1
|
Salum GM, Elaraby NM, Ahmed HA, Abd El Meguid M, Fotouh BE, Ashraf M, Elhusseny Y, Dawood RM. Evaluation of tumorigenesis-related miRNAs in breast cancer in Egyptian women: a retrospective, exploratory analysis. Sci Rep 2024; 14:29757. [PMID: 39614097 DOI: 10.1038/s41598-024-68758-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 12/01/2024] Open
Abstract
Breast cancer (BC) is a leading cause of global female cancer-related deaths, despite treatment advancements. A growing focus on investigating microRNA-based therapeutics and their role in BC progression. A computational analysis was performed to identify the potential miRNA-mRNA network involved in the BC pathogenesis and assist with the treatment strategy. Then, the expression levels of five circulatory miRNAs (miR-200a-3p, miR-124-3p, miR-205-5p, miR-15a-5p, and miR-155-5p) were assessed by using qRT-PCR in 75 BC patients (early-stage: n = 26 and late-stage: n = 49) and 20 healthy controls. The analysis included various (a) stages (early and late) and (b) receptor statuses (ER + ve & HER2 -ve), (HER + ve & ER -ve), and triple-negative (TNBC). In-silico analysis suggested that STAT3 serves as an efficacy biomarker suppressed by miR-124-3p. Additionally, the miR-155-5p showed the ability to activate CTNNB1 which acts as a biomarker for BC progression, to inhibit DNA repair genes (ARID2, and WEE1), and the transcriptional factor gene (TCF4). MiR-205-5p and miR-16 suppressed VEGFA expression, a survival factor for BC. MiR-200a-3p, miR-205-5p, and miR-124-3p showed downregulation in the serum of BC patients compared to controls. The ROC analysis of those miRNAs demonstrated their significant diagnostic accuracy for identifying BC patients. Additionally, miR-155-5p exhibited a significant upregulation in TNBC and can be used as an indicative marker for TNBC. This study holds significant promise for the development of noninvasive miRNA biomarkers with potential clinical applications.
Collapse
Affiliation(s)
- Ghada M Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetic Department, Human Genetics and Genome Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Hoda A Ahmed
- Medical Molecular Genetic Department, Human Genetics and Genome Research Institute, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Mai Abd El Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Basma E Fotouh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Muhammed Ashraf
- Egypt Centre for Research and Regenerative Medicine, ECRRM, Cairo, 11517, Egypt
| | - Yasmine Elhusseny
- Medical Biochemistry and Molecular Biology Department, School of Medicine, NewGiza University, Giza, Egypt
| | - Reham M Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, EL Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
2
|
Zhang W, Guo G, Li X, Lin J, Zheng Z, Huang P, Lin C, Lin Y, Chen X, Lin K, Zheng C, Lin H, Lu Y, Zhang H. A bibliometric analysis of bladder cancer and microRNA research: Trends and advances from 2008 to 2022. Medicine (Baltimore) 2024; 103:e40289. [PMID: 39470484 PMCID: PMC11521070 DOI: 10.1097/md.0000000000040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Bladder cancer (BC) is a significant global health issue with high incidence and mortality rates. MicroRNAs (miRNAs) play a crucial role in regulating gene expression and have been found to be dysregulated in BC. Understanding the role of miRNAs in BC development could lead to targeted therapies and improved patient management. Our study presents a thorough examination of the correlation between BC and miRNA research from 2008 to 2022. With the help of 3 powerful methods, including VOSviewer, Biblioshiny, and CiteSpace software, we analyzed the retrieved documents from "Core Collection databases online" on the Web of Science. In total, 798 articles were extracted from the Web of Science, and the number of published papers showed an upward trend from 2008 to 2019. The total number of citations was 21,233, of which the highest paper was a review article written by Chan Jiajia et al in 2018 with 752 citations. Based on the result of the coauthor analysis, Seki Naohiko was the most productive writer and China had the highest volume of published articles. Co-citation analysis was used to reveal the knowledge structure of the research field. In addition to the keywords "Bladder cancer" and "miRNA," "Proliferation," "Biomarkers," and "Apoptosis" were the high-frequency used keywords. Recently, increasingly researchers have paid more attention to the field about BC and miRNA around the worldwide. Through in-depth communication and close collaboration, the veil of miRNA in BC has gradually been unveiled. Bibliometric analysis helps to identify hotspots in research and areas for future investigation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Gaowei Guo
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xinji Li
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Jinming Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Zexian Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Peidong Huang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Chuqi Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yurong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Xiaosheng Chen
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Kuncheng Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Changzheng Zheng
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Huirong Lin
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Yong Lu
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| | - Hui Zhang
- Department of Urology, Jieyang People’s Hospital, Jieyang, Guangdong, P. R. China
| |
Collapse
|
3
|
Yi X, Chen X, Li Z. miR-200c targeting GLI3 inhibits cell proliferation and promotes apoptosis in non-small cell lung cancer cells. Medicine (Baltimore) 2024; 103:e39658. [PMID: 39312343 PMCID: PMC11419521 DOI: 10.1097/md.0000000000039658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Lung cancer is a common malignant tumor with low cure rate. It has an easy recurrence and metastasis. This study explored whether miR-200c could regulate the biological behavior of non-small cell lung cancer cells through targeting GLI3. Luciferase reporter gene analysis was used to verify the interaction between miR-200c-3p and GLI3. miR-200c-3p and GLI3 were transiently overexpressed into A549 cells. The cell viability rate was detected by cell counting kit-8, cell invasion ability was detected with Transwell, cell apoptosis and cell cycle was determined by flow cytometry, and the expression of GLI3 was detected using quantitative polymerase chain reaction and Western blot, to verify the effect of the interaction between miR-200c-3p and GLI3 on the cell activities. miR-200c-3p overexpression could inhibit cell viability and invasion, promote apoptosis, induce G0/G1 arrest, and inhibit cell division. GLI3 overexpression could reverse the miR-200c-3p inhibition on cell cycle, reduce the number of cells in the G0/G1 phase and increase the number of cells in the S phase. miR-200c-3p overexpression in A549 cells could inhibit cell viability and invasion, and promote apoptosis. miR-200c-3p could target GLI3 to regulate cell cycle and inhibit cell proliferation.
Collapse
Affiliation(s)
- Xiangjun Yi
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| | - Xuan Chen
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| | - Zhenbin Li
- Department of Oncology, Jiangxi Chest Hospital, Nanchang City, Jiangxi Province, P.R. China
| |
Collapse
|
4
|
Raveendran S, Al Massih A, Al Hashmi M, Saeed A, Al-Azwani I, Mathew R, Tomei S. Urinary miRNAs: Technical Updates. Microrna 2024; 13:110-123. [PMID: 38778602 DOI: 10.2174/0122115366305985240502094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024]
Abstract
Due to its non-invasive nature and easy accessibility, urine serves as a convenient biological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNAs (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential biomarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.
Collapse
Affiliation(s)
- Santhi Raveendran
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Alia Al Massih
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Asma Saeed
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Iman Al-Azwani
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Rebecca Mathew
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomics Services (IGS), Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
5
|
Ham-Karim H, Negm O, Ahmad N, Ilyas M. Investigating genomic, proteomic, and post-transcriptional regulation profiles in colorectal cancer: a comparative study between primary tumors and associated metastases. Cancer Cell Int 2023; 23:192. [PMID: 37670299 PMCID: PMC10478430 DOI: 10.1186/s12935-023-03020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Approximately 50% of patients with primary colorectal carcinoma develop liver metastases. This study investigates the possible molecular discrepancies between primary colorectal cancer (pCRC) and their respective metastases. METHODS A total of 22 pairs of pCRC and metastases were tested. Mutation profiling of 26 cancer-associated genes was undertaken in 22/22primary-metastasis tumour pairs using next-generation sequencing, whilst the expression of a panel of six microRNAs (miRNAs) was investigated using qPCRin 21/22 pairs and 22 protein biomarkers was tested using Reverse Phase Protein Array (RPPA)in 20/22 patients' tumour pairs. RESULTS Among the primary and metastatic tumours the mutation rates for the individual genes are as follows:TP53 (86%), APC (44%), KRAS (36%), PIK3CA (9%), SMAD4 (9%), NRAS (9%) and 4% for FBXW7, BRAF, GNAS and CDH1. The primary-metastasis tumour mutation status was identical in 54/60 (90%) loci. However, there was discordance in heterogeneity status in 40/58 genetic loci (z-score = 6.246, difference = 0.3793, P < 0.0001). Furthermore, there was loss of concordance in miRNA expression status between primary and metastatic tumours, and 57.14-80.95% of the primary-metastases tumour pairs showed altered primary-metastasis relative expression in all the miRNAs tested. Moreover, 16 of 20 (80%) tumour pairs showed alteration in at least 3 of 6 (50%) of the protein biomarker pathways analysed. CONCLUSION The molecular alterations of primary colorectal tumours differ significantly from those of their matched metastases. These differences have profound implications for patients' prognoses and response to therapy.
Collapse
Affiliation(s)
- Hersh Ham-Karim
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Chaq-Chaq-Qualaraisi, Sulaimani, Iraq.
| | - Ola Negm
- Division of Medical Sciences and Graduate Entry Medicine, Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Narmeen Ahmad
- Kurdistan Institution for Strategic Studies and Scientific Research, Qirga, Sulaimani, KRG, Iraq
| | - Mohammad Ilyas
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Chaq-Chaq-Qualaraisi, Sulaimani, Iraq
- Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Chin FW, Chan SC, Veerakumarasivam A. Homeobox Gene Expression Dysregulation as Potential Diagnostic and Prognostic Biomarkers in Bladder Cancer. Diagnostics (Basel) 2023; 13:2641. [PMID: 37627900 PMCID: PMC10453580 DOI: 10.3390/diagnostics13162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023] Open
Abstract
Homeobox genes serve as master regulatory transcription factors that regulate gene expression during embryogenesis. A homeobox gene may have either tumor-promoting or tumor-suppressive properties depending on the specific organ or cell lineage where it is expressed. The dysregulation of homeobox genes has been reported in various human cancers, including bladder cancer. The dysregulated expression of homeobox genes has been associated with bladder cancer clinical outcomes. Although bladder cancer has high risk of tumor recurrence and progression, it is highly challenging for clinicians to accurately predict the risk of tumor recurrence and progression at the initial point of diagnosis. Cystoscopy is the routine surveillance method used to detect tumor recurrence. However, the procedure causes significant discomfort and pain that results in poor surveillance follow-up amongst patients. Therefore, the development of reliable non-invasive biomarkers for the early detection and monitoring of bladder cancer is crucial. This review provides a comprehensive overview of the diagnostic and prognostic potential of homeobox gene expression dysregulation in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Soon-Choy Chan
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
7
|
Zhang Q, Pan J, Xiong D, Zheng J, McPherson KN, Lee S, Huang M, Xu Y, Chen SH, Wang Y, Hildebrandt Ruiz L, You M. Aerosolized miR-138-5p and miR-200c targets PD-L1 for lung cancer prevention. Front Immunol 2023; 14:1166951. [PMID: 37520581 PMCID: PMC10372486 DOI: 10.3389/fimmu.2023.1166951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The development of chemopreventive strategies with the ability to prevent the progression of lung lesions to malignant cancers would reduce the mortality and morbidity resulting from this deadly disease. Delivery of microRNA (miRNA) by inhalation is a novel method for lung cancer prevention. In this study, we investigated the combined efficacy of aerosolized miR-138-5p and miR-200c miRNA mimics in lung cancer prevention. Combination of the two miRNAs inhibited Benzo(a)pyrene (B((a))P)-induced lung adenomas and N-nitroso-tris-chloroethylurea (NTCU)-induced lung squamous cell carcinomas with no detectable side effects. Using single-cell RNA sequencing (scRNA-seq) and imaging mass cytometry (IMC), we found that both miRNAs inhibited programmed cell death ligand 1 (PD-L1) expression. Our flow cytometry results showed that aerosolized delivery of combined miRNAs increased CD4+ and CD8+ T cells and reduced the expression of programmed cell death protein 1 (PD-1) and T-regulatory cells. Our results demonstrated that the delivery of aerosolized microRNAs targeting PD-L1 can be highly effective in preventing lung cancer development and progression in mice.
Collapse
Affiliation(s)
- Qi Zhang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Junjun Zheng
- Center for Immunotherapy Research, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Kristi N. McPherson
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Sangbeom Lee
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Mofei Huang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Yitian Xu
- Center for Immunotherapy Research, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Shu-hsia Chen
- Center for Immunotherapy Research, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| | - Lea Hildebrandt Ruiz
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
8
|
Gilyazova I, Enikeeva K, Rafikova G, Kagirova E, Sharifyanova Y, Asadullina D, Pavlov V. Epigenetic and Immunological Features of Bladder Cancer. Int J Mol Sci 2023; 24:9854. [PMID: 37373000 DOI: 10.3390/ijms24129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Bladder cancer (BLCA) is one of the most common types of malignant tumors of the urogenital system in adults. Globally, the incidence of BLCA is more than 500,000 new cases worldwide annually, and every year, the number of registered cases of BLCA increases noticeably. Currently, the diagnosis of BLCA is based on cystoscopy and cytological examination of urine and additional laboratory and instrumental studies. However, cystoscopy is an invasive study, and voided urine cytology has a low level of sensitivity, so there is a clear need to develop more reliable markers and test systems for detecting the disease with high sensitivity and specificity. Human body fluids (urine, serum, and plasma) are known to contain significant amounts of tumorigenic nucleic acids, circulating immune cells and proinflammatory mediators that can serve as noninvasive biomarkers, particularly useful for early cancer detection, follow-up of patients, and personalization of their treatment. The review describes the most significant advances in epigenetics of BLCA.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Yuliya Sharifyanova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450008 Ufa, Russia
| |
Collapse
|
9
|
Granda-Díaz R, Manterola L, Hermida-Prado F, Rodríguez R, Santos L, García-de-la-Fuente V, Fernández MT, Corte-Torres MD, Rodrigo JP, Álvarez-Teijeiro S, Lawrie CH, Garcia-Pedrero JM. Targeting oncogenic functions of miR-301a in head and neck squamous cell carcinoma by PI3K/PTEN and MEK/ERK pathways. Biomed Pharmacother 2023; 161:114512. [PMID: 36931033 DOI: 10.1016/j.biopha.2023.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Treatment of head and neck squamous cell carcinomas (HNSCC), the sixth most frequent cancer worldwide, remains challenging. miRNA dysregulation is closely linked to tumorigenesis and tumor progression, thus emerging as suitable targets for cancer treatment. Transcriptomic analysis of TCGA HNSCC dataset revealed that miR-301a expression levels significantly increased in primary tumors, as compared to patient-matched normal tissue. This prompted us to investigate its pathobiological role and potential as new therapeutic target using different preclinical HNSCC models. miR-301a overexpression in HNSCC-derived cell lines led to enhanced proliferation and invasion, whereas miR-301 inhibition reduced these effects. In vivo validation was performed using an orthotopic mouse model. Results concordantly showed that the mitotic counts, the percentage of infiltration depth and Ki67 proliferative index were significantly augmented in the subgroup of mice harboring miR-301a-overexpressing tumors. Further mechanistic characterization revealed PI3K/PTEN/AKT and MEK/ERK pathways as central signaling nodes responsible for mediating the oncogenic activity of miR-301a observed in HNSCC cells. Notably, pharmacological disruption of PI3K and ERK signals with BYL-719 and PD98059, respectively, was effective to completely revert/abolish miR-301a-promoted tumor cell growth and invasion. Altogether, these findings demonstrate that miR-301a dysregulation plays an oncogenic role in HNSCC, thus emerging as a candidate therapeutic target for this disease. Importantly, available PI3K and ERK inhibitors emerge as promising anti-tumor agents to effectively target miR-301a-mediated signal circuit hampering growth-promoting and pro-invasive functions.
Collapse
Affiliation(s)
- Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Lorea Manterola
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain
| | - Francisco Hermida-Prado
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - René Rodríguez
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Sarcomas and Experimental Therapies, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Laura Santos
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanessa García-de-la-Fuente
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Teresa Fernández
- Histopathology Unit, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - M Daniela Corte-Torres
- Biobank of Principado de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai, China.
| | - Juana M Garcia-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain; Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
11
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
12
|
Tantray I, Ojha R, Sharma AP. Non-coding RNA and autophagy: Finding novel ways to improve the diagnostic management of bladder cancer. Front Genet 2023; 13:1051762. [PMID: 36685879 PMCID: PMC9845264 DOI: 10.3389/fgene.2022.1051762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Major fraction of the human genome is transcribed in to the RNA but is not translated in to any specific functional protein. These transcribed but not translated RNA molecules are called as non-coding RNA (ncRNA). There are thousands of different non-coding RNAs present inside the cells, each regulating different cellular pathway/pathways. Over the last few decades non-coding RNAs have been found to be involved in various diseases including cancer. Non-coding RNAs are reported to function both as tumor enhancer and/or tumor suppressor in almost each type of cancer. Urothelial carcinoma of the urinary bladder is the second most common urogenital malignancy in the world. Over the last few decades, non-coding RNAs were demonstrated to be linked with bladder cancer progression by modulating different signalling pathways and cellular processes such as autophagy, metastasis, drug resistance and tumor proliferation. Due to the heterogeneity of bladder cancer cells more in-depth molecular characterization is needed to identify new diagnostic and treatment options. This review emphasizes the current findings on non-coding RNAs and their relationship with various oncological processes such as autophagy, and their applicability to the pathophysiology of bladder cancer. This may offer an understanding of evolving non-coding RNA-targeted diagnostic tools and new therapeutic approaches for bladder cancer management in the future.
Collapse
Affiliation(s)
- Ishaq Tantray
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| | - Aditya P. Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| |
Collapse
|
13
|
Narwal A, Kumari K, Kaushal S, Seth A, Nayak B, Rustagi Y, Dinda AK. The study of miRNA-200c expression and epithelial-to-mesenchymal transition-related transcription factors in the primary bladder urothelial carcinoma. Urol Ann 2023; 15:35-42. [PMID: 37006208 PMCID: PMC10062515 DOI: 10.4103/ua.ua_72_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 04/04/2023] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) plays an important role in bladder carcinoma (BC) invasiveness and metastasis. Studies have shown that muscle-invasive BC (MIBC) and non-MIBC (NMIBC) are different at the molecular level owing to different EMT-related programming. Recent studies suggest that dysregulation of specific miRNAs is linked to EMT in BC. With this background, we aimed to study the immunoexpression of EMT-markers and its correlation with miRNA-200c expression in a series of MIBCs and NMIBCs. Materials and Methods Quantitative real-time-polymerase chain reaction for the quantification of miR-200c expression was performed on 50 cases of urinary BC obtained from transurethral resection of bladder tumor (TURBT), cystectomy specimens, and ten peritumoral bladder tissue. Immunohistochemistry for ZEB1, ZEB2, TWIST, E-cadherin, and β-catenin was performed on tumor and peritumoral bladder tissue. Results Thirty-five TURBT and 15 cystectomy specimens were assessed. Among MIBC, loss of expression of E-cadherin (72.3%), β-catenin (66.7%), and ZEB1, ZEB2, and TWIST2 immunoreactivity was noted in 53.3%, 86.7%, and 73.3% of cases, respectively. Among NMIBC, loss of expression of E-cadherin (22.5%), β-catenin (17.1%) and ZEB1, ZEB2, and TWIST immunoreactivity was noted in 11.5%, 51.4%, and 91.4% of cases, respectively. Upregulation of miRNA-200c was noted in cases with retained E-cadherin and negative TWIST expression. Downregulation of miRNA-200c expression was noted in all the cases showing loss of E-cadherin, β-catenin, and in cases immunoreactive for ZEB1, ZEB2, and TWIST in MIBC. Downregulation of miRNA-200c expression was also noted in cases of MIBC with retained β-catenin and those immunonegative for ZEB1 and ZEB2. A similar trend was noted in NMIBC. Median miRNA-200c expression was low in both high-grade and low-grade NMIBC compared to peritumoral bladder tissue and was not statistically significant. Conclusion This study for the first time explores the relation of miR200C with E-cadherin, b-catenin, and its direct transcriptional regulators, namely Zeb1, Zeb2, and Twist in the same cohort of BC. We observed that miRNA-200c is downregulated in both MIBC and NMIBC. We identified novel expression of TWIST in cases of BC showing downregulation of miR200Cs suggesting that it is one of the protein targets of altered miRNA-200c expression contributing to EMT and can serve as a promising diagnostic marker and therapeutic target. Loss of E-cadherin and ZEB1 immunoexpression in high-grade NMIBC suggests an aggressive clinical behavior. However, ZEB2 heterogeneous expression in BC limits its diagnostic and prognostic utility.
Collapse
Affiliation(s)
- Anubhav Narwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Kumari
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Kaushal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Amlesh Seth
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Brusabhanu Nayak
- Department of Urology, All India Institute of Medical Sciences, New Delhi, India
| | - Yashika Rustagi
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Yang Y, Wu Z, Wang M, Wu Z, Sun Z, Liu M, Li G. MicroRNA-429 Regulates Invasion and Migration of Multiple Myeloma Cells via Bmi1/AKT Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: miR-429-mediated progression of multiple myeloma (MM) was studied through mediating B cell-specific Moloney murine leukemia virus integration site 1 (Bmi1)/protein kinase B (AKT) pathway. Methods: miRNA or siRNA was delivered into MM cell lines to alter cellular
proliferation, apoptosis, invasion and migration. Measurements of miR-429 and Bmi1 levels were performed. AKT and p-AKT expression change was measured after regulating miR-429. The interaction between miR-429 and Bmi1 was analyzed. Results: miR-429 elevation disrupted proliferation,
anti-apoptosis, migration and invasion properties of MM cells, and inactivated AKT pathway. Bmi1 was a targeting partner of miR-429, which was highly expressed in MM. Bmi1 knockdown phenotyped the effects of overexpressed miR-429 on MM cells. AKT agonist SC70 reversed miR-429-regulated inhibition
of MM cell growth. Conclusion: miR-429 suppresses the activation of Bmi1/AKT pathway to down-regulate the malignant functions of MM cells.
Collapse
Affiliation(s)
- YongMing Yang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhiFeng Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Ming Wang
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZuTong Wu
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - ZhenZheng Sun
- Department of Pediatrics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - Man Liu
- Department of Operating Room, The first Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| | - GuangBao Li
- Department of Orthopedics, The First Affiliated Hospital of Shaoyang College, ShaoYang City, HuNan Province, 422000, China
| |
Collapse
|
15
|
Yerukala Sathipati S, Tsai MJ, Shukla SK, Ho SY, Liu Y, Beheshti A. MicroRNA signature for estimating the survival time in patients with bladder urothelial carcinoma. Sci Rep 2022; 12:4141. [PMID: 35264666 PMCID: PMC8907292 DOI: 10.1038/s41598-022-08082-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder urothelial carcinoma (BLC) is one of the most common cancers in men, and its heterogeneity challenges the treatment to cure this disease. Recently, microRNAs (miRNAs) gained promising attention as biomarkers due to their potential roles in cancer biology. Identifying survival-associated miRNAs may help identify targets for therapeutic interventions in BLC. This work aims to identify a miRNA signature that could estimate the survival in patients with BLC. We developed a survival estimation method called BLC-SVR based on support vector regression incorporated with an optimal feature selection algorithm to select a robust set of miRNAs as a signature to estimate the survival in patients with BLC. BLC-SVR identified a miRNA signature consisting of 29 miRNAs and obtained a mean squared correlation coefficient and mean absolute error of 0.79 ± 0.02 and 0.52 ± 0.32 year between actual and estimated survival times, respectively. The prediction performance of BLC-SVR had a better estimation capability than other standard regression methods. In the identified miRNA signature, 14 miRNAs, hsa-miR-432-5p, hsa-let-7e-3p, hsa-miR-652-3p, hsa-miR-629-5p, and hsa-miR-203a-3p, hsa-miR-129-5p, hsa-miR-769-3p, hsa-miR-570-3p, hsa-miR-320c, hsa-miR-642a-5p, hsa-miR-496, hsa-miR-5480-3p, hsa-miR-221-5p, and hsa-miR-7-1-3p, were found to be good biomarkers for BLC diagnosis; and the six miRNAs, hsa-miR-652-5p, hsa-miR-193b-5p, hsa-miR-129-5p, hsa-miR-143-5p, hsa-miR-496, and hsa-miR-7-1-3p, were found to be good biomarkers of prognosis. Further bioinformatics analysis of this miRNA signature demonstrated its importance in various biological pathways and gene ontology annotation. The identified miRNA signature would further help in understanding of BLC diagnosis and prognosis in the development of novel miRNA-target based therapeutics in BLC.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi Liu
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
16
|
MiR-139-5p Targeting CCNB1 Modulates Proliferation, Migration, Invasion and Cell Cycle in Lung Adenocarcinoma. Mol Biotechnol 2022; 64:852-860. [PMID: 35181869 DOI: 10.1007/s12033-022-00465-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most frequent histological subtype of non-small cell lung cancer. Cyclin B1 (CCNB1) is the vital initiator and controller of mitosis. Studies have indicated that CCNB1 overexpression is closely associated with cell proliferation and tumorigenesis in many cancers. Thus, discovery of molecular mechanism of CCNB1 in LUAD is conducive to developing new diagnostic or therapeutic targets for LUAD. We acquired mature miRNA and mRNA expression information of LUAD from TCGA database, as well as related clinical data. CCNB1 expression in normal and LUAD tissue was analyzed. Relationship between CCNB1 and patient's survival and clinical stage was analyzed. Upstream regulatory gene miRNA of CCNB1 was predicted. qRT-PCR and western blot examined expression levels of CCNB1 and miR-139-5p in cells. CCK-8 tested cell proliferation. Scratch healing and Transwell determined cell migration and invasion. Flow cytometry analyzed the cell cycle. Dual-luciferase verified targeting relationship between the two genes. Compared to controls, CCNB1 expression was prominently high in LUAD patient samples, and associated with advanced tumor stages and shorter overall survival. MiR-139-5p expressed an evidently negative correlation with CCNB1 and was predicted to target CCNB1. MiR-139-5p mimics reduced CCNB1 mRNA and protein expression, and suppressed luciferase activity in a target-specific manner, as confirmed by a control construct with a mutated miR-139-5p binding site. CCNB1 overexpression fostered progression of LUAD cells. Mechanistically, miR-139-5p might negatively regulate CCNB1 in LUAD, thereby suppressing cell proliferation, migration, invasion and cell cycle.
Collapse
|
17
|
Hussen BM, Salihi A, Abdullah ST, Rasul MF, Hidayat HJ, Hajiesmaeili M, Ghafouri-Fard S. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics. Pathol Res Pract 2022; 230:153764. [PMID: 35032831 DOI: 10.1016/j.prp.2022.153764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) act as oncogenes or tumor suppressors by suppressing the expression of target genes, some of which are engaged in angiogenic signaling pathways directly or indirectly. Tumor development and metastasis are dependent on angiogenesis, and it is the main reason for the poor prognosis of cancer patients. New blood vessels are formed from pre-existing vessels when angiogenesis occurs. Thus, it is essential to develop primary tumors and the spread of cancer to surrounding tissues. MicroRNAs (miRNAs) are small noncoding RNAs involved in various biological processes. They can bind to the 3'-UTR of their target genes and prevent them from expressing. MiRNAs control the activity of endothelial cells (ECs) through altering many biological pathways, which plays a key role in cancer progression and angiogenesis. Recent findings revealed that tumor-derived extracellular vesicles participated directly in the control of tumor angiogenesis by delivering miRNAs to ECs. miRNAs recently show great promise in cancer therapies to inhibit angiogenesis. In this study, we showed the miRNA-regulated signaling pathways in tumor angiogenesis with highlighting the anti-angiogenic therapy response and miRNA delivery methods that have been used to inhibit angiogenesis in both in vivo and in vitro studies.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Li Y, Liu X, Ma Z. EGFR, NF-κB and noncoding RNAs in precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:189-218. [DOI: 10.1016/bs.pmbts.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
MicroRNA as a Biomarker for Diagnostic, Prognostic, and Therapeutic Purpose in Urinary Tract Cancer. Processes (Basel) 2021. [DOI: 10.3390/pr9122136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The incidence of urologic cancers, including kidney, upper tract urothelial, and bladder malignancies, is increasing globally, with a high percentage of cases showing metastasis upon diagnosis and low five-year survival rates. MicroRNA (miRNA), a small non-coding RNA, was found to regulate the expression of oncogenes and tumor suppressor genes in several tumors, including cancers of the urinary system. In the current review, we comprehensively discuss the recently reported up-or down-regulated miRNAs as well as their possible targets and regulated pathways involved in the development, progression, and metastasis of urinary tract cancers. These miRNAs represent potential therapeutic targets and diagnostic/prognostic biomarkers that may help in efficient and early diagnosis in addition to better treatment outcomes.
Collapse
|
20
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
21
|
Ma X, Ying Y, Sun J, Xie H, Li J, He L, Wang W, Chen S, Shen H, Yi J, Luo J, Wang X, Zheng X, Liu B, Xie L. circKDM4C enhances bladder cancer invasion and metastasis through miR-200bc-3p/ZEB1 axis. Cell Death Dis 2021; 7:365. [PMID: 34811353 PMCID: PMC8608878 DOI: 10.1038/s41420-021-00712-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) play essential roles in human bladder cancer (BCa) development, however, unusual expression patterns and functional dysfunction of circRNAs in BCa have not been evaluated. In this study, we validated that circKDM4C (hsa_circ_0001839), derived from the KDM4C gene, is elevated in BCa cell lines as well as tissues. Functionally, overexpression of circKDM4C significantly enhances, and silencing of circKDM4C suppresses migration and invasion capabilities of BCa cells. Mechanistically, circKDM4C can directly interact with miR-200b-3p and miR-200c-3p as a miRNA sponge, which enhances the expression of ZEB1 and promotes mesenchymal phenotype. Conclusively, our findings indicate that circKDM4C may act as a pro-oncogenic factor in BCa invasion and metastasis via the circKDM4C/miR-200bc-3p/ZEB1 axis, which is a potential biomarker or therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Xueyou Ma
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Yufan Ying
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jiazhu Sun
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Haiyun Xie
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jiangfeng Li
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Liujia He
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Weiyu Wang
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Shiming Chen
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Haixiang Shen
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jiahe Yi
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Jindan Luo
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiao Wang
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Xiangyi Zheng
- grid.452661.20000 0004 1803 6319Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XCancer Center, Zhejiang University, Hangzhou, 310058 China
| | - Ben Liu
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Xie
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Zangoue M, Zangouei AS, Mojarrad M, Moghbeli M. MicroRNAs as the critical regulators of protein kinases in prostate and bladder cancers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Bladder cancer (BCa) and prostate cancer (PCa) are frequent urothelial and genital malignancies with a high ratio of morbidity and mortality which are more common among males. Since BCa and PCa cases are mainly diagnosed in advanced stages with clinical complications, it is required to introduce the efficient early detection markers. Protein kinases are critical factors involved in various cellular processes such as cell growth, motility, differentiation, and metabolism. Deregulation of protein kinases can be frequently observed through the neoplastic transformation and tumor progression. Therefore, kinases are required to be regulated via different genetic and epigenetic processes. MicroRNAs (miRNAs) are among the critical factors involved in epigenetic regulation of protein kinases. Since miRNAs are noninvasive and more stable factors in serum and tissues compared with mRNAs, they can be used as efficient diagnostic markers for the early detection of PCa and BCa.
Main body
In present review, we have summarized all of the reported miRNAs that have been associated with regulation of protein kinases in bladder and prostate cancers.
Conclusions
For the first time, this review highlights the miRNAs as critical factors in regulation of protein kinases during prostate and bladder cancers which paves the way of introducing a noninvasive kinase-specific panel of miRNAs for the early detection of these malignancies. It was observed that the class VIII receptors of tyrosine kinases and non-receptor tyrosine kinases were the most frequent targets for the miRNAs in bladder and prostate cancers, respectively.
Collapse
|
23
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
24
|
Liu X, Chen D, Chen H, Wang W, Liu Y, Wang Y, Duan C, Ning Z, Guo X, Otkur W, Liu J, Qi H, Liu X, Lin A, Xia T, Liu H, Piao H. YB1 regulates miR-205/200b-ZEB1 axis by inhibiting microRNA maturation in hepatocellular carcinoma. Cancer Commun (Lond) 2021; 41:576-595. [PMID: 34110104 PMCID: PMC8286141 DOI: 10.1002/cac2.12164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Y-box binding protein 1 (YB1 or YBX1) plays a critical role in tumorigenesis and cancer progression. However, whether YB1 affects malignant transformation by modulating non-coding RNAs remains largely unknown. This study aimed to investigate the relationship between YB1 and microRNAs and reveal the underlying mechanism by which YB1 impacts on tumor malignancy via miRNAs-mediated regulatory network. METHODS The biological functions of YB1 in hepatocellular carcinoma (HCC) cells were investigated by cell proliferation, wound healing, and transwell invasion assays. The miRNAs dysregulated by YB1 were screened by microarray analysis in HCC cell lines. The regulation of YB1 on miR-205 and miR-200b was determined by quantitative real-time PCR, dual-luciferase reporter assay, RNA immunoprecipitation, and pull-down assay. The relationships of YB1, DGCR8, Dicer, TUT4, and TUT1 were identified by pull-down and coimmunoprecipitation experiments. The cellular co-localization of YB1, DGCR8, and Dicer were detected by immunofluorescent staining. The in vivo effect of YB1 on tumor metastasis was determined by injecting MHCC97H cells transduced with YB1 shRNA or shControl via the tail vein in nude BALB/c mice. The expression levels of epithelial to mesenchymal transition markers were detected by immunoblotting and immunohistochemistry assays. RESULTS YB1 promoted HCC cell migration and tumor metastasis by regulating miR-205/200b-ZEB1 axis partially in a Snail-independent manner. YB1 suppressed miR-205 and miR-200b maturation by interacting with the microprocessors DGCR8 and Dicer as well as TUT4 and TUT1 via the conserved cold shock domain. Subsequently, the downregulation of miR-205 and miR-200b enhanced ZEB1 expression, thus leading to increased cell migration and invasion. Furthermore, statistical analyses on gene expression data from HCC and normal liver tissues showed that YB1 expression was positively associated with ZEB1 expression and remarkably correlated with clinical prognosis. CONCLUSION This study reveals a previously undescribed mechanism by which YB1 promotes cancer progression by regulating the miR-205/200b-ZEB1 axis in HCC cells. Furthermore, these results highlight that YB1 may play biological functions via miRNAs-mediated gene regulation, and it can serve as a potential therapeutic target in human cancers.
Collapse
Affiliation(s)
- Xiumei Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Di Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Huan Chen
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Yawei Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Chao Duan
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Zhen Ning
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoning116000P. R. China
| | - Xin Guo
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalian Medical UniversityDalianLiaoning116000P. R. China
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Jing Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Huan Qi
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Tian Xia
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
| | - Hong‐xu Liu
- Department of Thoracic SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityShenyangLiaoning110042P. R. China
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023P. R. China
- Department of Biochemistry & Molecular BiologySchool of Life SciencesChina Medical UniversityShenyangLiaoning110122P. R. China
| |
Collapse
|
25
|
Gene 33/Mig6/ERRFI1, an Adapter Protein with Complex Functions in Cell Biology and Human Diseases. Cells 2021; 10:cells10071574. [PMID: 34206547 PMCID: PMC8306081 DOI: 10.3390/cells10071574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein–protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.
Collapse
|
26
|
Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in gastric tumor cells. Genes Environ 2021; 43:21. [PMID: 34099061 PMCID: PMC8182944 DOI: 10.1186/s41021-021-00192-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Combined chemotherapeutic treatment is the method of choice for advanced and metastatic gastric tumors. However, resistance to chemotherapeutic agents is one of the main challenges for the efficient gastric cancer (GC) treatment. Cisplatin (CDDP) is used as an important regimen of chemotherapy for GC which induces cytotoxicity by interfering with DNA replication in cancer cells and inducing their apoptosis. Majority of patients experience cisplatin-resistance which is correlated with tumor metastasis and relapse. Moreover, prolonged and high-dose cisplatin administrations cause serious side effects such as nephrotoxicity, ototoxicity, and anemia. Since, there is a high rate of recurrence after CDDP treatment in GC patients; it is required to clarify the molecular mechanisms associated with CDDP resistance to introduce novel therapeutic methods. There are various cell and molecular processes associated with multidrug resistance (MDR) including drug efflux, detoxification, DNA repair ability, apoptosis alteration, signaling pathways, and epithelial-mesenchymal transition (EMT). MicroRNAs are a class of endogenous non-coding RNAs involved in chemo resistance of GC cells through regulation of all of the MDR mechanisms. In present review we have summarized all of the miRNAs associated with cisplatin resistance based on their target genes and molecular mechanisms in gastric tumor cells. This review paves the way of introducing a miRNA-based panel of prognostic markers to improve the efficacy of chemotherapy and clinical outcomes in GC patients. It was observed that miRNAs are mainly involved in cisplatin response of gastric tumor cells via regulation of signaling pathways, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Monoe Y, Jingushi K, Kawase A, Hirono T, Hirose R, Nakatsuji Y, Kitae K, Ueda Y, Hase H, Abe Y, Adachi J, Tomonaga T, Tsujikawa K. Pharmacological Inhibition of miR-130 Family Suppresses Bladder Tumor Growth by Targeting Various Oncogenic Pathways via PTPN1. Int J Mol Sci 2021; 22:ijms22094751. [PMID: 33947152 PMCID: PMC8124864 DOI: 10.3390/ijms22094751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
Previously, we have revealed that the miR-130 family (miR-130b, miR-301a, and miR-301b) functions as an oncomiR in bladder cancer. The pharmacological inhibition of the miR-130 family molecules by the seed-targeting strategy with an 8-mer tiny locked nucleic acid (LNA) inhibits the growth, migration, and invasion of bladder cancer cells by repressing stress fiber formation. Here, we searched for a functionally advanced target sequence with LNA for the miR-130 family with low cytotoxicity and found LNA #9 (A(L)^i^i^A(L)^T(L)^T(L)^G(L)^5(L)^A(L)^5(L)^T(L)^G) as a candidate LNA. LNA #9 inhibited cell growth in vitro and in an in vivo orthotopic bladder cancer model. Proteome-wide tyrosine phosphorylation analysis suggested that the miR-130 family upregulates a wide range of receptor tyrosine kinases (RTKs) signaling via the expression of phosphorylated Src (pSrcTyr416). SILAC-based proteome analysis and a luciferase assay identified protein tyrosine phosphatase non-receptor type 1 (PTPN1), which is implicated as a negative regulator of multiple signaling pathways downstream of RTKs as a target gene of the miR-130 family. The miR-130-targeted LNA increased and decreased PTPN1 and pSrcTyr416 expressions, respectively. PTPN1 knockdown led to increased tumor properties (cell growth, invasion, and migration) and increased pSrcTyr416 expression in bladder cancer cells, suggesting that the miR-130 family upregulates multiple RTK signaling by targeting PTPN1 and subsequent Src activation in bladder cancer. Thus, our newly designed miR-130 family targeting LNA could be a promising nucleic acid therapeutic agent for bladder cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Carcinoma, Transitional Cell/drug therapy
- Carcinoma, Transitional Cell/genetics
- Carcinoma, Transitional Cell/metabolism
- Cell Line, Tumor
- Drug Screening Assays, Antitumor
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Mice
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- Neoplasm Proteins/physiology
- Oligonucleotides/therapeutic use
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/physiology
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Recombinant Proteins/metabolism
- Up-Regulation
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yuya Monoe
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
- Correspondence: ; Tel.: +81-6-6879-8192
| | - Akitaka Kawase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Takayuki Hirono
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Ryo Hirose
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yoshino Nakatsuji
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan; (Y.A.); (J.A.); (T.T.)
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.M.); (A.K.); (T.H.); (R.H.); (Y.N.); (K.K.); (Y.U.); (H.H.); (K.T.)
| |
Collapse
|
28
|
MiRNA-200C expression in Fanconi anemia pathway functionally deficient lung cancers. Sci Rep 2021; 11:4420. [PMID: 33627769 PMCID: PMC7904768 DOI: 10.1038/s41598-021-83884-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
The Fanconi Anemia (FA) pathway is essential for human cells to maintain genomic integrity following DNA damage. This pathway is involved in repairing damaged DNA through homologous recombination. Cancers with a defective FA pathway are expected to be more sensitive to cross-link based therapy or PARP inhibitors. To evaluate downstream effectors of the FA pathway, we studied the expression of 734 different micro RNAs (miRNA) using NanoString nCounter miRNA array in two FA defective lung cancer cells and matched control cells, along with two lung tumors and matched non-tumor tissue samples that were deficient in the FA pathway. Selected miRNA expression was validated with real-time PCR analysis. Among 734 different miRNAs, a cluster of microRNAs were found to be up-regulated including an important cancer related micro RNA, miR-200C. MiRNA-200C has been reported as a negative regulator of epithelial-mesenchymal transition (EMT) and inhibits cell migration and invasion by promoting the upregulation of E-cadherin through targeting ZEB1 and ZEB2 transcription factors. miRNA-200C was increased in the FA defective lung cancers as compared to controls. AmpliSeq analysis showed significant reduction in ZEB1 and ZEB2 mRNA expression. Our findings indicate the miRNA-200C potentially play a very important role in FA pathway downstream regulation.
Collapse
|
29
|
Hammouz RY, Kołat D, Kałuzińska Ż, Płuciennik E, Bednarek AK. MicroRNAs: Their Role in Metastasis, Angiogenesis, and the Potential for Biomarker Utility in Bladder Carcinomas. Cancers (Basel) 2021; 13:891. [PMID: 33672684 PMCID: PMC7924383 DOI: 10.3390/cancers13040891] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is the process of generating new capillaries from pre-existing blood vessels with a vital role in tumor growth and metastasis. MicroRNAs (miRNAs) are noncoding RNAs that exert post-transcriptional control of protein regulation. They participate in the development and progression of several cancers including bladder cancer (BLCA). In cancer tissue, changes in microRNA expression exhibit tissue specificity with high levels of stability and detectability. miRNAs are less vulnerable to degradation, making them novel targets for therapeutic approaches. A suitable means of targeting aberrant activated signal transduction pathways in carcinogenesis of BLCA is possibly through altering the expression of key miRNAs that regulate them, exerting a strong effect on signal transduction. Precaution must be taken, as the complexity of miRNA regulation might result in targeting several downstream tumor suppressors or oncogenes, enhancing the effect further. Since exosomes contain both mRNA and miRNA, they could therefore possibly be more effective in targeting a recipient cell if they deliver a specific miRNA to modify the recipient cell protein production and gene expression. In this review, we discuss the molecules that have been shown to play a significant role in BLCA tumor development. We also discuss the roles of various miRNAs in BLCA angiogenesis and metastasis. Advances in the management of metastatic BLCA have been limited; miRNA mimics and molecules targeted at miRNAs (anti-miRs) as well as exosomes could serve as therapeutic modalities or as diagnostic biomarkers.
Collapse
Affiliation(s)
- Raneem Y. Hammouz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (Ż.K.); (E.P.); (A.K.B.)
| | | | | | | | | |
Collapse
|
30
|
Guo J, Tong J, Zheng J. Circular RNAs: A Promising Biomarker for Endometrial Cancer. Cancer Manag Res 2021; 13:1651-1665. [PMID: 33633465 PMCID: PMC7901565 DOI: 10.2147/cmar.s290975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/19/2021] [Indexed: 01/06/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors of the female reproductive tract. EC patients have high morbidity and mortality rates and remain an important cause of cancer-related morbidity and mortality worldwide. More and more studies have shown that a large number of non-coding RNAs (such as microRNAs and long non-coding RNAs) are associated with the occurrence of diseases. Circular RNAs (circRNAs) is an endogenous non-coding RNA. It has a unique covalent structure. Many studies in recent years have found circRNAs differential expression in a variety of tumor tissues compared to matched normal tissues. In endometrial carcinoma, there also are multiple circRNAs differentially expressed and therefore circRNAs perhaps can be used as a diagnostic and prognosis biomarkers of EC. In this review, we described the biogenesis, function and characteristics of circRNAs, and the circRNAs with potential influence and clinical significance on the development of EC were summarized. Adenocarcinoma is the most common form of EC, so this review focuses on endometrioid adenocarcinoma.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, 310008, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, 310008, People's Republic of China
| |
Collapse
|
31
|
Mao Y, Chen W, Wu H, Liu C, Zhang J, Chen S. Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. Onco Targets Ther 2021; 13:13479-13490. [PMID: 33447052 PMCID: PMC7801920 DOI: 10.2147/ott.s288791] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common clinically malignant tumors of the digestive system. It ranks the sixth most common malignant tumor in the world and ranks fourth among cancer-related death worldwide. At present, early diagnosis and prognosis monitoring of hepatocellular carcinoma mainly use alpha-fetoprotein combined with ultrasonography, which leads to clinical frequently missed diagnosis or even misdiagnosis. Therefore, seeking specific diagnostic and monitoring molecules of hepatocellular carcinoma are still hot topics in contemporary medical practice. MicroRNA is an endogenous non-coding small RNA that regulates the expression of the target molecule and participates in various biological processes in vivo. The miR-200 family, the most common celebrity family of microRNAs, is commonly lower expression in a variety of cancers and is closely associated with tumorigenesis and outcome, especially hepatocellular carcinoma. This review mainly discusses the expression changes, specific molecular mechanisms, biological functions and clinical values of miR-200 family in hepatocellular carcinoma. Moreover, we highlighted utilization of miR-200 family as molecular biomarkers for early diagnosis, prognostic monitoring and appropriate therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingjun Zhang
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Muñoz-Hidalgo L, San-Miguel T, Megías J, Serna E, Calabuig-Fariñas S, Monleón D, Gil-Benso R, Cerdá-Nicolás M, López-Ginés C. The Status of EGFR Modulates the Effect of miRNA-200c on ZEB1 Expression and Cell Migration in Glioblastoma Cells. Int J Mol Sci 2020; 22:ijms22010368. [PMID: 33396457 PMCID: PMC7795155 DOI: 10.3390/ijms22010368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Migration of glioblastoma cells into surrounding tissue is one of the main features that makes this tumor incurable. We evaluated whole-genome miRNA expression profiling associated with different EGFR amplification patterns in 30 cases of primary glioblastoma. From the 64 miRNAs that showed differential expression between tumors with a high level of EGFR amplification and tumors without EGFR amplification, 40% were related with cell migration, being miR-200c the most differentially expressed between these two groups. We investigated the effect of miR-200c on ZEB1 expression and cell migration in an in vitro transfection model with a miR-200c mimic, a miR-200c inhibitor and siRNA targeting EGFR in three short-term cultures with different levels of EGFR amplification obtained from resected glioblastomas. The cell culture with the highest EGFR amplification level presented the lowest miR-200c expression and the status of EGFR modulated the effect of miR-200c on ZEB1 expression. Silencing EGFR led to miR-200c upregulation and ZEB1 downregulation in transfected cultures, except in the presence of high levels of EGFR. Likewise, miR-200c upregulation decreased ZEB1 expression and inhibited cell migration, especially when EGFR was not amplified. Our results suggest that modulating miR-200c may serve as a novel therapeutic approach for glioblastoma depending on EGFR status.
Collapse
Affiliation(s)
| | - Teresa San-Miguel
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
| | - Javier Megías
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
- Correspondence: ; Tel.: +34-963-864146
| | - Eva Serna
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
| | - Silvia Calabuig-Fariñas
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, 46014 Valencia, Spain
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital Ge-neral Universitario de València, 46012 Valencia, Spain
| | - Daniel Monleón
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
| | - Rosario Gil-Benso
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
| | - Miguel Cerdá-Nicolás
- INCLIVA, Clinic Hospital of Valencia, 46010 Valencia, Spain; (L.M.-H.); (M.C.-N.)
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
| | - Concha López-Ginés
- Department of Pathology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain; (T.S.-M.); (S.C.-F.); (D.M.); (R.G.-B.); (C.L.-G.)
| |
Collapse
|
33
|
Zhang J, Shao N, Yang X, Xie C, Shi Y, Lin Y. Interleukin-8 Promotes Epithelial-to-Mesenchymal Transition via Downregulation of Mir-200 Family in Breast Cancer Cells. Technol Cancer Res Treat 2020; 19:1533033820979672. [PMID: 33280520 PMCID: PMC7724258 DOI: 10.1177/1533033820979672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microRNA-200 (miR-200) family has been reported to be vital for the
inhibition of epithelial-to-mesenchymal transition (EMT) in tumor
cells. The miR-200 family represents a complex multi-factorial
regulatory network which has not been well described in breast cancer.
This study aimed to clarify the underlying regulatory association
between IL-8 and miR-200 family in the process of EMT in breast cancer
cell. In estrogen-receptor (ER) positive breast cancer cell line
MCF-7, IL-8 overexpression cells were performed by lentivirus
transfection as endogenous regulation with additional exogenous IL-8
stimulation. Transient overexpressions of miR-200 family were
performed after endogenous or exogenous IL-8 overexpression in MCF-7
cells. IL-8 knockdown cells were constructed via siRNA and shRNA
transfection in triple negative breast cancer cell line MDA-MB-231.
N-cadherin, vimentin and ZEB2 were down-regulated and E-cadherin was
up-regulated in IL-8 knockdown group compared with control group. On
the other hand, N-cadherin, vimentin and ZEB2 were up-regulated and
E-cadherin was down-regulated in IL-8 overexpression group compared
with control group. This indicated IL-8 promotes EMT in breast cancer
cells. Transwell assay showed that IL-8 increased the migration and
invasiveness of tumor cells. Furthermore, we performed transient
overexpression of miR-200 family after endogenous or exogenous IL-8
overexpression in MCF-7 cells, which showed that the miR-200 family
could inhibit EMT induced by IL-8. IL-8 promoted EMT via
downregulation of miR-200 family expression in breast cancer cells and
increases tumor cell migration and invasion.
Collapse
Affiliation(s)
- Jin Zhang
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Nan Shao
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuanbo Xie
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yawei Shi
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Njoku K, Chiasserini D, Jones ER, Barr CE, O’Flynn H, Whetton AD, Crosbie EJ. Urinary Biomarkers and Their Potential for the Non-Invasive Detection of Endometrial Cancer. Front Oncol 2020; 10:559016. [PMID: 33224875 PMCID: PMC7670058 DOI: 10.3389/fonc.2020.559016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer is the most common malignancy of the female genital tract and its incidence is rising in parallel with the mounting prevalence of obesity. Early diagnosis has great potential to improve outcomes as treatment can be curative, especially for early stage disease. Current tests and procedures for diagnosis are limited by insufficient accuracy in some and unacceptable levels of invasiveness and discomfort in others. There has, therefore, been a growing interest in the search for sensitive and specific biomarkers for endometrial cancer detection based on non-invasive sampling methodologies. Urine, the prototype non-invasive sample, is attractive for biomarker discovery as it is easily accessible and can be collected repeatedly and in quantity. Identification of urinary biomarkers for endometrial cancer detection relies on the excretion of systemic biomarkers by the kidneys or urinary contamination by biomarkers shed from the uterus. In this review, we present the current standing of the search for endometrial cancer urinary biomarkers based on cytology, genomic, transcriptomic, proteomic, and metabolomic platforms. We summarize the biomarker candidates and highlight the challenges inherent in urinary biomarker discovery. We review the various technologies with promise for biomarker detection and assess these novel approaches for endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Eleanor R. Jones
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Chloe E. Barr
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Helena O’Flynn
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Faculty of Biology, Medicine and Health, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, St. Mary’s Hospital, Manchester, United Kingdom
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
35
|
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers. Biomolecules 2020; 10:biom10111481. [PMID: 33113766 PMCID: PMC7694163 DOI: 10.3390/biom10111481] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial-mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.
Collapse
|
36
|
Ashrafizadeh M, Hushmandi K, Hashemi M, Akbari ME, Kubatka P, Raei M, Koklesova L, Shahinozzaman M, Mohammadinejad R, Najafi M, Sethi G, Kumar AP, Zarrabi A. Role of microRNA/Epithelial-to-Mesenchymal Transition Axis in the Metastasis of Bladder Cancer. Biomolecules 2020; 10:E1159. [PMID: 32784711 PMCID: PMC7464913 DOI: 10.3390/biom10081159] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is the 11th most common diagnosed cancer, and a number of factors including environmental and genetic ones participate in BC development. Metastasis of BC cells into neighboring and distant tissues significantly reduces overall survival of patients with this life-threatening disorder. Recently, studies have focused on revealing molecular pathways involved in metastasis of BC cells, and in this review, we focus on microRNAs (miRNAs) and their regulatory effect on epithelial-to-mesenchymal transition (EMT) mechanisms that can regulate metastasis. EMT is a vital process for migration of BC cells, and inhibition of this mechanism restricts invasion of BC cells. MiRNAs are endogenous non-coding RNAs with 19-24 nucleotides capable of regulating different cellular events, and EMT is one of them. In BC cells, miRNAs are able to both induce and/or inhibit EMT. For regulation of EMT, miRNAs affect different molecular pathways such as transforming growth factor-beta (TGF-β), Snail, Slug, ZEB1/2, CD44, NSBP1, which are, discussed in detail this review. Besides, miRNA/EMT axis can also be regulated by upstream mediators such as lncRNAs, circRNAs and targeted by diverse anti-tumor agents. These topics are also discussed here to reveal diverse molecular pathways involved in migration of BC cells and strategies to target them to develop effective therapeutics.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran;
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran;
| | - Peter Kubatka
- Department of Medical Biology and Division of Oncology—Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 55877577, Iran;
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
- Cancer Science Institute of Singapore, Centre for Translational Medicine, 14 Medical Drive, #11-01M, Singapore 117599, Singapore
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
37
|
Mojica CAR, Ybañez WS, Olarte KCV, Poblete ABC, Bagamasbad PD. Differential Glucocorticoid-Dependent Regulation and Function of the ERRFI1 Gene in Triple-Negative Breast Cancer. Endocrinology 2020; 161:5841101. [PMID: 32432675 PMCID: PMC7316368 DOI: 10.1210/endocr/bqaa082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs; eg, hydrocortisone [CORT]) are routinely used as chemotherapeutic, anti-emetic, and palliative agents in breast cancer (BCa) therapy. The effects of GC signaling on BCa progression, however, remain a contentious topic as GC treatment seems to be beneficial for receptor-positive subtypes but elicits unfavorable responses in triple-negative BCa (TNBC). The mechanistic basis for these conflicting effects of GC in BCa is poorly understood. In this study, we sought to decipher the molecular mechanisms that govern the GC-dependent induction of the tumor suppressor ERRFI1 gene, an inhibitor of epidermal growth factor receptor (EGFR) signaling, and characterize the role of the GC-ERRFI1 regulatory axis in TNBC. Treatment of TNBC cell lines with a protein synthesis inhibitor or GC receptor (GR) antagonist followed by gene expression analysis suggests that ERRFI1 is a direct GR target. Using in silico analysis coupled with enhancer-reporter assays, we identified a putative ERRFI1 enhancer that supports CORT-dependent transactivation. In orthogonal assays for cell proliferation, survival, migration, and apoptosis, CORT mostly facilitated an oncogenic phenotype regardless of malignancy status. Lentiviral knockdown and overexpression of ERRFI1 showed that the CORT-enhanced oncogenic phenotype is restricted by ERRFI1 in the normal breast epithelial model MCF10A and to a lesser degree in the metastatic TNBC line MDA-MB-468. Conversely, ERRFI1 conferred pro-tumorigenic effects in the highly metastatic TNBC model MDA-MB-231. Taken together, our findings suggest that the progressive loss of the GC-dependent regulation and anti-tumorigenic function of ERRFI1 influences BCa progression and may contribute to the unfavorable effects of GC therapy in TNBC.
Collapse
Affiliation(s)
- Chromewell Agustin R Mojica
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Weand S Ybañez
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Kevin Christian V Olarte
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Alyssa Beatrice C Poblete
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Correspondence: Pia D. Bagamasbad, PhD, National Institute of Molecular Biology and Biotechnology, National Science Complex, University of the Philippines, Diliman, Quezon City, Metro Manila 1101, Philippines. E-mail:
| |
Collapse
|
38
|
Ladak SS, Roebuck E, Powell J, Fisher AJ, Ward C, Ali S. The Role of miR-200b-3p in Modulating TGF-β1-induced Injury in Human Bronchial Epithelial Cells. Transplantation 2020; 103:2275-2286. [PMID: 31283671 DOI: 10.1097/tp.0000000000002845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dysregulation of microRNAs (miRNAs) has been implicated in airway diseases where transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition (EMT) may contribute to pathophysiology. Our study investigated the role of miRNA-200b in TGF-β1-induced EMT in human bronchial epithelial cells. METHODS NanoString nCounter miRNA assay was used to profile miRNA in control versus TGF-β1 (1, 4, and 24 h) stimulated BEAS-2B cells. Immortalized primary bronchial epithelial cell line (BEAS-2B cells), human primary bronchial epithelial cells (PBECs), and PBECs derived post-lung transplant were transfected with miR-200b-3p mimics and EMT marker expression was examined at RNA and protein level. miRNA target studies were performed and validated using computational tools and luciferase assay. In situ hybridization was done on normal lung tissue to localize miR-200b-3p in airway epithelium. RESULTS miR-200b-3p was downregulated post-TGF-β1 treatment compared with control in BEAS-2B. miR-200b-3p mimic transfection before TGF-β1 stimulation maintained epithelial marker expression and downregulated mesenchymal cell markers at RNA and protein level in BEAS-2B cells and PBECs. Furthermore, miR-200b-3p mimics reversed established TGF-β1-induced EMT in BEAS-2B cells. miR-200b-3p targets, ZNF532, and ZEB2 were validated as direct targets using luciferase assay. miR-200b-3p mimics suppress TGF-β1-induced EMT via inhibition of ZNF532 and ZEB2. In situ hybridization showed that miR-200b-3p is expressed in the normal lung epithelium. Additionally, miR-200b-3p mimics inhibit EMT in the presence of TGF-β1 in PBECs derived from lung allograft. CONCLUSIONS We provide proof of concept that miR-200b-3p protects airway epithelial cells from EMT. Manipulating miR-200b-3p expression may represent a novel therapeutic modulator in airway pathophysiology.
Collapse
Affiliation(s)
- Shameem S Ladak
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eliott Roebuck
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jason Powell
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Department of Otolaryngology, Head and Neck Surgery, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Andrew J Fisher
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, Newcastle Upon Tyne Hospitals, Newcastle upon Tyne, United Kingdom
| | - Chris Ward
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simi Ali
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
39
|
Chen P, Kuang P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, Yu F, He Y, Zhou C. Mechanisms of drugs-resistance in small cell lung cancer: DNA-related, RNA-related, apoptosis-related, drug accumulation and metabolism procedure. Transl Lung Cancer Res 2020; 9:768-786. [PMID: 32676338 PMCID: PMC7354133 DOI: 10.21037/tlcr-19-547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC), the highest malignant cancer amongst different types of lung cancer, has the feature of lower differentiation, rapid growth, and poor survival rate. Despite the dramatically initial sensitivity of SCLC to various types of treatment methods, including chemotherapy, radiotherapy and immunotherapy, the emergence of drugs-resistance is still a grandly clinical challenge. Therefore, in order to improve the prognosis and develop new therapeutic approaches, having a better understanding of the complex mechanisms of resistance in SCLC is of great clinical significance. This review summarized recent advances in understanding of multiple mechanisms which are involved in the resistance during SCLC treatment, including DNA-related process, RNA-related process, apoptosis-related mechanism, and the process of drug accumulation and metabolism.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Peng Kuang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Feng Yu
- Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Li Y, Li G, Guo X, Yao H, Wang G, Li C. Non-coding RNA in bladder cancer. Cancer Lett 2020; 485:38-44. [PMID: 32437725 DOI: 10.1016/j.canlet.2020.04.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/26/2020] [Accepted: 04/24/2020] [Indexed: 12/24/2022]
Abstract
Bladder cancer is the tenth most common cancer worldwide and has been associated with high mortality and morbidity. Although the treatment of bladder cancer is based on well-defined tumor classifications and gradings, patients still experience different clinical response. The heterogeneity of this disease calls for substantial research with more in-depth molecular characterization, with the hope of identifying new diagnostic and treatment options. In recent years, non-coding RNAs (ncRNAs), particularly, microRNAs (miRNAs), long non-coding RNA (lncRNAs), and circular RNAs (circRNAs) were found to be associated with bladder cancer occurrence and development. This review highlights the recent findings concerning ncRNAs and their relevance to the pathogenesis of bladder cancer. This may provide a foundation for developing highly specific diagnostic tools and more robust therapeutic strategies in the future.
Collapse
Affiliation(s)
- Yi Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Gang Li
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, China
| | - Haochen Yao
- College of Basic Medical Science, Jilin University (JUT), Changchun, Jilin, China
| | - Guoqing Wang
- College of Basic Medical Science, Jilin University (JUT), Changchun, Jilin, China.
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics Chinese Academy of Sciences (IBPCAS), Beijing, China; Beijing Jianlan Institute of Medicine, Beijing, China; Beijing Zhongke Jianlan Biotechnology Co., Ltd., Beijing, China.
| |
Collapse
|
41
|
Jin HF, Wang JF, Song TT, Zhang J, Wang L. MiR-200b Inhibits Tumor Growth and Chemoresistance via Targeting p70S6K1 in Lung Cancer. Front Oncol 2020; 10:643. [PMID: 32435616 PMCID: PMC7218114 DOI: 10.3389/fonc.2020.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
Downregulation of microRNA-200b (miR-200b) has been identified in a range of cancers, yet the specific mechanisms whereby it influences lung cancer growth require further exploration. We determined that lung cancer patient tumor samples exhibit decreased miR-200b expression, and we further found this miRNA to inhibit tumor growth via interfering with ERK1/2 and AKT signaling, targeting p70S6K1 to suppress HIF-1α expression. This miRNA further rendered H1299 cells more sensitive to cisplatin while impairing their proliferative and invasive potential through its ability to target and inhibit the activity of p70S6K1. These results were further confirmed in a murine xenograft model in which miR-200b also inhibited the growth of tumor and suppressed p70S6K1, p-AKT, p-ERK1/2, and HIF-1α expression. These findings clearly demonstrate a role for miR-200b in suppressing lung cancer development, making it a potentially relevant target for future diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Hui-Fang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ju-Feng Wang
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting-Ting Song
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Zhang
- Department of Thoracic Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
42
|
Wei X, Bian F, Cai X, Wang Y, Cai L, Yang J, Zhu Y, Zhao Y. Multiplexed Detection Strategy for Bladder Cancer MicroRNAs Based on Photonic Crystal Barcodes. Anal Chem 2020; 92:6121-6127. [PMID: 32227890 DOI: 10.1021/acs.analchem.0c00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxiao Cai
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
43
|
Abugomaa A, Elbadawy M, Yamawaki H, Usui T, Sasaki K. Emerging Roles of Cancer Stem Cells in Bladder Cancer Progression, Tumorigenesis, and Resistance to Chemotherapy: A Potential Therapeutic Target for Bladder Cancer. Cells 2020; 9:E235. [PMID: 31963556 PMCID: PMC7016964 DOI: 10.3390/cells9010235] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer (BC) is a complex and highly heterogeneous stem cell disease associated with high morbidity and mortality rates if it is not treated properly. Early diagnosis with personalized therapy and regular follow-up are the keys to a successful outcome. Cancer stem cells (CSCs) are the leading power behind tumor growth, with the ability of self-renewal, metastasis, and resistance to conventional chemotherapy. The fast-developing CSC field with robust genome-wide screening methods has found a platform for establishing more reliable therapies to target tumor-initiating cell populations. However, the high heterogeneity of the CSCs in BC disease remains a large issue. Therefore, in the present review, we discuss the various types of bladder CSC heterogeneity, important regulatory pathways, roles in tumor progression and tumorigenesis, and the experimental culture models. Finally, we describe the current stem cell-based therapies for BC disease.
Collapse
Affiliation(s)
- Amira Abugomaa
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Dakahliya, Egypt
| | - Mohamed Elbadawy
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Elqaliobiya, Egypt
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan;
| | - Tatsuya Usui
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| | - Kazuaki Sasaki
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; (A.A.); (M.E.); (K.S.)
| |
Collapse
|
44
|
Cai Z, Zhang F, Chen W, Zhang J, Li H. miRNAs: A Promising Target in the Chemoresistance of Bladder Cancer. Onco Targets Ther 2019; 12:11805-11816. [PMID: 32099386 PMCID: PMC6997227 DOI: 10.2147/ott.s231489] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is an important cancer treatment method. Tumor chemotherapy resistance is one of the main factors leading to tumor progression. Like other malignancies, bladder cancer, especially muscle-invasive bladder cancer, is prone to chemotherapy resistance. Additionally, only approximately 50% of muscle-invasive bladder cancer responds to cisplatin-based chemotherapy. miRNAs are a class of small, endogenous, noncoding RNAs that regulate gene expression at the posttranscriptional level, which results in the inhibition of translation or the degradation of mRNA. In the study of miRNAs and cancer, including gastric cancer, prostate cancer, liver cancer, and colorectal cancer, it has been found that miRNAs can regulate the expression of genes related to tumor resistance, thereby promoting the progression of tumors. In bladder cancer, miRNAs are also closely related to chemotherapy resistance, suggesting that miRNAs can be a new therapeutic target for the chemotherapy resistance of bladder cancer. Therefore, understanding the mechanisms of miRNAs in the chemotherapy resistance of bladder cancer is an important foundation for restoring the chemotherapy sensitivity of bladder cancer and improving the efficacy of chemotherapy and patient survival. In this article, we review the role of miRNAs in the development of chemotherapy-resistant bladder cancer and the various resistance mechanisms that involve apoptosis, the cell cycle, epithelial-mesenchymal transition (EMT), and cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Fa Zhang
- Department of Urology, First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Weijie Chen
- Department of Urology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai Traditional Chinese Medicine University, Shanghai, People's Republic of China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
45
|
Gao Y, Zhang W, Liu C, Li G. miR-200 affects tamoxifen resistance in breast cancer cells through regulation of MYB. Sci Rep 2019; 9:18844. [PMID: 31827114 PMCID: PMC6906507 DOI: 10.1038/s41598-019-54289-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
Resistance to tamoxifen is a major clinical challenge. Research in recent years has identified epigenetic changes as mediated by dysregulated miRNAs that can possibly play a role in resistance to tamoxifen in breast cancer patients expressing estrogen receptor (ER). We report here elevated levels of EMT markers (vimentin and ZEB1/2) and reduced levels of EMT-regulating miR-200 (miR-200b and miR-200c) in ER-positive breast cancer cells, MCF-7, that were resistant to tamoxifen, in contrast with the naïve parental MCF-7 cells that were sensitive to tamoxifen. Further, we established regulation of c-MYB by miR-200 in our experimental model. C-MYB was up-regulated in tamoxifen resistant cells and its silencing significantly decreased resistance to tamoxifen and the EMT markers. Forced over-expression of miR-200b/c reduced c-MYB whereas reduced expression of miR-200b/c resulted in increased c-MYB We further confirmed the results in other ER-positive breast cancer cells T47D cells where forced over-expression of c-MYB resulted in induction of EMT and significantly increased resistance to tamoxifen. Thus, we identify a novel mechanism of tamoxifen resistance in breast tumor microenvironment that involves miR-200-MYB signaling.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, Tianjin First Central Hospital, No.24, Fukang Road, Nankai District, Tianjin, 300204, China
| | - Wenzhi Zhang
- Innoscience Research Sdn Bhd, Suites B-5-7, Level 5, Sky Park @ One City, Jalan USJ 25/1, 47650, Subang Jaya, Selangor, Malaysia
| | - Chengwen Liu
- Department of Obstetrics and Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, 277100, Shandong province, China
| | - Guanghua Li
- Department of General Surgery, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan City, Shandong Province, 250033, China.
| |
Collapse
|
46
|
Ma X, Liang AL, Liu YJ. Research progress on the relationship between lung cancer drug-resistance and microRNAs. J Cancer 2019; 10:6865-6875. [PMID: 31839821 PMCID: PMC6909942 DOI: 10.7150/jca.31952] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer, a malignant tumor with the highest death rate of cancer, seriously endangers human health. And its pathogenesis and mechanism of drug resistance has been partially clarified, especially for the signal pathway of epidermal growth factor receptor (EGFR). The targeting therapy of EGFR signaling pathway in non-small cell lung cancer (NSCLC) has achieved a certain effect, but the two mutation of EGFR and other mechanisms of lung cancer resistance still greatly reduce the therapeutic effect of chemotherapy on it. MicroRNA is an endogenous non coding RNA, which has a regulatory function after transcriptional level. Recent studies on the mechanism of lung cancer resistance have found that a variety of microRNAs are related to the mechanism of lung cancer drug-resistance. They can regulate lung cancer resistance by participating in signal pathways, drug resistance genes and cell apoptosis, thus affecting the sensitivity of cancer cells to drugs. Therefore, microRNAs can be used as a specific target for the treatment of lung cancer and plays a vital role in the early diagnosis, prognosis and treatment of lung cancer. This article reviews the mechanisms of lung cancer resistance and its relationship with microRNAs.
Collapse
Affiliation(s)
| | | | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong & Departments of Biochemistry and Molecular Biology & Departments of Clinical Biochemistry, Guangdong Medical University, 523808, Dongguan, Guangdong, P.R. China
| |
Collapse
|
47
|
Braicu C, Buiga R, Cojocneanu R, Buse M, Raduly L, Pop LA, Chira S, Budisan L, Jurj A, Ciocan C, Magdo L, Irimie A, Dobrota F, Petrut B, Berindan-Neagoe I. Connecting the dots between different networks: miRNAs associated with bladder cancer risk and progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:433. [PMID: 31665050 PMCID: PMC6819535 DOI: 10.1186/s13046-019-1406-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bladder cancer (BC) is a common urothelial malignancy, characterized by a high recurrence rate. The biology of bladder cancer is complex and needs to be deciphered. The latest evidence reveals the critical role of the non-coding RNAs, particularly microRNAs (miRNAs), as vital regulatory elements in cancer. METHOD We performed a miRNAs microarray using paired tissues (tumor and adjacent normal bladder tissue), followed by the validation with qRT-PCR of five selected transcripts. Additional next-generation sequencing investigation established the interconnection among the altered miRNAs and mutated genes. Based on the overlapping between TCGA data and data obtained in the study, we focused on the systematic identification of altered miRNAs and genes mutated involved in bladder cancer tumorigenesis and progression. RESULTS By overlapping the miRNAs expression data, the two patient cohorts, we identified 18 miRNAs downregulated and, 187 miRNAs upregulated. qRT-PCR validation was completed using a selected panel of two downregulated (miR-139-5p and miR-143-5p) and three up-regulated miRNAs (miR-141b, miR-200 s or miR-205). Altered miRNAs patterns are interrelated to bladder tumorigenesis, allowing them to be used for the development of novel diagnostic and prognostic biomarkers. Three EMT-related upregulated miRNAs have an essential role in the molecular mechanisms, specifically key processes underlying tumorigenesis, invasion and metastasis. Using the Ampliseq Cancer Panel kit and Ion Torrent PGM Next-Generation Sequencing an increased mutation rate for TP53, FGFR3, KDR, PIK3CA and ATM were observed, but the mutational status for only TP53 was correlated to the survival rate. The miRNAs pattern, along with the gene mutation pattern attained, can assist for better patient diagnosis. CONCLUSION This study thereby incorporates miRNAs as critical players in bladder cancer prognosis, where their altered gene expression profiles have a critical biological function in relationship with tumor molecular phenotype. The miRNA-mRNA regulatory networks identified in BC are ripe for exploitation as biomarkers or targeted therapeutic strategies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Rares Buiga
- Department of Pathology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Pathology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihail Buse
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laura Ancuta Pop
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sergiu Chira
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ciocan
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lorand Magdo
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania.,Department of Surgical Oncology and Gynecological Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florentin Dobrota
- Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Bogdan Petrut
- Department of Urology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania. .,Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, "Prof. Dr. Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
48
|
Hernández-Romero IA, Guerra-Calderas L, Salgado-Albarrán M, Maldonado-Huerta T, Soto-Reyes E. The Regulatory Roles of Non-coding RNAs in Angiogenesis and Neovascularization From an Epigenetic Perspective. Front Oncol 2019; 9:1091. [PMID: 31709179 PMCID: PMC6821677 DOI: 10.3389/fonc.2019.01091] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a crucial process for organ morphogenesis and growth during development, and it is especially relevant during the repair of wounded tissue in adults. It is coordinated by an equilibrium of pro- and anti-angiogenic factors; nevertheless, when affected, it promotes several diseases. Lately, a growing body of evidence is indicating that non-coding RNAs (ncRNAs), such as miRNAs, circRNAs, and lncRNAs, play critical roles in angiogenesis. These ncRNAs can act in cis or trans and alter gene transcription by several mechanisms including epigenetic processes. In the following pages, we will discuss the functions of ncRNAs in the regulation of angiogenesis and neovascularization, both in normal and disease contexts, from an epigenetic perspective. Additionally, we will describe the contribution of Next-Generation Sequencing (NGS) techniques to the discovery and understanding of the role of ncRNAs in angiogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Ernesto Soto-Reyes
- Natural Sciences Department, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| |
Collapse
|
49
|
Tang H, Song C, Ye F, Gao G, Ou X, Zhang L, Xie X, Xie X. miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. J Cell Mol Med 2019; 23:8114-8127. [PMID: 31599500 PMCID: PMC6850933 DOI: 10.1111/jcmm.14681] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to trastuzumab remains a major obstacle in HER2‐overexpressing breast cancer treatment. miR‐200c is important for many functions in cancer stem cells (CSCs), including tumour recurrence, metastasis and resistance. We hypothesized that miR‐200c contributes to trastuzumab resistance and stemness maintenance in HER2‐overexpressing breast cancer. In this study, we used HER2‐positive SKBR3, HER2‐negative MCF‐7, and their CD44+CD24− phenotype mammospheres SKBR3‐S and MCF‐7‐S to verify. Our results demonstrated that miR‐200c was weakly expressed in breast cancer cell lines and cell line stem cells. Overexpression of miR‐200c resulted in a significant reduction in the number of tumour spheres formed and the population of CD44+CD24− phenotype mammospheres in SKBR3‐S. Combining miR‐200c with trastuzumab can significantly reduce proliferation and increase apoptosis of SKBR3 and SKBR3‐S. Overexpression of miR‐200c also eliminated its downstream target genes. These genes were highly expressed and positively related in breast cancer patients. Overexpression of miR‐200c also improved the malignant progression of SKBR3‐S and SKBR3 in vivo. miR‐200c plays an important role in the maintenance of the CSC‐like phenotype and increases drug sensitivity to trastuzumab in HER2+ cells and stem cells.
Collapse
Affiliation(s)
- Hailin Tang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guanfeng Gao
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lijuan Zhang
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Department of Breast Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
50
|
MicroRNA Regulation of the Autotaxin-Lysophosphatidic Acid Signaling Axis. Cancers (Basel) 2019; 11:cancers11091369. [PMID: 31540086 PMCID: PMC6770380 DOI: 10.3390/cancers11091369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022] Open
Abstract
The revelation that microRNAs (miRNAs) exist within the human genome uncovered an underappreciated mechanism of gene expression. For cells to regulate expression of their genes, miRNA molecules and argonaute proteins bind to mRNAs and interfere with efficient translation of the RNA transcript. Although miRNAs have important roles in normal tissues, miRNAs may adopt aberrant functions in malignant cells depending on their classification as either a tumor suppressor or oncogenic miRNA. Within this review, the current status of miRNA regulation is described in the context of signaling through the lysophosphatidic acid receptors, including the lysophosphatidic acid-producing enzyme, autotaxin. Thus far, research has revealed miRNAs that increase in response to lysophosphatidic acid stimulation, such as miR-21, miR-30c-2-3p, and miR-122. Other miRNAs inhibit the translation of lysophosphatidic acid receptors, such as miR-15b, miR-23a, and miR200c, or proteins that are downstream of lysophosphatidic acid signaling, such as miR-146 and miR-21. With thousands of miRNAs still uncharacterized, it is anticipated that the complex regulation of lysophosphatidic acid signaling by miRNAs will continue to be elucidated. RNA-based therapeutics have entered the clinic with enormous potential in precision medicine. This exciting field is rapidly emerging and it will be fascinating to witness its expansion in scope.
Collapse
|