1
|
Kenaan N, Hanna G, Sardini M, Iyoun MO, Layka K, Hannouneh ZA, Alshehabi Z. Advances in early detection of non-small cell lung cancer: A comprehensive review. Cancer Med 2024; 13:e70156. [PMID: 39300939 PMCID: PMC11413414 DOI: 10.1002/cam4.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Lung cancer has the highest mortality rate among malignancies globally. In addition, due to the growing number of smokers there is considerable concern over its growth. Early detection is an essential step towards reducing complications in this regard and helps to ensure the most effective treatment, reduce health care costs, and increase survival rates. AIMS To define the most efficient and cost-effective method of early detection in clinical practice. MATERIALS AND METHODS We collected the Information used to write this review by searching papers through PUBMED that were published from 2021 to 2024, mainly systematic reviews, meta-analyses and clinical-trials. We also included other older but notable papers that we found essential and valuable for understanding. RESULTS EB-OCT has a varied sensitivity and specificity-an average of 94.3% and 89.9 for each. On the other hand, detecting biomarkers via liquid biopsy carries an average sensitivity of 91.4% for RNA molecules detection, and 97% for combined methylated DNA panels. Moreover, CTCs detection did not prove to have a significant role as a screening method due to the rarity of CTCs in the bloodstream thus the need for more blood samples and for enrichment techniques. DISCUSSION Although low-dose CT scan (LDCT) is the current golden standard screening procedure, it is accompanied by a highly false positive rate. In comparison to other radiological screening methods, Endobronchial optical coherence tomography (EB-OCT) has shown a noticeable advantage with a significant degree of accuracy in distinguishing between subtypes of non-small cell lung cancer. Moreover, numerous biomarkers, including RNA molecules, circulating tumor cells, CTCs, and methylated DNA, have been studied in the literature. Many of these biomarkers have a specific high sensitivity and specificity, making them potential candidates for future early detection approaches. CONCLUSION LDCT is still the golden standard and the only recommended screening procedure for its high sensitivity and specificity and proven cost-effectiveness. Nevertheless, the notable false positive results acquired during the LDCT examination caused a presumed concern, which drives researchers to investigate better screening procedures and approaches, particularly with the rise of the AI era or by combining two methods in a well-studied screening program like LDCT and liquid biopsy. we suggest conducting more clinical studies on larger populations with a clear demographical target and adopting approaches for combining one of these new methods with LDCT to decrease false-positive cases in early detection.
Collapse
Affiliation(s)
- Nour Kenaan
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - George Hanna
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Moustafa Sardini
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Mhd Omar Iyoun
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineTishreen UniversityLattakiaSyrian Arab Republic
| | - Khedr Layka
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Department of pathologyTishreen University hospitalLattakiaSyrian Arab Republic
| | - Zein Alabdin Hannouneh
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Faculty of MedicineAl Andalus University for Medical SciencesTartusSyrian Arab Republic
| | - Zuheir Alshehabi
- Cancer Research CenterTishreen UniversityLattakiaSyrian Arab Republic
- Department of pathologyTishreen University hospitalLattakiaSyrian Arab Republic
| |
Collapse
|
2
|
Zhou G, Yang Y, Liao Y, Chen L, Yang Y, Zou J. A pilot study of optical coherence tomography-guided transbronchial biopsy in peripheral pulmonary lesions. Expert Rev Med Devices 2024; 21:859-867. [PMID: 39107968 DOI: 10.1080/17434440.2024.2389235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/06/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The diagnosis of peripheral pulmonary lesions (PPLs) remains challenging. Despite advancements in guided transbronchial biopsy (TBB) techniques, diagnostic yields haven't reached ideal levels. Optical coherence tomography (OCT) has been developed for application in pulmonary diseases, yet no data existed evaluating effectiveness in diagnosing PPLs. RESEARCH DESIGN AND METHODS This study included patients who underwent OCT and radial endobronchial ultrasound (R-EBUS)-guided TBB. OCT and R-EBUS imaging features were analyzed to differentiate between benign and malignant PPLs and subtypes of lung cancer. RESULTS A total of 89 patients were included in this study. The diagnostic yield of OCT-guided TBB stood at 56.18%, R-EBUS-guided TBB was 83.15% (P<0.01). The accuracy of OCT to judge the nature of lesions was 92.59%, while R-EBUS was 77.92%. The accuracy of OCT in predicting squamous carcinoma (SCC) and adenocarcinoma were both 91.30%. CONCLUSIONS Although the diagnostic yield of OCT-guided TBB fell short of that achieved by R-EBUS, OCT possessed the capability to judge the nature of lesions and guide the pathological classification of malignant lesions. Further extensive prospective studies are necessary to thoroughly assess the characteristics of this procedure. CLINICAL TRIAL REGISTRATION https://register.clinicaltrials.gov/ identifier is NCT06419114.
Collapse
Affiliation(s)
| | - Yan Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Liao
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zou
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Pifferi A, Miniati M, Farina A, Konugolu Venkata Sekar S, Lanka P, Dalla Mora A, Maffeis G, Taroni P. Initial non-invasive in vivo sensing of the lung using time domain diffuse optics. Sci Rep 2024; 14:6343. [PMID: 38491195 PMCID: PMC11350160 DOI: 10.1038/s41598-024-56862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
The in vivo diagnosis and monitoring of pulmonary disorders (caused for example by emphysema, Covid-19, immature lung tissue in infants) could be effectively supported by the non-invasive sensing of the lung through light. With this purpose, we investigated the feasibility of probing the lung by means of time-resolved diffuse optics, leveraging the increased depth (a few centimeters) attained by photons collected after prolonged propagation time (a few nanoseconds). We present an initial study that includes measurements performed on 5 healthy volunteers during a breathing protocol, using a time-resolved broadband diffuse optical spectroscopy system. Those measurements were carried out across the spectral range of 600-1100 nm at a source-detector distance of 3 cm, and at 820 nm over a longer distance (7-9 cm). The preliminary analysis of the in vivo data with a simplified homogeneous model revealed a maximum probing depth of 2.6-3.9 cm, suitable for reaching the lung. Furthermore, we observed variations in signal associated with respiration, particularly evident at long photon propagation times. However, challenges stemming from both intra- and inter-subject variability, along with inconsistencies potentially arising from conflicting scattering and absorption effects on the collected signal, hindered a clear interpretation. Aspects that require further investigation for a more comprehensive understanding are outlined.
Collapse
Affiliation(s)
- Antonio Pifferi
- Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
- IFN-CNR, Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, 20133, Milan, Italy
| | - Massimo Miniati
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - Andrea Farina
- IFN-CNR, Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, 20133, Milan, Italy
| | | | - Pranav Lanka
- Biophotonics@Tyndall, IPIC, Tyndall National Institute, Cork, T12R5CP, Ireland
| | | | - Giulia Maffeis
- Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy.
| | - Paola Taroni
- Dipartimento di Fisica, Politecnico di Milano, 20133, Milan, Italy
- IFN-CNR, Consiglio Nazionale delle Ricerche, Istituto di Fotonica e Nanotecnologie, 20133, Milan, Italy
| |
Collapse
|
4
|
Matache RS, Stanciu-Gavan C, Pantile D, Iordache AM, Bejgăneanu AO, Șerboiu CS, Nemes AF. Clinical and Paraclinical Characteristics of Endobronchial Pulmonary Squamous Cell Carcinoma-A Brief Review. Diagnostics (Basel) 2023; 13:3318. [PMID: 37958213 PMCID: PMC10647737 DOI: 10.3390/diagnostics13213318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Endobronchial squamous cell carcinoma is one of the most common types of tumors located inside the tracheobronchial tree. Patients often present in advanced stages of the disease, which most often leads to a targeted therapeutic attitude of pneumonectomy. Practicing lung parenchyma-preserving surgery led us to undertake this review. MATERIALS AND METHODS We used three search platforms-SCIENCE, MEDLINE, and PubMed-in order to identify studies presenting case reports, investigations, and reviews on endobronchial squamous cell carcinoma. We identified the clinical and paraclinical features of endobronchial squamous cell carcinoma. All the selected articles were in English and addressed the clinical criteria of endobronchial squamous cell carcinoma, autofluorescence bronchoscopy in endobronchial squamous cell carcinoma, imaging features of endobronchial squamous cell carcinoma, blood tumor markers specific to lung squamous cell carcinoma, and histopathological features of endobronchial squamous cell carcinoma. RESULTS In total, 73 articles were analyzed, from which 48 articles were selected as bibliographic references. We present the criteria used for the identification of endobronchial squamous cell carcinoma in order to highlight its main characteristics and the most reliable technologies that can be used for the detection of this type of cancer. CONCLUSIONS The current literature review highlights the clinical and paraclinical characteristics of endobronchial squamous cell carcinoma. It aims to open new paths for research and early detection with respect to the frequent practice of lung parenchymal preservation surgery.
Collapse
Affiliation(s)
- Radu Serban Matache
- Department of Thoracic Surgery, “Marius Nasta” Institute of Pneumophtiziology, 050159 Bucharest, Romania;
| | - Camelia Stanciu-Gavan
- Department of Thoracic Surgery, “Doctor Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniel Pantile
- Department of Thoracic Surgery, “Doctor Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Adrian Mihail Iordache
- Department of Thoracic Surgery, “Doctor Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | | | - Crenguța Sorina Șerboiu
- Department of Cellular, Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, University Emergency Hospital, 050098 Bucharest, Romania
| | - Alexandra Floriana Nemes
- Department of Neonatology, Louis Turcanu Clinical Emergency Hospital for Children, 300011 Timisoara, Romania
| |
Collapse
|
5
|
Zhuang Z, Chen D, Liang Z, Zhang S, Liu Z, Chen W, Qi L. Automatic 3D reconstruction of an anatomically correct upper airway from endoscopic long range OCT images. BIOMEDICAL OPTICS EXPRESS 2023; 14:4594-4608. [PMID: 37791278 PMCID: PMC10545183 DOI: 10.1364/boe.496812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023]
Abstract
Endoscopic airway optical coherence tomography (OCT) is a non-invasive and high resolution imaging modality for the diagnosis and analysis of airway-related diseases. During OCT imaging of the upper airway, in order to reliably characterize its 3D structure, there is a need to automatically detect the airway lumen contour, correct rotational distortion and perform 3D airway reconstruction. Based on a long-range endoscopic OCT imaging system equipped with a magnetic tracker, we present a fully automatic framework to reconstruct the 3D upper airway model with correct bending anatomy. Our method includes an automatic segmentation method for the upper airway based on dynamic programming algorithm, an automatic initial rotation angle error correction method for the detected 2D airway lumen contour, and an anatomic bending method combined with the centerline detected from the magnetically tracked imaging probe. The proposed automatic reconstruction framework is validated on experimental datasets acquired from two healthy adults. The result shows that the proposed framework allows the full automation of 3D airway reconstruction from OCT images and thus reveals its potential to improve analysis efficiency of endoscopic OCT images.
Collapse
Affiliation(s)
- Zhijian Zhuang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- The Third People’s Hospital of Zhuhai, 166 Hezheng Rd., Xiangzhou District, Zhuhai, Guangdong, 519000, China
| | - Delang Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhichao Liang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Shuangyang Zhang
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Zhenyang Liu
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| | - Li Qi
- School of Biomedical Engineering, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Rd., Baiyun District, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
6
|
Vaselli M, Kalverda-Mooij K, Thunnissen E, Tanck MWT, Mets OM, van den Berk IAH, Annema JT, Bonta PI, de Boer JF. In vivo polarisation sensitive optical coherence tomography for fibrosis assessment in interstitial lung disease: a prospective, exploratory, observational study. BMJ Open Respir Res 2023; 10:e001628. [PMID: 37553184 PMCID: PMC10414088 DOI: 10.1136/bmjresp-2023-001628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Endobronchial polarisation sensitive optical coherence tomography (EB-PS-OCT) is a bronchoscopic imaging technique exceeding resolution of high-resolution CT (HRCT) by 50-fold. It detects collagen birefringence, enabling identification and quantification of fibrosis. STUDY AIM To assess pulmonary fibrosis in interstitial lung diseases (ILD) patients with in vivo EB-PS-OCT using histology as reference standard. PRIMARY OBJECTIVE Visualisation and quantification of pulmonary fibrosis by EB-PS-OCT. SECONDARY OBJECTIVES Comparison of EB-PS-OCT and HRCT detected fibrosis with histology, identification of ILD histological features in EB-PS-OCT images and comparison of ex vivo PS-OCT results with histology. METHODS Observational prospective exploratory study. Patients with ILD scheduled for transbronchial cryobiopsy or surgical lung biopsy underwent in vivo EB-PS-OCT imaging prior to tissue acquisition. Asthma patients were included as non-fibrotic controls. Per imaged lung segment, fibrosis was automatically quantified assessing the birefringent area in EB-PS-OCT images. Fibrotic extent in corresponding HRCT areas and biopsies were compared with EB-PS-OCT detected fibrosis. Microscopic ILD features were identified on EB-PS-OCT images and matched with biopsies from the same segment. RESULTS 19 patients were included (16 ILD; 3 asthma). In 49 in vivo imaged airway segments the parenchymal birefringent area was successfully quantified and ranged from 2.54% (no to minimal fibrosis) to 21.01% (extensive fibrosis). Increased EB-PS-OCT detected birefringent area corresponded to increased histologically confirmed fibrosis, with better predictive value than HRCT. Microscopic ILD features were identified on both in vivo and ex vivo PS-OCT images. CONCLUSIONS EB-PS-OCT enables pulmonary fibrosis quantification, thereby has potential to serve as an add-on bronchoscopic imaging technique to diagnose and detect (early) fibrosis in ILD.
Collapse
Affiliation(s)
- Margherita Vaselli
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Erik Thunnissen
- Department of Pathology, Amsterdam University Medical Centra, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Epidemiology and Data Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno M Mets
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge A H van den Berk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Jouke T Annema
- Respiratory Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Peter I Bonta
- Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Liu HC, Lin MH, Ting CH, Wang YM, Sun CW. Intraoperative application of optical coherence tomography for lung tumor. JOURNAL OF BIOPHOTONICS 2023; 16:e202200344. [PMID: 36755475 DOI: 10.1002/jbio.202200344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/07/2023]
Abstract
On-site instant determination of benign or malignant tumors for deciding the types of resection is crucial during pulmonary surgery. We designed a portable spectral-domain optical coherence tomography (SD-OCT) system to do real-time scanning intraoperatively for the distinction of fresh tumor specimens in the lung. A total of 12 ex vivo lung specimens from six patients were enrolled. Three patients were diagnosed with invasive adenocarcinoma (IA), while the others were benign. After OCT-imaged reconstruction, we compared the qualitative morphology of OCT and histology among malignant, benign, and normal tissues. In addition, through analysis of the quantitative data, a discrete difference in optical attenuation coefficients around the junctional surface was shown by our data processing. This study demonstrated a feasible OCT-assisted resection guide by a rapid on-site tumor diagnosis. The results indicate that future deep learning of OCT-captured image systems able to improve diagnostic and therapeutic efficiency is warranted.
Collapse
Affiliation(s)
- Hung-Chang Liu
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei City, Taiwan
| | - Miao-Hui Lin
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ching-Heng Ting
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei City, Taiwan
- Department of Pathology, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Long H, Ji J, Chen L, Feng J, Liao J, Yang Y. EB-OCT: a potential strategy on early diagnosis and treatment for lung cancer. Front Oncol 2023; 13:1156218. [PMID: 37182131 PMCID: PMC10168178 DOI: 10.3389/fonc.2023.1156218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death in China and the world, mainly attributed to delayed diagnosis, given that currently available early screening strategies exhibit limited value. Endobronchial optical coherence tomography (EB-OCT) has the characteristics of non-invasiveness, accuracy, and repeatability. Importantly, the combination of EB-OCT with existing technologies represents a potential approach for early screening and diagnosis. In this review, we introduce the structure and strengths of EB-OCT. Furthermore, we provide a comprehensive overview of the application of EB-OCT on early screening and diagnosis of lung cancer from in vivo experiments to clinical studies, including differential diagnosis of airway lesions, early screening for lung cancer, lung nodules, lymph node biopsy and localization and palliative treatment of lung cancer. Moreover, the bottlenecks and difficulties in developing and popularizing EB-OCT for diagnosis and treatment during clinical practice are analyzed. The characteristics of OCT images of normal and cancerous lung tissues were in good agreement with the results of pathology, which could be used to judge the nature of lung lesions in real time. In addition, EB-OCT can be used as an assistant to biopsy of pulmonary nodules and improve the success rate of biopsy. EB-OCT also plays an auxiliary role in the treatment of lung cancer. In conclusion, EB-OCT is non-invasive, safe and accurate in real-time. It is of great significance in the diagnosis of lung cancer and suitable for clinical application and is expected to become an important diagnostic method for lung cancer in the future.
Collapse
Affiliation(s)
- Hang Long
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaqi Ji
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiayue Feng
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jie Liao
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2023; 29:11-20. [PMID: 36474462 PMCID: PMC9780043 DOI: 10.1097/mcp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Imaging techniques play a crucial role in the diagnostic work-up of pulmonary diseases but generally lack detailed information on a microscopic level. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are imaging techniques which provide microscopic images in vivo during bronchoscopy. The purpose of this review is to describe recent advancements in the use of bronchoscopic OCT- and CLE-imaging in pulmonary medicine. RECENT FINDINGS In recent years, OCT- and CLE-imaging have been evaluated in a wide variety of pulmonary diseases and demonstrated to be complementary to bronchoscopy for real-time, near-histological imaging. Several pulmonary compartments were visualized and characteristic patterns for disease were identified. In thoracic malignancy, OCT- and CLE-imaging can provide characterization of malignant tissue with the ability to identify the optimal sampling area. In interstitial lung disease (ILD), fibrotic patterns were detected by both (PS-) OCT and CLE, complementary to current HRCT-imaging. For obstructive lung diseases, (PS-) OCT enables to detect airway wall structures and remodelling, including changes in the airway smooth muscle and extracellular matrix. SUMMARY Bronchoscopic OCT- and CLE-imaging allow high resolution imaging of airways, lung parenchyma, pleura, lung tumours and mediastinal lymph nodes. Although investigational at the moment, promising clinical applications are on the horizon.
Collapse
|
10
|
Zhu Q, Yu H, Liang Z, Zhao W, Zhu M, Xu Y, Guo M, Jia Y, Zou C, Yang Z, Chen L. Novel image features of optical coherence tomography for pathological classification of lung cancer: Results from a prospective clinical trial. Front Oncol 2022; 12:870556. [PMID: 36338729 PMCID: PMC9634220 DOI: 10.3389/fonc.2022.870556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to explore the characteristics of optical coherence tomography (OCT) imaging for differentiating between benign and malignant lesions and different pathological types of lung cancer in bronchial lesions and to preliminarily evaluate the clinical value of OCT. Methods Patients who underwent bronchoscopy biopsy and OCT between February 2019 and December 2019 at the Chinese PLA General Hospital were enrolled in this study. White-light bronchoscopy (WLB), auto-fluorescence bronchoscopy (AFB), and OCT were performed at the lesion location. The main characteristics of OCT imaging for the differentiation between benign and malignant lesions and the prediction of the pathological classification of lung cancer in bronchial lesions were identified, and their clinical value was evaluated. Results A total of 135 patients were included in this study. The accuracy of OCT imaging for differentiating between benign and malignant bronchial lesions was 94.1%, which was significantly higher than that of AFB (67.4%). For the OCT imaging of SCC, adenocarcinoma, and small-cell lung cancer, the accuracies were 95.6, 94.3, and 92%, respectively. The accuracy, sensitivity, and specificity of OCT were higher than those of WLB. In addition, these main OCT image characteristics are independent influencing factors for predicting the corresponding diseases through logistic regression analysis between the main OCT image characteristics in the study and the general clinical features of patients (p<0.05). Conclusion As a non-biopsy technique, OCT can be used to improve the diagnosis rate of lung cancer and promote the development of non-invasive histological biopsy.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Hang Yu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhixin Liang
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Minghui Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Xu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanhong Jia
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Chenxi Zou
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Zhen Yang, ; Liangan Chen,
| | - Liangan Chen
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Zhen Yang, ; Liangan Chen,
| |
Collapse
|
11
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
12
|
Willemse J, Wener RR, Feroldi F, Vaselli M, Kwakkel-van Erp JM, van de Graaf EA, Thunnissen E, de Boer JF. Polarization-sensitive optical coherence tomography in end-stage lung diseases: an ex vivo pilot study. BIOMEDICAL OPTICS EXPRESS 2021; 12:6796-6813. [PMID: 34858681 PMCID: PMC8606143 DOI: 10.1364/boe.435870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
A non-invasive diagnostic tool to assess remodeling of the lung airways caused by disease is currently missing in the clinic. Measuring key features such as airway smooth muscle (ASM) thickness would increase the ability to improve diagnosis and enable treatment evaluation. In this research, polarization-sensitive optical coherence tomography (PS-OCT) has been used to image a total of 24 airways from two healthy lungs and four end-stage diseased lungs ex vivo, including fibrotic sarcoidosis, chronic obstructive pulmonary disease (COPD), fibrotic hypersensitivity pneumonitis, and cystic fibrosis. In the diseased lungs, except COPD, the amount of measured airway smooth muscle was increased. In COPD, airway smooth muscle could not be distinguished from surrounding collagen. COPD lungs showed increased alveolar size. 3D pullbacks in the same lumen provided reproducible assessment of airway smooth muscle (ASM). Image features such as thickened ASM and size/presence of alveoli were recognized in histology. The results of this study are preliminary and must be confirmed with further ex vivo and in vivo studies. PS-OCT is applicable for in vivo assessment of peribronchial and peribronchiolar lung structures and may become a valuable tool for diagnosis in pulmonology.
Collapse
Affiliation(s)
- Joy Willemse
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- These authors contributed equally
| | - Reinier R. Wener
- Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
- Department of Pulmonary Diseases, Utrecht University Medical Center, Utrecht, The Netherlands
- These authors contributed equally
| | - Fabio Feroldi
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Currently with the School of Optometry, University of California, Berkeley, California 94720, USA
| | - Margherita Vaselli
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johanna M. Kwakkel-van Erp
- Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium
- Department of Pulmonary Diseases, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Eduard A. van de Graaf
- Department of Pulmonary Diseases, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Erik Thunnissen
- Department of Pathology, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - Johannes F. de Boer
- LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Liu N, Chen X, Kimm MA, Stechele M, Chen X, Zhang Z, Wildgruber M, Ma X. In vivo optical molecular imaging of inflammation and immunity. J Mol Med (Berl) 2021; 99:1385-1398. [PMID: 34272967 DOI: 10.1007/s00109-021-02115-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022]
Abstract
Inflammation is the phenotypic form of various diseases. Recent development in molecular imaging provides new insights into the diagnostic and therapeutic evaluation of different inflammatory diseases as well as diseases involving inflammation such as cancer. While conventional imaging techniques used in the clinical setting provide only indirect measures of inflammation such as increased perfusion and altered endothelial permeability, optical imaging is able to report molecular information on diseased tissue and cells. Optical imaging is a quick, noninvasive, nonionizing, and easy-to-use diagnostic technology which has been successfully applied for preclinical research. Further development of optical imaging technology such as optoacoustic imaging overcomes the limitations of mere fluorescence imaging, thereby enabling pilot clinical applications in humans. By means of endogenous and exogenous contrast agents, sites of inflammation can be accurately visualized in vivo. This allows for early disease detection and specific disease characterization, enabling more rapid and targeted therapeutic interventions. In this review, we summarize currently available optical imaging techniques used to detect inflammation, including optical coherence tomography (OCT), bioluminescence, fluorescence, optoacoustics, and Raman spectroscopy. We discuss advantages and disadvantages of the different in vivo imaging applications with a special focus on targeting inflammation including immune cell tracking.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, 85747, Garching, Germany
| | - Xiao Chen
- Klinik und Poliklinik IV, University Hospital, LMU Munich, 80336, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xueli Chen
- School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Zhimin Zhang
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, 81337, Munich, Germany
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China.
| |
Collapse
|
14
|
Malone J, Lee AMD, Hohert G, Nador RG, Lane P. Small airway dilation measured by endoscopic optical coherence tomography correlates with chronic lung allograft dysfunction. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210057R. [PMID: 34263577 PMCID: PMC8278781 DOI: 10.1117/1.jbo.26.7.076005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Chronic lung allograft dysfunction (CLAD) is the leading cause of death in transplant patients who survive past the first year post-transplant. Current diagnosis is based on sustained decline in lung function; there is a need for tools that can identify CLAD onset. AIM Endoscopic optical coherence tomography (OCT) can visualize structural changes in the small airways, which are of interest in CLAD progression. We aim to identify OCT features in the small airways of lung allografts that correlate with CLAD status. APPROACH Imaging was conducted with an endoscopic rotary pullback OCT catheter during routine bronchoscopy procedures (n = 54), collecting volumetric scans of three segmental airways per patient. Six features of interest were identified, and four blinded raters scored the dataset on the presence and intensity of each feature. RESULTS Airway dilation (AD) was the only feature found to significantly (p < 0.003) correlate with CLAD diagnosis (R = 0.40 to 0.61). AD could also be fairly consistently scored between raters (κinter-rater = 0.48, κintra-rater = 0.64). There is a stronger relationship between AD and the combined obstructive and restrictive (BOS + RAS) phenotypes than the obstructive-only (BOS) phenotype for two raters (R = 0.92 , 0.94). CONCLUSIONS OCT examination of small AD shows potential as a diagnostic indicator for CLAD and CLAD phenotype and merits further exploration.
Collapse
Affiliation(s)
- Jeanie Malone
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Anthony M. D. Lee
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Geoffrey Hohert
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| | - Roland G. Nador
- University of British Columbia, Division of Respiratory Medicine, Faculty of Medicine, Vancouver, BC, Canada
- Vancouver General Hospital, Lung Transplant Program, Vancouver, BC, Canada
| | - Pierre Lane
- British Columbia Cancer Research Institute, Department of Integrative Oncology, Imaging Unit, Vancouver, BC, Canada
| |
Collapse
|
15
|
He Z, Wang P, Ye X. Novel endoscopic optical diagnostic technologies in medical trial research: recent advancements and future prospects. Biomed Eng Online 2021; 20:5. [PMID: 33407477 PMCID: PMC7789310 DOI: 10.1186/s12938-020-00845-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Novel endoscopic biophotonic diagnostic technologies have the potential to non-invasively detect the interior of a hollow organ or cavity of the human body with subcellular resolution or to obtain biochemical information about tissue in real time. With the capability to visualize or analyze the diagnostic target in vivo, these techniques gradually developed as potential candidates to challenge histopathology which remains the gold standard for diagnosis. Consequently, many innovative endoscopic diagnostic techniques have succeeded in detection, characterization, and confirmation: the three critical steps for routine endoscopic diagnosis. In this review, we mainly summarize researches on emerging endoscopic optical diagnostic techniques, with emphasis on recent advances. We also introduce the fundamental principles and the development of those techniques and compare their characteristics. Especially, we shed light on the merit of novel endoscopic imaging technologies in medical research. For example, hyperspectral imaging and Raman spectroscopy provide direct molecular information, while optical coherence tomography and multi-photo endomicroscopy offer a more extensive detection range and excellent spatial-temporal resolution. Furthermore, we summarize the unexplored application fields of these endoscopic optical techniques in major hospital departments for biomedical researchers. Finally, we provide a brief overview of the future perspectives, as well as bottlenecks of those endoscopic optical diagnostic technologies. We believe all these efforts will enrich the diagnostic toolbox for endoscopists, enhance diagnostic efficiency, and reduce the rate of missed diagnosis and misdiagnosis.
Collapse
Affiliation(s)
- Zhongyu He
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wang
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xuesong Ye
- Biosensor National Special Laboratory, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, People's Republic of China.
- State Key Laboratory of CAD and CG, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
16
|
Blessing K, Schirmer J, Sharma G, Singh K. Novel input polarisation independent endoscopic cross-polarised optical coherence tomography probe. JOURNAL OF BIOPHOTONICS 2020; 13:e202000134. [PMID: 32738024 DOI: 10.1002/jbio.202000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Lead by the original idea to perform noninvasive optical biopsies of various tissues, optical coherence tomography found numerous medical applications within the last two decades. The interference based imaging technique opens the possibility to visualise subcellular morphology up to an imaging depth of 3 mm and up to micron level axial and lateral resolution. The birefringence properties of the tissue are visualised with enhanced contrast using polarisation sensitive or cross-polarised optical coherence tomography (OCT) techniques. Although, it requires strict control over the polarisation states, resulting in several polarisation controlling elements. In this work, we propose a novel input-polarisation independent endoscopic system based on cross-polarised OCT. We tested the feasibility of our approach by measuring the polarisation change from a quarter-wave plate for different rotational angles. Further performance tests reveal a lateral resolution of 30 μm and a sensitivity of 103 dB. Images of the human nail bed and cow muscle tissue demonstrate the potential of the system to measure structural and birefringence properties of the tissue endoscopically.
Collapse
Affiliation(s)
- Katharina Blessing
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Judith Schirmer
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gargi Sharma
- Guck Division, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Kanwarpal Singh
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
A Silicon Optical Bench-Based Forward-View Two-Axis Scanner for Microendoscopy Applications. MICROMACHINES 2020; 11:mi11121051. [PMID: 33260524 PMCID: PMC7761163 DOI: 10.3390/mi11121051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Optical microendoscopy enabled by a microelectromechanical system (MEMS) scanning mirror offers great potential for in vivo diagnosis of early cancer inside the human body. However, an additional beam folding mirror is needed for a MEMS mirror to perform forward-view scanning, which drastically increases the diameter of the resultant MEMS endoscopic probe. This paper presents a new monolithic two-axis forward-view optical scanner that is composed of an electrothermally driven MEMS mirror and a beam folding mirror both vertically standing and integrated on a silicon substrate. The mirror plates of the two mirrors are parallel to each other with a small distance of 0.6 mm. The laser beam can be incident first on the MEMS mirror and then on the beam folding mirror, both at 45°. The MEMS scanner has been successfully fabricated. The measured optical scan angles of the MEMS mirror were 10.3° for the x axis and 10.2° for the y axis operated under only 3 V. The measured tip-tilt resonant frequencies of the MEMS mirror were 1590 Hz and 1850 Hz, respectively. With this compact MEMS design, a forward-view scanning endoscopic probe with an outer diameter as small as 2.5 mm can be made, which will enable such imaging probes to enter the subsegmental bronchi of an adult patient.
Collapse
|
18
|
Hohert G, Meyers R, Lam S, Vertikov A, Lee A, Lam S, Lane P. Feasibility of combined optical coherence tomography and autofluorescence imaging for visualization of needle biopsy placement. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200078RR. [PMID: 33084256 PMCID: PMC7573340 DOI: 10.1117/1.jbo.25.10.106003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Diagnosis of suspicious lung nodules requires precise collection of relevant biopsies for histopathological analysis. Using optical coherence tomography and autofluorescence imaging (OCT-AFI) to improve diagnostic yield in parts of the lung inaccessible to larger imaging methods may allow for reducing complications related to the alternative of computed tomography-guided biopsy. AIM Feasibility of OCT-AFI combined with a commercially available lung biopsy needle was demonstrated for visualization of needle puncture sites in airways with diameters as small as 1.9 mm. APPROACH A miniaturized OCT-AFI imaging stylet was developed to be inserted through an 18G biopsy needle. We present design considerations and procedure development for image-guided biopsy. Ex vivo and in vivo porcine studies were performed to demonstrate the feasibility of the procedure and the device. RESULTS OCT-AFI scans were obtained ex vivo and in vivo. Discrimination of pullback site is clear. CONCLUSIONS Use of the device is shown to be feasible in vivo. Images obtained show the stylet is effective at providing structural information at the puncture site that can be used to assess the diagnostic potential of the sample prior to collection.
Collapse
Affiliation(s)
- Geoffrey Hohert
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Renelle Meyers
- University of British Columbia, Department of Medicine, Vancouver, British Columbia, Canada
| | - Sylvia Lam
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Andrei Vertikov
- LX Medical Corporation, Westwood, Massachusetts, United States
| | - Anthony Lee
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Stephen Lam
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
- University of British Columbia, Department of Medicine, Vancouver, British Columbia, Canada
| | - Pierre Lane
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
- Simon Fraser University, School of Engineering Science, Burnaby, British Columbia, Canada
| |
Collapse
|
19
|
Criner GJ, Eberhardt R, Fernandez-Bussy S, Gompelmann D, Maldonado F, Patel N, Shah PL, Slebos DJ, Valipour A, Wahidi MM, Weir M, Herth FJ. Interventional Bronchoscopy. Am J Respir Crit Care Med 2020; 202:29-50. [PMID: 32023078 DOI: 10.1164/rccm.201907-1292so] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 150 years, bronchoscopy, especially flexible bronchoscopy, has been a mainstay for airway inspection, the diagnosis of airway lesions, therapeutic aspiration of airway secretions, and transbronchial biopsy to diagnose parenchymal lung disorders. Its utility for the diagnosis of peripheral pulmonary nodules and therapeutic treatments besides aspiration of airway secretions, however, has been limited. Challenges to the wider use of flexible bronchoscopy have included difficulty in navigating to the lung periphery, the avoidance of vasculature structures when performing diagnostic biopsies, and the ability to biopsy a lesion under direct visualization. The last 10-15 years have seen major advances in thoracic imaging, navigational platforms to direct the bronchoscopist to lung lesions, and the ability to visualize lesions during biopsy. Moreover, multiple new techniques have either become recently available or are currently being investigated to treat a broad range of airway and lung parenchymal diseases, such as asthma, emphysema, and chronic bronchitis, or to alleviate recurrent exacerbations. New bronchoscopic therapies are also being investigated to not only diagnose, but possibly treat, malignant peripheral lung nodules. As a result, flexible bronchoscopy is now able to provide a new and expanding armamentarium of diagnostic and therapeutic tools to treat patients with a variety of lung diseases. This State-of-the-Art review succinctly reviews these techniques and provides clinicians an organized approach to their role in the diagnosis and treatment of a range of lung diseases.
Collapse
Affiliation(s)
- Gerard J Criner
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ralf Eberhardt
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | | | - Daniela Gompelmann
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Fabien Maldonado
- Department of Medicine and Department of Thoracic Surgery, Vanderbilt University, Nashville, Tennessee
| | - Neal Patel
- Division of Pulmonary Medicine, Mayo Clinic, Jacksonville, Florida
| | - Pallav L Shah
- Respiratory Medicine at the Royal Brompton Hospital and National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arschang Valipour
- Department of Respiratory and Critical Care Medicine, Krankenhaus Nord, Vienna, Austria; and
| | - Momen M Wahidi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Mark Weir
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Felix J Herth
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Zhou ZQ, Su ZQ, Sun W, Zhong ML, Chen Y, Zhong CH, Chen HJ, Li SY. Postintubation Tracheal Stenosis Evaluated by Endobronchial Optical Coherence Tomography: A Canine Model Study. Respiration 2020; 99:500-507. [DOI: 10.1159/000506882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
|
21
|
Ellebrecht DB, Latus S, Schlaefer A, Keck T, Gessert N. Towards an Optical Biopsy during Visceral Surgical Interventions. Visc Med 2020; 36:70-79. [PMID: 32355663 DOI: 10.1159/000505938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cancer will replace cardiovascular diseases as the most frequent cause of death. Therefore, the goals of cancer treatment are prevention strategies and early detection by cancer screening and ideal stage therapy. From an oncological point of view, complete tumor resection is a significant prognostic factor. Optical coherence tomography (OCT) and confocal laser microscopy (CLM) are two techniques that have the potential to complement intraoperative frozen section analysis as in vivo and real-time optical biopsies. Summary In this review we present both procedures and review the progress of evaluation for intraoperative application in visceral surgery. For visceral surgery, there are promising studies evaluating OCT and CLM; however, application during routine visceral surgical interventions is still lacking. Key Message OCT and CLM are not competing but complementary approaches of tissue analysis to intraoperative frozen section analysis. Although intraoperative application of OCT and CLM is at an early stage, they are two promising techniques of intraoperative in vivo and real-time tissue examination. Additionally, deep learning strategies provide a significant supplement for automated tissue detection.
Collapse
Affiliation(s)
- David Benjamin Ellebrecht
- LungenClinic Grosshansdorf, Department of Thoracic Surgery, Grosshansdorf, Germany.,University Medical Center Schleswig-Holstein, Campus Lübeck, Department of Surgery, Lübeck, Germany
| | - Sarah Latus
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| | - Alexander Schlaefer
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| | - Tobias Keck
- University Medical Center Schleswig-Holstein, Campus Lübeck, Department of Surgery, Lübeck, Germany
| | - Nils Gessert
- Hamburg University of Technology, Institute of Medical Technology, Hamburg, Germany
| |
Collapse
|
22
|
Goorsenberg A, Kalverda KA, Annema J, Bonta P. Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases. Respiration 2019; 99:190-205. [PMID: 31593955 DOI: 10.1159/000503261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and monitoring pulmonary diseases is highly dependent on imaging, physiological function tests and tissue sampling. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are novel imaging techniques with near-microscopic resolution that can be easily and safely combined with conventional bronchoscopy. Disease-related pulmonary anatomical compartments can be visualized, real time, using these techniques. In obstructive lung diseases, airway wall layers and related structural remodelling can be identified and quantified. In malignant lung disease, normal and malignant areas of the central airways, lung parenchyma, lymph nodes and pleura can be discriminated. A growing number of interstitial lung diseases (ILDs) have been visualized using OCT or CLE. Several ILD-associated structural changes can be imaged: fibrosis, cellular infiltration, bronchi(ol)ectasis, cysts and microscopic honeycombing. Although not yet implemented in clinical practice, OCT and CLE have the potential to improve detection and monitoring pulmonary diseases and can contribute in unravelling the pathophysiology of disease and mechanism of action of novel treatments. Indeed, assessment of the airway wall layers with OCT might be helpful when evaluating treatments targeting airway remodelling. By visualizing individual malignant cells, CLE has the potential as a real-time lung cancer detection tool. In the future, both techniques could be combined with laser-enhanced fluorescent-labelled tracer detection. This review discusses the value of OCT and CLE in pulmonary medicine by summarizing the current evidence and elaborating on future perspectives.
Collapse
Affiliation(s)
- Annika Goorsenberg
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands,
| | - Kirsten A Kalverda
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke Annema
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Bonta
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Gupta A, Harris K, Dhillon SS. Role of bronchoscopy in management of central squamous cell lung carcinoma in situ. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:354. [PMID: 31516900 DOI: 10.21037/atm.2019.04.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinoma in situ (SCIS) is the pre-invasive stage of squamous cell carcinoma. Early detection and management of SCIS can prevent further progression. Although surgery and external beam radiation therapy are treatment options for SCIS, smaller lesions can be easily managed by bronchoscopic modalities like photodynamic therapy (PDT), cryotherapy, mechanical debulking with biopsy forceps, electrocautery and argon plasma coagulation (APC). Endobronchial brachytherapy (EBBT) and lasers may be judiciously utilized in selected cases. Although, previous studies of treatment modalities may have inadvertently included cases of invasive carcinomas, the advent of new technologies like radial probe endobronchial ultrasound (RP-EBUS) and optical coherence tomography (OCT) can help accurately determine the of depth of invasion. Superficial extent can also be better demarcated with techniques like auto-fluorescence bronchoscopy and narrow band imaging (NBI). New drugs for PDT with deeper penetration and less phototoxicity are being developed. These advances hopefully will allow us to perform superior clinical trials in future and improve our understanding of diagnosis and management of SCIS.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Pulmonary and Critical Care Medicine, Hartford Healthcare, Norwich, CT, USA
| | - Kassem Harris
- Interventional Pulmonology Section, Pulmonary Critical Care Division, Department of Medicine, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Samjot Singh Dhillon
- Pulmonary Critical Care and Sleep Medicine, Interventional Pulmonary, The Permanente Medical Group, Roseville and Sacramento, CA, USA
| |
Collapse
|
24
|
Hariri LP, Adams DC, Applegate MB, Miller AJ, Roop BW, Villiger M, Bouma BE, Suter MJ. Distinguishing Tumor from Associated Fibrosis to Increase Diagnostic Biopsy Yield with Polarization-Sensitive Optical Coherence Tomography. Clin Cancer Res 2019; 25:5242-5249. [PMID: 31175092 DOI: 10.1158/1078-0432.ccr-19-0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE With recent advancements in personalized medicine, biopsies must contain sufficient tumor for histologic diagnosis and molecular testing. However, inadvertent biopsy of tumor-associated fibrosis compromises tumor yield, resulting in delayed diagnoses and/or repeat procedures when additional tumor is needed. The ability to differentiate tumor from fibrosis intraprocedurally during biopsy could significantly increase tumor yield. Polarization-sensitive optical coherence tomography (PS-OCT) is an imaging modality that is endoscope- and/or needle-compatible, and provides large volumetric views of tissue microstructure with high resolution (∼10 μm) while simultaneously measuring birefringence of organized tissues such as collagen. We aim to determine whether PS-OCT can accurately detect and distinguish tumor-associated fibrosis from tumor. EXPERIMENTAL DESIGN PS-OCT was obtained ex vivo in 64 lung nodule samples. PS-OCT birefringence was measured and correlated to collagen content in precisely matched histology, quantified on picrosirius red (PSR) staining. RESULTS There was a strong positive correlation between PS-OCT measurement of birefringent fibrosis and total collagen content by PSR (r = 0.793; P < 0.001). In addition, PS-OCT was able to accurately classify tumor regions with >20% fibrosis from those with low fibrosis (≤20%) that would likely yield higher tumor content (P < 0.0001). CONCLUSIONS PS-OCT enables accurate fibrosis detection and can distinguish tumor regions with low fibrosis. PS-OCT has significant potential for clinical impact, as the ability to differentiate tumor from fibrosis could be used to guide intraprocedural tissue sampling in vivo, or for rapid biopsy adequacy assessment ex vivo, to increase diagnostic tumor yield essential for patient care and research.
Collapse
Affiliation(s)
- Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - David C Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Matthew B Applegate
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alyssa J Miller
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Benjamin W Roop
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Melissa J Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Feroldi F, Willemse J, Davidoiu V, Gräfe MGO, van Iperen DJ, Goorsenberg AWM, Annema JT, Daniels JMA, Bonta PI, de Boer JF. In vivo multifunctional optical coherence tomography at the periphery of the lungs. BIOMEDICAL OPTICS EXPRESS 2019; 10:3070-3091. [PMID: 31259075 PMCID: PMC6583343 DOI: 10.1364/boe.10.003070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/04/2023]
Abstract
Remodeling of tissue, such as airway smooth muscle (ASM) and extracellular matrix, is considered a key feature of airways disease. No clinically accepted diagnostic method is currently available to assess airway remodeling or the effect of treatment modalities such as bronchial thermoplasty in asthma, other than invasive airway biopsies. Optical coherence tomography (OCT) generates cross-sectional, near-histological images of airway segments and enables identification and quantification of airway wall layers based on light scattering properties only. In this study, we used a custom motorized OCT probe that combines standard and polarization sensitive OCT (PS-OCT) to visualize birefringent tissue in vivo in the airway wall of a patient with severe asthma in a minimally invasive manner. We used optic axis uniformity (OAxU) to highlight the presence of uniformly arranged fiber-like tissue, helping visualizing the abundance of ASM and connective tissue structures. Attenuation coefficient images of the airways are presented for the first time, showing superior architectural contrast compared to standard OCT images. A novel segmentation algorithm was developed to detect the surface of the endoscope sheath and the surface of the tissue. PS-OCT is an innovative imaging technique that holds promise to assess airway remodeling including ASM and connective tissue in a minimally invasive, real-time manner.
Collapse
Affiliation(s)
- Fabio Feroldi
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Joy Willemse
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Valentina Davidoiu
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Maximilian G. O. Gräfe
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Dirck J. van Iperen
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Annika W. M. Goorsenberg
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke T. Annema
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes M. A. Daniels
- Amsterdam University Medical Center, Department of Pulmonology, VUmc Location, Amsterdam, the Netherlands
| | - Peter I. Bonta
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes F. de Boer
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Shi W, Chen C, Pasarikovski CR, Gao W, Yang VXD. Differential phase standard-deviation-based optical coherence tomographic angiography for human retinal imaging in vivo. APPLIED OPTICS 2019; 58:3401-3409. [PMID: 31044835 DOI: 10.1364/ao.58.003401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
We present a differential phase standard-deviation (DPSD)-based optical coherence tomographic (OCT) angiography (OCTA) technique to calculate the angiography images of the human retina. The standard deviation was calculated along the depth direction on the differential phase image of two B-scans (from the same position, at different times) to contrast dynamic vascular signals. The performance of a DPSD was verified by both phantom and in vivo experiments. When compared to other OCTA algorithms such as phase variance OCT, speckle variance OCT, and optical microangiography, we showed that a DPSD achieved improved image contrast and higher sensitivity. Furthermore, we also found the improved signal-to-noise ratio and contrast-to-noise ratio of 1.6 dB and 0.5, respectively, in large scanning range images.
Collapse
|
27
|
Noskov RE, Zanishevskaya AA, Shuvalov AA, German SV, Inozemtseva OA, Kochergin TP, Lazareva EN, Tuchin VV, Ginzburg P, Skibina JS, Gorin DA. Enabling magnetic resonance imaging of hollow-core microstructured optical fibers via nanocomposite coating. OPTICS EXPRESS 2019; 27:9868-9878. [PMID: 31045135 DOI: 10.1364/oe.27.009868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Optical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs. Incorporation of magnetite nanoparticles into polyelectrolyte layers renders HC-MFs visible for MRI and induces the red-shift in their transmission spectra. Specifically, the transmission shifts up to 60 nm have been revealed for the several-layers composite coating, along with the high-quality contrast of HC-MFs in MRI scans. Our results shed light on marrying fiber-based endoscopy with MRI to open novel possibilities for minimally invasive clinical diagnostics and surgical procedures in vivo.
Collapse
|
28
|
Qi L, Zheng K, Li X, Feng Q, Chen Z, Chen W. Automatic three-dimensional segmentation of endoscopic airway OCT images. BIOMEDICAL OPTICS EXPRESS 2019; 10:642-656. [PMID: 30800505 PMCID: PMC6377898 DOI: 10.1364/boe.10.000642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/23/2018] [Accepted: 12/24/2018] [Indexed: 05/25/2023]
Abstract
Automatic delineation and segmentation of airway structures from endoscopic optical coherence tomography (OCT) images improve image analysis efficiency and thus has been of particular interest. Conventional two-dimensional automatic segmentation methods, such as the dynamic programming approach, ensures the edge-continuity in the xz-direction (intra-B-scan), but fails to preserve the surface-continuity when concerning the y-direction (inter-B-scan). To solve this, we present a novel automatic three-dimensional (3D) airway segmentation strategy. Our segmentation scheme includes an artifact-oriented pre-processing pipeline and a modified 3D optimal graph search algorithm incorporating adaptive tissue-curvature adjustment. The proposed algorithm is tested on endoscopic airway OCT image data sets acquired by different swept-source OCT platforms, and on different animal and human models. With our method, the results show continuous surface segmentation performance, which is both robust and accurate.
Collapse
Affiliation(s)
- Li Qi
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Kaibin Zheng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xipan Li
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92612, USA
- Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| | - Wufan Chen
- School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| |
Collapse
|
29
|
Wang W, Wang G, Ma J, Cheng L, Guan BO. Miniature all-fiber axicon probe with extended Bessel focus for optical coherence tomography. OPTICS EXPRESS 2019; 27:358-366. [PMID: 30696123 DOI: 10.1364/oe.27.000358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
The trade-off between lateral resolution and depth of focus (DOF) severely limits the capability of endoscopic optical coherence tomography (OCT) for high-resolution deep-tissue imaging. To address this issue, we developed a novel miniature all-fiber axicon OCT probe by inserting a segment of gradient-index (GRIN) fiber between a piece of single-mode fiber (SMF) and an axicon polished from a no-core fiber. The GRIN lens served as a beam expander extending the probe DOF by 5.2 times while maintaining a high lateral resolution of 2 μm. The DOF extension was experimentally verified by measuring the axial profile of the probe output beam and further by imaging multilayered polymer tapes and onion samples. The designed probe with a tight focus over a large DOF holds great potential in endoscopic OCT imaging of deep tissues at the cellular level.
Collapse
|
30
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
31
|
Needle-based Optical Coherence Tomography to Guide Transbronchial Lymph Node Biopsy. J Bronchology Interv Pulmonol 2018; 25:189-197. [PMID: 29659420 DOI: 10.1097/lbr.0000000000000491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transbronchial needle aspiration (TBNA), often used to sample lymph nodes for lung cancer staging, is subject to sampling error even when performed with endobronchial ultrasound. Optical coherence tomography (OCT) is a high-resolution imaging modality that rapidly generates helical cross-sectional images. We aim to determine if needle-based OCT can provide microstructural information in lymph nodes that may be used to guide TBNA, and improve sampling error. METHODS We performed ex vivo needle-based OCT on thoracic lymph nodes from patients with and without known lung cancer. OCT imaging features were compared against matched histology. RESULTS OCT imaging was performed in 26 thoracic lymph nodes, including 6 lymph nodes containing metastatic carcinoma. OCT visualized lymphoid follicles, adipose tissue, pigment-laden histiocytes, and blood vessels. OCT features of metastatic carcinoma were distinct from benign lymph nodes, with microarchitectural features that reflected the morphology of the carcinoma subtype. OCT was also able to distinguish lymph node from adjacent airway wall. CONCLUSIONS Our results demonstrate that OCT provides critical microstructural information that may be useful to guide TBNA lymph node sampling, as a complement to endobronchial ultrasound. In vivo studies are needed to further evaluate the clinical utility of OCT in thoracic lymph node assessment.
Collapse
|
32
|
van Manen L, Dijkstra J, Boccara C, Benoit E, Vahrmeijer AL, Gora MJ, Mieog JSD. The clinical usefulness of optical coherence tomography during cancer interventions. J Cancer Res Clin Oncol 2018; 144:1967-1990. [PMID: 29926160 PMCID: PMC6153603 DOI: 10.1007/s00432-018-2690-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tumor detection and visualization plays a key role in the clinical workflow of a patient with suspected cancer, both in the diagnosis and treatment. Several optical imaging techniques have been evaluated for guidance during oncological interventions. Optical coherence tomography (OCT) is a technique which has been widely evaluated during the past decades. This review aims to determine the clinical usefulness of OCT during cancer interventions focussing on qualitative features, quantitative features and the diagnostic value of OCT. METHODS A systematic literature search was performed for articles published before May 2018 using OCT in the field of surgical oncology. Based on these articles, an overview of the clinical usefulness of OCT was provided per tumor type. RESULTS A total of 785 articles were revealed by our search, of which a total of 136 original articles were available for analysis, which formed the basis of this review. OCT is currently utilised for both preoperative diagnosis and intraoperative detection of skin, oral, lung, breast, hepatobiliary, gastrointestinal, urological, and gynaecological malignancies. It showed promising results in tumor detection on a microscopic level, especially using higher resolution imaging techniques, such as high-definition OCT and full-field OCT. CONCLUSION In the near future, OCT could be used as an additional tool during bronchoscopic or endoscopic interventions and could also be implemented in margin assessment during (laparoscopic) cancer surgery if a laparoscopic or handheld OCT device will be further developed to make routine clinical use possible.
Collapse
Affiliation(s)
- Labrinus van Manen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
33
|
Pahlevaninezhad H, Khorasaninejad M, Huang YW, Shi Z, Hariri LP, Adams DC, Ding V, Zhu A, Qiu CW, Capasso F, Suter MJ. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. NATURE PHOTONICS 2018; 12:540-547. [PMID: 30713581 PMCID: PMC6350822 DOI: 10.1038/s41566-018-0224-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/04/2018] [Indexed: 05/19/2023]
Abstract
Acquisition of high-resolution images from within internal organs using endoscopic optical imaging has numerous clinical applications. However, difficulties associated with optical aberrations and the trade-off between transverse resolution and depth-of-focus significantly limit the scope of applications. Here, we integrate a metalens, with the ability to modify the phase of incident light at sub-wavelength level, into the design of an endoscopic optical coherence tomography catheter (termed nano-optic endoscope) to achieve near diffraction-limited imaging through negating non-chromatic aberrations. Remarkably, the tailored chromatic dispersion of the metalens in the context of spectral interferometry is utilized to maintain high-resolution imaging beyond the input field Rayleigh range, easing the trade-off between transverse resolution and depth-of-focus. We demonstrate endoscopic imaging both in resected human lung specimens and in sheep airways in vivo. The combination of the superior resolution and higher imaging depth-of-focus of the nano-optic endoscope will likely increase the clinical utility of endoscopic optical imaging.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Harvard Medical School and Massachusetts General Hospital, Boston MA 02114, United States
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
| | - Mohammadreza Khorasaninejad
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
| | - Yao-Wei Huang
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Zhujun Shi
- Department of Physics, Harvard University, Cambridge, MA 02138, United States
| | - Lida P. Hariri
- Harvard Medical School and Massachusetts General Hospital, Boston MA 02114, United States
| | - David C. Adams
- Harvard Medical School and Massachusetts General Hospital, Boston MA 02114, United States
| | - Vivien Ding
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo Ontario N2L 3G1, Canada
| | - Alexander Zhu
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 117583 Singapore, Singapore
| | - Federico Capasso
- John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge MA 02138, United States
- Corresponding author: ,
| | - Melissa J. Suter
- Harvard Medical School and Massachusetts General Hospital, Boston MA 02114, United States
- Corresponding author: ,
| |
Collapse
|
34
|
|
35
|
Abstract
INTRODUCTION The field of interventional pulmonology (IP) is a rapidly maturing subspecialty of pulmonary medicine, which emphasizes advanced diagnostic and therapeutic bronchoscopy for the evaluation and management of central airway obstruction, mediastinal/hilar adenopathy and lung nodules/masses, as well as minimally invasive diagnostic and therapeutic pleural procedures. Areas covered: This review describes advances in diagnostic and therapeutic bronchoscopic techniques. Expert commentary: In the past decade, there has been a remarkable growth in available technology and equipment, as well as clinical and translational research efforts focused on patient-centered outcomes. Furthermore, the recent establishment of a uniform accreditation standard for all IP fellowship programs in the United States was an important step in the continued evolution of this subspecialty of pulmonary medicine.
Collapse
Affiliation(s)
- Diana H Yu
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| | - David Feller-Kopman
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| |
Collapse
|
36
|
Liu KYP, Lu XJD, Cheng YSL, Klieb H, Ng S, McNeil K, Karsan A, Poh CF. An actionable test using loss of heterozygosity in identifying high-risk oral premalignant lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 126:S2212-4403(17)31208-7. [PMID: 29428696 DOI: 10.1016/j.oooo.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/03/2017] [Accepted: 10/12/2017] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To develop an actionable test using fluorescence capillary electrophoresis (FCE) to assess loss of heterozygosity (LOH) of histologically similar low-grade lesions (LGLs) to identify high-risk lesions for oral cancer progression. STUDY DESIGN To determine the cutoffs of LOH, the FCE results of 52 surgical margin samples were used to compare with the existing LOH results from the previously validated 32 P-GE approach. Using the developed FCE workflow, an independent set of 102 LGLs with known progression status was used to determine the LOH molecular risk (MR) patterns and associated risk of progression. RESULTS Using 65% cutoff LOH-FCE, the agreement of LOH-32 P-GE had an average of 82.3% (76.8-87.8). Compared with nonprogressors (n = 61), anatomic site and MR patterns (LOH at 9 p21, 3 p14, or 17 p13) were independent risk factors. High-risk profile of tongue and MR3 (LOH at 9 p21 and/or 3 p14 and 17 p13) was significantly associated with progression (hazard ratio [HR] 6.7; 95% confidence interval [CI] 2.6-17.6) with specificity of 98.4% at identifying progressors. CONCLUSIONS We have developed an objective test using LOH to stratify the risk of LGLs. With further validation, it can be used in the clinical settings to provide clinicians additional information guiding the management of these lesions.
Collapse
Affiliation(s)
- Kelly Y P Liu
- Department of Oral Medical Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - X J David Lu
- Department of Oral Medical Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Yi-Shing L Cheng
- Diagnostic Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hagen Klieb
- Department of Anatomic Pathology and Department of Dentistry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Samson Ng
- Department of Oral Medical Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Kelly McNeil
- Cancer Genetics Laboratory, Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Aly Karsan
- Cancer Genetics Laboratory, Pathology and Laboratory Medicine, British Columbia Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Catherine F Poh
- Department of Oral Medical Biological Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Agency, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
37
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
38
|
Li J, Quirk BC, Noble PB, Kirk RW, Sampson DD, McLaughlin RA. Flexible needle with integrated optical coherence tomography probe for imaging during transbronchial tissue aspiration. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-5. [PMID: 29022301 DOI: 10.1117/1.jbo.22.10.106002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between solid tissue and two typical constituents of nondiagnostic samples (adipose and lung parenchyma). Clinical translation of this OCT-guided aspiration needle holds promise for improving the diagnostic yield of TBNA.
Collapse
Affiliation(s)
- Jiawen Li
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - Bryden C Quirk
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - Peter B Noble
- University of Western Australia, School of Human Sciences, Perth, Western Australia, Australia
- University of Western Australia, School of Paediatrics and Child Health, Centre for Neonatal Researc, Australia
| | - Rodney W Kirk
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| | - David D Sampson
- University of Western Australia, School of Electrical, Electronic and Computer Engineering, Optical+, Australia
- University of Western Australia, Centre for Microscopy, Characterisation and Analysis, Perth, Wester, Australia
| | - Robert A McLaughlin
- University of Adelaide, Adelaide Medical School, Australian Research Council Centre of Excellence fo, Australia
- University of Adelaide, Institute for Photonics and Advanced Sensing, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Adams DC, Pahlevaninezhad H, Szabari MV, Cho JL, Hamilos DL, Kesimer M, Boucher RC, Luster AD, Medoff BD, Suter MJ. Automated segmentation and quantification of airway mucus with endobronchial optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2017; 8:4729-4741. [PMID: 29082098 PMCID: PMC5654813 DOI: 10.1364/boe.8.004729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 05/31/2023]
Abstract
We propose a novel suite of algorithms for automatically segmenting the airway lumen and mucus in endobronchial optical coherence tomography (OCT) data sets, as well as a novel approach for quantifying the contents of the mucus. Mucus and lumen were segmented using a robust, multi-stage algorithm that requires only minimal input regarding sheath geometry. The algorithm performance was highly accurate in a wide range of airway and noise conditions. Mucus was classified using mean backscattering intensity and grey level co-occurrence matrix (GLCM) statistics. We evaluated our techniques in vivo in asthmatic and non-asthmatic volunteers.
Collapse
Affiliation(s)
- David C. Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hamid Pahlevaninezhad
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Equal contribution
| | - Margit V. Szabari
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Equal contribution
| | - Josalyn L. Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel L. Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Melissa J. Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Preinvasive disease of the airway. Cancer Treat Rev 2017; 58:77-90. [DOI: 10.1016/j.ctrv.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/20/2023]
|
41
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
42
|
Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2017; 23:275-283. [DOI: 10.1097/mcp.0000000000000375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Tang Q, Wang J, Frank A, Lin J, Li Z, Chen CW, Jin L, Wu T, Greenwald BD, Mashimo H, Chen Y. Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography. BIOMEDICAL OPTICS EXPRESS 2016; 7:5218-5232. [PMID: 28018738 PMCID: PMC5175565 DOI: 10.1364/boe.7.005218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 05/02/2023]
Abstract
Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is difficult to detect the subsurface lesions. In this research, we investigated the feasibility of a novel multi-modal optical imaging approach including high-resolution optical coherence tomography (OCT) and high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. The C57BL/6J-ApcMin/J mice were imaged using OCT and FLOT, and the correlated histopathological diagnosis was obtained. Quantitative structural (scattering coefficient) and molecular (relative enzyme activity) parameters were obtained from OCT and FLOT images for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 88.23% (82.35%) for sensitivity (specificity) compared to either modality alone. This study suggested that combining OCT and FLOT is promising for subsurface cancer detection, diagnosis, and characterization.
Collapse
Affiliation(s)
- Qinggong Tang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianting Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Aaron Frank
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jonathan Lin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Zhifang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Chao-wei Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Lily Jin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA
| | - Bruce D. Greenwald
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hiroshi Mashimo
- Department of Medicine, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
44
|
Andolfi M, Potenza R, Capozzi R, Liparulo V, Puma F, Yasufuku K. The role of bronchoscopy in the diagnosis of early lung cancer: a review. J Thorac Dis 2016; 8:3329-3337. [PMID: 28066614 PMCID: PMC5179455 DOI: 10.21037/jtd.2016.11.81] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with an overall 5-year survival rate of 17% after diagnoses. Indeed many patients tend to have a very poor prognosis, due to being diagnosed at an advanced stage. Conversely patients who are diagnosed at an early stage have a 5-year survival >70%, indicating that early detection of lung cancer is crucial to improve survival. Although flexible bronchoscopy is a relatively non-invasive procedure for patients suspected of having lung cancer, only 29% of carcinoma in situ (CIS) and 69% of microinvasive tumors were detectable using white light bronchoscopy (WLB) alone. As a result, in the past two decades, new bronchoscopic techniques have been developed to increase the yield and diagnostic accuracy, such as autofluorescence bronchoscopy (AFB), narrow band imaging (NBI) and high magnification bronchovideoscopy (HMB). However, due to the low specificity and the limitation to detect only proximal bronchial tree, new probe-based technologies have been introduced: radial endobronchial ultrasound (R-EBUS), optical coherence tomography (OCT), confocal laser endomicroscopy (CLE) and laser Raman spectroscopy (LRS). To date, although tissue biopsy remains the gold standard for diagnosing malignant/premalignant airway disease and some techniques are still investigational, bronchoscopic technologies can be considered the safest and most accurate tools to evaluate both central and distal airway mucosa.
Collapse
Affiliation(s)
- Marco Andolfi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rossella Potenza
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rosanna Capozzi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Valeria Liparulo
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Francesco Puma
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Lung cancer is the leading cause of cancer deaths worldwide. Early detection is essential for long-term survival. Screening of high-risk individuals with low-dose computed tomography screening has proven to increase survival. However, current radiological imaging techniques have poor specificity for lung cancer detection and poor sensitivity for detection of mucosal or alveolar preinvasive malignant lesions. Bronchoscopy allows imaging and sampling of early lung cancer, with the highest safety profile and high diagnostic accuracy. RECENT FINDINGS Available technologies, such as autofluorescence bronchoscopy, narrow band imaging, and radial ultrasound bronchoscopy can significantly increase the yield and diagnostic accuracy of bronchoscopy for early cancer detection in the central airways. Newer technologies such as optical coherence tomography, confocal bronchoscopy, and Raman spectroscopy may significantly increase the diagnostic yield of both central and parenchymal early cancer lesions. SUMMARY Although some of these technologies are still investigational and are not readily available in most centers, they may identify early mucosal and alveolar cancer lesions accurately in the least invasive manner to provide appropriate therapy and prolong patient survival from lung cancer.
Collapse
|
46
|
Epelbaum O, Aronow WS. Autofluorescence bronchoscopy for lung cancer screening: a time to reflect. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:311. [PMID: 27668231 DOI: 10.21037/atm.2016.06.34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Oleg Epelbaum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| | - Wilbert S Aronow
- Division of Pulmonary, Critical Care, and Sleep Medicine, Westchester Medical Center/New York Medical College, Valhalla, NY, USA; Division of Cardiology, Department of Medicine, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
47
|
Kirby M, van Beek EJR, Seo JB, Biederer J, Nakano Y, Coxson HO, Parraga G. Management of COPD: Is there a role for quantitative imaging? Eur J Radiol 2016; 86:335-342. [PMID: 27592252 DOI: 10.1016/j.ejrad.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/26/2016] [Indexed: 11/19/2022]
Abstract
While the recent development of quantitative imaging methods have led to their increased use in the diagnosis and management of many chronic diseases, medical imaging still plays a limited role in the management of chronic obstructive pulmonary disease (COPD). In this review we highlight three pulmonary imaging modalities: computed tomography (CT), magnetic resonance imaging (MRI) and optical coherence tomography (OCT) imaging and the COPD biomarkers that may be helpful for managing COPD patients. We discussed the current role imaging plays in COPD management as well as the potential role quantitative imaging will play by identifying imaging phenotypes to enable more effective COPD management and improved outcomes.
Collapse
Affiliation(s)
- Miranda Kirby
- Department of Radiology, University of British Columbia, Vancouver, Canada; UBC James Hogg Research Center & The Institute of Heart and Lung Health, St. Paul's Hospital, Vancouver, Canada
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joon Beom Seo
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Republic of Korea
| | - Juergen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Lung Research Center (DZL), Germany; Radiologie Darmstadt, Gross-Gerau County Hospital, Germany
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Harvey O Coxson
- Department of Radiology, University of British Columbia, Vancouver, Canada; UBC James Hogg Research Center & The Institute of Heart and Lung Health, St. Paul's Hospital, Vancouver, Canada
| | - Grace Parraga
- Robarts Research Institute, The University of Western Ontario, London, Canada; Department of Medical Biophysics, The University of Western Ontario, London, Canada.
| |
Collapse
|
48
|
Kirby M, Lane P, Coxson HO. Measurement of pulmonary structure and function. IMAGING 2016. [DOI: 10.1183/2312508x.10003415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
49
|
Abstract
RATIONALE Lung carcinoma diagnosis on tissue biopsy can be challenging because of insufficient tumor and lack of architectural information. Optical coherence tomography (OCT) is a high-resolution imaging modality that visualizes tissue microarchitecture in volumes orders of magnitude larger than biopsy. It has been proposed that OCT could potentially replace tissue biopsy. OBJECTIVES We aim to determine whether OCT could replace histology in diagnosing lung carcinomas. We develop and validate OCT interpretation criteria for common primary lung carcinomas: adenocarcinoma, squamous cell carcinoma (SCC), and poorly differentiated carcinoma. METHODS A total of 82 ex vivo tumor samples were included in a blinded assessment with 3 independent readers. Readers were trained on the OCT criteria, and applied these criteria to diagnose adenocarcinoma, SCC, or poorly differentiated carcinoma in an OCT validation dataset. After a 7-month period, the readers repeated the training and validation dataset interpretation. An independent pathologist reviewed corresponding histology. MEASUREMENTS AND MAIN RESULTS The average accuracy achieved by the readers was 82.6% (range, 73.7-94.7%). The sensitivity and specificity for adenocarcinoma were 80.3% (65.7-91.4%) and 88.6% (80.5-97.6%), respectively. The sensitivity and specificity for SCC were 83.3% (70.0-100.0%) and 87.0% (75.0-96.5%), respectively. The sensitivity and specificity for poorly differentiated carcinoma were 85.7% (81.0-95.2%) and 97.6% (92.9-100.0%), respectively. CONCLUSIONS Although these results are encouraging, they indicate that OCT cannot replace histology in the diagnosis of lung carcinomas. However, OCT has potential to aid in diagnosing lung carcinomas as a complement to tissue biopsy, particularly when insufficient tissue is available for pathology assessment.
Collapse
|
50
|
Relationship Between Emphysema Severity and the Location of Lung Cancer in Patients With Chronic Obstructive Lung Disease. AJR Am J Roentgenol 2015; 205:540-5. [PMID: 26295639 DOI: 10.2214/ajr.14.13992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE New phenotypes of chronic obstructive pulmonary disease (COPD) based on emphysema severity have been recognized recently. The purpose of this study was to determine the relationship between emphysema severity (phenotype) and lung cancer location in patients with COPD. MATERIALS AND METHODS Four hundred patients with 405 primary lung cancers confirmed pathologically between January 2010 and March 2014 were included in the study. Of these, 193 patients received a diagnosis of COPD according to the Global Initiative for Chronic Obstructive Lung Disease guidelines. We scored emphysema severity (0-4) on thin-section CT and assigned the anatomic tumor location of lung cancer as peripheral or central. RESULTS Patients with COPD had a higher proportion of centrally located lung cancer compared with those without COPD (36.4% vs 17.4%; p < 0.001). In patients with COPD, lower emphysema grades (odds ratio [OR], 0.69; 95% CI, 0.51-0.93; p = 0.016) and reduced ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC) (OR, 0.94; 95% CI, 0.89-0.99; p = 0.024) were associated with central location. After adjusting for age, smoking, and spirometry results, the proportion of central location was approximately four times higher in patients with lower emphysema grades (0-2, < 25%) than in those with severe grades (grade 4, > 51%). CONCLUSION Lower emphysema grades and reduced FEV1/FVC seemed to be independent predictors of central location of lung cancer in COPD. Therefore, in patients with COPD with lower grade emphysema and airway-predominant disease, additional screening tools may have to be considered for central lung cancer detection along with thin-section CT.
Collapse
|