, according to literature review, it is a challenge to find patients who are immunocompetent and diagnosed with ASEBV+ T-LPD involving gastrointestinal tract. This case report discusses a previously healthy middle aged woman who presented with unique symptoms mimicking inflammatory bowel disease, and required a total colectomy and terminal ileum rectomy, as reveled by endoscopic examinations, due to severe gastrointestinal bleeding. Post-surgery histopathological findings were confirmatory for the diagnosis of ASEBV+ T-LPD (II: Borderline). This patient died 7 months after the diagnosis.
Collapse
Affiliation(s)
- Yaxin Wang
- Department of Gastroenterology, Ordos Central Hospital, Dongsheng, China
| | - Yajun Li
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiangwei Meng
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiumei Duan
- Department of Pathology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Meilan Wang
- Department of Gastroenterology, The Hospital of Jilin Province, Changchun, China
| | - Wenqing Chen
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Novalić Z, Verkuijlen SAWM, Verlaan M, Eersels JLH, de Greeuw I, Molthoff CFM, Middeldorp JM, Greijer AE. Cytolytic virus activation therapy and treatment monitoring for Epstein-Barr virus associated nasopharyngeal carcinoma in a mouse tumor model. J Med Virol 2017; 89:2207-2216. [PMID: 28853217 PMCID: PMC5656928 DOI: 10.1002/jmv.24870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is 100% associated with Epstein‐Barr virus (EBV). Expression of viral proteins in the tumor cells is highly restricted. EBV reactivation by CytoLytic Virus Activation (CLVA) therapy triggers de novo expression of early viral kinases (PK and TK) and uses antiviral treatment to kill activated cells. The mechanism of tumor elimination by CLVA was analyzed in NPC mouse model using C666.1 cells. Valproic acid (VPA) was combined with gemcitabine (GCb) to stimulate EBV reactivation, followed by antiviral treatment with ganciclovir (GCV). A single cycle of CLVA treatment resulted in specific tumor cell killing as indicated by reduced tumor volume, loss of EBV‐positive cells in situ, and paralleled by decreased EBV DNA levels in circulation, which was more pronounced than treatment with GCb alone. In vivo reactivation was confirmed by presence of lytic gene transcripts and proteins in tumors 6 days after GCb/VPA treatment. Virus reactivation was visualized by [124I]‐FIAU accumulation in tumors using PET‐scan. This studied showed that CLVA therapy is a potent EBV‐specific targeting approach for killing tumor cells. The [124I]‐FIAU appears valuable as PET tracer for studies on CLVA drug dosage and kinetics in vivo, and may find clinical application in treatment monitoring.
Collapse
Affiliation(s)
- Zlata Novalić
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Mariska Verlaan
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Jos L H Eersels
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Inge de Greeuw
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Astrid E Greijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lee HG, Kim H, Kim EJ, Park PG, Dong SM, Choi TH, Kim H, Chong CR, Liu JO, Chen J, Ambinder RF, Hayward SD, Park JH, Lee JM. Targeted therapy for Epstein-Barr virus-associated gastric carcinoma using low-dose gemcitabine-induced lytic activation. Oncotarget 2016; 6:31018-29. [PMID: 26427042 PMCID: PMC4741585 DOI: 10.18632/oncotarget.5041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/24/2015] [Indexed: 12/26/2022] Open
Abstract
The constant presence of the viral genome in Epstein-Barr virus (EBV)-associated gastric cancers (EBVaGCs) suggests the applicability of novel EBV-targeted therapies. The antiviral nucleoside drug, ganciclovir (GCV), is effective only in the context of the viral lytic cycle in the presence of EBV-encoded thymidine kinase (TK)/protein kinase (PK) expression. In this study, screening of the Johns Hopkins Drug Library identified gemcitabine as a candidate for combination treatment with GCV. Pharmacological induction of EBV-TK or PK in EBVaGC-originated tumor cells were used to study combination treatment with GCV in vitro and in vivo. Gemcitabine was found to be a lytic inducer via activation of the ataxia telangiectasia-mutated (ATM)/p53 genotoxic stress pathway in EBVaGC. Using an EBVaGC mouse model and a [125I] fialuridine (FIAU)-based lytic activation imaging system, we evaluated gemcitabine-induced lytic activation in an in vivo system and confirmed the efficacy of gemcitabine-GCV combination treatment. This viral enzyme-targeted anti-tumor strategy may provide a new therapeutic approach for EBVaGCs.
Collapse
Affiliation(s)
- Hyun Gyu Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyemi Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Jung Kim
- Radiopharmaceutical Research Team, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Pil-Gu Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Myung Dong
- Research Institute, National Cancer Center, Goyang, Gyeonggi-do, Republic of Korea
| | - Tae Hyun Choi
- Radiopharmaceutical Research Team, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Curtis R Chong
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, MA, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianmeng Chen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard F Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Diane Hayward
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeon Han Park
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Old MO, Wise-Draper T, Wright CL, Kaur B, Teknos T. The current status of oncolytic viral therapy for head and neck cancer. World J Otorhinolaryngol Head Neck Surg 2016; 2:84-89. [PMID: 29204552 PMCID: PMC5698520 DOI: 10.1016/j.wjorl.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/11/2016] [Indexed: 11/29/2022] Open
Abstract
Objective Cancer affects the head and neck region frequently and leads to significant morbidity and mortality. Oncolytic viral therapy has the potential to make a big impact in cancers that affect the head and neck. We intend to review the current state of oncolytic viruses in the treatment of cancers that affect the head and neck region. Method Data sources are from National clinical trials database, literature, and current research. Results There are many past and active trials for oncolytic viruses that show promise for treating cancers of the head and neck. The first oncolytic virus was approved by the FDA October 2015 (T-VEC, Amgen) for the treatment of melanoma. Active translational research continues for this and many other oncolytic viruses. Conclusion The evolving field of oncolytic viruses is impacting the treatment of head and neck cancer and further trials and agents are moving forward in the coming years.
Collapse
Affiliation(s)
- Matthew O Old
- Department of Otolaryngology - Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, Wexner Medical Center at The Ohio State University, USA
| | - Trisha Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, USA
| | - Chadwick L Wright
- Wright Center of Innovation in Biomedical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, USA
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-Oncology and Neurosciences, The Ohio State University Comprehensive Cancer Center, USA
| | - Theodoros Teknos
- Department of Otolaryngology - Head and Neck Surgery, The James Cancer Hospital and Solove Research Institute, Wexner Medical Center at The Ohio State University, USA
| |
Collapse
|
10
|
Zhang XM, Zhang HH, McLeroth P, Berkowitz RD, Mont MA, Stabin MG, Siegel BA, Alavi A, Barnett TM, Gelb J, Petit C, Spaltro J, Cho SY, Pomper MG, Conklin JJ, Bettegowda C, Saha S. [(124)I]FIAU: Human dosimetry and infection imaging in patients with suspected prosthetic joint infection. Nucl Med Biol 2016; 43:273-9. [PMID: 27150029 DOI: 10.1016/j.nucmedbio.2016.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/10/2015] [Accepted: 01/27/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Fialuridine (FIAU) is a nucleoside analog that is a substrate for bacterial thymidine kinase (TK). Once phosphorylated by TK, [(124)I]FIAU becomes trapped within bacteria and can be detected with positron emission tomography/computed tomography (PET/CT). [(124)I]FIAU PET/CT has been shown to detect bacteria in patients with musculoskeletal bacterial infections. Accurate diagnosis of prosthetic joint infections (PJIs) has proven challenging because of the lack of a well-validated reference. In the current study, we assessed biodistribution and dosimetry of [(124)I]FIAU, and investigated whether [(124)I]FIAU PET/CT can diagnose PJIs with acceptable accuracy. METHODS To assess biodistribution and dosimetry, six subjects with suspected hip or knee PJI and six healthy subjects underwent serial PET/CT after being dosed with 74MBq (2mCi) [(124)I]FIAU intravenously (IV). Estimated radiation doses were calculated with the OLINDA/EXM software. To determine accuracy of [(124)I]FIAU, 22 subjects with suspected hip or knee PJI were scanned at 2-6 and 24-30h post IV injection of 185MBq (5mCi) [(124)I]FIAU. Images were interpreted by a single reader blinded to clinical information. Representative cases were reviewed by 3 additional readers. The utility of [(124)I]FIAU to detect PJIs was assessed based on the correlation of the patient's infection status with imaging results as determined by an independent adjudication board (IAB). RESULTS The kidney, liver, spleen, and urinary bladder received the highest radiation doses of [(124)I]FIAU. The effective dose was 0.16 to 0.20mSv/MBq and doses to most organs ranged from 0.11 to 0.76mGy/MBq. PET image quality obtained from PJI patients was confounded by metal artifacts from the prostheses and pronounced FIAU uptake in muscle. Consequently, a correlation with infection status and imaging results could not be established. CONCLUSIONS [(124)I]FIAU was well-tolerated in healthy volunteers and subjects with suspected PJI, and had acceptable dosimetry. However, the utility of [(124)I]FIAU for the clinical detection of PJIs is limited by poor image quality and low specificity.
Collapse
Affiliation(s)
| | - Halle H Zhang
- BioMed Valley Discoveries Inc., Kansas City, Missouri
| | | | | | - Michael A Mont
- The Rubin Institute for Advanced Orthopedics, Sinai Hospital, Baltimore, Maryland
| | - Michael G Stabin
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Steve Y Cho
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland
| | | | - Chetan Bettegowda
- Department of Neurology, The Johns Hopkins Medical Institutes, Baltimore, Maryland
| | - Saurabh Saha
- BioMed Valley Discoveries Inc., Kansas City, Missouri.
| |
Collapse
|
11
|
Identification of Novel Small Organic Compounds with Diverse Structures for the Induction of Epstein-Barr Virus (EBV) Lytic Cycle in EBV-Positive Epithelial Malignancies. PLoS One 2015; 10:e0145994. [PMID: 26717578 PMCID: PMC4696655 DOI: 10.1371/journal.pone.0145994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/19/2015] [Indexed: 11/20/2022] Open
Abstract
Phorbol esters, which are protein kinase C (PKC) activators, and histone deacetylase (HDAC) inhibitors, which cause enhanced acetylation of cellular proteins, are the main classes of chemical inducers of Epstein-Barr virus (EBV) lytic cycle in latently EBV-infected cells acting through the PKC pathway. Chemical inducers which induce EBV lytic cycle through alternative cellular pathways may aid in defining the mechanisms leading to lytic cycle reactivation and improve cells' responsiveness towards lytic induction. We performed a phenotypic screening on a chemical library of 50,240 novel small organic compounds to identify novel class(es) of strong inducer(s) of EBV lytic cycle in gastric carcinoma (GC) and nasopharyngeal carcinoma (NPC) cells. Five hit compounds were selected after three successive rounds of increasingly stringent screening. All five compounds are structurally diverse from each other and distinct from phorbol esters or HDAC inhibitors. They neither cause hyperacetylation of histone proteins nor significant PKC activation at their working concentrations, suggesting that their biological mode of action are distinct from that of the known chemical inducers. Two of the five compounds with rapid lytic-inducing action were further studied for their mechanisms of induction of EBV lytic cycle. Unlike HDAC inhibitors, lytic induction by both compounds was not inhibited by rottlerin, a specific inhibitor of PKCδ. Interestingly, both compounds could cooperate with HDAC inhibitors to enhance EBV lytic cycle induction in EBV-positive epithelial cancer cells, paving way for the development of strategies to increase cells' responsiveness towards lytic reactivation. One of the two compounds bears structural resemblance to iron chelators and the other strongly activates the MAPK pathways. These structurally diverse novel organic compounds may represent potential new classes of chemicals that can be used to investigate any alternative mechanism(s) leading to EBV lytic cycle reactivation from latency.
Collapse
|
12
|
Polizzotto MN, Millo C, Uldrick TS, Aleman K, Whatley M, Wyvill KM, O'Mahony D, Marshall V, Whitby D, Maass-Moreno R, Steinberg SM, Little RF, Yarchoan R. 18F-fluorodeoxyglucose Positron Emission Tomography in Kaposi Sarcoma Herpesvirus-Associated Multicentric Castleman Disease: Correlation With Activity, Severity, Inflammatory and Virologic Parameters. J Infect Dis 2015; 212:1250-60. [PMID: 25828248 PMCID: PMC4577043 DOI: 10.1093/infdis/jiv204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a lymphoproliferative inflammatory disorder commonly associated with human immunodeficiency virus (HIV). Its presentation may be difficult to distinguish from HIV and its complications, including lymphoma. Novel imaging strategies could address these problems. METHODS We prospectively characterized (18)F-fluorodeoxyglucose positron emission tomography (PET) findings in 27 patients with KSHV-MCD. Patients were imaged with disease activity and at remission with scans evaluated blind to clinical status. Symptoms, C-reactive protein level, and HIV and KSHV loads were assessed in relation to imaging findings. RESULTS KSHV-MCD activity was associated with hypermetabolic symmetric lymphadenopathy (median maximal standardized uptake value [SUVmax], 6.0; range, 2.0-8.0) and splenomegaly (3.4; 1.2-11.0), with increased metabolism also noted in the marrow (2.1; range, 1.0-3.5) and salivary glands (3.0; range, 2.0-6.0). The (18)F-fluorodeoxyglucose PET abnormalities improved at remission, with significant SUVmax decreases in the lymph nodes (P = .004), spleen (P = .008), marrow (P = .004), and salivary glands (P = .004). Nodal SUVmax correlated with symptom severity (P = .005), C-reactive protein level (R = 0.62; P = .004), and KSHV load (R = 0.54; P = .02) but not HIV load (P = .52). CONCLUSIONS KSHV-MCD activity is associated with (18)F-FDG PET abnormalities of the lymph nodes, spleen, marrow, and salivary glands. These findings have clinical implications for the diagnosis and monitoring of KSHV-MCD and shed light on its pathobiologic mechanism.
Collapse
Affiliation(s)
| | - Corina Millo
- Positron Emission Tomography Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda
| | | | | | - Millie Whatley
- Positron Emission Tomography Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda
| | | | | | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Cancer Laboratory for Cancer Research, Maryland
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Cancer Laboratory for Cancer Research, Maryland
| | - Roberto Maass-Moreno
- Positron Emission Tomography Department, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute
| | | | | |
Collapse
|
13
|
Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: Characterization of PET/CT and PET/MR Scanners for a Comprehensive Set of Positron Emitters of Growing Application--18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med 2015; 56:1285-91. [PMID: 26135111 DOI: 10.2967/jnumed.115.156711] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/23/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED This study aimed to investigate image quality for a comprehensive set of isotopes ((18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y) on 2 clinical scanners: a PET/CT scanner and a PET/MR scanner. METHODS Image quality and spatial resolution were tested according to NU 2-2007 of the National Electrical Manufacturers Association. An image-quality phantom was used to measure contrast recovery, residual bias in a cold area, and background variability. Reconstruction methods available on the 2 scanners were compared, including point-spread-function correction for both scanners and time of flight for the PET/CT scanner. Spatial resolution was measured using point sources and filtered backprojection reconstruction. RESULTS With the exception of (90)Y, small differences were seen in the hot-sphere contrast recovery of the different isotopes. Cold-sphere contrast recovery was similar across isotopes for all reconstructions, with an improvement seen with time of flight on the PET/CT scanner. The lower-statistic (90)Y scans yielded substantially lower contrast recovery than the other isotopes. When isotopes were compared, there was no difference in measured spatial resolution except for PET/MR axial spatial resolution, which was significantly higher for (124)I and (68)Ga. CONCLUSION Overall, both scanners produced good images with (18)F, (11)C, (89)Zr, (124)I, (68)Ga, and (90)Y.
Collapse
Affiliation(s)
| | - Jasper Chaal
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Gabriel Tjio
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - John J Totman
- A*STAR-NUS Clinical Imaging Research Center, Singapore
| | - Maurizio Conti
- Siemens Healthcare Molecular Imaging, Knoxville, Tennessee; and
| | - David W Townsend
- A*STAR-NUS Clinical Imaging Research Center, Singapore Department of Diagnostic Radiology, National University Hospital, Singapore
| |
Collapse
|
14
|
Lorenzetti MA, Gantuz M, Altcheh J, De Matteo E, Chabay PA, Preciado MV. Epstein-Barr virus BZLF1 gene polymorphisms: malignancy related or geographically distributed variants? Clin Microbiol Infect 2014; 20:O861-9. [PMID: 24666405 DOI: 10.1111/1469-0691.12631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/29/2022]
Abstract
The ubiquitous Epstein-Barr virus (EBV) is related to the development of several lymphoid and epithelial malignancies and is also the aetiological agent for infectious mononucleosis (IM). BZLF1, an immediate early gene, plays a key role in modulating the switch from latency to lytic replication, hence enabling viral propagation. Polymorphic variations in the coded protein have been studied in other geographical regions in a search for viral factors that are inherent to malignancies and differ from those present in benign infections. In the present study, in samples of paediatric patients with benign IM and paediatric patients with malignant lymphomas, we detected previously described sequence variations as well as distinctive sequence polymorphisms from our region. By means of phylogenetic reconstruction, we characterized new phylogenetically distinct variants. Moreover, we described an association between specific variants and the studied pathologies in our region, particularly variant BZLF1-A2 with lymphomas and BZLF1-C with IM. Additionally, length polymorphisms within intron 1 were also assessed and compared between pathologies resulting in an association between 29-bp repeated units and lymphomas. In conclusion, this is the first report to characterize BZLF1 gene polymorphisms in paediatric patients from our geographical region and to suggest the association of these polymorphisms with malignant lymphomas.
Collapse
Affiliation(s)
- M A Lorenzetti
- Molecular Biology Laboratory, Pathology Division, Ricardo Gutiérrez Children Hospital, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Fujiwara S, Kimura H, Imadome KI, Arai A, Kodama E, Morio T, Shimizu N, Wakiguchi H. Current research on chronic active Epstein-Barr virus infection in Japan. Pediatr Int 2014; 56:159-66. [PMID: 24528553 DOI: 10.1111/ped.12314] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Epstein-Barr virus (EBV) infection is usually asymptomatic and persists lifelong. Although EBV-infected B cells have the potential for unlimited proliferation, they are effectively removed by the virus-specific cytotoxic T cells, and EBV-associated lymphoproliferative disease develops only in immunocompromised hosts. Rarely, however, individuals without apparent immunodeficiency develop chronic EBV infection with persistent infectious mononucleosis-like symptoms. These patients have high EBV-DNA load in the peripheral blood and systemic clonal expansion of EBV-infected T cells or natural killer (NK) cells. Their prognosis is poor with life-threatening complications including hemophagocytic lymphohistiocytosis, organ failure, and malignant lymphomas. The term "chronic active EBV infection" (CAEBV) is now generally used for this disease. The geographical distribution of CAEBV is markedly uneven and most cases have been reported from Japan and other East Asian countries. Here we summarize the current understanding of CAEBV and describe the recent progress of CAEBV research in Japan.
Collapse
Affiliation(s)
- Shigeyoshi Fujiwara
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bortezomib-induced Epstein-Barr virus and Kaposi sarcoma herpesvirus lytic gene expression: oncolytic strategies. Curr Opin Oncol 2013; 23:482-7. [PMID: 21788895 DOI: 10.1097/cco.0b013e3283499c37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Gamma herpesviruses (GHVs) are responsible for a substantial proportion of virus-associated human cancers, particularly in immunocompromised individuals. Methods that employ lytic activation of viruses latently infecting tumors represent a novel strategy of antineoplastic therapy. RECENT FINDINGS The proteasome inhibitor, bortezomib, has been shown to be a potent activator of GHV lytic cycle and has demonstrated activity in case reports of GHV-related malignancies. Although initial reports implicated the inhibition of the NF-κB pathway, more recent studies identify alternative pathways responsible for bortezomib-mediated lytic induction of GHVs and activity against the malignancies that harbor them. SUMMARY Further exploration of proteasome inhibition as an oncolytic strategy is warranted and will require clinical/translational trials to determine whether lytic induction of GHVs correlates with clinical response to bortezomib, and, if so, to optimize this oncolytic strategy.
Collapse
|
17
|
Kelly KM, Hodgson D, Appel B, Chen L, Cole PD, Horton T, Keller FG. Children's Oncology Group's 2013 blueprint for research: Hodgkin lymphoma. Pediatr Blood Cancer 2013; 60:972-8. [PMID: 23255501 DOI: 10.1002/pbc.24423] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/07/2012] [Indexed: 02/01/2023]
Abstract
In childhood Hodgkin lymphoma, estimated 5 years survival rates exceed 90%. Long-term survival continues to decline from delayed toxicities. Key findings from recent Children's Oncology Group trials include: (1) Radiotherapy selection may be based on early chemotherapy response assessed by both FDG-PET and CT imaging, (2) A new prognostic factor score stratifies patients into risk categories; and (3) novel retrieval regimens were identified. A phase I/II trial is investigating Brentuximab vedotin (Bv) with gemcitabine in relapsed patients. A phase 3 trial will modify conventional chemotherapy and radiotherapy approaches through the addition of Bv, while incorporating translational biology to identify molecular targets.
Collapse
Affiliation(s)
- Kara M Kelly
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Byun Y, Pullambhatla M, Wang H, Mease RC, Pomper MG. Synthesis and Biological Evaluation of Substrate-Based Imaging Agents for the Prostate-Specific Membrane Antigen. Macromol Res 2013; 21:565-573. [PMID: 25328507 DOI: 10.1007/s13233-013-1050-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is an attractive target for the imaging of prostate cancer (PCa) due to the elevated expression on the surface of prostate tumor cells. Most PSMA-targeted low molecular weight imaging agents are inhibitors of PSMA. We have synthesized a series of substrate-based PSMA-targeted imaging agents by mimicking poly-γ-glutamyl folic acid, an endogenous substrate of PSMA. In vitro the γ-linked polyglutamate conjugates proved to be better substrates than the corresponding α-linked glutamates. However, in vivo imaging studies of γ-ray-emitting and γ-linked glutamates did not demonstrate selective uptake in PSMA-pos-itive over PSMA-negative tumors. Subsequent chromatographic studies and in silico molecular dynamics simulations indicated that hydrolysis of the substrates is slow and access to the enzymatic active site is limited. These results inform the design of future substrate-based imaging agents for PSMA.
Collapse
Affiliation(s)
- Youngjoo Byun
- Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA ; College of Pharmacy, Korea University, Chungnam 339-700, Korea
| | - Mrudula Pullambhatla
- Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Haofan Wang
- Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Ronnie C Mease
- Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | - Martin G Pomper
- Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| |
Collapse
|
19
|
Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, Ramos JC. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest 2013; 123:2616-28. [PMID: 23635777 DOI: 10.1172/jci64503] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 02/28/2013] [Indexed: 12/26/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a rare form of aggressive B cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). Current chemotherapy approaches result in dismal outcomes, and there is an urgent need for new PEL therapies. Previously, we established, in a direct xenograft model of PEL-bearing immune-compromised mice, that treatment with the proteasome inhibitor, bortezomib (Btz), increased survival relative to that after treatment with doxorubicin. Herein, we demonstrate that the combination of Btz with the histone deacetylase (HDAC) inhibitor suberoylanilidehydroxamic acid (SAHA, also known as vorinostat) potently reactivates KSHV lytic replication and induces PEL cell death, resulting in significantly prolonged survival of PEL-bearing mice. Importantly, Btz blocked KSHV late lytic gene expression, terminally inhibiting the full lytic cascade and production of infectious virus in vivo. Btz treatment led to caspase activation and induced DNA damage, as evidenced by the accumulation of phosphorylated γH2AX and p53. The addition of SAHA to Btz treatment was synergistic, as SAHA induced early acetylation of p53 and reduced interaction with its negative regulator MDM2, augmenting the effects of Btz. The eradication of KSHV-infected PEL cells without increased viremia in mice provides a strong rationale for using the proteasome/HDAC inhibitor combination therapy in PEL.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Uldrick TS, Polizzotto MN, Yarchoan R. Recent advances in Kaposi sarcoma herpesvirus-associated multicentric Castleman disease. Curr Opin Oncol 2012; 24:495-505. [PMID: 22729151 PMCID: PMC6322210 DOI: 10.1097/cco.0b013e328355e0f3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The discovery of Kaposi sarcoma herpesvirus (KSHV) led to recognition of KSHV-associated multicentric Castleman disease (MCD) as a distinct lymphoproliferative disorder. The pathogenesis of KSHV-MCD is attributed to proliferation of KSHV-infected B cells, production of KSHV-encoded viral interleukin 6 by these cells, and dysregulation of human interleukin 6 and interleukin 10. This article reviews advances in the field of disease pathogenesis and targeted therapies. RECENT FINDINGS Our understanding of the pathogenesis of KSHV-MCD has increased in recent years and improved therapies have been developed. Recent studies demonstrate that the anti-CD20 monoclonal antibody, rituximab, as well as virus-activated cytotoxic therapy using high-dose zidovudine and valganciclovir, can control symptoms and decrease adenopathy. With treatment, 1-year survival now exceeds 85%. Interestingly, even in the absence of pathologic findings of MCD, KSHV-infected patients may have inflammatory symptoms, excess cytokine production, and elevated KSHV viral load similar to KSHV-associated MCD. The term KSHV-associated inflammatory cytokine syndrome has been proposed to describe such patients. SUMMARY Recent advances in targeted therapy have improved outcomes in KSHV-MCD, and decreased need for cytotoxic chemotherapy. Improved understanding of the pathogenesis of KSHV-MCD and KSHV-associated inflammatory cytokine syndrome is needed, and will likely lead to additional advances in therapy for these disorders.
Collapse
Affiliation(s)
- Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
21
|
An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol 2012; 86:7976-87. [PMID: 22623780 DOI: 10.1128/jvi.00770-12] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.
Collapse
|
22
|
SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol 2012; 86:5412-21. [PMID: 22398289 DOI: 10.1128/jvi.00314-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
An Epstein-Barr virus (EBV) protein microarray was used to screen for proteins binding noncovalently to the small ubiquitin-like modifier SUMO2. Among the 11 SUMO binding proteins identified was the conserved protein kinase BGLF4. The mutation of potential SUMO interaction motifs (SIMs) in BGLF4 identified N- and C-terminal SIMs. The mutation of both SIMs changed the intracellular localization of BGLF4 from nuclear to cytoplasmic, while BGLF4 mutated in the N-terminal SIM remained predominantly nuclear. The mutation of the C-terminal SIM yielded an intermediate phenotype with nuclear and cytoplasmic staining. The transfer of BGLF4 amino acids 342 to 359 to a nuclear green fluorescent protein (GFP)-tagged reporter protein led to the relocalization of the reporter to the cytoplasm. Thus, the C-terminal SIM lies adjacent to a nuclear export signal, and coordinated SUMO binding by the N- and C-terminal SIMs blocks export and allows the nuclear accumulation of BGLF4. The mutation of either SIM prevented SUMO binding in vitro. The ability of BGLF4 to abolish the SUMOylation of the EBV lytic cycle transactivator ZTA was dependent on both BGLF4 SUMO binding and BGLF4 kinase activity. The global profile of SUMOylated cell proteins was also suppressed by BGLF4 but not by the SIM or kinase-dead BGLF4 mutant. The effective BGLF4-mediated dispersion of promyelocytic leukemia (PML) bodies was dependent on SUMO binding. The SUMO binding function of BGLF4 was also required to induce the cellular DNA damage response and to enhance the production of extracellular virus during EBV lytic replication. Thus, SUMO binding by BGLF4 modulates BGLF4 function and affects the efficiency of lytic EBV replication.
Collapse
|
23
|
Advances in Virus-Directed Therapeutics against Epstein-Barr Virus-Associated Malignancies. Adv Virol 2012; 2012:509296. [PMID: 22500168 PMCID: PMC3303631 DOI: 10.1155/2012/509296] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/24/2011] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is the causal agent in the etiology of Burkitt's lymphoma and nasopharyngeal carcinoma and is also associated with multiple human malignancies, including Hodgkin's and non-Hodgkin's lymphoma, and posttransplantation lymphoproliferative disease, as well as sporadic cancers of other tissues. A causal relationship of EBV to these latter malignancies remains controversial, although the episomic EBV genome in most of these cancers is clonal, suggesting infection very early in the development of the tumor and a possible role for EBV in the genesis of these diseases. Furthermore, the prognosis of these tumors is invariably poor when EBV is present, compared to their EBV-negative counterparts. The physical presence of EBV in these tumors represents a potential "tumor-specific" target for therapeutic approaches. While treatment options for other types of herpesvirus infections have evolved and improved over the last two decades, however, therapies directed at EBV have lagged. A major constraint to pharmacological intervention is the shift from lytic infection to a latent pattern of gene expression, which persists in those tumors associated with the virus. In this paper we provide a brief account of new virus-targeted therapeutic approaches against EBV-associated malignancies.
Collapse
|
24
|
Hobbs RF, Baechler S, Fu DX, Esaias C, Pomper MG, Ambinder RF, Sgouros G. A model of cellular dosimetry for macroscopic tumors in radiopharmaceutical therapy. Med Phys 2011; 38:2892-903. [PMID: 21815364 DOI: 10.1118/1.3576051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Collapse
Affiliation(s)
- Robert F Hobbs
- Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sheikh TI, Qadri I. Expression of EBV encoded viral RNA 1, 2 and anti-inflammatory cytokine (interleukin-10) in FFPE lymphoma specimens: a preliminary study for diagnostic implication in Pakistan. Diagn Pathol 2011; 6:70. [PMID: 21791113 PMCID: PMC3157411 DOI: 10.1186/1746-1596-6-70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 07/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Epstein Barr Virus (EBV) plays a significant role as a cofactor in the process of tumorigenesis and has consistently been associated with a variety of malignancies. EBV encoded RNAs (EBER1 and EBER2) are the most abundant viral transcripts in latently EBV-infected cells and their role in viral infection is still unclear. Formalin Fixed Paraffin Embedded (FFPE) tissues of surgically removed carcinoma biopsies are widely available form but have never been exploited for expressional studies previously in Pakistan. Immunohistochemistry (IHC) and in situ hybridization (ISH) in FFPE biopsy tissues remains the gold standard for proving EBV relationship in a histopathological lesion but their reagents associated limitations confines their reliability in some applications. Recently introduced targeted drug delivery systems induce viral lytic gene expression and therefore require more sensitive method to quantify viral as well as cellular gene expression. Methods Eight (8) lymphoma samples were screened to detect the EBV genome. Qualitative and quantitative expression of EBV Encoded RNAs (EBER1, EBER2) and anti-inflammatory cytokine (interleukin-10) in FFPE EBV positive lymphoma tissue samples were then analysed by using Reverse transcriptase Polymerase Chain Reaction (RT-PCR) and Real Time Polymerase Chain Reaction (qRT-PCR), respectively. Results In this study we have successfully quantified elevated expressional levels of both cellular and viral transcripts, namely EBER1, EBER2 and anti-inflammatory cytokine (IL-10) in the FFPE Burkitt's lymphoma (BL) specimens of Pakistani origin. Conclusions These results indicate that FFPE samples may retain viral as well as cellular RNA expression information at detectable level. To our knowledge, this is first study which represents elevated expressional levels of EBER1, EBER2 and IL-10 in FFPE tissue samples of Burkitt's lymphoma in Pakistan. These observations will potentially improve current lacunas in clinical as well as diagnostic practices in Pakistan and can be further exploited to develop new strategies for studying cellular and/or viral gene expression.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- NUST Center of Virology and Immunology, National University of Sciences & Technology, Islamabad, Pakistan.
| | | |
Collapse
|
26
|
Uldrick TS, Polizzotto MN, Aleman K, O'Mahony D, Wyvill KM, Wang V, Marshall V, Pittaluga S, Steinberg SM, Tosato G, Whitby D, Little RF, Yarchoan R. High-dose zidovudine plus valganciclovir for Kaposi sarcoma herpesvirus-associated multicentric Castleman disease: a pilot study of virus-activated cytotoxic therapy. Blood 2011; 117:6977-86. [PMID: 21487108 PMCID: PMC3143547 DOI: 10.1182/blood-2010-11-317610] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 03/31/2011] [Indexed: 11/20/2022] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV)-associated multicentric Castleman disease (MCD) is a lymphoproliferative disorder most commonly observed in HIV-infected patients. It is characterized by KSHV-infected plasmablasts that frequently express lytic genes. Patients manifest inflammatory symptoms attributed to overproduction of KSHV viral IL-6, human IL-6, and human IL-6. There is no standard therapy and no established response criteria. We investigated an approach targeting 2 KSHV lytic genes, ORF36 and ORF21, the protein of which, respectively, phosphorylate ganciclovir and zidovudine to toxic moieties. In a pilot study, 14 HIV-infected patients with symptomatic KSHV-MCD received high-dose zidovudine (600 mg orally every 6 hours) and the oral prodrug, valganciclovir (900 mg orally every 12 hours). Responses were evaluated using new response criteria. A total of 86% of patients attained major clinical responses and 50% attained major biochemical responses. Median progression-free survival was 6 months. With 43 months of median follow-up, overall survival was 86% at 12 months and beyond. At the time of best response, the patients showed significant improvements in C-reactive protein, albumin, platelets, human IL-6, IL-10, and KSHV viral load. The most common toxicities were hematologic. These observations provide evidence that therapy designed to target cells with lytic KSHV replication has activity in KSHV-MCD. This trial was registered at www.clinicaltrials.gov as #NCT00099073.
Collapse
Affiliation(s)
- Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Iwata S, Yano S, Ito Y, Ushijima Y, Gotoh K, Kawada JI, Fujiwara S, Sugimoto K, Isobe Y, Nishiyama Y, Kimura H. Bortezomib induces apoptosis in T lymphoma cells and natural killer lymphoma cells independent of Epstein-Barr virus infection. Int J Cancer 2011; 129:2263-73. [PMID: 21170988 DOI: 10.1002/ijc.25873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 11/30/2010] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV), which infects not only B cells, but also T cells and natural killer (NK) cells, is associated with multiple lymphoid malignancies. Recently, the proteasome inhibitor bortezomib was reported to induce apoptosis of EBV-transformed B cells. We evaluated the killing effect of this proteasome inhibitor on EBV-associated T lymphoma cells and NK lymphoma cells. First, we found that bortezomib treatment decreased the viability of multiple T and NK cell lines. No significant difference was observed between EBV-positive and EBV-negative cell lines. The decreased viability in response to bortezomib treatment was abrogated by a pan-caspase inhibitor. The induction of apoptosis was confirmed by flow cytometric assessment of annexin V staining. Additionally, cleavage of caspases and polyadenosine diphosphate-ribose polymerase, increased expression of phosphorylated IκB, and decreased expression of inhibitor of apoptotic proteins were detected by immunoblotting in bortezomib-treated cell lines. We found that bortezomib induced lytic infection in EBV-positive T cell lines, although the existence of EBV did not modulate the killing effect of bortezomib. Finally, we administered bortezomib to peripheral blood mononuclear cells from five patients with EBV-associated lymphoproliferative diseases. Bortezomib had a greater killing effect on EBV-infected cells. These results indicate that bortezomib killed T or NK lymphoma cells by inducing apoptosis, regardless of the presence or absence of EBV.
Collapse
Affiliation(s)
- Seiko Iwata
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bortezomib induction of C/EBPβ mediates Epstein-Barr virus lytic activation in Burkitt lymphoma. Blood 2011; 117:6297-303. [PMID: 21447826 DOI: 10.1182/blood-2011-01-332379] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with a variety of lymphoid malignancies. Bortezomib activates EBV lytic gene expression. Bortezomib, a proteasome inhibitor, leads to increased levels of CCAAT/enhancer-binding proteinβ (C/EBPβ) in a variety of tumor cell lines. C/EBPβ activates the promoter of the EBV lytic switch gene ZTA. Bortezomib treatment leads to increased binding of C/EBP to previously recognized binding sites in the ZTA promoter. Knockdown of C/EBPβ inhibits bortezomib activation of EBV lytic gene expression. Bortezomib also induces the unfolded protein response (UPR), as evidenced by increases in ATF4, CHOP10, and XBP1s and cleavage of ATF6. Thapsigargin, an inducer of the UPR that does not interfere with proteasome function, also induces EBV lytic gene expression. The effects of thapsigargin on EBV lytic gene expression are also inhibited by C/EBPβ knock-down. Therefore, C/EBPβ mediates the activation of EBV lytic gene expression associated with bortezomib and another UPR inducer.
Collapse
|
29
|
Li Z, Cai H, Conti PS. Automated synthesis of 2'-deoxy-2'-[18F]fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([18F]-FMAU) using a one reactor radiosynthesis module. Nucl Med Biol 2010; 38:201-6. [PMID: 21315275 DOI: 10.1016/j.nucmedbio.2010.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/15/2010] [Accepted: 08/25/2010] [Indexed: 10/18/2022]
Abstract
2'-Deoxy-2'-[(18)F]fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([(18)F]-FMAU) is an established PET probe used to monitor cellular proliferation. For clinical applications, a fully automated cGMP-compliant radiosynthesis would be preferred. However, the current synthesis of [(18)F]-FMAU requires a multistep procedure, making the development of an automated protocol difficult and complicated. Recently, we have developed a significantly simplified one-pot reaction condition for the synthesis of [(18)F]-FMAU in the presence of Friedel-Crafts catalysts. Here, we report a fully automated synthesis of [(18)F]-FMAU based on a one reactor radiosynthesis module using our newly developed synthetic method. The product was purified on a semi-preparative high-performance liquid chromatography integrated with the synthesis module using 6% EtOH in 10 mM phosphate buffer or 8% MeCN/water. [(18)F]-FMAU was obtained in 12±3% radiochemical yield (decay corrected overall yield based on [(18)F]-F(-), n=4) with 383±33 mCi/μmol specific activity at the time of injection. The α/β anomer ratio was 4:6. The overall reaction time was about 150 min from the end of bombardment and the radiochemical purity was >99%. This automated synthesis should also be suitable for the production of other 5-substituted thymidine analogues.
Collapse
Affiliation(s)
- Zibo Li
- Department of Radiology, Keck School of Medicine, Molecular Imaging Center, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
30
|
Bray M, Di Mascio M, de Kok-Mercado F, Mollura DJ, Jagoda E. Radiolabeled antiviral drugs and antibodies as virus-specific imaging probes. Antiviral Res 2010; 88:129-142. [PMID: 20709111 PMCID: PMC7125728 DOI: 10.1016/j.antiviral.2010.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/09/2010] [Indexed: 12/04/2022]
Abstract
A number of small-molecule drugs inhibit viral replication by binding directly to virion structural proteins or to the active site of a viral enzyme, or are chemically modified by a viral enzyme before inhibiting a downstream process. Similarly, antibodies used to prevent or treat viral infections attach to epitopes on virions or on viral proteins expressed on the surface of infected cells. Such drugs and antibodies can therefore be thought of as probes for the detection of viral infections, suggesting that they might be used as radiolabeled tracers to visualize sites of viral replication by single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. A current example of this approach is the PET imaging of herpes simplex virus infections, in which the viral thymidine kinase phosphorylates radiolabeled thymidine analogues, trapping them within infected cells. One of many possible future applications might be the use of a radiolabeled hepatitis C protease inhibitor to image infection in animals or humans and provide a quantitative measure of viral burden. This article reviews the basic features of radionuclide imaging and the characteristics of ideal tracer molecules, and discusses how antiviral drugs and antibodies could be evaluated for their suitability as virus-specific imaging probes. The use of labeled drugs as low-dose tracers would provide an alternative application for compounds that have failed to advance to clinical use because of insufficient in vivo potency, an unsuitable pharmacokinetic profile or hepato- or nephrotoxicity.
Collapse
Affiliation(s)
- Mike Bray
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Michele Di Mascio
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fabian de Kok-Mercado
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, MD 21702, United States
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Elaine Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
31
|
Koreth J, Alyea EP, Murphy WJ, Welniak LA. Proteasome inhibition and allogeneic hematopoietic stem cell transplantation: a review. Biol Blood Marrow Transplant 2010; 15:1502-12. [PMID: 19896073 DOI: 10.1016/j.bbmt.2009.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/16/2009] [Indexed: 11/17/2022]
Abstract
The proteasome and its associated ubiquitin protein modification system have proved to be an important therapeutic target in the treatment of multiple myeloma and other cancers. In addition to direct antitumor effects, proteasome inhibition also exerts strong effects on nonneoplastic immune cells. This indicates that proteasome inhibition, through the use of agents like bortezomib, could be used therapeutically to modulate immune responses. In this review we explore the emerging data, both preclinical and clinical, highlighting the importance of proteasome targeting of immunologic responses, primarily in the context of allogeneic hematopoietic stem cell transplantation (HSCT), both for the control of transplant-related toxicities like acute and chronic graft-versus-host disease (aGVHD, cGHVHD), and for improved malignant disease control after allogeneic HSCT.
Collapse
Affiliation(s)
- John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachustts, USA
| | | | | | | |
Collapse
|
32
|
Paolillo V, Riese S, Gelovani JG, Alauddin MM. A fully automated synthesis of [18F]-FEAU and [18F]-FMAU using a novel dual reactor radiosynthesis module. J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1674] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Konforte D, Paige CJ. Interleukin-21 regulates expression of the immediate-early lytic cycle genes and proteins in Epstein-Barr Virus infected B cells. Virus Res 2009; 144:339-43. [DOI: 10.1016/j.virusres.2009.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 11/26/2022]
|
34
|
Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors. Nat Med 2008; 14:1118-22. [PMID: 18776891 DOI: 10.1038/nm.1864] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/10/2008] [Indexed: 12/13/2022]
Abstract
We investigated the possibility of using a pharmacologic agent to modulate viral gene expression to target radiotherapy to tumor tissue. In a mouse xenograft model, we had previously shown targeting of [(125)I]2'-fluoro-2'-deoxy-beta-D-5-iodouracil-arabinofuranoside ([(125)I]FIAU) to tumors engineered to express the Epstein-Barr virus thymidine kinase (EBV-TK). Here we extend those results to targeting of a therapeutic radiopharmaceutical [(131)I]FIAU to slow or stop tumor growth or to achieve tumor regression. These outcomes were achieved in xenografts with tumors that constitutively expressed the EBV-TK. With naturally infected EBV tumor cell lines (Burkitt's lymphoma and gastric carcinoma), activation of viral gene expression by pretreatment with bortezomib was required. Marked changes in tumor growth could also be achieved in naturally infected Kaposi's sarcoma herpesvirus tumors after pretreatment with bortezomib. Bortezomib-induced enzyme-targeted radiation therapy illustrates the possibility of pharmacologically modulating tumor gene expression to result in targeted radiotherapy.
Collapse
|
35
|
Cho HJ, Yu F, Sun R, Lee D, Song MJ. Lytic induction of Kaposi's sarcoma-associated herpesvirus in primary effusion lymphoma cells with natural products identified by a cell-based fluorescence moderate-throughput screening. Arch Virol 2008; 153:1517-25. [PMID: 18607675 DOI: 10.1007/s00705-008-0144-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/28/2008] [Indexed: 11/30/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) has been linked to Kaposi's sarcoma primary effusion lymphoma (PEL), and multicentric Castleman's disease. Intentional lytic induction of gammaherpesviruses in the presence of antiviral drugs is thought to be an effective treatment option for gammaherpesvirus-related tumors. In this study, we used a cell-based fluorescence bioassay system in which a KSHV-infected PEL cell line was stably transfected with a potent viral-promoter-driven reporter gene to identify effective non-toxic reagents capable of inducing latent KSHV. Among 400 plant extracts screened, three extracts increased reporter gene expression in a dose-dependent manner. Furthermore, the three extracts activated the RTA promoter and induced expression of lytic genes in the endogenous viral genomes of KSHV-infected tumor cells. Together, our results demonstrate the effectiveness of a moderate-throughput screening system to identify natural products capable of inducing KSHV reactivation, thereby facilitating the development of novel therapeutic agents for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Hye-Jeong Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Abstract
Anatomically based technologies (computed tomography scans, magnetic resonance imaging, and so on) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular-imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy.
Collapse
|
37
|
Chia MC, Leung A, Krushel T, Alajez NM, Lo KW, Busson P, Klamut HJ, Bastianutto C, Liu FF. Nuclear Factor-Y and Epstein Barr Virus in Nasopharyngeal Cancer. Clin Cancer Res 2008; 14:984-94. [DOI: 10.1158/1078-0432.ccr-07-0828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Diaz LA, Foss CA, Thornton K, Nimmagadda S, Endres CJ, Uzuner O, Seyler TM, Ulrich SD, Conway J, Bettegowda C, Agrawal N, Cheong I, Zhang X, Ladenson PW, Vogelstein BN, Mont MA, Zhou S, Kinzler KW, Vogelstein B, Pomper MG. Imaging of musculoskeletal bacterial infections by [124I]FIAU-PET/CT. PLoS One 2007; 2:e1007. [PMID: 17925855 PMCID: PMC1994593 DOI: 10.1371/journal.pone.0001007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 09/12/2007] [Indexed: 11/28/2022] Open
Abstract
Background Traditional imaging techniques for the localization and monitoring of bacterial infections, although reasonably sensitive, suffer from a lack of specificity. This is particularly true for musculoskeletal infections. Bacteria possess a thymidine kinase (TK) whose substrate specificity is distinct from that of the major human TK. The substrate specificity difference has been exploited to develop a new imaging technique that can detect the presence of viable bacteria. Methodology/Principal Findings Eight subjects with suspected musculoskeletal infections and one healthy control were studied by a combination of [124I]FIAU-positron emission tomography and CT ([124I]FIAU-PET/CT). All patients with proven musculoskeletal infections demonstrated positive [124I]FIAU-PET/CT signals in the sites of concern at two hours after radiopharmaceutical administration. No adverse reactions with FIAU were observed. Conclusions/Significance [124I]FIAU-PET/CT is a promising new method for imaging bacterial infections.
Collapse
Affiliation(s)
- Luis A. Diaz
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Catherine A. Foss
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Katherine Thornton
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Christopher J. Endres
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ovsev Uzuner
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Thorsten M. Seyler
- Center for Joint Preservation and Reconstruction, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, United State of America
| | - Slif D. Ulrich
- Center for Joint Preservation and Reconstruction, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, United State of America
| | - Janet Conway
- Center for Joint Preservation and Reconstruction, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, United State of America
| | - Chetan Bettegowda
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Nishant Agrawal
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Ian Cheong
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Xiaosong Zhang
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Paul W. Ladenson
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Barry N. Vogelstein
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Michael A. Mont
- Center for Joint Preservation and Reconstruction, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland, United State of America
| | - Shibin Zhou
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Kenneth W. Kinzler
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Bert Vogelstein
- The Howard Hughes Medical Institute, The Ludwig Center for Cancer Genetics and Therapeutics at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Sun CC, Thorley-Lawson DA. Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter. J Virol 2007; 81:13566-77. [PMID: 17898050 PMCID: PMC2168822 DOI: 10.1128/jvi.01055-07] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) in vivo is known to establish persistent infection in resting, circulating memory B cells and to productively replicate in plasma cells. Until now, the molecular mechanism of how EBV switches from latency to lytic replication in vivo was not known. Here, we report that the plasma cell differentiation factor, XBP-1s, activates the expression of the master regulator of EBV lytic activation, BZLF1. Using reporter assays, we observed that XBP-1s was able to transactivate the BZLF1 promoter, Zp, in a plasma cell line and other lymphoid cell lines but, interestingly, not in epithelial cell lines. We have identified an XBP-1s binding site on the ZID/ZII region of Zp, which when abolished by site-directed mutagenesis led to abrogation of XBP-1s binding and promoter activation. Using the chromatin immunoprecipitation assay, we observed direct binding of XBP-1s to endogenous Zp in an EBV-infected plasma cell line. Finally, in the same cell line, we observed that overexpression of XBP-1s resulted in increased expression of BZLF1, while knockdown of XBP-1s with short hairpin RNA drastically reduces BZLF1 expression. We suggest that EBV harnesses the B-cell terminal differentiation pathway via XBP-1s as a physiological signal to reactivate and begin viral replication. We are currently investigating other signals, such as the endoplasmic reticulum stress response proteins, which act upstream of XBP-1s, to identify other interacting factors that initiate and/or amplify the lytic switch.
Collapse
Affiliation(s)
- Chia Chi Sun
- Department of Pathology, Jaharis Building, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | |
Collapse
|
40
|
Abstract
Abstract
Epstein-Barr virus (EBV) is detected in some Hodgkin lymphoma (HL) tumor cells. Primary infection is associated with infectious mononucleosis and EBV+ HL. Vaccines and antiviral drugs show promise in modulating the clinical course of infectious mononucleosis. Their impact on HL is entirely unknown. T-cell function may be important in the pathogenesis of HL. In HIV patients, higher CD4 counts are associated with an increased incidence of EBV+ HL. One of the roles of the virus in the pathogenesis of HL may be to mimic signals associated with surface immunoglobulin molecules. New approaches to imaging EBV-associated tumors may be on the horizon. Adoptive immunotherapy and virus-specific pharmacologic therapies offer promise for future treatment.
Collapse
|