1
|
Pan L, Li J, Xu Q, Gao Z, Yang M, Wu X, Li X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine (Baltimore) 2024; 103:e38508. [PMID: 38875362 PMCID: PMC11175886 DOI: 10.1097/md.0000000000038508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is currently the most commonly occurring cancer globally. Among breast cancer cases, the human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for 15% to 20% and is a crucial focus in the treatment of breast cancer. Common HER2-targeted drugs approved for treating early and/or advanced breast cancer include trastuzumab and pertuzumab, which effectively improve patient prognosis. However, despite treatment, most patients with terminal HER2-positive breast cancer ultimately suffer death from the disease due to primary or acquired drug resistance. The prevalence of aberrantly activated the protein kinase B (AKT) signaling in HER2-positive breast cancer was already observed in previous studies. It is well known that p-AKT expression is linked to an unfavorable prognosis, and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, as the most common mutated pathway in breast cancer, plays a major role in the mechanism of drug resistance. Therefore, in the current review, we summarize the molecular alterations present in HER2-positive breast cancer, elucidate the relationships between HER2 overexpression and alterations in the PI3K/AKT signaling pathway and the pathways of the alterations in breast cancer, and summarize the resistant mechanism of drugs targeting the HER2-AKT pathway, which will provide an adjunctive therapeutic rationale for subsequent resistance to directed therapy in the future.
Collapse
Affiliation(s)
- Linghui Pan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinling Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, China
| | - Qi Xu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zili Gao
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoping Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Khallouki F, Hajji L, Saber S, Bouddine T, Edderkaoui M, Bourhia M, Mir N, Lim A, El Midaoui A, Giesy JP, Aboul-Soud MAM, Silvente-Poirot S, Poirot M. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J Pers Med 2023; 13:jpm13050754. [PMID: 37240924 DOI: 10.3390/jpm13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer (BC) is the most common female cancer in terms of incidence and mortality worldwide. Tamoxifen (Nolvadex) is a widely prescribed, oral anti-estrogen drug for the hormonal treatment of estrogen-receptor-positive BC, which represents 70% of all BC subtypes. This review assesses the current knowledge on the molecular pharmacology of tamoxifen in terms of its anticancer and chemo-preventive actions. Due to the importance of vitamin E compounds, which are widely taken as a supplementary dietary component, the review focuses only on the potential importance of vitamin E in BC chemo-prevention. The chemo-preventive and onco-protective effects of tamoxifen combined with the potential effects of vitamin E can alter the anticancer actions of tamoxifen. Therefore, methods involving an individually designed, nutritional intervention for patients with BC warrant further consideration. These data are of great importance for tamoxifen chemo-prevention strategies in future epidemiological studies.
Collapse
Affiliation(s)
- Farid Khallouki
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Lhoussain Hajji
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Somayya Saber
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Toufik Bouddine
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Mouad Edderkaoui
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Mohammed Bourhia
- Higher Institute of Nursing Professions and Technical Health, Laayoune 70000, Morocco
| | - Nora Mir
- Biology Department, Faculty of Sciences, Moulay Ismail University of Meknes, BP. 11201 Zitoune, Meknes 50050, Morocco
| | - Adrian Lim
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center & University of California, Los Angeles, CA 90048, USA
| | - Adil El Midaoui
- Biology Department, FSTE, Moulay Ismail University of Meknes, BP 609, Errachidia 52000, Morocco
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Environmental Sciences, Baylor University, Waco, TX 76706, USA
| | - Mourad A M Aboul-Soud
- Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sandrine Silvente-Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| | - Marc Poirot
- Cancer Research Center of Toulouse, UMR 1037 INSERM, UMR 5071 CNRS, University of Toulouse III, Equipe labellisée par la Ligue Nationale Contre le Cancer, 31037 Toulouse, France
- French Network for Nutrition And Cancer Research (NACRe Network), 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
K-RAS Associated Gene-Mutation-Based Algorithm for Prediction of Treatment Response of Patients with Subtypes of Breast Cancer and Especially Triple-Negative Cancer. Cancers (Basel) 2022; 14:cancers14215322. [PMID: 36358741 PMCID: PMC9657686 DOI: 10.3390/cancers14215322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: There is an urgent need for developing new biomarker tools to accurately predict treatment response of breast cancer, especially the deadly triple-negative breast cancer. We aimed to develop gene-mutation-based machine learning (ML) algorithms as biomarker classifiers to predict treatment response of first-line chemotherapy with high precision. Methods: Random Forest ML was applied to screen the algorithms of various combinations of gene mutation profiles of primary tumors at diagnosis using a TCGA Cohort (n = 399) with up to 150 months follow-up as a training set and validated in a MSK Cohort (n = 807) with up to 220 months follow-up. Subtypes of breast cancer including triple-negative and luminal A (ER+, PR+ and HER2−) were also assessed. The predictive performance of the candidate algorithms as classifiers was further assessed using logistic regression, Kaplan−Meier progression-free survival (PFS) plot, and univariate/multivariate Cox proportional hazard regression analyses. Results: A novel algorithm termed the 12-Gene Algorithm based on mutation profiles of KRAS, PIK3CA, MAP3K1, MAP2K4, PTEN, TP53, CDH1, GATA3, KMT2C, ARID1A, RunX1, and ESR1, was identified. The performance of this algorithm to distinguish non-progressed (responder) vs. progressed (non-responder) to treatment in the TCGA Cohort as determined using AUC was 0.96 (95% CI 0.94−0.98). It predicted progression-free survival (PFS) with hazard ratio (HR) of 21.6 (95% CI 11.3−41.5) (p < 0.0001) in all patients. The algorithm predicted PFS in the triple-negative subgroup with HR of 19.3 (95% CI 3.7−101.3) (n = 42, p = 0.000). The 12-Gene Algorithm was validated in the MSK Cohort with a similar AUC of 0.97 (95% CI 0.96−0.98) to distinguish responder vs. non-responder patients, and had a HR of 18.6 (95% CI 4.4−79.2) to predict PFS in the triple-negative subgroup (n = 75, p < 0.0001). Conclusions: The novel 12-Gene algorithm based on multitude gene-mutation profiles identified through ML has a potential to predict breast cancer treatment response to therapies, especially in triple-negative subgroups patients, which may assist personalized therapies and reduce mortality.
Collapse
|
4
|
Dethe MR, A P, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release 2022; 343:217-236. [PMID: 35090961 PMCID: PMC9134269 DOI: 10.1016/j.jconrel.2022.01.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/09/2023]
Abstract
A number of stimuli-responsive-based hydrogels has been widely explored in biomedical applications in the last few decades because of their excellent biodegradability and biocompatibility. The development of synthetic chemistry and materials science leads to the emergence of in situ stimuli-responsive hydrogels. In this regard, several synthetic and natural polymers have been synthesized and utilized to prepare temperature-sensitive in situ forming hydrogels. This could be best used via injections as temperature stimulus could trigger in situ hydrogels gelation and swelling behaviors. There are many smart polymers available for the formulation of the in situ based thermoresponsive injectable hydrogel. Among these, poly (ε-caprolactone) (PCL) polymer has been recognized and approved by the FDA for numerous biomedical applications. More specifically, the PCL is coupled with polyethylene glycol (PEG) to obtain amphiphilic thermosensitive "smart" copolymers (PCL-PEG), to form rapid and reversible physical gelation behavior. However, the chemical structure of the copolymer is a critical aspect in determining water solubility, thermo-gelation behavior, drug release rate, degradation rate, and the possibility to deliver a diverse range of drugs. In this review, we have highlighted the typical PCL-PEG-based thermosensitive injectable hydrogels progress in the last decade for tissue engineering and localized drug delivery applications to treat various diseases. Additionally, the impact of molecular weight of PCL-PEG upon gelling behavior has also been critically highlighted for optimum hydrogels properties for potential pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
- Mithun Rajendra Dethe
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Prabakaran A
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Hafiz Ahmed
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Upal Roy
- Department of Health and Biomedical Sciences, College of Health Affairs, One West University Blvd., Brownsville, TX 78520, United States of America
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati 781101, India.
| |
Collapse
|
5
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
6
|
Liu H, Liu S, Song X, Jiang A, Zou Y, Deng Y, Yue C, Li Z, Yang D, Yang C, Sun D, Yang F, Li M, Jiang K, Lu H, Hu W, Zheng Y. Nanoparticle encapsulated CQ/TAM combination harmonizes with MSCs in arresting progression of severity in AP mice through iNOS (IDO) signaling. Mater Today Bio 2022; 14:100226. [PMID: 35308042 PMCID: PMC8924312 DOI: 10.1016/j.mtbio.2022.100226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Background Sever acute pancreatitis (SAP) is a critical disease with high mortality, and lack of clinically available treatments with specificity and effectiveness. Bone marrow derived mesenchymal stem cells (BMSCs) exhibited moderate effect on AP which needs further improvement. Methods Pancreatic infiltrating lymphocytes were analyzed to demonstrate the intervention of BMSCs on inflammatory cell infiltration of AP. Gene silencing with siRNA and small molecule inhibitor were utilized to determine the key effector molecule of BMSCs on AP. Pharmacological regulation and nanotechnology were introduced to further ameliorate BMSCs action. Results It was revealed that BMSCs prevent the progression of acute pancreatitis (AP) by reducing recruitment of macrophages, neutrophils and CD4+T cells in the lesion site. The pivotal role of chemokine–iNOS–IDO axis for BMSCs to intervene AP was confirmed. Compared with any single drug, Chloroquine/Tamoxifen combination together with IFN-γ pronouncedly up-regulated the transcription of several MSC immune regulators such as COX-2, PD-L1, HO-1 especially iNOS/IDO. As expected, BMSCs and human umbilical cord mesenchymal stem cells (UMSCs) pretreated with CQ/TAM/IFN-γ exerted enhanced intervention in AP and SAP mice. Moreover, pretreatment with CQ-LPs/TAM-NPs combination not only counteracted MSCs proliferation inhibition induced by free drugs but also enhanced their efficacy. Conclusion Under the background of rapid progress in MSCs clinical translation, this study focuses on the urgent clinical issue and initiates an original mechanism-based strategy to promote intervention on severity progression of SAP, which promises its clinical translation in future.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Simeng Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Xiaoshuang Song
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Ailing Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yu Zou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Yuchuan Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Chao Yue
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Zhenlu Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Dujiang Yang
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Dan Sun
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mao Li
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Kun Jiang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Huimin Lu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Weiming Hu
- Department of Hepatobiliary and Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yu Zheng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 6110041, China
- Corresponding author.
| |
Collapse
|
7
|
Soltan OM, Shoman ME, Abdel-Aziz SA, Narumi A, Konno H, Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur J Med Chem 2021; 225:113768. [PMID: 34450497 DOI: 10.1016/j.ejmech.2021.113768] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/23/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023]
Abstract
Protein kinases have grown over the past few years as a crucial target for different cancer types. With the multifactorial nature of cancer, and the fast development of drug resistance for conventional chemotherapeutics, a strategy for designing multi-target agents was suggested to potentially increase drug efficacy, minimize side effects and retain the proper pharmacokinetic properties. Kinase inhibitors were used extensively in such strategy. Different kinase inhibitor agents which target EGFR, VEGFR, c-Met, CDK, PDK and other targets were merged into hybrids with conventional chemotherapeutics such as tubulin polymerization and topoisomerase inhibitors. Other hybrids were designed gathering kinase inhibitors with targeted cancer therapy such as HDAC, PARP, HSP 90 inhibitors. Nitric oxide donor molecules were also merged with kinase inhibitors for cancer therapy. The current review presents the hybrids designed in the past five years discussing their design principles, results and highlights their future perspectives.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| | - Salah A Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, 61111, Minia, Egypt
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Jonan 4-3-16, Yonezawa, 992-8510, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
| |
Collapse
|
8
|
Mustachio LM, Chelariu-Raicu A, Szekvolgyi L, Roszik J. Targeting KRAS in Cancer: Promising Therapeutic Strategies. Cancers (Basel) 2021; 13:1204. [PMID: 33801965 PMCID: PMC7999304 DOI: 10.3390/cancers13061204] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022] Open
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is mutated in approximately 25% of all human cancers and is known to be a major player promoting and maintaining tumorigenesis through the RAS/MAPK pathway. Over the years, a large number of studies have identified strategies at different regulatory levels to tackle this 'difficult-to-target' oncoprotein. Yet, the most ideal strategy to overcome KRAS and its downstream effects has yet to be uncovered. This review summarizes the role of KRAS activating mutations in multiple cancer types as well as the key findings for potential strategies inhibiting its oncogenic behavior. A comprehensive analysis of the different pathways and mechanisms associated with KRAS activity in tumors will ultimately pave the way for promising future work that will identify optimum therapeutic strategies.
Collapse
Affiliation(s)
- Lisa Maria Mustachio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilian University of Munich, 80539 Munich, Germany;
| | - Lorant Szekvolgyi
- Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, MTA-DE Momentum, Faculty of Medicine, University of Debrecen, 4002 Debrecen, Hungary;
| | - Jason Roszik
- Department of Genomic Medicine, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Zeng X, Cao Z, Luo W, Zheng L, Zhang T. MicroRNA-381-A Key Transcriptional Regulator: Its Biological Function and Clinical Application Prospects in Cancer. Front Oncol 2020; 10:535665. [PMID: 33324542 PMCID: PMC7726430 DOI: 10.3389/fonc.2020.535665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that function by regulating messenger RNAs. Recent studies have shown that miRNAs play important roles in multiple processes of cancer development. MiR-381 is one of the most important miRNAs in cancer progression. MiR-381 is downregulated in some cancers and upregulated in other cancers, including glioma, epithelial sarcoma, and osteosarcoma. MiR-381 regulates epithelial-mesenchymal transition (EMT), chemotherapeutic resistance, radioresistance, and immune responses. Thus, miR-381 participates in tumor initiation, progression, and metastasis. Moreover, miR-381 functions in various oncogenic pathways, including the Wnt/β-catenin, AKT, and p53 pathways. Clinical studies have shown that miR-381 could be considered a biomarker or a novel prognostic factor. Here, we summarize the present studies on the role of miR-381 in cancer development, including its biogenesis and various affected signaling pathways, and its clinical application prospects. MiR-381 expression is associated with tumor stage and survival time, making miR-381 a novel prognostic factor.
Collapse
Affiliation(s)
- Xue Zeng
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Gupta GK, Collier AL, Lee D, Hoefer RA, Zheleva V, Siewertsz van Reesema LL, Tang-Tan AM, Guye ML, Chang DZ, Winston JS, Samli B, Jansen RJ, Petricoin EF, Goetz MP, Bear HD, Tang AH. Perspectives on Triple-Negative Breast Cancer: Current Treatment Strategies, Unmet Needs, and Potential Targets for Future Therapies. Cancers (Basel) 2020; 12:E2392. [PMID: 32846967 PMCID: PMC7565566 DOI: 10.3390/cancers12092392] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC), characterized by the absence or low expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2), is the most aggressive subtype of breast cancer. TNBC accounts for about 15% of breast cancer cases in the U.S., and is known for high relapse rates and poor overall survival (OS). Chemo-resistant TNBC is a genetically diverse, highly heterogeneous, and rapidly evolving disease that challenges our ability to individualize treatment for incomplete responders and relapsed patients. Currently, the frontline standard chemotherapy, composed of anthracyclines, alkylating agents, and taxanes, is commonly used to treat high-risk and locally advanced TNBC. Several FDA-approved drugs that target programmed cell death protein-1 (Keytruda) and programmed death ligand-1 (Tecentriq), poly ADP-ribose polymerase (PARP), and/or antibody drug conjugates (Trodelvy) have shown promise in improving clinical outcomes for a subset of TNBC. These inhibitors that target key genetic mutations and specific molecular signaling pathways that drive malignant tumor growth have been used as single agents and/or in combination with standard chemotherapy regimens. Here, we review the current TNBC treatment options, unmet clinical needs, and actionable drug targets, including epidermal growth factor (EGFR), vascular endothelial growth factor (VEGF), androgen receptor (AR), estrogen receptor beta (ERβ), phosphoinositide-3 kinase (PI3K), mammalian target of rapamycin (mTOR), and protein kinase B (PKB or AKT) activation in TNBC. Supported by strong evidence in developmental, evolutionary, and cancer biology, we propose that the K-RAS/SIAH pathway activation is a major tumor driver, and SIAH is a new drug target, a therapy-responsive prognostic biomarker, and a major tumor vulnerability in TNBC. Since persistent K-RAS/SIAH/EGFR pathway activation endows TNBC tumor cells with chemo-resistance, aggressive dissemination, and early relapse, we hope to design an anti-SIAH-centered anti-K-RAS/EGFR targeted therapy as a novel therapeutic strategy to control and eradicate incurable TNBC in the future.
Collapse
Affiliation(s)
- Gagan K. Gupta
- Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| | - Amber L. Collier
- DeWitt Daughtry Family Department of Surgery, Surgical Oncology, University of Miami/Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, FL 33131, USA;
| | - Dasom Lee
- Department of Medicine, Internal Medicine, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33620, USA;
| | - Richard A. Hoefer
- Dorothy G. Hoefer Foundation, Sentara CarePlex Hospital, Newport News, VA 23666, USA;
- Sentara Cancer Network, Sentara Healthcare, Norfolk, VA 23507, USA;
| | - Vasilena Zheleva
- Surgical Oncology, Cancer Treatment Centers of America—Comprehensive Care and Research Center Phoenix, 14200 W Celebrate Life Way, Goodyear, AZ 85338, USA;
| | | | - Angela M. Tang-Tan
- Department of Molecular and Cell Biology, UC Berkeley, Berkeley, CA 94720, USA;
| | - Mary L. Guye
- Sentara Cancer Network, Sentara Healthcare, Norfolk, VA 23507, USA;
- Sentara Surgery Specialists, Sentara CarePlex Hospital, Newport News, VA 23666, USA
| | - David Z. Chang
- Virginia Oncology Associates, 1051 Loftis Boulevard, Suite 100, Newport News, VA 23606, USA;
| | - Janet S. Winston
- Breast Pathology Services, Pathology Sciences Medical Group, Department of Pathology, Sentara Norfolk General Hospital (SNGH), Norfolk, VA 23507, USA; (J.S.W.); (B.S.)
| | - Billur Samli
- Breast Pathology Services, Pathology Sciences Medical Group, Department of Pathology, Sentara Norfolk General Hospital (SNGH), Norfolk, VA 23507, USA; (J.S.W.); (B.S.)
| | - Rick J. Jansen
- Department of Public Health, North Dakota State University, Fargo, ND 58102, USA;
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA;
| | - Matthew P. Goetz
- Departments of Oncology and Pharmacology, Mayo Clinic Breast Cancer Specialized Program of Research Excellence (SPORE), Women’s Cancer Program, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA;
| | - Harry D. Bear
- Departments of Surgery and Microbiology & Immunology, Division of Surgical Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Amy H. Tang
- Leroy T. Canoles Jr. Cancer Research Center, Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA;
| |
Collapse
|
11
|
Hwang KT, Kim BH, Oh S, Park SY, Jung J, Kim J, Choi IS, Jeon SY, Kim WY. Prognostic Role of KRAS mRNA Expression in Breast Cancer. J Breast Cancer 2019; 22:548-561. [PMID: 31897329 PMCID: PMC6933029 DOI: 10.4048/jbc.2019.22.e55] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose We investigated the prognostic role of KRAS mRNA expression in breast cancer using The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases. Methods Clinical and biological data of 1,093 breast cancers from TCGA database and 1,904 breast cancers from METABRIC database were analyzed. Overall survival (OS) and breast cancer-specific survival (BCSS) were determined. Results The group with high KRAS mRNA expression showed worse survival than the group with low KRAS mRNA expression regarding both OS (p = 0.012 in TCGA, p < 0.001 in METABRIC) and BCSS (p = 0.001 in METABRIC). According to multivariate analysis, the level of KRAS mRNA expression was an independent prognostic factor in both TCGA (hazard ratio [HR], 1.570; 95% confidence interval [CI], 1.026–2.403; p = 0.038) and METABRIC (HR, 1.254; 95% CI, 1.087–1.446; p = 0.002) databases. The prognostic impact of mRNA expression was effective only for luminal A subtype (p < 0.001 in METABRIC). Positive correlation was observed between mRNA expression and copy number alteration (CNA) (r = 0.577, p < 0.001 in TCGA; ρ = 0.343, p < 0.001 in METABRIC). Methylation showed negative correlations with both mRNA expression and CNA (r = −0.272, p < 0.001 in TCGA). The expression of mRNA had little association with the mutation status in breast cancers, having a mutation frequency of approximately 0.6%. Conclusion KRAS mRNA expression was significantly associated with breast cancer prognosis. It was found to be an independent prognostic factor for breast cancer. Prognostic role of KRAS mRNA expression was effective only in luminal A subtype. Further studies are needed to validate the prognostic role of KRAS mRNA expression in breast cancer, thus paving a way for clinical application of KRAS in practice.
Collapse
Affiliation(s)
- Ki-Tae Hwang
- Department of Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwoong Jung
- Department of Surgery, Seoul Medical Center, Seoul, Korea
| | - Jongjin Kim
- Department of Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - In Sil Choi
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sook Young Jeon
- Department of Surgery, Graduate School, Kyung Hee University, Seoul, Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
12
|
Abstract
Oncogenic activation of RAS isoforms leads tumor initiation and progression in many types of cancers and is gaining increasing interest as target for novel therapeutic strategies. In sharp contrast with other types of cancer, the importance of RAS in breast tumorigenesis has long been undermined by the low frequency of its oncogenic mutation in human breast lesions. Nevertheless, a wealth of studies over the last years have revealed how the engagement of RAS function might be mandatory downstream varied oncogenic alterations for the progression, metastatic dissemination, and therapy resistance in breast cancers. We review herein the major studies over the last three decades which have explored the controversial role of RAS proteins and their mutation status in breast tumorigenesis and have contributed to reveal their role as supporting actors, instead of as primary cause, in breast cancer.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Bai J, Zhang X, Kang X, Jin L, Wang P, Wang Z. Screening of core genes and pathways in breast cancer development via comprehensive analysis of multi gene expression datasets. Oncol Lett 2019; 18:5821-5830. [PMID: 31788055 PMCID: PMC6865771 DOI: 10.3892/ol.2019.10979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/13/2019] [Indexed: 01/16/2023] Open
Abstract
Breast cancer has been the leading cause of cancer-associated mortality in women worldwide. Perturbation of oncogene and tumor suppressor gene expression is generally considered as the fundamental cause of cancer initiation and progression. In the present study, three gene expression datasets containing information of breast cancer and adjacent normal tissues that were detected using traditional gene microarrays were downloaded and batch effects were removed with R programming software. The differentially expressed genes between breast cancer and normal tissue groups were closely associated with cancer development pathways. Interestingly, five pathways, including ‘extracellular matrix-receptor interaction’, ‘peroxisome proliferator-activated receptors signaling pathway’, ‘propanoate metabolism’, ‘pyruvate metabolism’ and ‘regulation of lipolysis in adipocytes’, were thoroughly connected by 10 genes. Patients with upregulation of six of these hub genes (acetyl-CoA carboxylase β, acyl-CoA dehydrogenase medium chain, adiponectin, C1Q and collagen domain containing, acyl-CoA synthetase short chain family member 2, phosphoenolpyruvate carboxykinase 1 and perilipin 1) exhibited improved breast cancer prognosis. Additionally, breast cancer-specific network analysis identified several gene-gene interaction modules. These gene clusters had strong interactions according to the scoring in the whole network, which may be important to the development of breast cancer. In conclusion, the present study may improve the understanding of the mechanisms of breast cancer and provide several valuable prognosis and treatment signatures.
Collapse
Affiliation(s)
- Jie Bai
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiaoyu Zhang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Xiaoning Kang
- Department of Ultrasound II, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Lijun Jin
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Peng Wang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Zunyi Wang
- Department of Thyroid and Breast III, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
14
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|
15
|
Synthesis and biological evaluation of 3-aryl-quinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Eur J Med Chem 2019; 161:445-455. [DOI: 10.1016/j.ejmech.2018.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
|
16
|
Huang M, Wang Y. Roles of Small GTPases in Acquired Tamoxifen Resistance in MCF-7 Cells Revealed by Targeted, Quantitative Proteomic Analysis. Anal Chem 2018; 90:14551-14560. [PMID: 30431262 DOI: 10.1021/acs.analchem.8b04526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Development of tamoxifen resistance remains a tremendous challenge for the treatment of estrogen-receptor (ER)-positive breast cancer. Small GTPases of the Ras superfamily play crucial roles in intracellular trafficking and cell signaling, and aberrant small-GTPase signaling is implicated in many types of cancer. In this study, we employed a targeted, quantitative proteomic approach that relies on stable-isotope labeling by amino acids in cell culture (SILAC), gel fractionation, and scheduled multiple-reaction-monitoring (MRM) analysis, to assess the differential expression of small GTPases in MCF-7 and the paired tamoxifen-resistant breast cancer cells. The method displayed superior sensitivity and reproducibility over the shotgun-proteomic approach, and it facilitated the quantification of 96 small GTPases. Among them, 13 and 10 proteins were significantly down- and up-regulated (with >1.5-fold change), respectively, in the tamoxifen-resistant line relative to in the parental line. In particular, we observed a significant down-regulation of RAB31 in tamoxifen-resistant cells, which, in combination with bioinformatic analysis and downstream validation experiments, supported a role for RAB31 in tamoxifen resistance in ER-positive breast-cancer cells. Together, our results demonstrated that the targeted proteomic method constituted a powerful approach for revealing the role of small GTPases in therapeutic resistance.
Collapse
|
17
|
Mi H, Wang X, Wang F, Li L, Zhu M, Wang N, Xiong Y, Gu Y. miR-381 induces sensitivity of breast cancer cells to doxorubicin by inactivation of MAPK signaling via FYN. Eur J Pharmacol 2018; 839:66-75. [PMID: 30266665 DOI: 10.1016/j.ejphar.2018.09.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/30/2022]
Abstract
The emergence of drug resistance is still a daunting challenge for the effective therapy of cancer patients. miRNAs have been elucidated as an important regulator in chemoresistance of anti-cancer drugs. miR-381 is found to exert tumor-suppressive effect in breast cancer. However, its role in modulating the sensitivity of doxorubicin (DOX) remains unknown. In this study, we found that miR-381 expression was down-regulated in DOX-resistant breast cancer cells. miR-381 overexpression increased DOX sensitivity and enhanced DOX-induced apoptosis in breast cancer cells. Moreover, miR-381 could directly target FYN to suppress its expression. Additionally, FYN knockdown displayed similar effect on DOX sensitivity as miR-381 up-regulation. Furthermore, FYN overexpression partly reversed miR-381-induced sensitivity to DOX. Finally, enforced expression of miR-381 also improved DOX sensitivity of breast cancer cells in vivo. In summary, miR-381 inactivated MAPK signaling by down-regulating FYN, thereby promoting the chemosensitization of breast cancer cells to DOX. Therefore, miR-381/FYN/MAPK pathway may be applied as a novel target to overcome DOX resistance in breast cancer patients.
Collapse
Affiliation(s)
- Hailong Mi
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaochun Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding 071030, China
| | - Fang Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lin Li
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Mingzhi Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Nan Wang
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Youyi Xiong
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yuanting Gu
- Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
18
|
Phosphorylation of androgen receptors at serine 515 is a potential prognostic marker for triple negative breast cancer. Oncotarget 2018; 8:37172-37185. [PMID: 28415597 PMCID: PMC5514900 DOI: 10.18632/oncotarget.16420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
1.7 million cases of breast cancer are diagnosed every year with 522,000 deaths. Molecular classifications of breast cancer have resulted in improved treatments. However, treatments for triple negative breast cancer (TNBC) are lacking. Analysis of molecular targets for TNBC is a priority. One potential candidate is androgen receptor (AR) phosphorylation. This study assessed the role of AR phosphorylation at ser81/ser515 and their two upstream effectors, cyclin-dependent kinase 1 (pCDK1) and extracellular-regulated kinase 1/2 (pERK1/2) in 332 ductal breast cancer patients by immunohistochemistry. pERK1/2 combined with AR-515 associated with improved cancer-specific survival (CSS, p = 0.038), decreased size (p = 0.001), invasive grade (p < 0.001), necrosis (p = 0.003), b-lymphocytes (p = 0.020), molecular subtype (p < 0.001) and estrogen receptor (ER)/progesterone receptor (PR)-status (p < 0.001). The cohort was therefore stratified into ER+ve and ER-ve patients. In ER+ve tumours, pERK1/2 combined with AR-515 associated with improved CSS (p = 0.038), smaller size (p = 0.004), invasive grade (p = 0.001), decreased b-lymphocytes (p = 0.013) and increased plasma cells (p = 0.048). In contrast, in TNBC patients, phosphorylation of AR-515 associated with poorer CSS (p = 0.007). pERK1/2 combined with AR-515 associated with decreased inflammation (p = 0.003), increased tumour stroma (p = 0.003) and tumour budding (p = 0.011), with trends towards decrease CSS (p = 0.065) and macrophage levels (p = 0.093). In Conclusions, AR-515 may be an important regulator of inflammation in breast cancer potential via ERK1/2 phosphorylation. AR-515 is a potential prognostic marker and therapeutic target for TNBC.
Collapse
|
19
|
Ho JY, Hsu RJ, Wu CH, Liao GS, Gao HW, Wang TH, Yu CP. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget 2018; 7:53853-53868. [PMID: 27462780 PMCID: PMC5288226 DOI: 10.18632/oncotarget.10793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/10/2016] [Indexed: 01/13/2023] Open
Abstract
Hyperactivation of the Ras/ERK pathway contributes to breast cancer initiation and progression, and recent evidence suggests aberrant signaling of miRNAs that regulate the Ras/ERK pathway play important roles during carcinogenesis and cancer progression. In this study, we demonstrate that miR-550a-3p expression is negatively correlated with levels of ERK1 and ERK2, two pivotal effectors in the Ras/ERK pathway. MiR-550a-3p gradually decreased during breast cancer initiation and progression and this reduction was a prognostic indicator of poorer overall survival (OS) and disease-free survival (DFS) among breast cancer patients. Our mechanistic studies demonstrated that miR-550a-3p exerts its tumor-suppressor role by directly repressing ERK1 and ERK2 protein expression, thereby suppressing the oncogenic ERK/RSK cascades, which reduced breast cancer cell viability, survival, migration, invasion, tumorigenesis, and metastasis. The inhibitory effects of miR-550a-3p were rescued by ectopic expression of ERK1 and/or ERK2. The novel connection between miR-550a-3p and ERK defines a new diagnostic and prognostic role for miR-550a-3p and highlights ERK inhibition as a candidate therapeutic target for breast cancers exhibiting hyperactivated Ras/ERK signaling.
Collapse
Affiliation(s)
- Jar-Yi Ho
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Jun Hsu
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hsi Wu
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Guo-Shiou Liao
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Hong-Wei Gao
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Cheng-Ping Yu
- Department of Pathology, and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Luo G, Li X, Zhang G, Wu C, Tang Z, Liu L, You Q, Xiang H. Novel SERMs based on 3-aryl-4-aryloxy-2H-chromen-2-one skeleton - A possible way to dual ERα/VEGFR-2 ligands for treatment of breast cancer. Eur J Med Chem 2017; 140:252-273. [DOI: 10.1016/j.ejmech.2017.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/24/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
|
21
|
Jia Y, Zhou J, Luo X, Chen M, Chen Y, Wang J, Xiong H, Ying X, Hu W, Zhao W, Deng W, Wang L. KLF4 overcomes tamoxifen resistance by suppressing MAPK signaling pathway and predicts good prognosis in breast cancer. Cell Signal 2017; 42:165-175. [PMID: 28988130 DOI: 10.1016/j.cellsig.2017.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/21/2022]
Abstract
Tamoxifen resistance represents a daunting challenge to the successful treatment for breast cancer. Krüppel-like factor 4 has critical roles in the development and progression of breast cancer, but its expression, function and regulation in the efficacy of TAM therapy in breast cancer have yet to be investigated. Here, we examined the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 correlated with increased TAM sensitivity in breast cancer cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERα and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness to TAM in T47D and TAM-resistant MCF-7/TAM cells. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion and migration. Moreover, KLF4 expression was down-regulated in breast cancer tumor tissues and high expression of KLF4 was associated with favorable outcomes. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and p38 were more activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors significantly suppressed cell viability. Knockdown of KLF4 activated ERK and p38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and p38 signaling and resulted in increased sensitivity to TAM. Therefore, our findings suggested that KLF4 contributed to TAM sensitivity in breast cancer via phosphorylation modification of ERK and p38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for the TAM-resistant patients.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Xiao Luo
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Xiaogang Ying
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China.
| |
Collapse
|
22
|
Bennett L, Quinn J, McCall P, Mallon EA, Horgan PG, McMillan DC, Paul A, Edwards J. High IKKα expression is associated with reduced time to recurrence and cancer specific survival in oestrogen receptor (ER)-positive breast cancer. Int J Cancer 2017; 140:1633-1644. [PMID: 28006839 DOI: 10.1002/ijc.30578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/11/2016] [Accepted: 12/09/2016] [Indexed: 01/01/2023]
Abstract
The aim of our study was to examine the relationship between tumour IKKα expression and breast cancer recurrence and survival. Immunohistochemistry was employed in a discovery and a validation tissue microarray to assess the association of tumour IKKα expression and clinico-pathological characteristics. After siRNA-mediated silencing of IKKα, cell viability and apoptosis were assessed in MCF7 and MDA-MB-231 breast cancer cells. In both the discovery and validation cohorts, associations observed between IKKα and clinical outcome measures were potentiated in oestrogen receptor (ER) positive Luminal A tumours. In the discovery cohort, cytoplasmic IKKα was associated with disease-free survival (p = 0.029) and recurrence-free survival on tamoxifen (p < 0.001) in Luminal A tumours. Nuclear IKKα and a combination of cytoplasmic and nuclear IKKα (total tumour cell IKKα) were associated with cancer-specific survival (p = 0.012 and p = 0.007, respectively) and recurrence-free survival on tamoxifen (p = 0.013 and p < 0.001, respectively) in Luminal A tumours. In the validation cohort, cytoplasmic IKKα was associated with cancer-specific survival (p = 0.023), disease-free survival (p = 0.002) and recurrence-free survival on tamoxifen (p = 0.009) in Luminal A tumours. Parallel experiment with breast cancer cells in vitro demonstrated the non-canonical NF-κB pathway was inducible by exposure to lymphotoxin in ER-positive MCF7 cells and not in ER-negative MDA-MB-231 cells. Reduction in IKKα expression by siRNA transfection increased levels of apoptosis and reduced cell viability in MCF7 but not in MDA-MB-231 cells. IKKα is an important determinant of poor outcome in patients with ER-positive invasive ductal breast cancer and thus may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Lindsay Bennett
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jean Quinn
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pamela McCall
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Elizabeth A Mallon
- Department of Pathology, Southern General Hospital, Glasgow, Scotland, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, Scotland, United Kingdom
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
23
|
Wrobel K, Zhao YC, Kulkoyluoglu E, Chen KLA, Hieronymi K, Holloway J, Li S, Ray T, Ray PS, Landesman Y, Lipka AE, Smith RL, Madak-Erdogan Z. ERα-XPO1 Cross Talk Controls Tamoxifen Sensitivity in Tumors by Altering ERK5 Cellular Localization. Mol Endocrinol 2016; 30:1029-1045. [PMID: 27533791 PMCID: PMC5045498 DOI: 10.1210/me.2016-1101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/12/2016] [Indexed: 12/22/2022] Open
Abstract
Most breast cancer deaths occur in women with recurrent, estrogen receptor (ER)-α(+), metastatic tumors. There is a critical need for therapeutic approaches that include novel, targetable mechanism-based strategies by which ERα (+) tumors can be resensitized to endocrine therapies. The objective of this study was to validate a group of nuclear transport genes as potential biomarkers to predict the risk of endocrine therapy failure and to evaluate the inhibition of XPO1, one of these genes as a novel means to enhance the effectiveness of endocrine therapies. Using advanced statistical methods, we found that expression levels of several of nuclear transport genes including XPO1 were associated with poor survival and predicted recurrence of tamoxifen-treated breast tumors in human breast cancer gene expression data sets. In mechanistic studies we showed that the expression of XPO1 determined the cellular localization of the key signaling proteins and the response to tamoxifen. We demonstrated that combined targeting of XPO1 and ERα in several tamoxifen-resistant cell lines and tumor xenografts with the XPO1 inhibitor, Selinexor, and tamoxifen restored tamoxifen sensitivity and prevented recurrence in vivo. The nuclear transport pathways have not previously been implicated in the development of endocrine resistance, and given the need for better strategies for selecting patients to receive endocrine modulatory reagents and improving therapy response of relapsed ERα(+) tumors, our findings show great promise for uncovering the role these pathways play in reducing cancer recurrences.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Biological Transport/drug effects
- Biological Transport/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- MCF-7 Cells
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mitogen-Activated Protein Kinase 7/genetics
- Mitogen-Activated Protein Kinase 7/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Tamoxifen/pharmacology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Kinga Wrobel
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yiru Chen Zhao
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Eylem Kulkoyluoglu
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Karen Lee Ann Chen
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Kadriye Hieronymi
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Jamie Holloway
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Sarah Li
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Tania Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Partha Sarathi Ray
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Yosef Landesman
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Alexander Edward Lipka
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Rebecca Lee Smith
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition (K.W., Y.C.Z., E.K., K.H., Z.M.-E.), Division of Nutritional Sciences (K.L.A.C., Z.M.-E.), University of Illinois at Urbana-Champaign, Departments of Surgery (P.S.R.) and Bioengineering (P.S.R.), Interdisciplinary Health Sciences Institute (P.S.R.), and Division of Surgical Oncology (P.S.R.), Carle Cancer Center, and Departments of Crop Sciences (A.E.L.) and Pathobiology (R.L.S.), College of Veterinary Medicine, Urbana, Illinois 61801; (J.H.), Arlington, Massachusetts; Onconostic Technologies Inc (S.L., T.R., P.S.R.), Urbana, Illinois 61820; Karyopharm Therapeutics (Y.L.), Newton, Massachusetts 02459; and Cancer Community Illinois (Z.M.-E.), Urbana, Illinois 61801
| |
Collapse
|
24
|
Tang Z, Wu C, Wang T, Lao K, Wang Y, Liu L, Muyaba M, Xu P, He C, Luo G, Qian Z, Niu S, Wang L, Wang Y, Xiao H, You Q, Xiang H. Design, synthesis and evaluation of 6-aryl-indenoisoquinolone derivatives dual targeting ERα and VEGFR-2 as anti-breast cancer agents. Eur J Med Chem 2016; 118:328-39. [DOI: 10.1016/j.ejmech.2016.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
|
25
|
Norouzi M, Nazari B, Miller DW. Injectable hydrogel-based drug delivery systems for local cancer therapy. Drug Discov Today 2016; 21:1835-1849. [PMID: 27423369 DOI: 10.1016/j.drudis.2016.07.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/17/2023]
Abstract
Common chemotherapy is often associated with adverse effects in normal cells and tissues. As an alternative approach, localized chemotherapy can diminish the toxicity of systemic chemotherapy while providing a sustained release of the chemotherapeutics at the target tumor site. Therefore, injectable biodegradable hydrogels as drug delivery systems for chemotherapeutics have become a matter of importance. Here, we review the application of a variety of injectable hydrogel-based drug delivery systems, including thermosensitive, pH-sensitive, photosensitive, dual-sensitive, as well as active targeting hydrogels, for the treatment of different types of cancer. Generally, injectable hydrogel-based drug delivery systems are found to be more efficacious than the conventional systemic chemotherapy in terms of cancer treatment.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center, Tehran, Iran.
| | - Bahareh Nazari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Donald W Miller
- Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
26
|
Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep 2015; 5:17895. [PMID: 26658759 PMCID: PMC4677323 DOI: 10.1038/srep17895] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 11/04/2015] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and prevent certain cancers. Here, we show that simvastatin decreases the SASP of senescent human fibroblasts by inhibiting protein prenylation, without affecting the senescent growth arrest. The Rho family GTPases Rac1 and Cdc42 were activated in senescent cells, and simvastatin reduced both activities. Further, geranylgeranyl transferase, Rac1 or Cdc42 depletion reduced IL-6 secretion by senescent cells. We also show that simvastatin mitigates the effects of senescent conditioned media on breast cancer cell proliferation and endocrine resistance. Our findings identify a novel activity of simvastatin and mechanism of SASP regulation. They also suggest that senescent cells, which accumulate after radio/chemo therapy, promote endocrine resistance in breast cancer and that simvastatin might suppress this resistance.
Collapse
Affiliation(s)
- Su Liu
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Marco Demaria
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,California Pacific Medical Center, Research Institute, San Francisco, CA 94107, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
27
|
Wright KL, Adams JR, Liu JC, Loch AJ, Wong RG, Jo CEB, Beck LA, Santhanam DR, Weiss L, Mei X, Lane TF, Koralov SB, Done SJ, Woodgett JR, Zacksenhaus E, Hu P, Egan SE. Ras Signaling Is a Key Determinant for Metastatic Dissemination and Poor Survival of Luminal Breast Cancer Patients. Cancer Res 2015; 75:4960-72. [PMID: 26400062 DOI: 10.1158/0008-5472.can-14-2992] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
Breast cancer is associated with alterations in a number of growth factor and hormone-regulated signaling pathways. Mouse models of metastatic breast cancer typically feature mutated oncoproteins that activate PI3K, Stat3, and Ras signaling, but the individual and combined roles of these pathways in breast cancer progression are poorly understood. In this study, we examined the relationship between oncogenic pathway activation and breast cancer subtype by analyzing mouse mammary tumor formation in which each pathway was activated singly or pairwise. All three oncogenes showed cooperation during primary tumor formation, but efficient dissemination was only dependent on Ras. In addition, transcriptional profiling demonstrated that Ras induced adenocarcinomas with molecular characteristics related to human basal-like and HER2(+) tumors. In contrast, Ras combined with PIK3CA(H1047R), an oncogenic mutant linked to ERα(+)/luminal breast cancer in humans, induced metastatic luminal B-like tumors. Consistent with these data, elevated Ras signaling was associated with basal-like and HER2(+) subtype tumors in humans and showed a statistically significant negative association with estrogen receptor (ER) signaling across all breast cancer. Despite this, there are luminal tumors with elevated Ras signaling. Importantly, when considered as a continuous variable, Ras pathway activation was strongly linked to reduced survival of patients with ERα(+) disease independent of PI3K or Stat3 activation. Therefore, our studies suggest that Ras activation is a key determinant for dissemination and poor prognosis of ERα(+)/luminal breast cancer in humans, and hormone therapy supplemented with Ras-targeting agents may be beneficial for treating this aggressive subtype.
Collapse
Affiliation(s)
- Katherine L Wright
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jeff C Liu
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ruth G Wong
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauren A Beck
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Divya R Santhanam
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laura Weiss
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xue Mei
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Timothy F Lane
- Department of Obstetrics and Gynecology and Department of Biological Chemistry, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Sergei B Koralov
- Department of Pathology, New York University Medical Center, New York, New York
| | - Susan J Done
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Division of Cell and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Advani SJ, Camargo MF, Seguin L, Mielgo A, Anand S, Hicks AM, Aguilera J, Franovic A, Weis SM, Cheresh DA. Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nat Commun 2015; 6:8154. [PMID: 26333361 PMCID: PMC4559870 DOI: 10.1038/ncomms9154] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
Although oncology therapy regimens commonly include radiation and genotoxic drugs, tumour cells typically develop resistance to these interventions. Here we report that treatment of tumours with ionizing radiation or genotoxic drugs drives p21-activated kinase 1 (PAK1)-mediated phosphorylation of CRAF on Serine 338 (pS338) triggering a kinase-independent mechanism of DNA repair and therapeutic resistance. CRAF pS338 recruits CHK2, a cell cycle checkpoint kinase involved in DNA repair, and promotes CHK2 phosphorylation/activation to enhance the tumour cell DNA damage response. Accordingly, a phospho-mimetic mutant of CRAF (S338D) is sufficient to induce the CRAF/CHK2 association enhancing tumour radioresistance, while an allosteric CRAF inhibitor sensitizes tumour cells to ionizing radiation or genotoxic drugs. Our findings establish a role for CRAF in the DNA damage response that is independent from its canonical function as a kinase. Tumors hijack cellular pathways to evade the effects of cancer therapy. Here, Advani et al. show that DNA damage-induced phosphorylation of CRAF Serine 338 triggers DNA repair by recruiting CHK2, highlighting a role for CRAF independent from its canonical function as a kinase.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Maria Fernanda Camargo
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Laetitia Seguin
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Ainhoa Mielgo
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Sudarshan Anand
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Angel M Hicks
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences at the UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | - Aleksandra Franovic
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - Sara M Weis
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| | - David A Cheresh
- Department of Pathology at the UC San Diego Moores Cancer Center and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 3855 Health Science Drive, La Jolla, California 92037, USA
| |
Collapse
|
29
|
Viedma-Rodríguez R, Ruiz Esparza-Garrido R, Baiza-Gutman LA, Velázquez-Flores MÁ, García-Carrancá A, Salamanca-Gómez F, Arenas-Aranda D. Involvement of multiple cellular pathways in regulating resistance to tamoxifen in BIK-suppressed MCF-7 cells. Tumour Biol 2015; 36:6991-7005. [PMID: 25861752 DOI: 10.1007/s13277-015-3374-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Majority of women with estrogen receptor (ER)-positive breast cancers initially respond to hormone therapies such as tamoxifen (TAM; antagonist of estrogen). However, many tumors eventually become resistant to TAM. Therefore, understanding the various cellular components involved in causing resistance to TAM is of paramount importance in designing novel entities for efficacious hormone therapy. Previously, we found that suppression of BIK gene expression induced TAM resistance in MCF-7 breast cancer cells. In order to understand the response of these cells to TAM and its association with resistance, a microarray analysis of gene expression was performed in the BIK-suppressed MCF-7 cells and compared it to the TAM-only-treated cells (controls). Several genes participating in various cellular pathways were identified. Molecules identified in the drug resistance pathway were 14-3-3z or YWHAZ, WEE1, PRKACA, NADK, and HSP90AA 1. Further, genes involved in cell cycle control, apoptosis, and cell proliferation were also found differentially expressed in these cells. Transcriptional and translational analysis of key molecules such as STAT2, AKT 3, and 14-3-3z revealed similar changes at the messenger RNA (mRNA) as well as at the protein level. Importantly, there was no cytotoxic effect of TAM on BIK-suppressed MCF-7 cells. Further, these cells were not arrested at the G0-G1 phase of the cell cycle although 30 % of BIK-suppressed cells were arrested at the G2 phase of the cycle on TAM treatment. Furthermore, we found a relevant interaction between 14-3-3z and WEE1, suggesting that the cytotoxic effect of TAM was prevented in BIK-suppressed cells because this interaction leads to transitory arrest in the G2 phase leading to the repair of damaged DNA and allowing the cells to proliferate.
Collapse
Affiliation(s)
- Rubí Viedma-Rodríguez
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México.
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM-México), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala Tlalnepantla, 54090, México, Estado de México, México.
| | - Ruth Ruiz Esparza-Garrido
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
- Consejo Nacional de Ciencia y Tecnología, Cátedras CONACYT, Av. Insurgentes Sur 1582, Col. Crédito Constructor Del. Benito Juárez C, 03940, México, DF, México
| | - Luis Arturo Baiza-Gutman
- Laboratorio de Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM-México), Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala Tlalnepantla, 54090, México, Estado de México, México
| | - Miguel Ángel Velázquez-Flores
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| | - Alejandro García-Carrancá
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, 14080, México, DF, México
| | - Fabio Salamanca-Gómez
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| | - Diego Arenas-Aranda
- Laboratorio de Genómica Funcional y Proteómica, Unidad de Investigación Médica en Genética Humana (UIMGH), Hospital, 06720, México, DF, México
| |
Collapse
|
30
|
Miller PC, Clarke J, Koru-Sengul T, Brinkman J, El-Ashry D. A novel MAPK-microRNA signature is predictive of hormone-therapy resistance and poor outcome in ER-positive breast cancer. Clin Cancer Res 2014; 21:373-85. [PMID: 25370469 DOI: 10.1158/1078-0432.ccr-14-2053] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hyperactivation of ERK1/2 MAPK (hMAPK) leads to loss of estrogen receptor (ER) expression and poor outcome in breast cancer. microRNAs (miRNA) play important regulatory roles and serve as biomarkers of disease. Here, we describe molecular, pathologic, and clinical outcome associations of an hMAPK-miRNA expression signature in breast cancer. EXPERIMENTAL DESIGN An hMAPK-miRNA signature was identified, and associations of this signature with molecular and genetic alterations, gene expression, pathologic features, and clinical outcomes were determined in primary breast cancers from training data and validated using independent datasets. Univariate and multivariate analyses identified subsignatures associated with increased disease recurrence and poorer disease survival among ER-positive (ER(+)) patients, respectively. RESULTS High-hMAPK-miRNA status significantly correlated with ER-negativity, enrichment for basal and HER2-subtypes, and reduced recurrence-free and disease-specific survival in publicly available datasets. A robust determination of a recurrence signature and a survival signature identified hMAPK-miRNAs commonly associated with poor clinical outcome, and specific subsets associated more closely with either disease recurrence or disease survival, especially among ER(+) cancers of both luminal A and luminal B subtypes. Multivariate analyses indicated that these recurrence and survival signatures significantly associated with increased risk of disease-specific death and disease recurrence in ER(+) cancer and ER(+) cancers treated with hormone therapy. CONCLUSIONS We report an hMAPK-miRNA signature and two subsignatures derived from it that associate significantly with adverse clinical features, poor clinical outcome, and poor response to hormone therapy in breast cancer, thus identifying potential effectors of MAPK signaling, and novel predictive and prognostic biomarkers or therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Philip C Miller
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Braman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jennifer Clarke
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Braman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, Florida. Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida. Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, Florida. Department of Statistics, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Tulay Koru-Sengul
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Department of Epidemiology and Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Joeli Brinkman
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Dorraya El-Ashry
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. Braman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, Florida. Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
31
|
Groenendijk FH, Bernards R. Drug resistance to targeted therapies: déjà vu all over again. Mol Oncol 2014; 8:1067-83. [PMID: 24910388 DOI: 10.1016/j.molonc.2014.05.004] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/12/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023] Open
Abstract
A major limitation of targeted anticancer therapies is intrinsic or acquired resistance. This review emphasizes similarities in the mechanisms of resistance to endocrine therapies in breast cancer and those seen with the new generation of targeted cancer therapeutics. Resistance to single-agent cancer therapeutics is frequently the result of reactivation of the signaling pathway, indicating that a major limitation of targeted agents lies in their inability to fully block the cancer-relevant signaling pathway. The development of mechanism-based combinations of targeted therapies together with non-invasive molecular disease monitoring is a logical way forward to delay and ultimately overcome drug resistance development.
Collapse
Affiliation(s)
- Floris H Groenendijk
- Division of Molecular Carcinogenesis, Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - René Bernards
- Division of Molecular Carcinogenesis, Cancer Genomics Center Netherlands, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
32
|
Tang Z, Niu S, Liu F, Lao K, Miao J, Ji J, Wang X, Yan M, Zhang L, You Q, Xiao H, Xiang H. Synthesis and biological evaluation of 2,3-diaryl isoquinolinone derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Bioorg Med Chem Lett 2014; 24:2129-33. [DOI: 10.1016/j.bmcl.2014.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
33
|
Liu Y, Zhu Z, Cai H, Liu Q, Zhou H, Zhu Z. SKI-II reverses the chemoresistance of SGC7901/DDP gastric cancer cells. Oncol Lett 2014; 8:367-373. [PMID: 24959278 PMCID: PMC4063656 DOI: 10.3892/ol.2014.2083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/26/2013] [Indexed: 01/25/2023] Open
Abstract
Cisplatin is frequently used in treating gastric cancers; however, acquired resistance to the drug often reduces the efficacy of therapy. The present study analyzed the efficacy of the combination of 4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol (SKI-II) and cisplatin [cis-diamminedichloroplatinum (II); DDP] on the gastric cancer SGC7901/DDP cell line. The results revealed that SKI-II and DDP had a clear synergistic effect. Glutathione (GSH) and glutathione S-transferase (GST) levels decreased significantly subsequent to the cells being treated with the combination of DDP and SKI-II compared with the cells that were treated with DDP or SKI-II alone. Phosphorylated extracellular-signal-regulated kinase (p-ERK) and phosphorylated c-Jun N-terminal kinase (p-JNK) expression levels also decreased following treatment with SKI-II. The results suggested that SKI-II is able to reverse the drug resistance in human gastric carcinoma cells and enhance the antitumor effect of DDP through the ras/mitogen-activated protein kinase (MAPK) proliferation pathway.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zuan Zhu
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qinghua Liu
- Department of Pathology, Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Honglian Zhou
- Department of Gastroenterology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhengqiu Zhu
- Department of Medical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
34
|
Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice. Oncogene 2014; 34:1051-7. [PMID: 24632612 DOI: 10.1038/onc.2014.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 12/14/2022]
Abstract
Human epidermal growth factor receptor2/Neu, which is overexpressed in about 30% of human breast cancers, transduces growth signals in large part via the Ras-Raf-MEK-ERK pathway. Nevertheless, it is a matter of controversy whether high ERK activity in breast cancer tissues correlates with better or worse prognosis, leaving the role of ERK activity in the progression of breast cancers unresolved. To address this issue, we live-imaged ERK activity in mammary tumors developed in mouse mammary tumor virus-Neu transgenic mice, which had been crossed with transgenic mice expressing a Förster resonance energy transfer biosensor for ERK. Observation of the tumor by two-photon microscopy revealed significant heterogeneity in ERK activity among the mammary tumor cells. The level of ERK activity in each cell was stable up to several hours, implying a robust mechanism that maintained the ERK activity within a limited range. By sorting the mammary tumor cells on the basis of their ERK activity, we found that ERK(high) cells less efficiently generated tumorspheres in vitro and tumors in vivo than did ERK(low) cells. In agreement with this finding, the expressions of the cancer stem cell markers CD49f, CD24 and CD61 were decreased in ERK(high) cells. These observations suggest that high ERK activity may suppress the self-renewal of mammary cancer stem cells.
Collapse
|
35
|
Rieber M, Strasberg-Rieber M. p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERα+ breast cancer MCF-7 cells. Biochem Pharmacol 2014; 88:169-77. [PMID: 24486524 DOI: 10.1016/j.bcp.2014.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). PURPOSE To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. RESULTS Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. CONCLUSIONS (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction.
Collapse
Affiliation(s)
- Manuel Rieber
- IVIC, Tumor Cell Biology Laboratory, Center for Microbiology & Cell Biology Apartado 21827, Caracas 1020 A, Venezuela.
| | - Mary Strasberg-Rieber
- IVIC, Tumor Cell Biology Laboratory, Center for Microbiology & Cell Biology Apartado 21827, Caracas 1020 A, Venezuela.
| |
Collapse
|
36
|
Overexpression of Raf-1 in basal-like carcinoma of the breast: correlation with clinicopathology and prognosis. Contemp Oncol (Pozn) 2014; 18:391-5. [PMID: 25784836 PMCID: PMC4355656 DOI: 10.5114/wo.2014.47037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/21/2013] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Increased Raf-1 expression has been associated with an aggressive behaviour in some carcinomas such as pulmonary carcinoma and renal carcinoma. However, its role in breast cancer, especially in basal-like carcinoma of the breast (BLBC), has not been defined. Material and methods The current study attempted to investigate the expression pattern of Raf-1 protein in BLBC, in relation to the biological behaviour and prognosis of the carcinoma. Expression of Raf-1 was detected by immunohistochemistry in carcinoma specimens from 74 cases of BLBC, and associations between their expression and the clinicopathological characteristics were statistically assessed. Results The patients’ age, tumour size, BRCA1, and p53 protein expression was not significantly different between the Raf-1-positive and Raf-1-negative expression groups (p > 0.05). The proportion of histological grade 3 tumours was not significantly higher in the Raf-1 positive group than that of grade 2 tumours (p > 0.05). However, positive cytoplasmic Raf-1 expression was positively correlated to Ki-67 expression (p < 0.05). Also, increased Raf-1 protein was found to exert an unfavourable impact on patients’ axillary lymph node metastasis and overall survival (p < 0.05). Conclusions The study implies that positive Raf-1 expression in BLBC is associated with a more aggressive phenotype and could be considered as a new prognostic biomarker for poor survival in BLBC patients.
Collapse
|
37
|
Rutherford C, Childs S, Ohotski J, McGlynn L, Riddick M, MacFarlane S, Tasker D, Pyne S, Pyne NJ, Edwards J, Palmer TM. Regulation of cell survival by sphingosine-1-phosphate receptor S1P1 via reciprocal ERK-dependent suppression of Bim and PI-3-kinase/protein kinase C-mediated upregulation of Mcl-1. Cell Death Dis 2013; 4:e927. [PMID: 24263101 PMCID: PMC3847331 DOI: 10.1038/cddis.2013.455] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/16/2013] [Accepted: 10/16/2013] [Indexed: 01/10/2023]
Abstract
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER(+) breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.
Collapse
Affiliation(s)
- C Rutherford
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S Childs
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - J Ohotski
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - L McGlynn
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - M Riddick
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S MacFarlane
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - D Tasker
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - S Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - N J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - J Edwards
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - T M Palmer
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| |
Collapse
|
38
|
McGlynn LM, Zino S, MacDonald AI, Curle J, Reilly JE, Mohammed ZMA, McMillan DC, Mallon E, Payne AP, Edwards J, Shiels PG. SIRT2: tumour suppressor or tumour promoter in operable breast cancer? Eur J Cancer 2013; 50:290-301. [PMID: 24183459 DOI: 10.1016/j.ejca.2013.10.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/07/2013] [Indexed: 02/07/2023]
Abstract
PURPOSE Sirtuins comprise a family of genes involved in cellular stress, survival and damage responses. They have been implicated in a range of diseases including cancer, with most information pertaining to their function in tumourigenesis being derived from in vitro studies, or model organisms. Their putative roles as tumour suppressors or tumour promoters remain to be validated in vivo. Little is known about their role in breast tumourigenesis. We sought to evaluate the seven sirtuin family members (SIRT1-7) in a human breast cancer cohort, in relation to clinico-pathological features and outcome of the disease. MATERIALS AND METHODS Immunohistochemical analysis of SIRT1-7 protein levels was undertaken in 392 oestrogen receptor (ER+ve) and 153 ER-ve breast tumour samples. SIRT1-7 transcriptional levels were assessed in normal (n=25), non-malignant (n=73) and malignant (n=70) breast tissue using Relative Quantitative Real Time PCR. Statistical analyses determined if SIRT1-7 transcription or protein expression was associated with clinical parameters or outcome. RESULTS In ER-ve tumours, high protein levels of nuclear SIRT2 were associated with reduced time to recurrence and disease-specific death. This association was only observed in Grade 3 tumours. In the ER+ve cohort, high SIRT2 nuclear levels were associated with shorter disease-free survival and time to recurrence whilst on Tamoxifen, in patients with Grade 3 tumours. Conversely, in Grade 2 tumours, high SIRT2 levels were associated with increased time to recurrence. CONCLUSIONS Our data suggest that SIRT2 is the sirtuin predominantly involved in breast tumourigenesis and prognosis. It indicates that SIRT2 acts as a tumour suppressor or tumour promoter dependent upon breast tumour grade.
Collapse
Affiliation(s)
- Liane M McGlynn
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | - Samer Zino
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | | | - Jennifer Curle
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | - Justice E Reilly
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | - Zahra M A Mohammed
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | - Donald C McMillan
- School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Elizabeth Mallon
- School of Medicine, Department of Pathology, University of Glasgow, Southern General Hospital, Glasgow G51 4TF, UK
| | - Anthony P Payne
- School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK
| | - Paul G Shiels
- Institute of Cancer Sciences, University of Glasgow, Glasgow G11 6NT, UK.
| |
Collapse
|
39
|
McGlynn LM, Eller K, MacDonald AI, Macintyre A, Russell D, Koppelstaetter C, Davies RW, Shiels PG. Pathfinder cells provide a novel therapeutic intervention for acute kidney injury. Rejuvenation Res 2013; 16:11-20. [PMID: 23421868 DOI: 10.1089/rej.2012.1350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathfinder cells (PCs) are a novel class of adult-derived cells that facilitate functional repair of host tissue. We used rat PCs to demonstrate that they enable the functional mitigation of ischemia reperfusion (I/R) injury in a mouse model of renal damage. Female C57BL/6 mice were subjected to 30 min of renal ischemia and treated with intravenous (i.v.) injection of saline (control) or male rat pancreas-derived PCs in blinded experimentation. Kidney function was assessed 14 days after treatment by measuring serum creatinine (SC) levels. Kidney tissue was assessed by immunohistochemistry (IHC) for markers of cellular damage, proliferation, and senescence (TUNEL, Ki67, p16(ink4a), p21). Fluorescence in situ hybridization (FISH) was performed to determine the presence of any rat (i.e., pathfinder) cells in the mouse tissue. PC-treated animals demonstrated superior renal function at day 14 post-I/R, in comparison to saline-treated controls, as measured by SC levels (0.13 mg/dL vs. 0.23 mg/dL, p<0.001). PC-treated kidney tissue expressed significantly lower levels of p16(ink4a) in comparison to the control group (p=0.009). FISH analysis demonstrated that the overwhelming majority of repaired kidney tissue was mouse in origin. Rat PCs were only detected at a frequency of 0.02%. These data confirm that PCs have the ability to mitigate functional damage to kidney tissue following I/R injury. Kidneys of PC-treated animals showed evidence of improved function and reduced expression of damage markers. The PCs appear to act in a paracrine fashion, stimulating the host tissue to recover functionally, rather than by differentiating into renal cells. This study demonstrates that pancreatic-derived PCs from the adult rat can enable functional repair of renal damage in mice. It validates the use of PCs to regenerate damaged tissues and also offers a novel therapeutic intervention for repair of solid organ damage in situ.
Collapse
Affiliation(s)
- Liane M McGlynn
- Instititute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mihály Z, Kormos M, Lánczky A, Dank M, Budczies J, Szász MA, Győrffy B. A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat 2013; 140:219-32. [PMID: 23836010 DOI: 10.1007/s10549-013-2622-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/21/2013] [Indexed: 12/20/2022]
Abstract
To date, three molecular markers (ER, PR, and CYP2D6) have been used in clinical setting to predict the benefit of the anti-estrogen tamoxifen therapy. Our aim was to validate new biomarker candidates predicting response to tamoxifen treatment in breast cancer by evaluating these in a meta-analysis of available transcriptomic datasets with known treatment and follow-up. Biomarker candidates were identified in Pubmed and in the 2007-2012 ASCO and 2011-2012 SABCS abstracts. Breast cancer microarray datasets of endocrine therapy-treated patients were downloaded from GEO and EGA and RNAseq datasets from TCGA. Of the biomarker candidates, only those identified or already validated in a clinical cohort were included. Relapse-free survival (RFS) up to 5 years was used as endpoint in a ROC analysis in the GEO and RNAseq datasets. In the EGA dataset, Kaplan-Meier analysis was performed for overall survival. Statistical significance was set at p < 0.005. The transcriptomic datasets included 665 GEO-based and 1,208 EGA-based patient samples. All together 68 biomarker candidates were identified. Of these, the best performing genes were PGR (AUC = 0.64, p = 2.3E-07), MAPT (AUC = 0.62, p = 7.8E-05), and SLC7A5 (AUC = 0.62, p = 9.2E-05). Further genes significantly correlated to RFS include FOS, TP53, BTG2, HOXB7, DRG1, CXCL10, and TPM4. In the RNAseq dataset, only ERBB2, EDF1, and MAPK1 reached statistical significance. We evaluated tamoxifen-resistance genes in three independent platforms and identified PGR, MAPT, and SLC7A5 as the most promising prognostic biomarkers in tamoxifen treated patients.
Collapse
Affiliation(s)
- Zsuzsanna Mihály
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
41
|
Kohli L, Kaza N, Coric T, Byer SJ, Brossier NM, Klocke BJ, Bjornsti MA, Carroll SL, Roth KA. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res 2013; 73:4395-405. [PMID: 23722551 DOI: 10.1158/0008-5472.can-12-3765] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tamoxifen is widely used to treat estrogen receptor-positive breast cancer. Recent findings that tamoxifen and its derivative 4-hydroxytamoxifen (OHT) can exert estrogen receptor-independent cytotoxic effects have prompted the initiation of clinical trials to evaluate its use in estrogen receptor-negative malignancies. For example, tamoxifen and OHT exert cytotoxic effects in malignant peripheral nerve sheath tumors (MPNST) where estrogen is not involved. In this study, we gained insights into the estrogen receptor-independent cytotoxic effects of OHT by studying how it kills MPNST cells. Although caspases were activated following OHT treatment, caspase inhibition provided no protection from OHT-induced death. Rather, OHT-induced death in MPNST cells was associated with autophagic induction and attenuated by genetic inhibition of autophagic vacuole formation. Mechanistic investigations revealed that OHT stimulated autophagic degradation of K-Ras, which is critical for survival of MPNST cells. Similarly, we found that OHT induced K-Ras degradation in breast, colon, glioma, and pancreatic cancer cells. Our findings describe a novel mechanism of autophagic death triggered by OHT in tumor cells that may be more broadly useful clinically in cancer treatment.
Collapse
Affiliation(s)
- Latika Kohli
- Departments of Pathology, Cell Biology, and Pharmacology and Toxicology, and Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McGlynn LM, Tovey S, Bartlett JMS, Doughty J, Cooke TG, Edwards J. Interactions between MAP kinase and oestrogen receptor in human breast cancer. Eur J Cancer 2012; 49:1176-86. [PMID: 23265704 DOI: 10.1016/j.ejca.2012.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/05/2012] [Accepted: 11/09/2012] [Indexed: 12/30/2022]
Abstract
PURPOSE The oestrogen receptor (ERα) may be activated in a ligand-dependent manner, via oestrogen, or in a ligand-independent manner, via signal transduction pathways. Mitogen Activated Protein Kinase (MAPK) is known to directly phosphorylate ERα at serine 118 in a ligand-independent manner. This study investigated the interaction between MAPK and ERα in breast cancer. MATERIALS & METHODS Immunohistochemical experiments were undertaken to determine the expression of MAPK, pMAPK and pER(ser118) in breast tumours to determine their clinical relevance. Immunofluorescent experiments were performed, on MCF-7 breast cancer cells, to monitor the phosphorylation and localisation of MAPK and ERα in response to oestrogen, heregulin and a MAPK inhibitor. RESULTS Oestrogen and Heregulin stimulated phosphorylation of ERα and its nuclear translocation, but heregulin induced this at levels much lower than those observed with oestrogen. Following stimulation with heregulin, but not oestrogen, treatment with MAPK inhibitor reduced the levels of nuclear pER(ser118). In cells treated with both oestrogen and heregulin, nuclear pER(ser118) was visible; but at levels comparable with heregulin treatment alone. CONCLUSION This study confirms that ligand-mediated phosphorylation is associated with rapid nuclear localisation of ERα, due to oestrogen binding. ERα is phosphorylated at serine 118 in a ligand-independent manner. Preventing nuclear translocation of pMAPK reduced the levels of ligand-independent, but not ligand-dependent phosphorylation of ERα. Co-stimulation with both oestrogen and heregulin suggested that heregulin mediated signalling determines the subcellular localisation of ERα. Activation of ERα by direct phosphorylation may result in its rapid deactivation due to degradation or nuclear export.
Collapse
Affiliation(s)
- Liane M McGlynn
- Institute of Cancer Sciences, College of MVLS, University of Glasgow, Western Infirmary, Glasgow G11 6NT, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Moon HG, Yi JK, Kim HS, Lee HY, Lee KM, Yi M, Ahn S, Shin HC, Ju JH, Shin I, Han W, Noh DY. Phosphorylation of p90RSK is associated with increased response to neoadjuvant chemotherapy in ER-positive breast cancer. BMC Cancer 2012; 12:585. [PMID: 23216670 PMCID: PMC3523086 DOI: 10.1186/1471-2407-12-585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/30/2012] [Indexed: 12/30/2022] Open
Abstract
Background The clinical implication of Ras/Raf/ERK pathway activity in breast cancer tissue and its association with response to chemotherapy is controversial. We aimed to explore the value of p90RSK phosphorylation, a downstram molecule of the pathway, in predicting chemotherapy response in breast cancer. Methods The expression of phosphorylated p90RSK (phospho-p90RSK) and chemotherapy response was measured in 11 breast cancer cell lines and 21 breast cancer tissues. The predictive value of phospho-p90RSK was validated in core needle biopsy specimens of 112 locally advanced breast cancer patients who received anthracycline and taxane-based neoadjuvant chemotherapy. Results In 11 breast cancer cell lines, the relative expression of phospho-p90RSK was inversely correlated with cell survival after doxorubicin treatment (p = 0.021). Similar association was observed in fresh tissues from 21 breast cancer patients in terms of clinical response. In paraffin-embedded, formalin-fixed tissues from core needle biopsy tissues from 112 patients, positive phospho-p90RSK expression was associated with greater tumor shrinkage and smaller post-chemotherapy tumor size. The association between phospho-p90RSK expression and chemotherapy response was more evident in estrogen receptor(ER)-positive tumors. The expression of phosphor-p90RSK did not show a significant relationship with the incidence of pCR. P90RSK silencing using siRNA did not affect the cancer cell’s response to doxorubicin, and the expression of phospho-p90RSK was highly correlated with other Ras/Raf/ERK pathway activation. Conclusion Our results suggest that phospho-p90RSK expression, which reflects the tumor’s Ras/Raf/ERK/p90RSK pathway activation can be a potential predictive marker for chemotherapy response in ER-positive breast cancer which needs further independent validation.
Collapse
Affiliation(s)
- Hyeong-Gon Moon
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pritchard JE, Dillon PM, Conaway MR, Silva CM, Parsons SJ. A mechanistic study of the effect of doxorubicin/adriamycin on the estrogen response in a breast cancer model. Oncology 2012; 83:305-20. [PMID: 22964943 DOI: 10.1159/000341394] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Estrogen treatment limits the cytotoxic effects of chemotherapy in estrogen receptor-positive (ER+) breast cancer cell lines, suggesting that estrogen pathway signaling may confer chemotherapeutic resistance. This study investigates the molecular responses of ER+ breast cancer cell lines to the chemotherapeutic agent, doxorubicin, in the presence or absence of estrogen. METHODS ER+ MCF-7 and T47-D cells were cultured in hormone-starved or estrogen-containing media with or without doxorubicin at concentrations mimicking the low concentrations seen in plasma and tumor microenvironments in humans following typical bolus administration. Protein levels, phosphorylations, and interactions of estrogen-signaling molecules were assessed following these treatments, as well the effects of ER signaling inhibitors on cell proliferation. RESULTS Surprisingly, estrogen and doxorubicin co-treatment markedly induced pro-growth alterations compared to doxorubicin alone and modestly enhanced estrogen alone-induced changes. Several inhibitors suppressed cell proliferation in the presence of doxorubicin and estrogen. CONCLUSIONS These findings demonstrate that molecular changes caused by doxorubicin in ER+ breast cancer cells can be reversed by estrogen, providing molecular evidence for the poorer responses of ER+ tumors to doxorubicin in the presence of physiologic estrogen levels. Our results also suggest that the addition of drugs targeting the ER, EGFR, the SFKs, MEK, PI3K, and/or the MMP proteins to a conventional chemotherapy regimen may improve chemosensitivity.
Collapse
Affiliation(s)
- Jessica E Pritchard
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
45
|
Khanal P, Yun HJ, Lim SC, Ahn SG, Yoon HE, Kang KW, Hong R, Choi HS. Proyl isomerase Pin1 facilitates ubiquitin-mediated degradation of cyclin-dependent kinase 10 to induce tamoxifen resistance in breast cancer cells. Oncogene 2012; 31:3845-56. [PMID: 22158035 DOI: 10.1038/onc.2011.548] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine therapies that inhibit estrogen receptor (ER)-α signaling are the most common and effective treatment for ER-α-positive breast cancer. However, the use of these agents is limited by the frequent development of resistance. The aim of this study was to elucidate the mechanisms by which downregulation of CDK10 expression confers resistance to tamoxifen in breast cancer. Here, we show that peptidyl-prolyl isomerase Pin1 downregulates CDK10 protein as a result of its interaction with and ubiquitination of CDK10, thereby affecting CDK10-dependent Raf-1 phosphorylation (S338). Pin1(-/-) mouse embryonic fibroblasts (MEFs) show higher CDK10 expression than Pin1(+/+) MEFs, whereas CDK10 protein was downregulated in the rescued Pin1(-/-) MEFs after reexpression of Pin1. Pin1 silencing in SKBR-3 and MCF7 cells increased the CDK10 expression. In human tamoxifen-resistant breast cancer and tamoxifen-resistant MCF7 cells, immunohistochemical staining and immunoblotting analysis shows an inverse correlation between the expression of CDK10 and the degree of tamoxifen resistance. There was also a positive correlation between the high level of P-Raf-1 (Ser338) and Pin1 in human tamoxifen-resistant breast cancer and tamoxifen-resistant MCF7 (TAMR-MCF7) cells. Importantly, 4-OH tamoxifen (4-OHT), when used in combination with overexpressed CDK10 or Raf-1 inhibitor, increased cleaved PARP and DNA fragmentation to inhibit cologenic growth of MCF7 cells and Tamoxifen-resistant MCF7 cells, respectively. On the basis of these findings, we suggest that the Pin1-mediated CDK10 ubiquitination is a major regulator of tamoxifen-resistant breast cancer cell growth and survival.
Collapse
Affiliation(s)
- P Khanal
- BK21 Project Team, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Balko JM, Mayer IA, Sanders ME, Miller TW, Kuba MG, Meszoely IM, Wagle N, Garraway LA, Arteaga CL. Discordant cellular response to presurgical letrozole in bilateral synchronous ER+ breast cancers with a KRAS mutation or FGFR1 gene amplification. Mol Cancer Ther 2012; 11:2301-5. [PMID: 22879364 DOI: 10.1158/1535-7163.mct-12-0511] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe herein a patient presenting with bilateral estrogen-receptor-positive (ER+) breast tumors who was enrolled in a clinical trial exploring molecular aberrations associated with hormone-refractory tumor cell proliferation. Short-term (two week) hormonal therapy with the aromatase inhibitor letrozole substantially reduced proliferation as measured by Ki67 immunohistochemistry in one tumor, whereas the second was essentially unchanged. Extensive molecular and genetic work-up of the two tumors yielded divergent lesions in the two tumors: an activating KRAS mutation in the responsive tumor and an amplification of the fibroblast growth factor receptor-1 (FGFR1) locus in the treatment-refractory tumor. These findings provide an insight to possible mechanisms of resistance to antiestrogen therapy in ER+ breast cancers. First, they illustrate the necessity of clinically approved assays to identify FGFR1 gene amplification, which occur in approximately 5% of breast tumors and have been linked to antiestrogen resistance. It is quite possible that the addition of FGFR inhibitors to ER-targeted therapy will yield a superior antitumor effect and improved patient outcome. Second, they suggest that the role of activating mutations in RAS, although rare in breast cancer, may need to be explored in the context of ER+ breast tumors.
Collapse
Affiliation(s)
- Justin M Balko
- Vanderbilt University Medical Center, 2200 Pierce Ave, 777 PRB, Nashville, TN 37232-6307, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beelen K, Zwart W, Linn SC. Can predictive biomarkers in breast cancer guide adjuvant endocrine therapy? Nat Rev Clin Oncol 2012; 9:529-41. [PMID: 22825374 DOI: 10.1038/nrclinonc.2012.121] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Personalized medicine for oestrogen receptor-α (ERα)-positive breast cancer requires predictive biomarkers for broad endocrine resistance as well as biomarkers capable of predicting resistance to a specific agent. In addition, biomarkers could be used to select patients that might benefit from the addition of treatments that do not target ERα. However, biomarker identification studies seem to be far from consistent and identified biomarkers seldom face an introduction into clinical practice. Importantly, most of the studies that seek to identify biomarkers have been performed using material from consecutive series of patients treated with tamoxifen (the most commonly prescribed ERα antagonist). Consequently, the predictive value of any biomarker identified is confounded by its prognostic value. Another important issue is the lack of differentiation between premenopausal and postmenopausal patients with breast cancer. The hormonal environment of a tumour in patients who are premenopausal is intrinsically distinct from those arising in postmenopausal women. Biomarkers of different biological mechanisms might enable the prediction of either broad endocrine resistance or resistance to a specific agent in each of these patient subtypes. Ultimately, improvements to study design are needed to establish the clinical validity of the most promising biomarkers to predict benefit from endocrine therapy.
Collapse
Affiliation(s)
- Karin Beelen
- Department of Molecular Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Ohotski J, Edwards J, Elsberger B, Watson C, Orange C, Mallon E, Pyne S, Pyne NJ. Identification of novel functional and spatial associations between sphingosine kinase 1, sphingosine 1-phosphate receptors and other signaling proteins that affect prognostic outcome in estrogen receptor-positive breast cancer. Int J Cancer 2012; 132:605-16. [DOI: 10.1002/ijc.27692] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
|
49
|
Jacob L, Neuvial P, Dudoit S. More power via graph-structured tests for differential expression of gene networks. Ann Appl Stat 2012. [DOI: 10.1214/11-aoas528] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Chandhanayingyong C, Kim Y, Staples JR, Hahn C, Lee FY. MAPK/ERK Signaling in Osteosarcomas, Ewing Sarcomas and Chondrosarcomas: Therapeutic Implications and Future Directions. Sarcoma 2012; 2012:404810. [PMID: 22577336 PMCID: PMC3345255 DOI: 10.1155/2012/404810] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/09/2012] [Indexed: 01/08/2023] Open
Abstract
The introduction of cytotoxic chemotherapeutic drugs in the 1970's improved the survival rate of patients with bone sarcomas and allowed limb salvage surgeries. However, since the turn of the century, survival data has plateaued for a subset of metastatic, nonresponding osteo, and/or Ewing sarcomas. In addition, most high-grade chondrosarcoma does not respond to current chemotherapy. With an increased understanding of molecular pathways governing oncogenesis, modern targeted therapy regimens may enhance the efficacy of current therapeutic modalities. Mitogen-Activated Protein Kinases (MAPK)/Extracellular-Signal-Regulated Kinases (ERK) are key regulators of oncogenic phenotypes such as proliferation, invasion, angiogenesis, and inflammatory responses; which are the hallmarks of cancer. Consequently, MAPK/ERK inhibitors have emerged as promising therapeutic targets for certain types of cancers, but there have been sparse reports in bone sarcomas. Scattered papers suggest that MAPK targeting inhibits proliferation, local invasiveness, metastasis, and drug resistance in bone sarcomas. A recent clinical trial showed some clinical benefits in patients with unresectable or metastatic osteosarcomas following MAPK/ERK targeting therapy. Despite in vitro proof of therapeutic concept, there are no sufficient in vivo or clinical data available for Ewing sarcomas or chondrosarcomas. Further experimental and clinical trials are awaited in order to bring MAPK targeting into a clinical arena.
Collapse
Affiliation(s)
- Chandhanarat Chandhanayingyong
- Center for Orthopedic Research (COR), Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
- Department of Orthopedic Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yuhree Kim
- Center for Orthopedic Research (COR), Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - J. Robert Staples
- Center for Orthopedic Research (COR), Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Cody Hahn
- Center for Orthopedic Research (COR), Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Francis Youngin Lee
- Center for Orthopedic Research (COR), Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|