1
|
Cryo-EM reveals the architecture of the PELP1-WDR18 molecular scaffold. Nat Commun 2022; 13:6783. [PMID: 36351913 PMCID: PMC9646879 DOI: 10.1038/s41467-022-34610-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
PELP1 (Proline-, Glutamic acid-, Leucine-rich protein 1) is a large scaffolding protein that functions in many cellular pathways including steroid receptor (SR) coactivation, heterochromatin maintenance, and ribosome biogenesis. PELP1 is a proto-oncogene whose expression is upregulated in many human cancers, but how the PELP1 scaffold coordinates its diverse cellular functions is poorly understood. Here we show that PELP1 serves as the central scaffold for the human Rix1 complex whose members include WDR18, TEX10, and SENP3. We reconstitute the mammalian Rix1 complex and identified a stable sub-complex comprised of the conserved PELP1 Rix1 domain and WDR18. We determine a 2.7 Å cryo-EM structure of the subcomplex revealing an interconnected tetrameric assembly and the architecture of PELP1's signaling motifs, including eleven LxxLL motifs previously implicated in SR signaling and coactivation of Estrogen Receptor alpha (ERα) mediated transcription. However, the structure shows that none of these motifs is in a conformation that would support SR binding. Together this work establishes that PELP1 scaffolds the Rix1 complex, and association with WDR18 may direct PELP1's activity away from SR coactivation.
Collapse
|
2
|
Liu Z, Liu J, Ebrahimi B, Pratap UP, He Y, Altwegg KA, Tang W, Li X, Lai Z, Chen Y, Shen L, Sareddy GR, Viswanadhapalli S, Tekmal RR, Rao MK, Vadlamudi RK. SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance. Breast Cancer Res 2022; 24:26. [PMID: 35395812 PMCID: PMC8991965 DOI: 10.1186/s13058-022-01520-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. Methods We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. Results RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. Conclusions This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01520-4.
Collapse
Affiliation(s)
- Zexuan Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Junhao Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Behnam Ebrahimi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Uday P Pratap
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Yi He
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kristin A Altwegg
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Weiwei Tang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Xiaonan Li
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Dept of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gangadhara R Sareddy
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
3
|
Vuttaradhi VK, Ezhil I, Ramani D, Kanumuri R, Raghavan S, Balasubramanian V, Saravanan R, Kanakarajan A, Joseph LD, Pitani RS, Sundaram S, Sjolander A, Venkatraman G, Rayala SK. Inflammation-induced PELP1 expression promotes tumorigenesis by activating GM-CSF paracrine secretion in the tumor microenvironment. J Biol Chem 2022; 298:101406. [PMID: 34774800 PMCID: PMC8671644 DOI: 10.1016/j.jbc.2021.101406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/15/2023] Open
Abstract
The inflammatory tumor microenvironment has been implicated as a major player fueling tumor progression and an enabling characteristic of cancer, proline, glutamic acid, and leucine-rich protein 1 (PELP1) is a novel nuclear receptor coregulator that signals across diverse signaling networks, and its expression is altered in several cancers. However, investigations to find the role of PELP1 in inflammation-driven oncogenesis are limited. Molecular studies here, utilizing macrophage cell lines and animal models upon stimulation with lipopolysaccharide (LPS) or necrotic cells, showed that PELP1 is an inflammation-inducible gene. Studies on the PELP1 promoter and its mutant identified potential binding of c-Rel, an NF-κB transcription factor subunit, to PELP1 promoter upon LPS stimulation in macrophages. Recruitment of c-Rel onto the PELP1 promoter was validated by chromatin immunoprecipitation, further confirming LPS mediated PELP1 expression through c-Rel-specific transcriptional regulation. Macrophages that overexpress PELP1 induces granulocyte-macrophage colony-stimulating factor secretion, which mediates cancer progression in a paracrine manner. Results from preclinical studies with normal-inflammatory-tumor progression models demonstrated a progressive increase in the PELP1 expression, supporting this link between inflammation and cancer. In addition, animal studies demonstrated the connection of PELP1 in inflammation-directed cancer progression. Taken together, our findings provide the first report on c-Rel-specific transcriptional regulation of PELP1 in inflammation and possible granulocyte-macrophage colony-stimulating factor-mediated transformation potential of activated macrophages on epithelial cells in the inflammatory tumor microenvironment, reiterating the link between PELP1 and inflammation-induced oncogenesis. Understanding the regulatory mechanisms of PELP1 may help in designing better therapeutics to cure various inflammation-associated malignancies.
Collapse
Affiliation(s)
- Veena Kumari Vuttaradhi
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Inemai Ezhil
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Divya Ramani
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rahul Kanumuri
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Swetha Raghavan
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Archana Kanakarajan
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Ravi Shankar Pitani
- Department of Community Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Anita Sjolander
- Cell Pathology, Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - Suresh Kumar Rayala
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
4
|
Altwegg KA, Vadlamudi RK. Role of estrogen receptor coregulators in endocrine resistant breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:385-400. [PMID: 34528025 PMCID: PMC8439438 DOI: 10.37349/etat.2021.00052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breast cancer (BC) is the most ubiquitous cancer in women. Approximately 70–80% of BC diagnoses are positive for estrogen receptor (ER) alpha (ERα). The steroid hormone estrogen [17β-estradiol (E2)] plays a vital role both in the initiation and progression of BC. The E2-ERα mediated actions involve genomic signaling and non-genomic signaling. The specificity and magnitude of ERα signaling are mediated by interactions between ERα and several coregulator proteins called coactivators or corepressors. Alterations in the levels of coregulators are common during BC progression and they enhance ligand-dependent and ligand-independent ERα signaling which drives BC growth, progression, and endocrine therapy resistance. Many ERα coregulator proteins function as scaffolding proteins and some have intrinsic or associated enzymatic activities, thus the targeting of coregulators for blocking BC progression is a challenging task. Emerging data from in vitro and in vivo studies suggest that targeting coregulators to inhibit BC progression to therapy resistance is feasible. This review explores the current state of ERα coregulator signaling and the utility of targeting the ERα coregulator axis in treating advanced BC.
Collapse
Affiliation(s)
- Kristin A Altwegg
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Truong TH, Benner EA, Hagen KM, Temiz NA, Kerkvliet CP, Wang Y, Cortes-Sanchez E, Yang CH, Trousdell MC, Pengo T, Guillen KP, Welm BE, Dos Santos CO, Telang S, Lange CA, Ostrander JH. PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER + breast cancer. Oncogene 2021; 40:4384-4397. [PMID: 34103681 PMCID: PMC8238912 DOI: 10.1038/s41388-021-01871-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ying Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emilio Cortes-Sanchez
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chieh-Hsiang Yang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katrin P Guillen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Sucheta Telang
- James Graham Brown Cancer Center, Department of Medicine (Division of Medical Oncology and Hematology), University of Louisville, Louisville, KY, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Rees M, Smith C, Barrett-Lee P, Hiscox S. PELP-1 regulates adverse responses to endocrine therapy in Estrogen Receptor (ER) positive breast cancer. Oncotarget 2020; 11:4722-4734. [PMID: 33473257 PMCID: PMC7771710 DOI: 10.18632/oncotarget.27846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Introduction: Endocrine therapy has played an important role in the management of ER positive breast cancer over recent decades. Despite this, not all patients respond equally to endocrine intervention, which can lead to resistance, associated disease relapse and progression. Previous reports suggest that endocrine agents themselves may induce an invasive phenotype in ER positive breast cancers with low/aberrant expression of E-cadherin. Here we investigate this phenomenon further and provide data supporting a role for the ER co-receptor, PELP-1, in mediating an adverse response to endocrine agents. Materials and Methods: The effects of tamoxifen, fulvestrant and estrogen withdrawal (as a model for aromatase inhibitor therapy) on the invasive and migratory capacity of endocrine-sensitive MCF-7 and T47D cells, in the presence or absence of functional E-cadherin and/or PELP-1 (using siRNA knockdown), was assessed via Matrigel invasion and Boyden chamber migration assays. The effects of these endocrine therapies alongside E-cadherin/PELP-1 modulation on cell proliferation were further assessed by MTT assay. Western blotting using phospho-specific antibodies was performed to investigate signalling pathway changes associated with endocrine-induced changes in invasion and migration. Results: Both tamoxifen and fulvestrant induced a pro-invasive and pro-migratory phenotype in ER positive breast cancer cells displaying a high basal expression of PELP-1, which was augmented in the context of poor cell-cell contact. This process occurred in a Src-dependent manner with Src inhibition reversing endocrine induced invasion/migration. While this adverse response was observed using both tamoxifen and fulvestrant therapy, it was not observed under conditions of estrogen withdrawal. Conclusions: Our data confirms previous reports that anti-estrogens induce an adverse cell phenotype in ER+ breast cancer, particularly in the absence of homotypic cell contact. These results implicate E-cadherin and PELP-1 as potential biomarkers when deciding upon optimum adjuvant endocrine therapy, whereby tumours with high PELP-1/low E-cadherin expression may benefit from estrogen withdrawal therapy via aromatase inhibition, as opposed to ER modulation/antagonism.
Collapse
Affiliation(s)
- Michael Rees
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.,Velindre Cancer Centre, Cardiff, UK
| | - Chris Smith
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Steve Hiscox
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, Liu D, Chen Y, Zhang D, Zhang H. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett 2019; 450:22-31. [PMID: 30771436 DOI: 10.1016/j.canlet.2019.02.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023]
Abstract
Evasion of apoptosis is a major contributing factor to the development of chemo- and radiotherapy resistance. Therefore, activation of non-apoptotic programmed cell death (PCD) could be an effective alternative against apoptosis-resistant cancers. In this study, we demonstrated in vitro and in vivo that metformin can induce pyroptosis, a non-apoptotic PCD, in esophageal squamous cell carcinoma (ESCC), a commonly known chemo-refractory cancer, especially at its advanced stages. Proline-, glutamic acid- and leucine-rich protein-1 (PELP1) is a scaffolding oncogene and upregulated PELP1 in advanced stages of ESCC is highly associated with cancer progression and patient outcomes. Intriguingly, metformin treatment leads to gasdermin D (GSDMD)-mediated pyroptosis, which is abrogated by forced expression of PELP1. Mechanistically, metformin induces pyroptosis of ESCC by targeting miR-497/PELP1 axis. Our findings suggest that metformin and any other pyroptosis-inducing reagents could serve as alternative treatments for chemo- and radiotherapy refractory ESCC or other cancers sharing the same pyroptosis mechanisms.
Collapse
Affiliation(s)
- Lu Wang
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Kai Li
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Xianjie Lin
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhimeng Yao
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuhong Wang
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao Xiong
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhifeng Ning
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wang
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaozheng Xu
- Cancer Research Centre, Shantou University Medical College, Shantou, Guangdong, China
| | - Yi Jiang
- Department of Gastrointestinal Oncology, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ditian Liu
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuping Chen
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA, 19131, USA
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Department of Pathology, Jinan University Medical College, Guangzhou, China; Research Centre of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
8
|
Wang L, Li W, Li K, Guo Y, Liu D, Yao Z, Lin X, Li S, Jiang Z, Liu Q, Jiang Y, Zhang B, Chen L, Zhou F, Ren H, Lin D, Zhang D, Yeung SJ, Zhang H. The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma. Cancer Med 2018; 7:5205-5216. [PMID: 30270520 PMCID: PMC6198200 DOI: 10.1002/cam4.1786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023] Open
Abstract
Nuclear receptor coactivator 1 (NCOA1) plays crucial roles in the regulation of gene expression mediated by a wide spectrum of steroid receptors such as androgen receptor (AR), estrogen receptor α (ER α), and estrogen receptor β (ER β). Therefore, dysregulations of NCOA1 have been found in a variety of cancer types. However, the clinical relevance and the functional roles of NCOA1 in human esophageal squamous cell carcinoma (ESCC) are less known. We found in this study that elevated levels of NCOA1 protein and/or mRNA as well as amplification of the NCOA1 gene occur in human ESCC. Elevated levels of NCOA1 due to these dysregulations were not only associated with more aggressive clinic-pathologic parameters but also poorer survival. Results from multiple cohorts of ESCC patients strongly suggest that the levels of NCOA1 could serve as an independent predictor of overall survival. In addition, silencing NCOA1 in ESCC cells remarkably decreased proliferation, migration, and invasion. These findings not only indicate that NCOA1 plays important roles in human ESCC but the levels of NCOA1 also could serve as a potential prognostic biomarker of ESCC and targeting NCOA1 could be an efficacious strategy in ESCC treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Weiwei Li
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Kai Li
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Yi Guo
- Endoscopy CentreAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Ditian Liu
- Department of Thoracic SurgeryAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Zhimeng Yao
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Xianjie Lin
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Shujun Li
- Department of Thoracic SurgerySecond Affiliated Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zuojie Jiang
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Qing Liu
- Department of PathologyThe First People's Hospital of FoshanFoshanGuangdongChina
| | - Yi Jiang
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Beien Zhang
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
- Department of Science and EducationAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Lei Chen
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Fuyou Zhou
- Department of PathologyAnyang Tumour HospitalAnyangHenanChina
| | - Hongzheng Ren
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
| | - Danxia Lin
- Department of Breast OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| | - Dianzheng Zhang
- Department of Bio‐Medical SciencesPhiladelphia College of Osteopathic MedicinePhiladelphiaPennsylvania
| | - Sai‐Ching Jim Yeung
- Department of Emergency Medicine, Department of Endocrine Neoplasia and Hormonal DisordersThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Hao Zhang
- Department of Immunotherapy and Gastrointestinal OncologyAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
- Cancer Research CentreShantou University Medical CollegeShantouGuangdongChina
- Institute of Precision Cancer Medicine and Pathology and Department of PathologyJinan University Medical CollegeGuangzhouChina
- Tumor Tissue BankAffiliated Cancer Hospital of Shantou University Medical CollegeShantouGuangdongChina
| |
Collapse
|
9
|
Wang X, Tsang JYS, Lee MA, Ni YB, Tong JH, Chan SK, Cheung SY, To KF, Tse GM. The Clinical Value of PELP1 for Breast Cancer: A Comparison with Multiple Cancers and Analysis in Breast Cancer Subtypes. Cancer Res Treat 2018; 51:706-717. [PMID: 30134648 PMCID: PMC6473277 DOI: 10.4143/crt.2018.316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose Proline, glutamic acid, and leucine-rich protein 1 (PELP1), a novel nuclear receptor (NR) co-regulator, is highly expressed in breast cancer. We investigated its expression in breast cancer subtypes, in comparison with other breast markers as well as cancers from different sites. Its prognostic relevance with different subtypes and other NR expression was also examined in breast cancers. Methods Immunohistochemical analysis was performed on totally 1,944 cancers from six different organs. Results PELP1 expression rate was the highest in breast cancers (70.5%) among different cancers. Compared to GATA3, mammaglobin and gross cystic disease fluid protein 15, PELP1 was less sensitive than GATA3 for luminal cancers, but was the most sensitive for non-luminal cancers. PELP1 has low expression rate (<20%) in colorectal cancers, gastric cancers and renal cell carcinomas, but higher in lung cancers (49.1%) and ovarian cancers (42.3%). In breast cancer, PELP1 expression was an independent adverse prognostic factor for non-luminal cancers (disease-free survival [DFS]: hazard ratio [HR], 1.403; p=0.012 and breast cancer specific survival [BCSS]: HR, 1.443; p=0.015). Interestingly, its expression affected the prognostication of androgen receptor (AR). ARposPELP1lo luminal cancer showed the best DFS (log-rank=8.563, p=0.036) while ARnegPELP1hi non-luminal cancers showed the worst DFS (log-rank=9.536, p=0.023). Conclusion PELP1 is a sensitive marker for breast cancer, particularly non-luminal cases. However, its considerable expression in lung and ovarian cancers may limit its utility in differential diagnosis in some scenarios. PELP1 expression was associated with poor outcome in non-luminal cancers and modified the prognostic effects of AR, suggesting the potential significance of NR co-regulator in prognostication.
Collapse
Affiliation(s)
- Xingen Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Michelle A Lee
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Yun-Bi Ni
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Joanna H Tong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Siu-Ki Chan
- Department of Pathology, Kwong Wah Hospital, Hong Kong
| | | | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Truong TH, Hu H, Temiz NA, Hagen KM, Girard BJ, Brady NJ, Schwertfeger KL, Lange CA, Ostrander JH. Cancer Stem Cell Phenotypes in ER + Breast Cancer Models Are Promoted by PELP1/AIB1 Complexes. Mol Cancer Res 2018; 16:707-719. [PMID: 29348189 PMCID: PMC5882512 DOI: 10.1158/1541-7786.mcr-17-0598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/13/2017] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
Abstract
Proline, glutamic acid, leucine-rich protein 1 (PELP1) is overexpressed in approximately 80% of invasive breast tumors. PELP1 dynamically shuttles between the nucleus and cytoplasm, but is primarily nuclear in normal breast tissue. However, altered localization of PELP1 to the cytoplasm is an oncogenic event that promotes breast cancer initiation and progression. Herein, interacting partners unique to cytoplasmic PELP1 and the mechanisms by which these interactions promote oncogenic PELP1 signaling were sought. AIB1 (amplified in breast cancer 1; also known as SRC-3 or NCOA3) was identified as a novel binding partner of cytoplasmic PELP1 in both estrogen receptor-positive (ER+) and ER-negative cell lines. Cytoplasmic PELP1 expression elevated basal phosphorylation levels (i.e., activation) of AIB1 at Thr24, enhanced ALDH+ tumorsphere formation, and upregulated specific target genes independently of hormone stimulation. Direct manipulation of AIB1 levels using shRNA abrogated cytoplasmic PELP1-induced tumorsphere formation and downregulated cytoplasmic PELP1-specific target genes. SI-2, an AIB1 inhibitor, limited the PELP1/AIB1 interaction and decreased cytoplasmic PELP1-induced tumorsphere formation. Similar results were observed in a murine-derived MMTV-AIB1 tumor cell line. Furthermore, in vivo syngeneic tumor studies revealed that PELP1 knockdown resulted in increased survival of tumor-bearing mice as compared with mice injected with control cells.Implications: These data demonstrate that cytoplasmic PELP1/AIB1-containing complexes function to promote advanced cancer phenotypes, including outgrowth of stem-like cells, associated with estrogen-independent breast cancer progression. Mol Cancer Res; 16(4); 707-19. ©2018 AACR.
Collapse
Affiliation(s)
- Thu H Truong
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Hsiangyu Hu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nuri A Temiz
- Masonic Cancer Center, Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Kyla M Hagen
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brian J Girard
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas J Brady
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Carol A Lange
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Julie H Ostrander
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
Thakkar R, Sareddy GR, Zhang Q, Wang R, Vadlamudi RK, Brann D. PELP1: a key mediator of oestrogen signalling and actions in the brain. J Neuroendocrinol 2018; 30:10.1111/jne.12484. [PMID: 28485080 PMCID: PMC5785553 DOI: 10.1111/jne.12484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an oestrogen receptor (ER) coregulator protein identified by our collaborative group. Work from our laboratory and others has shown that PELP1 is a scaffold protein that interacts with ERs and kinase signalling factors, as well as proteins involved in chromatin remodelling and DNA repair. Its role in mediating 17β-oestradiol (E2 ) signalling and actions has been studied in detail in cancer cells, although only recently has attention turned to its role in the brain. In this review, we discuss the tissue, cellular and subcellular localisation of PELP1 in the brain. We also discuss recent evidence from PELP1 forebrain-specific knockout mice demonstrating a critical role of PELP1 in mediating both extranuclear and nuclear ER signalling in the brain, as well as E2 -induced neuroprotection, anti-inflammatory effects and regulation of cognitive function. Finally, the PELP1 interactome and unique gene network regulated by PELP1 in the brain is discussed, especially because it provides new insights into PELP1 biology, protein interactions and mechanisms of action in the brain. As a whole, the findings discussed in the present review indicate that PELP1 functions as a critical ER coregulator in the brain to mediate E2 signalling and actions.
Collapse
Affiliation(s)
- Roshni Thakkar
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ruimin Wang
- Department of Neurobiology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ratna K. Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA
- Corresponding Author: Dr. Darrell Brann, Regents’ Professor and Vice Chair, Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15 Street, CA-4004, Augusta, GA 30912, USA. Phone: 1-706-721-7779
| |
Collapse
|
12
|
Raj GV, Sareddy GR, Ma S, Lee TK, Viswanadhapalli S, Li R, Liu X, Murakami S, Chen CC, Lee WR, Mann M, Krishnan SR, Manandhar B, Gonugunta VK, Strand D, Tekmal RR, Ahn JM, Vadlamudi RK. Estrogen receptor coregulator binding modulators (ERXs) effectively target estrogen receptor positive human breast cancers. eLife 2017; 6. [PMID: 28786813 PMCID: PMC5548489 DOI: 10.7554/elife.26857] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
The majority of human breast cancer is estrogen receptor alpha (ER) positive. While anti-estrogens/aromatase inhibitors are initially effective, resistance to these drugs commonly develops. Therapy-resistant tumors often retain ER signaling, via interaction with critical oncogenic coregulator proteins. To address these mechanisms of resistance, we have developed a novel ER coregulator binding modulator, ERX-11. ERX-11 interacts directly with ER and blocks the interaction between a subset of coregulators with both native and mutant forms of ER. ERX-11 effectively blocks ER-mediated oncogenic signaling and has potent anti-proliferative activity against therapy-sensitive and therapy-resistant human breast cancer cells. ERX-11 is orally bioavailable, with no overt signs of toxicity and potent activity in both murine xenograft and patient-derived breast tumor explant models. This first-in-class agent, with its novel mechanism of action of disrupting critical protein-protein interactions, overcomes the limitations of current therapies and may be clinically translatable for patients with therapy-sensitive and therapy-resistant breast cancers. DOI:http://dx.doi.org/10.7554/eLife.26857.001 Around 70% of breast cancers in women need one or both of the female hormones (estrogen and progesterone) to grow. To treat these 'hormone-dependent' cancers, patients receive drugs that either block the production of estrogen or directly target a receptor protein that senses estrogen in the cancer cells. Unfortunately, many breast cancers develop resistance to these drugs. This resistance is often caused by genetic mutations that alter the estrogen receptor; for example, the receptor may develop the ability to interact with other proteins in the cell known as coregulators to promote tumor growth. Developing new drugs that prevent estrogen receptors from interacting with coregulators may provide more options for treating hormone-dependent breast cancers. Here, Raj et al. developed a new small molecule named ERX-11 that is able to inhibit the growth of human breast cancer cells that are sensitive to existing drugs as well as cells that have become drug-resistant. For the experiments, hormone-dependent breast cancer cells from humans were transplanted into mice. This procedure usually causes the mice to develop tumors, but giving the mice ERX-11 by mouth stopped estrogen receptors from interacting with coregulators and blocked the growth of tumors. Furthermore, ERX-11 does not appear to have any toxic effects on the mice, indicating that it may also be safe for humans. The findings of Raj et al. suggest that ERX-11 is a promising new drug candidate for treating some breast cancers. The next steps are to examine the effects of ERX-11 on mice and other animals in more detail before deciding whether this molecule is suitable for clinical trials. In the longer term, molecules similar to ERX-11 could also be developed into drugs to treat other types of cancer that are also caused by abnormal interactions of coregulator proteins. DOI:http://dx.doi.org/10.7554/eLife.26857.002
Collapse
Affiliation(s)
- Ganesh V Raj
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Gangadhara Reddy Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Shihong Ma
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Tae-Kyung Lee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Rui Li
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Xihui Liu
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Shino Murakami
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, United States.,Laboratory of Signaling and Gene Regulation, Cecil H and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chien-Cheng Chen
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Wan-Ru Lee
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Monica Mann
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Samaya Rajeshwari Krishnan
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Bikash Manandhar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Vijay K Gonugunta
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States
| | - Douglas Strand
- Departments of Urology and Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| | - Rajeshwar Rao Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, United States
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, United States.,CDP program, University of Texas Health Cancer Center, San Antonio, United States
| |
Collapse
|
13
|
Girard BJ, Knutson TP, Kuker B, McDowell L, Schwertfeger KL, Ostrander JH. Cytoplasmic Localization of Proline, Glutamic Acid, Leucine-rich Protein 1 (PELP1) Induces Breast Epithelial Cell Migration through Up-regulation of Inhibitor of κB Kinase ϵ and Inflammatory Cross-talk with Macrophages. J Biol Chem 2016; 292:339-350. [PMID: 27881676 DOI: 10.1074/jbc.m116.739847] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/22/2016] [Indexed: 01/06/2023] Open
Abstract
Cytoplasmic localization of proline, glutamic acid, leucine-rich protein 1 (PELP1) is observed in ∼40% of women with invasive breast cancer. In mouse models, PELP1 overexpression in the mammary gland leads to premalignant lesions and eventually mammary tumors. In preliminary clinical studies, cytoplasmic localization of PELP1 was seen in 36% of women at high risk of developing breast cancer. Here, we investigated whether cytoplasmic PELP1 signaling promotes breast cancer initiation in models of immortalized human mammary epithelial cells (HMECs). Global gene expression analysis was performed on HMEC lines expressing vector control, PELP1-wt, or mutant PELP1 in which the nuclear localization sequence was altered, resulting in cytoplasmic localization of PELP1 (PELP1-cyto). Global gene expression analysis identified that PELP1-cyto expression in HMECs induced NF-κB signaling pathways. Western blotting analysis of PELP1-cyto HMECs showed up-regulation of inhibitor of κB kinase ϵ (IKKϵ) and increased phosphorylation of the NF-κB subunit RelB. To determine whether secreted factors produced by PELP1-cyto HMECs promote macrophage activation, THP-1 macrophages were treated with HMEC-conditioned medium (CM). PELP1-cyto CM induced changes in THP-1 gene expression as compared with control cell CM. Double conditioned medium (DCM) from the activated THP-1 cells was then applied to HMECs to determine whether paracrine signaling from PELP1-cyto-activated macrophages could in turn promote migration of HMECs. PELP1-cyto DCM induced robust HMEC migration, which was reduced in DCM from PELP1-cyto HMECs expressing IKKϵ shRNA. Our findings suggest that cytoplasmic localization of PELP1 up-regulates pro-tumorigenic IKKϵ and secreted inflammatory signals, which through paracrine macrophage activation regulates the migratory phenotype associated with breast cancer initiation.
Collapse
Affiliation(s)
| | | | | | | | - Kathryn L Schwertfeger
- From the Masonic Cancer Center and.,Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455
| | | |
Collapse
|
14
|
Leehy KA, Regan Anderson TM, Daniel AR, Lange CA, Ostrander JH. Modifications to glucocorticoid and progesterone receptors alter cell fate in breast cancer. J Mol Endocrinol 2016; 56:R99-R114. [PMID: 26831511 PMCID: PMC7256961 DOI: 10.1530/jme-15-0322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022]
Abstract
Steroid hormone receptors (SRs) are heavily posttranslationally modified by the reversible addition of a variety of molecular moieties, including phosphorylation, acetylation, methylation, SUMOylation, and ubiquitination. These rapid and dynamic modifications may be combinatorial and interact (i.e. may be sequential, complement, or oppose each other), creating a vast array of uniquely modified receptor subspecies that allow for diverse receptor behaviors that enable highly sensitive and context-dependent hormone action. For example, in response to hormone or growth factor membrane-initiated signaling events, posttranslational modifications (PTMs) to SRs alter protein-protein interactions that govern the complex process of promoter or gene-set selection coupled to transcriptional repression or activation. Unique phosphorylation events allow SRs to associate or disassociate with specific cofactors that may include pioneer factors and other tethering partners, which specify the resulting transcriptome and ultimately change cell fate. The impact of PTMs on SR action is particularly profound in the context of breast tumorigenesis, in which frequent alterations in growth factor-initiated signaling pathways occur early and act as drivers of breast cancer progression toward endocrine resistance. In this article, with primary focus on breast cancer relevance, we review the mechanisms by which PTMs, including reversible phosphorylation events, regulate the closely related SRs, glucocorticoid receptor and progesterone receptor, allowing for precise biological responses to ever-changing hormonal stimuli.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Female
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Humans
- Prognosis
- Protein Isoforms
- Protein Processing, Post-Translational
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Progesterone/chemistry
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Signal Transduction
- Stress, Physiological
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Katherine A Leehy
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Tarah M Regan Anderson
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Andrea R Daniel
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Carol A Lange
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| | - Julie H Ostrander
- Department of Medicine and Pharmacology University of Minnesota Twin Cities MinneapolisMinnesota, USA
| |
Collapse
|
15
|
PELP1: Structure, biological function and clinical significance. Gene 2016; 585:128-134. [PMID: 26997260 DOI: 10.1016/j.gene.2016.03.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/05/2016] [Accepted: 03/08/2016] [Indexed: 01/10/2023]
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein that functions as a coregulator of several transcription factors and nuclear receptors. Notably, the PELP1 protein has a histone-binding domain, recognizes histone modifications and interacts with several chromatin-modifying complexes. PELP1 serves as a substrate of multitude of kinases, and phosphorylation regulates its functions in various complexes. Further, PELP1 plays essential roles in several pathways including hormonal signaling, cell cycle progression, ribosomal biogenesis, and the DNA damage response. PELP1 expression is upregulated in several cancers, its deregulation contributes to therapy resistance, and it is a prognostic biomarker for breast cancer survival. Recent evidence suggests that PELP1 represents a novel therapeutic target for many hormonal cancers. In this review, we summarized the emerging biological properties and functions of PELP1.
Collapse
|
16
|
Regan Anderson TM, Ma SH, Raj GV, Cidlowski JA, Helle TM, Knutson TP, Krutilina RI, Seagroves TN, Lange CA. Breast Tumor Kinase (Brk/PTK6) Is Induced by HIF, Glucocorticoid Receptor, and PELP1-Mediated Stress Signaling in Triple-Negative Breast Cancer. Cancer Res 2016; 76:1653-63. [PMID: 26825173 DOI: 10.1158/0008-5472.can-15-2510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023]
Abstract
Cancer cells use stress response pathways to sustain their pathogenic behavior. In breast cancer, stress response-associated phenotypes are mediated by the breast tumor kinase, Brk (PTK6), via the hypoxia-inducible factors HIF-1α and HIF-2α. Given that glucocorticoid receptor (GR) is highly expressed in triple-negative breast cancer (TNBC), we investigated cross-talk between stress hormone-driven GR signaling and HIF-regulated physiologic stress. Primary TNBC tumor explants or cell lines treated with the GR ligand dexamethasone exhibited robust induction of Brk mRNA and protein that was HIF1/2-dependent. HIF and GR coassembled on the BRK promoter in response to either hypoxia or dexamethasone, indicating that Brk is a direct GR/HIF target. Notably, HIF-2α, not HIF-1α, expression was induced by GR signaling, and the important steroid receptor coactivator PELP1 was also found to be induced in a HIF-dependent manner. Mechanistic investigations showed how PELP1 interacted with GR to activate Brk expression and demonstrated that physiologic cell stress, including hypoxia, promoted phosphorylation of GR serine 134, initiating a feed-forward signaling loop that contributed significantly to Brk upregulation. Collectively, our findings linked cellular stress (HIF) and stress hormone (cortisol) signaling in TNBC, identifying the phospho-GR/HIF/PELP1 complex as a potential therapeutic target to limit Brk-driven progression and metastasis in TNBC patients.
Collapse
Affiliation(s)
- Tarah M Regan Anderson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shi Hong Ma
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John A Cidlowski
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Taylor M Helle
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Todd P Knutson
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee HSC, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pathology and Laboratory Medicine and Center for Cancer Research, University of Tennessee HSC, Memphis, Tennessee
| | - Carol A Lange
- Division of Hematology, Oncology, and Transplantation, Departments of Medicine and Pharmacology and The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
17
|
Estrogens Correlate with PELP1 Expression in ER Positive Breast Cancer. PLoS One 2015; 10:e0134351. [PMID: 26247365 PMCID: PMC4527840 DOI: 10.1371/journal.pone.0134351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022] Open
Abstract
The Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) is an estrogen receptor (ER) coactivator and a proto-oncogene known to be deregulated in endocrine cancers. In breast cancer, PELP1 overexpression has been associated with endocrine therapy resistance. Although PELP1 is known to be regulated by estrogens in vitro, its association with estrogen levels within the tissue of breast cancer patients has not previously been assessed. Here, we determined PELP1 mRNA expression levels in paired samples of normal and malignant breast tissue obtained from 32 postmenopausal and 11 premenopausal women. In the total sample set, PELP1 levels were higher in tumors compared to normal breast tissue (P = 0.041). Among postmenopausal women, PELP1 tumor levels correlated positively with estrone (E1) and estradiol (E2) levels in both normal tissue (r = 0.543, P = 0.003 and r = 0.601, P = 0.001, respectively) and plasma (r = 0.392, P = 0.053 and r = 0.403, P = 0.046, respectively). Analyzing all ER+ tumors (n = 26), PELP1 correlated positively with E1 and E2 in tumor tissue (r = 0.562, P = 0.003 and r = 0.411, P = 0.037, respectively) and normal tissue (r = 0.461, P = 0.018 and r = 0.427, P = 0.030, respectively) in addition to plasma E1, E2 and estrone sulphate (E1S) concentrations (r = 0.576, P = 0.003, r = 0.456, P = 0.025 and r = 0.406, P = 0.049, respectively). Finally, PELP1 correlated positively with ER mRNA (ESR1) (r = 0.553, P = 0.026) in ER+ tumors, whereas a negative association between PELP1 and ESR1 (r = -0.733, P = 0.010) was observed in ER- breast tumors. Taken together, tumor PELP1 mRNA expression is associated with estrogen levels in breast cancer, suggesting a potentially important role of PELP1 in ER+ breast cancer growth in vivo.
Collapse
|
18
|
Ravindranathan P, Lange CA, Raj GV. Minireview: Deciphering the Cellular Functions of PELP1. Mol Endocrinol 2015; 29:1222-9. [PMID: 26158753 DOI: 10.1210/me.2015-1049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Preethi Ravindranathan
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Carol A Lange
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| | - Ganesh V Raj
- Department of Urology (P.R., G.V.R.), University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390; and Departments of Medicine and Pharmacology (C.A.L.), University of Minnesota, Masonic Cancer Center, Minneapolis, Minnesota 55455
| |
Collapse
|
19
|
Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death. PLoS One 2015; 10:e0121206. [PMID: 25789479 PMCID: PMC4366195 DOI: 10.1371/journal.pone.0121206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/28/2015] [Indexed: 01/24/2023] Open
Abstract
Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.
Collapse
|
20
|
Cortez V, Samayoa C, Zamora A, Martinez L, Tekmal RR, Vadlamudi RK. PELP1 overexpression in the mouse mammary gland results in the development of hyperplasia and carcinoma. Cancer Res 2014; 74:7395-405. [PMID: 25377474 DOI: 10.1158/0008-5472.can-14-0993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor (ER) coregulator overexpression promotes carcinogenesis and/or progression of endocrine related-cancers in which steroid hormones are powerful mitogenic agents. Recent studies in our laboratory, as well as others, demonstrated that the estrogen receptor coregulator PELP1 is a proto-oncogene. PELP1 interactions with histone demethylase KDM1 play a critical role in its oncogenic functions and PELP1 is a prognostic indicator of decreased survival in patients with breast cancer. However, the in vivo significance of PELP1 deregulation during initiation and progression of breast cancer remains unknown. We generated an inducible, mammary gland-specific PELP1-expressing transgenic (Tg) mouse (MMTVrtTA-TetOPELP1). We found more proliferation, extensive side branching, and precocious differentiation in PELP1-overexpressing mammary glands than in control glands. Aged MMTVrtTA-TetOPELP1 Tg mice had hyperplasia and preneoplastic changes as early as 12 weeks, and ER-positive mammary tumors occurred at a latency of 14 to 16 months. Mechanistic studies revealed that PELP1 deregulation altered expression of a number of known ER target genes involved in cellular proliferation (cyclin D1, CDKs) and morphogenesis (EGFR, MMPs) and such changes facilitated altered mammary gland morphogenesis and tumor progression. Furthermore, PELP1 was hyper-phosphorylated at its CDK phosphorylation site, suggesting an autocrine loop involving the CDK-cyclin D1-PELP1 axis in promoting mammary tumorigenesis. Treatment of PELP1 Tg mice with a KDM1 inhibitor significantly reduced PELP1-driven hyperbranching, reversed alterations in cyclin D1 expression levels, and reduced CDK-driven PELP1 phosphorylation. These results further support the hypothesis that PELP1 deregulation has the potential to promote breast tumorigenesis in vivo and represent a novel model for future investigation into molecular mechanisms of PELP1-mediated tumorigenesis.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Cathy Samayoa
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas
| | - Andrea Zamora
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas
| | - Lizatte Martinez
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Cancer Therapy and Research Center, UT Health Science Center, San Antonio, Texas
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health Science Center, San Antonio, Texas. Cancer Therapy and Research Center, UT Health Science Center, San Antonio, Texas.
| |
Collapse
|
21
|
Gonugunta VK, Miao L, Sareddy GR, Ravindranathan P, Vadlamudi R, Raj GV. The social network of PELP1 and its implications in breast and prostate cancers. Endocr Relat Cancer 2014; 21:T79-86. [PMID: 24859989 DOI: 10.1530/erc-13-0502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proline, glutamic acid- and leucine-rich protein 1 (PELP1) is a multi-domain scaffold protein that serves as a platform for various protein-protein interactions between steroid receptors (SRs) and signaling factors and cell cycle, transcriptional, cytoskeletal, and epigenetic remodelers. PELP1 is known to be a coregulator of transcription and participates in the nuclear and extranuclear functions of SRs, ribosome biogenesis, and cell cycle progression. The expression and localization of PELP1 are dysregulated in hormonal cancers including breast and prostate cancers. This review focuses on the interactive functions and therapeutic and prognostic significance of PELP1 in breast and prostate cancers.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Lu Miao
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Preethi Ravindranathan
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ratna Vadlamudi
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| | - Ganesh V Raj
- Department of UrologyUT Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard J8130, Dallas, Texas 75390, USADepartment of Obstetrics and GynecologyUT Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
22
|
Regulation of estrogen receptor signaling in breast carcinogenesis and breast cancer therapy. Cell Mol Life Sci 2014; 71:1549. [PMID: 25031550 PMCID: PMC3962223 DOI: 10.1007/s00018-013-1376-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/19/2022]
Abstract
Estrogen and estrogen receptors (ERs) are critical regulators of breast epithelial cell proliferation, differentiation, and apoptosis. Compromised signaling vis-à-vis the estrogen receptor is believed to be a major contributing factor in the malignancy of breast cells. Targeting the ER signaling pathway has been a focal point in the development of breast cancer therapy. Although approximately 75 % of breast cancer patients are classified as luminal type (ER(+)), which predicts for response to endocrine-based therapy; however, innate or acquired resistance to endocrine-based drugs remains a serious challenge. The complexity of regulation for estrogen signaling coupled with the crosstalk of other oncogenic signaling pathways is a reason for endocrine therapy resistance. Alternative strategies that target novel molecular mechanisms are necessary to overcome this current and urgent gap in therapy. A thorough analysis of estrogen-signaling regulation is critical. In this review article, we will summarize current insights into the regulation of estrogen signaling as related to breast carcinogenesis and breast cancer therapy.
Collapse
|
23
|
Gonugunta VK, Sareddy GR, Krishnan SR, Cortez V, Roy SS, Tekmal RR, Vadlamudi RK. Inhibition of mTOR signaling reduces PELP1-mediated tumor growth and therapy resistance. Mol Cancer Ther 2014; 13:1578-88. [PMID: 24688046 DOI: 10.1158/1535-7163.mct-13-0877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proline, Glutamic acid-, and Leucine-rich Protein 1 (PELP1) is a proto-oncogene that modulates estrogen receptor (ER) signaling. PELP1 expression is upregulated in breast cancer, contributes to therapy resistance, and is a prognostic marker of poor survival. In a subset of breast tumors, PELP1 is predominantly localized in the cytoplasm and PELP1 participates in extranuclear signaling by facilitating ER interactions with Src and phosphoinositide 3-kinase (PI3K). However, the mechanism by which PELP1 extranuclear actions contributes to cancer progression and therapy resistance remains unclear. In this study, we discovered that PELP1 cross-talked with the serine/threonine protein kinase mTOR and modulated mTOR signaling. PELP1 knockdown significantly reduced the activation of mTOR downstream signaling components. Conversely, PELP1 overexpression excessively activated mTOR signaling components. We detected the presence of the mTOR signaling complex proteins in PELP1 immunoprecipitates. mTOR-targeting drugs (rapamycin and AZD8055) significantly reduced proliferation of PELP1-overexpressed breast cancer cells in both in vitro and in vivo xenograft tumor models. MCF7 cells that uniquely retain PELP1 in the cytoplasm showed resistance to hormonal therapy and mTOR inhibitors sensitized PELP1cyto cells to hormonal therapy in xenograft assays. Notably, immunohistochemical studies using xenograft tumors derived from PELP1 overexpression model cells showed increased mTOR signaling and inhibition of mTOR rendered PELP1-driven tumors to be highly sensitive to therapeutic inhibition. Collectively, our data identified the PELP1-mTOR axis as a novel component of PELP1 oncogenic functions and suggest that mTOR inhibitor(s) will be effective chemotherapeutic agents for downregulating PELP1 oncogenic functions.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Gangadhara R Sareddy
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Samaya Rajeshwari Krishnan
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Valerie Cortez
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Sudipa Saha Roy
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Rajeshwar Rao Tekmal
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| | - Ratna K Vadlamudi
- Authors' Affiliation: Department of Obstetrics and Gynecology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas
| |
Collapse
|
24
|
Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R. PELP1 oncogenic functions involve alternative splicing via PRMT6. Mol Oncol 2014; 8:389-400. [PMID: 24447537 PMCID: PMC3943689 DOI: 10.1016/j.molonc.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022] Open
Abstract
Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a proto-oncogene that functions as coactivator of the estrogen receptor and is an independent prognostic predictor of shorter survival of breast cancer patients. The dysregulation of PELP1 in breast cancer has been implicated in oncogenesis, metastasis, and therapy resistance. Although several aspects of PELP1 have been studied, a complete list of PELP1 target genes remains unknown, and the molecular mechanisms of PELP1 mediated oncogenesis remain elusive. In this study, we have performed a whole genome analysis to profile the PELP1 transcriptome by RNA-sequencing and identified 318 genes as PELP1 regulated genes. Pathway analysis revealed that PELP1 modulates several pathways including the molecular mechanisms of cancer, estrogen signaling, and breast cancer progression. Interestingly, RNA-seq analysis also revealed that PELP1 regulates the expression of several genes involved in alternative splicing. Accordingly, the PELP1 regulated genome includes several uniquely spliced isoforms. Mechanistic studies show that PELP1 binds RNA with a preference to poly-C, co-localizes with the splicing factor SC35 at nuclear speckles, and participates in alternative splicing. Further, PELP1 interacts with the arginine methyltransferase PRMT6 and modifies PRMT6 functions. Inhibition of PRMT6 reduced PELP1-mediated estrogen receptor activation, cellular proliferation, and colony formation. PELP1 and PRMT6 are co-recruited to estrogen receptor target genes, PELP1 knockdown affects the enrichment of histone H3R2 di-methylation, and PELP1 and PRMT6 coordinate to regulate the alternative splicing of genes involved in cancer. Collectively, our data suggest that PELP1 oncogenic functions involve alternative splicing leading to the activation of unique pathways that support tumor progression and that the PELP1-PRMT6 axis may be a potential target for breast cancer therapy.
Collapse
Affiliation(s)
- Monica Mann
- The Department of Cellular and Structural Biology, San Antonio, TX 78229, USA; The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA.
| | - Yi Zou
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Yidong Chen
- Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Darrell Brann
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA 30912, USA.
| | - Ratna Vadlamudi
- The Department of Obstetrics and Gynecology, San Antonio, TX 78229, USA; Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
25
|
Girard BJ, Daniel AR, Lange CA, Ostrander JH. PELP1: a review of PELP1 interactions, signaling, and biology. Mol Cell Endocrinol 2014; 382:642-651. [PMID: 23933151 PMCID: PMC3844065 DOI: 10.1016/j.mce.2013.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 11/29/2022]
Abstract
Proline, glutamic acid, and leucine rich protein 1 (PELP1) is a large multi-domain protein that has been shown to modulate an increasing number of pathways and biological processes. The first reports describing the cloning and characterization of PELP1 showed that it was an estrogen receptor coactivator. PELP1 has now been shown to be a coregulator for a growing number of transcription factors. Furthermore, recent reports have shown that PELP1 is a member of chromatin remodeling complexes. In addition to PELP1 nuclear functions, it has been shown to have cytoplasmic signaling functions as well. In the cytoplasm PELP1 acts as a scaffold molecule and mediates rapid signaling from growth factor and hormone receptors. PELP1 signaling ultimately plays a role in cancer biology by increasing proliferation and metastasis, among other cellular processes. Here we will review (1) the cloning and characterization of PELP1 expression, (2) interacting proteins, (3) PELP1 signaling, and (4) PELP1-mediated biology.
Collapse
Affiliation(s)
- Brian J Girard
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Andrea R Daniel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
26
|
Manavathi B, Dey O, Gajulapalli VNR, Bhatia RS, Bugide S, Kumar R. Derailed estrogen signaling and breast cancer: an authentic couple. Endocr Rev 2013; 34:1-32. [PMID: 22947396 PMCID: PMC3565105 DOI: 10.1210/er.2011-1057] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Estrogen or 17β-estradiol, a steroid hormone, plays a critical role in the development of mammary gland via acting through specific receptors. In particular, estrogen receptor-α (ERα) acts as a transcription factor and/or a signal transducer while participating in the development of mammary gland and breast cancer. Accumulating evidence suggests that the transcriptional activity of ERα is altered by the action of nuclear receptor coregulators and might be responsible, at least in part, for the development of breast cancer. In addition, this process is driven by various posttranslational modifications of ERα, implicating active participation of the upstream receptor modifying enzymes in breast cancer progression. Emerging studies suggest that the biological outcome of breast cancer cells is also influenced by the cross talk between microRNA and ERα signaling, as well as by breast cancer stem cells. Thus, multiple regulatory controls of ERα render mammary epithelium at risk for transformation upon deregulation of normal homeostasis. Given the importance that ERα signaling has in breast cancer development, here we will highlight how the activity of ERα is controlled by various regulators in a spatial and temporal manner, impacting the progression of the disease. We will also discuss the possible therapeutic value of ERα modulators as alternative drug targets to retard the progression of breast cancer.
Collapse
Affiliation(s)
- Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, Gachibowli, Prof. CR Rao Road, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | | | | | |
Collapse
|
27
|
Kirma NB, Tekmal RR. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations. J Steroid Biochem Mol Biol 2012; 131:76-82. [PMID: 22119744 DOI: 10.1016/j.jsbmb.2011.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 12/28/2022]
Abstract
Mouse models of breast cancer, especially transgenic and knockout mice, have been established as valuable tools in shedding light on factors involved in preneoplastic changes, tumor development and malignant progression. The majority of mouse transgenic models develop estrogen receptor (ER) negative tumors. This is seen as a drawback because the majority of human breast cancers present an ER positive phenotype. On the other hand, several transgenic mouse models have been developed that produce ER positive mammary tumors. These include mice over-expressing aromatase, ERα, PELP-1 and AIB-1. In this review, we will discuss the value of these models as physiologically relevant in vivo systems to understand breast cancer as well as some of the pitfalls involving these models. In all, we argue that the use of transgenic models has improved our understanding of the molecular aspects and biology of breast cancer.
Collapse
Affiliation(s)
- Nameer B Kirma
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | |
Collapse
|
28
|
Block M, Gründker C, Fister S, Kubin J, Wilkens L, Mueller MD, Hemmerlein B, Emons G, Günthert AR. Inhibition of the AKT/mTOR and erbB pathways by gefitinib, perifosine and analogs of gonadotropin-releasing hormone I and II to overcome tamoxifen resistance in breast cancer cells. Int J Oncol 2012; 41:1845-54. [PMID: 22922893 DOI: 10.3892/ijo.2012.1591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/03/2012] [Indexed: 11/05/2022] Open
Abstract
Endocrine resistance in breast cancer remains a major clinical problem and is caused by crosstalk mechanisms of growth factor receptor cascades, such as the erbB and PI3K/AKT pathways. The possibilities a single breast cancer cell has to achieve resistance are manifold. We developed a model of 4-hydroxy-tamoxifen (OHT)‑resistant human breast cancer cell lines and compared their different expression patterns, activation of growth factor receptor pathways and compared cells by genomic hybridization (CGH). We also tested a panel of selective inhibitors of the erbB and AKT/mTOR pathways to overcome OHT resistance. OHT‑resistant MCF-7-TR and T47D-TR cells showed increased expression of HER2 and activation of AKT. T47D-TR cells showed EGFR expression and activated MAPK (ERK-1/2), whereas in resistant MCF-7-TR cells activated AKT was due to loss of CTMP expression. CGH analyses revealed remarkable aberrations in resistant sublines, which were predominantly depletions. Gefitinib inhibited erbB signalling and restored OHT sensitivity in T47D-TR cells. The AKT inhibitor perifosine restored OHT sensitivity in MCF-7-TR cells. All cell lines showed expression of receptors for gonadotropin-releasing hormone (GnRH) I and II, and analogs of GnRH-I/II restored OHT sensitivity in both resistant cell lines by inhibition of erbB and AKT signalling. In conclusion, mechanisms to escape endocrine treatment in breast cancer share similarities in expression profiling but are based on substantially different genetic aberrations. Evaluation of activated mediators of growth factor receptor cascades is helpful to predict response to specific inhibitors. Expression of GnRH-I/II receptors provides multi-targeting treatment strategies.
Collapse
Affiliation(s)
- Martin Block
- Departement of Gynecology and Obstetrics, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boonyaratanakornkit V. Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor. Steroids 2011; 76:877-84. [PMID: 21354435 DOI: 10.1016/j.steroids.2011.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/14/2011] [Accepted: 02/16/2011] [Indexed: 12/30/2022]
Abstract
Estrogen mediates biological effects on cell proliferation, differentiation, and homeostasis through estrogen receptor (ER). In addition to functioning as a ligand-activated nuclear transcription factor to directly regulate gene transcription, ER also mediates rapid activation of signaling pathways independent of its transcriptional activity. A subpopulation of ER localized to the cell membrane or cytoplasm has been proposed to mediate ER activation of signaling pathways. This review focuses on recent advances in our understanding of mechanisms responsible for ER cytoplasm/membrane localization, where rapid extra-nuclear signaling is initiated. These mechanisms include lipid modification of the receptor (palmitoylation) and interactions with membrane and cytoplasmic adaptor proteins including caveolins, striatin, p130Cas, Shc, HPIP, MTA-1s, and MNAR/PELP1. While it is clear that ER mediates rapid extra-nuclear signaling resulting in activation of signaling pathways such as Src/MAPK and PI-3 kinase/Akt, how ER extra-nuclear signaling influences overall ER/estrogen physiology is still not well understood. Future studies defining physiological roles of ER extra-nuclear actions and crosstalk with its nuclear counterparts will be important to our overall understanding of estrogen and ER biological functions.
Collapse
Affiliation(s)
- Viroj Boonyaratanakornkit
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, MS-130, Houston, TX 77030, USA.
| |
Collapse
|
30
|
Pomegranate sensitizes Tamoxifen action in ER-α positive breast cancer cells. J Cell Commun Signal 2011; 5:317-24. [PMID: 21706446 DOI: 10.1007/s12079-011-0138-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022] Open
Abstract
It is estimated that one in eight women will be affected with cancer during their lives, which means over 1 million women worldwide will be diagnosed with breast cancer in the year of 2011. Roughly, 70% of breast cancer will be estrogen receptor-alpha (ER-α) positive. The presence of ER-α is associated with better prognosis and is able to determine if tumors will respond to the estrogen-blocking/ER-antagonist drug Tamoxifen (TAM). However, a significant fraction of ER-positive tumors respond with minimal or no response to TAM. It is unclear why some breast cancer cells resist TAM and how to make these cells respond. Early evidence suggests Pomegranate fruit extracts (PFEs) exhibit an anticancer effect against some cancers. The objective of the study was to determine whether PFEs may able to enhance/sensitize the TAM's effect in ER-positive MCF-7 breast cancer cells. To test the hypothesis, we determined the effect of PFEs on sensitive and TAM-resistant-MCF-7 cell viability and cell death in the presence or absence of TAM under estrogenic or non-estrogenic culture environment. The present studies demonstrated that PFEs enhance the TAM action in both sensitive and TAM-resistant MCF-7 cells through the inhibition of cell viability (regular or estrogen-induced) by inducing cell-death machinery. Collectively, the results showed for the first time that pomegranate combined with TAM may represent a novel and a powerful approach to enhance and sensitize TAM action.
Collapse
|
31
|
Cortez V, Nair BC, Chakravarty D, Vadlamudi RK. Integrin-linked kinase 1: role in hormonal cancer progression. Front Biosci (Schol Ed) 2011; 3:788-96. [PMID: 21196412 DOI: 10.2741/s187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Integrin-linked kinase 1 (ILK1) is a serine/threonine kinase that plays important roles in a variety of cellular functions including cell survival, migration and angiogenesis. ILK1 is normally expressed in numerous tissues and activated by growth factors, cytokines and hormones. Dysregulation of ILK1 expression or function is found in several hormonal tumors including breast, ovary and prostate. Emerging evidence suggests that ILK overexpression promotes cellular transformation, cell survival, epithelial mesenchymal transition (EMT), and metastasis of hormonal cancer cells while inhibition of ILK1 reduces tumor growth and progression. The recent development of ILK1 inhibitors has provided novel mechanisms for blocking ILK1 signaling to curb metastasis and therapy resistance of hormonal tumors. This review will focus on recent advances made towards understanding the role of ILK signaling axis in progression of hormonal cancer.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
32
|
Significance of ER-Src axis in hormonal therapy resistance. Breast Cancer Res Treat 2010; 130:377-85. [PMID: 21184269 DOI: 10.1007/s10549-010-1312-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER-Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7-PELP1, MCF7-HER2, and MCF7-Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER-Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.
Collapse
|
33
|
Cortez V, Mann M, Brann DW, Vadlamudi RK. Extranuclear signaling by estrogen: role in breast cancer progression and metastasis. MINERVA GINECOLOGICA 2010; 62:573-583. [PMID: 21079578 PMCID: PMC3729592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The estrogen receptor (ERa) is implicated in the progression of breast cancer. Hormonal therapies which block ER functions or local and systemic estrogen production are currently used to treat ERa positive breast cancer. Hormonal therapy shows beneficial effects, however, initial or acquired resistance to endocrine therapies frequently occurs, and tumors recur as metastasis. Emerging evidence suggests in addition to exerting its well-studied nuclear functions, ERa also participates in extranuclear signaling that involve growth factor signaling components, adaptor molecules and the stimulation of cytosolic kinases. ERa extranuclear pathways have the potential to activate gene transcription, modulate cytoskeleton, and promote tumor cell proliferation, survival, and metastasis. Cytoplasmic/membrane ERa is detected in a subset of breast tumors and expression of extranuclear components ERa is deregulated in tumors. The extranuclear actions of ER are emerging as important targets for tumorigenic and metastatic control. Inhibition of ERa extranuclear actions has the potential to prevent breast tumor progression and may be useful in preventing ERa positive metastasis. In this review, we summarize the results of recent research into the role of ERa mediated extranuclear actions in breast tumorigenesis and metastasis.
Collapse
Affiliation(s)
- V Cortez
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio TX 78229, USA
| | | | | | | |
Collapse
|
34
|
Zwart W, Theodorou V, Carroll JS. Estrogen receptor-positive breast cancer: a multidisciplinary challenge. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:216-30. [DOI: 10.1002/wsbm.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Chakravarty D, Tekmal RR, Vadlamudi RK. PELP1: A novel therapeutic target for hormonal cancers. IUBMB Life 2010; 62:162-9. [PMID: 20014005 DOI: 10.1002/iub.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies implicate that the estrogen receptor (ER) coregulator proline-, glutamic acid-, and leucine-rich protein (PELP) 1 as playing critical roles in ER-genomic, ER-nongenomic, and ER-signaling cross talk with growth factor signaling pathways. PELP1 expression is deregulated in hormonal cancers and recent studies further elucidated the molecular mechanisms by which PELP1 regulates hormone therapy response. Although PELP1 is important for normal functions of the ER, the possibility to target ER-PELP1 axis appears to be an effective strategy for preventing hormonal carcinogenesis and therapy resistance. Thus, PELP1 may be useful as prognostic marker for hormonal cancers and PELP1 signaling may be useful to generate targeted therapeutics to overcome hormonal therapy resistance.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, 78229, USA
| | | | | |
Collapse
|
36
|
Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK. Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells. Cancer Res 2010; 70:4092-101. [PMID: 20460518 DOI: 10.1158/0008-5472.can-09-3834] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular basis of breast cancer progression to metastasis and the role of estrogen receptor (ER) signaling in this process remain poorly understood. Emerging evidence suggests that ER participates in extranuclear signaling in addition to genomic functions. Recent studies identified proline-, glutamic acid-, and leucine-rich protein-1 (PELP1) as one of the components of ER signalosome in the cytoplasm. PELP1 expression is deregulated in metastatic breast tumors. We examined the mechanism and significance of ER-PELP1-mediated extranuclear signals in the cytoskeletal remodeling and metastasis. Using estrogen dendrimer conjugate (EDC) that uniquely activate ER extranuclear signaling and by using model cells that stably express PELP1 short hairpin RNA (shRNA), we show that PELP1 is required for optimal activation of ER extranuclear actions. Using a yeast two-hybrid screen, we identified integrin-linked kinase 1 (ILK1) as a novel PELP1-binding protein. Activation of extranuclear signaling by EDC uniquely enhanced E2-mediated ruffles and filopodia-like structures. Using dominant-negative and dominant-active reagents, we found that estrogen-mediated extranuclear signaling promotes cytoskeleton reorganization through the ER-Src-PELP1-phosphoinositide 3-kinase-ILK1 pathway. Using in vitro Boyden chamber assays and in vivo xenograft assays, we found that ER extranuclear actions contribute to cell migration. Collectively, our results suggest that ER extranuclear actions play a role in cell motility/metastasis, establishing for the first time that endogenous PELP1 serves as a critical component of ER extranuclear actions leading to cell motility/invasion and that the ER-Src-PELP1-ILK1 pathway represents a novel therapeutic target for preventing the emergence of ER-positive metastasis.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Obstetrics and Gynecology and CTRC at The UT Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|