1
|
Escoto A, Hecksel R, Parkinson C, Crane S, Atwell B, King S, Ortiz Chavez D, Jannuzi A, Sands B, Bitler BG, Fehniger TA, Paek AL, Padi M, Schroeder J. Nuclear EGFR in breast cancer suppresses NK cell recruitment and cytotoxicity. Oncogene 2024:10.1038/s41388-024-03211-0. [PMID: 39521886 DOI: 10.1038/s41388-024-03211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Natural Killer (NK) cells can target and destroy cancer cells, yet tumor microenvironments typically suppress NK cell recruitment and cytotoxicity. The epidermal growth factor receptor (EGFR) is a potent oncogene that can activate survival, migration, and proliferation pathways, and clinical data suggests it may also play an immunomodulating role in cancers. Recent work has demonstrated a novel role for nuclear EGFR (nEGFR) in regulating transcriptional events unique from the kinase domain. Using a novel peptide therapeutic (cSNX1.3) that inhibits retrograde trafficking of EGFR and an EGFR nuclear localization mutant, we discovered that nEGFR suppresses NK cell recruitment and cytotoxicity. RNA-Seq analysis of breast cancer cells treated with cSNX1.3 or modified to lack a nuclear localization sequence (EGFRΔNLS) revealed the EGF-dependent induction of NK activating receptor ligands, while kinase inhibition by erlotinib did not impact these genes. NanoString analysis of tumor-bearing WAP-TGFα transgenic mice treated with cSNX1.3 demonstrated an increase in immune cell populations and activating genes. Additionally, immunohistochemistry confirmed an increase in NK cells upon cSNX1.3 treatment. Finally, cSNX1.3 treatment was found to enhance NK cell recruitment and cytotoxicity in vitro. Together, the data demonstrate a unique immunomodulatory role for nEGFR.
Collapse
Affiliation(s)
- Angelica Escoto
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Ryan Hecksel
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Chance Parkinson
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Sara Crane
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin Atwell
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Shyanne King
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Daniela Ortiz Chavez
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Alison Jannuzi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Barbara Sands
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
| | - Benjamin G Bitler
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrew L Paek
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA
| | - Megha Padi
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
| | - Joyce Schroeder
- University of Arizona Department of Molecular and Cellular Biology, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85721, USA.
- BIO5 Institute, Tucson, AZ, 85721, USA.
| |
Collapse
|
2
|
Bian JS, Chen J, Zhang J, Tan J, Chen Y, Yang X, Li Y, Deng L, Chen R, Nie X. ErbB3 Governs Endothelial Dysfunction in Hypoxia-Induced Pulmonary Hypertension. Circulation 2024; 150:1533-1553. [PMID: 38214194 DOI: 10.1161/circulationaha.123.067005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Pulmonary hypertension, characterized by vascular remodeling, currently lacks curative therapeutic options. The dysfunction of pulmonary artery endothelial cells plays a pivotal role in the initiation and progression of pulmonary hypertension (PH). ErbB3 (human epidermal growth factor receptor 3), also recognized as HER3, is a member of the ErbB family of receptor tyrosine kinases. METHODS Microarray, immunofluorescence, and Western blotting analyses were conducted to investigate the pathological role of ErbB3. Blood samples were collected for biomarker examination from healthy donors or patients with hypoxic PH. The pathological functions of ErbB3 were further validated in rodents subjected to chronic hypoxia- and Sugen-induced PH, with or without adeno-associated virus-mediated ErbB3 overexpression, systemic deletion, or endothelial cell-specific ErbB3 knockdown. Primary human pulmonary artery endothelial cells and pulmonary artery smooth muscle cells were used to elucidate the underlying mechanisms. RESULTS ErbB3 exhibited significant upregulation in the serum, lungs, distal pulmonary arteries, and pulmonary artery endothelial cells isolated from patients with PH compared with those from healthy donors. ErbB3 overexpression stimulated hypoxia-induced endothelial cell proliferation, exacerbated pulmonary artery remodeling, elevated systolic pressure in the right ventricle, and promoted right ventricular hypertrophy in murine models of PH. Conversely, systemic deletion or endothelial cell-specific knockout of ErbB3 yielded opposite effects. Coimmunoprecipitation and proteomic analysis identified YB-1 (Y-box binding protein 1) as a downstream target of ErbB3. ErbB3 induced nuclear translocation of YB-1 and subsequently promoted hypoxia-inducible factor 1/2α transcription. A positive loop involving ErbB3-periostin-hypoxia-inducible factor 1/2α was identified to mediate the progressive development of this disease. MM-121, a human anti-ErbB3 monoclonal antibody, exhibited both preventive and therapeutic effects against hypoxia-induced PH. CONCLUSIONS Our study reveals, for the first time, that ErbB3 serves as a novel biomarker and a promising target for the treatment of PH.
Collapse
MESH Headings
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/etiology
- Animals
- Humans
- Receptor, ErbB-3/metabolism
- Receptor, ErbB-3/genetics
- Hypoxia/metabolism
- Mice
- Male
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Vascular Remodeling
- Mice, Inbred C57BL
- Rats
- Cells, Cultured
- Mice, Knockout
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Female
Collapse
Affiliation(s)
- Jin-Song Bian
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, China (J.-S.B., L.D.)
| | - Jingyu Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Junting Zhang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Jianxin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Yuan Chen
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Xusheng Yang
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, China (J.C., J.T., Y.C., X.Y.)
| | - Yiying Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Lin Deng
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, China (J.-S.B., L.D.)
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| | - Xiaowei Nie
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), China (J.-S.B., J.Z., Y.L., R.C., X.N.)
| |
Collapse
|
3
|
Izutsu R, Osaki M, Seong H, Ogata S, Sato R, Hamada JI, Okada F. AMIGO2 enhances the invasive potential of colorectal cancer by inducing EMT. Cancer Gene Ther 2024:10.1038/s41417-024-00842-z. [PMID: 39379686 DOI: 10.1038/s41417-024-00842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
In our previous studies, we identified amphoterin-inducible gene and open reading frame 2 (AMIGO2) as a driver gene for liver metastasis and found that AMIGO2 expression in cancer cells worsens the prognosis of patients with colorectal cancer (CRC). Epithelial-mesenchymal transition (EMT) is a trigger for CRC to acquire a malignant phenotype, such as invasive potential, leading to metastasis. However, the role of AMIGO2 expression in the invasive potential of CRC cells remains unclear. Thus, this study aimed to examine AMIGO2 expression and elucidate the mechanisms by which it induces EMT and promotes CRC invasion. Activation of the TGFβ/Smad signaling pathway was found involved in AMIGO2-induced EMT, and treatment with the TGFβ receptor inhibitor LY2109761 suppressed AMIGO2-induced EMT. Studies using CRC samples showed that AMIGO2 expression was highly upregulated in the invasive front, where AMIGO2 expression was localized to the nucleus and associated with EMT marker expression. These results suggest that the nuclear translocation of AMIGO2 induces EMT to promote CRC invasion by activating the TGFβ/Smad signaling pathway. Thus, AMIGO2 is an attractive therapeutic target for inhibiting EMT and metastatic CRC progression.
Collapse
Affiliation(s)
- Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan.
| | - HeeKyung Seong
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Sanami Ogata
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Reo Sato
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Jun-Ichi Hamada
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
- School of Nursing and Social Services, Health Sciences University of Hokkaido, Ishikari-Tobetsu, 061-0293, Japan
| | - Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
- Chromosomal Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
4
|
Kao WWY, Zhang J, Venkatakrishnan J, Chang SH, Yuan Y, Yamanaka O, Xia Y, Gesteira TF, Verma S, Coulson-Thomas VJ, Liu CY. Lumican/Lumikine Promotes Healing of Corneal Epithelium Debridement by Upregulation of EGFR Ligand Expression via Noncanonical Smad-Independent TGFβ/TBRs Signaling. Cells 2024; 13:1599. [PMID: 39404363 PMCID: PMC11475839 DOI: 10.3390/cells13191599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
The synthetic peptide of lumican C-terminal 13 amino acids with the cysteine replaced by an alanine, hereafter referred to as lumikine (LumC13C-A: YEALRVANEVTLN), binds to TGFβ type I receptor/activin-like kinase5 (TBR1/ALK5) in the activated TGFβ receptor complex to promote corneal epithelial wound healing. The present study aimed to identify the minimum essential amino acid epitope necessary to exert the effects of lumikine via ALK5 and to determine the role of the Y (tyrosine) residue for promoting corneal epithelium wound healing. This study also aimed to determine the signaling pathway(s) triggered by lumican-ALK5 binding. For such, adult Lum knockout (Lum-/-) mice (~8-12 weeks old) were subjected to corneal epithelium debridement using an Agerbrush®. The injured eyes were treated with 10 µL eye drops containing 0.3 µM synthetic peptides designed based on the C-terminal region of lumican for 5-6 h. To unveil the downstream signaling pathways involved, inhibitors of the Alk5 and EGFR signaling pathways were co-administered or not. Corneas isolated from the experimental mice were subjected to whole-mount staining and imaged under a ZEISS Observer to determine the distance of epithelium migration. The expression of EGFR ligands was determined following a scratch assay with HTCE (human telomerase-immortalized cornea epithelial cells) in the presence or not of lumikine. Results indicated that shorter LumC-terminal peptides containing EVTLN and substitution of Y with F in lumikine abolishes its capability to promote epithelium migration indicating that Y and EVTLN are essential but insufficient for Lum activity. Lumikine activity is blocked by inhibitors of Alk5, EGFR, and MAPK signaling pathways, while EGF activity is only suppressed by EGFR and MAPK inhibitors. qRT-PCR of scratched HTCE cells cultures treated with lumikine showed upregulated expression of several EGFR ligands including epiregulin (EREG). Treatment with anti-EREG antibodies abolished the effects of lumikine in corneal epithelium debridement healing. The observations suggest that Lum/lumikine binds Alk5 and promotes the noncanonical Smad-independent TGFβ/TBRs signaling pathways during the healing of corneal epithelium debridement.
Collapse
Affiliation(s)
- Winston W. Y. Kao
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Jianhua Zhang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Jhuwala Venkatakrishnan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Shao-Hsuan Chang
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Yong Yuan
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Osamu Yamanaka
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| | - Ying Xia
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Tarsis F. Gesteira
- College of Optometry, University of Houston, Houston, TX 77204, USA; (T.F.G.); (S.V.); (V.J.C.-T.)
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX 77204, USA; (T.F.G.); (S.V.); (V.J.C.-T.)
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204, USA; (T.F.G.); (S.V.); (V.J.C.-T.)
| | - Chia-Yang Liu
- Department of Ophthalmology, University of Cincinnati, Cincinnati, OH 45267, USA; (J.Z.); (J.V.); (S.-H.C.); (Y.Y.); (O.Y.); (Y.X.); (C.-Y.L.)
| |
Collapse
|
5
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Sun Z, Li Y, Tan X, Liu W, He X, Pan D, Li E, Xu L, Long L. Friend or Foe: Regulation, Downstream Effectors of RRAD in Cancer. Biomolecules 2023; 13:biom13030477. [PMID: 36979412 PMCID: PMC10046484 DOI: 10.3390/biom13030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.
Collapse
Affiliation(s)
- Zhangyue Sun
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Yongkang Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xiaolu Tan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Wanyi Liu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Xinglin He
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
| | - Deyuan Pan
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Lin Long
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
- Cancer Research Center, Institute of Basic Medical Science, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: ; Tel.: +86-754-88900460; Fax: +86-754-88900847
| |
Collapse
|
7
|
Palumbo C, Benvenuto M, Focaccetti C, Albonici L, Cifaldi L, Rufini A, Nardozi D, Angiolini V, Bei A, Masuelli L, Bei R. Recent findings on the impact of ErbB receptors status on prognosis and therapy of head and neck squamous cell carcinoma. Front Med (Lausanne) 2023; 10:1066021. [PMID: 36817764 PMCID: PMC9932042 DOI: 10.3389/fmed.2023.1066021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type, has often an aggressive course and is poorly responsive to current therapeutic approaches, so that 5-year survival rates for patients diagnosed with advanced disease is lower than 50%. The Epidermal Growth Factor Receptor (EGFR) has emerged as an established oncogene in HNSCC. Indeed, although HNSCCs are a heterogeneous group of cancers which differ for histological, molecular and clinical features, EGFR is overexpressed or mutated in a percentage of cases up to about 90%. Moreover, aberrant expression of the other members of the ErbB receptor family, ErbB2, ErbB3 and ErbB4, has also been reported in variable proportions of HNSCCs. Therefore, an increased expression/activity of one or multiple ErbB receptors is found in the vast majority of patients with HNSCC. While aberrant ErbB signaling has long been known to play a critical role in tumor growth, angiogenesis, invasion, metastatization and resistance to therapy, more recent evidence has revealed its impact on other features of cancer cells' biology, such as the ability to evade antitumor immunity. In this paper we will review recent findings on how ErbB receptors expression and activity, including that associated with non-canonical signaling mechanisms, impacts on prognosis and therapy of HNSCC.
Collapse
Affiliation(s)
- Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy,Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandra Rufini
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy,Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arianna Bei
- Medical School, University of Rome “Tor Vergata”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy,*Correspondence: Roberto Bei,
| |
Collapse
|
8
|
Current Targeted Therapy for Metastatic Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24021702. [PMID: 36675216 PMCID: PMC9864602 DOI: 10.3390/ijms24021702] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer and the second leading cause of cancer deaths worldwide. Surgery or surgery plus radiotherapy and/or chemotherapy for patients with metastatic CRC (mCRC) were accepted as the main therapeutic strategies until the early 2000s, when targeted drugs, like cetuximab and bevacizumab, were developed. The use of targeted drugs in clinical practice has significantly increased patients' overall survival. To date, the emergence of several types of targeted drugs has opened new possibilities and revealed new prospects for mCRC treatment. Therapeutic strategies are continually being updated to select the most suitable targeted drugs based on the results of clinical trials that are currently underway. This review discusses the up-to date molecular evidence of targeted therapy for mCRC and summarizes the Food and Drug Administration-approved targeted drugs including the results of clinical trials. We also explain their mechanisms of action and how these affect the choice of a suitable targeted therapy.
Collapse
|
9
|
Stavrou A, Ortiz A, Costa M. Cadmium Activates EGFR/STAT5 Signaling to Overcome Calcium Chelation and Promote Epithelial to Mesenchymal Transition. Biomolecules 2023; 13:116. [PMID: 36671501 PMCID: PMC9855692 DOI: 10.3390/biom13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Cadmium (Cd) is a heavy metal found in cigarette smoke, as well as in air and drinking water due to agricultural and industrial activities, and it poses a health risk to the general population. Prolonged low-dose Cd exposure via inhalation or ingestion causes lung and kidney cancers in humans and in animal models. While high doses of Cd exposure are correlated with the occupational setting and are cytotoxic, low doses of Cd are mainly correlated with exposure in the general population and induce carcinogenesis. The mechanism by which Cd-exposed cells overcome calcium chelation and induce malignant transformation remains unclear. This study examines how cells exposed to low doses of Cd survive loss of E-cadherin cell-cell adhesion via activation of the epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 5 (STAT5), which work to upregulate genes associated with survival and proliferation. To demonstrate the role of Cd in EGFR/STAT5 activation, we exposed two epithelial cell lines, BEAS-2B and HEK293, to two different doses (0.4 µM and 1.6 µM) of Cadmium chloride hemipentahydrate (CdCl2·2.5H2O) that are environmentally relevant to levels of Cd found in food and cigarettes for 24 h (hours) and 9 weeks (wks). When comparing cells treated with Cd with control cells, the Cd treated cells exhibited faster proliferation; therefore, we studied activation of EGFR via the STAT5 pathway using immunofluorescence (IF) for protein expression and localization and, in addition, RT-qPCR to examine changes in EGFR/STAT5 inducible genes. Our results showed an increase in EGFR and phosphorylated EGFR (p-EGFR) protein, with 1.6 µM of Cadmium having the highest expression at both 24-hour (hr) and 9-week (wk) exposures. Moreover, the IF analysis also demonstrated an increase of STAT5 and phosphorylated STAT5 (pSTAT5) in both short-term and long-term exposure, with 0.4 µM having the highest expression at 24 h. Finally, via Western blot analysis, we showed that there was a dose-dependent decrease in E-cadherin protein expression and increased N-cadherin in cells treated with low doses of Cd. These data demonstrate that epithelial cells can overcome Cd-mediated toxicity via activation of EGFR pathway to induce cell proliferation and survival and promote epithelial to mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Max Costa
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| |
Collapse
|
10
|
LaCombe R, Cecchini A, Seibert M, Cornelison DDW. EphA1 receptor tyrosine kinase is localized to the nucleus in rhabdomyosarcoma from multiple species. Biol Open 2022; 11:bio059352. [PMID: 36214254 PMCID: PMC9581518 DOI: 10.1242/bio.059352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
While the typical role of receptor tyrosine kinases is to receive and transmit signals at the cell surface, in some cellular contexts (particularly transformed cells) they may also act as nuclear proteins. Aberrant nuclear localization of receptor tyrosine kinases associated with transformation often enhances the transformed phenotype (i.e. nuclear ErbBs promote tumor progression in breast cancer). Rhabdomyosarcoma (RMS), the most common soft tissue tumor in children, develops to resemble immature skeletal muscle and has been proposed to derive from muscle stem/progenitor cells (satellite cells). It is an aggressive cancer with a 5-year survival rate of 33% if it has metastasized. Eph receptor tyrosine kinases have been implicated in the development and progression of many other tumor types, but there are only two published studies of Ephs localizing to the nucleus of any cell type and to date no nuclear RTKs have been identified in RMS. In a screen for protein expression of Ephs in canine RMS primary tumors as well as mouse and human RMS cell lines, we noted strong expression of EphA1 in the nucleus of interphase cells in tumors from all three species. This localization pattern changes in dividing cells, with EphA1 localizing to the nucleus or the cytoplasm depending on the phase of the cell cycle. These data represent the first case of a nuclear RTK in RMS, and the first time that EphA1 has been detected in the nucleus of any cell type.
Collapse
Affiliation(s)
- Ronnie LaCombe
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Morgan Seibert
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - DDW Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Stoyanova II, Lutz D. Functional Diversity of Neuronal Cell Adhesion and Recognition Molecule L1CAM through Proteolytic Cleavage. Cells 2022; 11:cells11193085. [PMID: 36231047 PMCID: PMC9562852 DOI: 10.3390/cells11193085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
The neuronal cell adhesion and recognition molecule L1 does not only 'keep cells together' by way of homophilic and heterophilic interactions, but can also promote cell motility when cleaved into fragments by several proteases. It has largely been thought that such fragments are signs of degradation. Now, it is clear that proteolysis contributes to the pronounced functional diversity of L1, which we have reviewed in this work. L1 fragments generated at the plasma membrane are released into the extracellular space, whereas other membrane-bound fragments are internalised and enter the nucleus, thus conveying extracellular signals to the cell interior. Post-translational modifications on L1 determine the sequence of cleavage by proteases and the subcellular localisation of the generated fragments. Inside the neuronal cells, L1 fragments interact with various binding partners to facilitate morphogenic events, as well as regenerative processes. The stimulation of L1 proteolysis via injection of L1 peptides or proteases active on L1 or L1 mimetics is a promising tool for therapy of injured nervous systems. The collective findings gathered over the years not only shed light on the great functional diversity of L1 and its fragments, but also provide novel mechanistic insights into the adhesion molecule proteolysis that is active in the developing and diseased nervous system.
Collapse
Affiliation(s)
- Irina I. Stoyanova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University, 9002 Varna, Bulgaria
- Department of Brain Ischemia Mechanisms, Research Institute, Medical University, 9002 Varna, Bulgaria
- Correspondence: (I.I.S.); (D.L.)
| | - David Lutz
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum,
44801 Bochum, Germany
- Correspondence: (I.I.S.); (D.L.)
| |
Collapse
|
12
|
Monocentric evaluation of Ki-67 labeling index in combination with a modified RPA score as a prognostic factor for survival in IDH-wildtype glioblastoma patients treated with radiochemotherapy. Strahlenther Onkol 2022; 198:892-906. [PMID: 35612598 PMCID: PMC9515058 DOI: 10.1007/s00066-022-01959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
Purpose The prognosis for glioblastoma patients remains dismal despite intensive research on better treatment options. Molecular and immunohistochemical markers are increasingly being investigated as understanding of their role in disease progression grows. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been shown to have prognostic and therapeutic relevance for glioblastoma patients. Other markers implicated in tumor formation and/or malignancy are p53, Alpha thalassemia/mental retardation syndrome X-linked (ATRX), Epidermal Growth Factor Receptor splice variant III (EGFRvIII), and Ki-67, with loss of nuclear ATRX expression and lower Ki-67 index being associated with prolonged survival. For p53 and EGFRvIII the data are contradictory. Our aim was to investigate the markers mentioned above regarding progression-free (PFS) and overall survival (OS) to evaluate their viability as independent prognostic markers for our patient collective. Methods In this retrospective study, we collected data on patients undergoing radiotherapy due to isocitrate dehydrogenase (IDH) wildtype glioblastoma at a single university hospital between 2014 and 2020. Results Our findings confirm Ki-67 labeling index ≤ 20% as an independent prognostic factor for prolonged PFS as well as MGMT promoter methylation for both prolonged PFS and OS, in consideration of age and Eastern Cooperative Oncology Group (ECOG) status, chemotherapy treatment, and total radiation dose for PFS as well as additionally sex, resection status, and receipt of treatment for progression or recurrence for OS. Additionally, Ki-67 labeling index ≤ 20% showed a significant correlation with prolonged OS in univariate analysis. Modification of the recursive partitioning analysis (RPA) score to include Ki-67 labeling index resulted in a classification with the possible ability to distinguish long-term-survivors from patients with unfavorable prognosis. Conclusion MGMT promoter methylation and Ki-67 labeling index were independent predictors of survival in our collective. We see further studies pooling patient collectives to reach larger patient numbers concerning Ki-67 labeling index as being warranted. Supplementary Information The online version of this article (10.1007/s00066-022-01959-6) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Yamada K, Kizawa R, Yoshida A, Koizumi R, Motohashi S, Shimoyama Y, Hannya Y, Yoshida S, Oikawa T, Shimoda M, Yoshida K. Extracellular PKCδ signals to EGF receptor for tumor proliferation in liver cancer cells. Cancer Sci 2022; 113:2378-2385. [PMID: 35490382 PMCID: PMC9277411 DOI: 10.1111/cas.15386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR‐expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C‐terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ‐EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ‐targeting therapy for liver cancer.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ryusuke Kizawa
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Ayano Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Rei Koizumi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saya Motohashi
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yuya Shimoyama
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Yoshito Hannya
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Saishu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology Department of Internal Medicine The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Masayuki Shimoda
- Department of Pathology The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry The Jikei University School of Medicine 3‐25‐8 Nishi‐Shinbashi, Minato‐ku Tokyo 105‐8461 Japan
| |
Collapse
|
14
|
Picheth GF, Ganzella FADO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022; 17:645-664. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.
Collapse
Affiliation(s)
- Guilherme F Picheth
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.,School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - João Oc Filizzola
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Yan K Canquerino
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela C Cardoso
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Michelle B Collini
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo B Colauto
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Edneia Asr Cavalieri
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
EGFR signaling pathway as therapeutic target in human cancers. Semin Cancer Biol 2022; 85:253-275. [PMID: 35427766 DOI: 10.1016/j.semcancer.2022.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/12/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023]
Abstract
Epidermal Growth Factor Receptor (EGFR) enacts major roles in the maintenance of epithelial tissues. However, when EGFR signaling is altered, it becomes the grand orchestrator of epithelial transformation, and hence one of the most world-wide studied tyrosine kinase receptors involved in neoplasia, in several tissues. In the last decades, EGFR-targeted therapies shaped the new era of precision-oncology. Despite major advances, the dream of converting solid tumors into a chronic disease is still unfulfilled, and long-term remission eludes us. Studies investigating the function of this protein in solid malignancies have revealed numerous ways how tumor cells dysregulate EGFR function. Starting from preclinical models (cell lines, organoids, murine models) and validating in clinical specimens, EGFR-related oncogenic pathways, mechanisms of resistance, and novel avenues to inhibit tumor growth and metastatic spread enriching the therapeutic portfolios, were identified. Focusing on non-small cell lung cancer (NSCLC), where EGFR mutations are major players in the adenocarcinoma subtype, we will go over the most relevant discoveries that led us to understand EGFR and beyond, and highlight how they revolutionized cancer treatment by expanding the therapeutic arsenal at our disposal.
Collapse
|
16
|
Lu X, An L, Fan G, Zang L, Huang W, Li J, Liu J, Ge W, Huang Y, Xu J, Du S, Cao Y, Zhou T, Yin H, Yu L, Jiao S, Wang H. EGFR signaling promotes nuclear translocation of plasma membrane protein TSPAN8 to enhance tumor progression via STAT3-mediated transcription. Cell Res 2022; 32:359-374. [PMID: 35197608 PMCID: PMC8975831 DOI: 10.1038/s41422-022-00628-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
TSPAN family of proteins are generally considered to assemble as multimeric complexes on the plasma membrane. Our previous work uncovered that TSPAN8 can translocate into the nucleus as a membrane-free form, a process that requires TSPAN8 palmitoylation and association with cholesterol to promote its extraction from the plasma membrane and subsequent binding with 14-3-3θ and importin-β. However, what upstream signal(s) regulate(s) the nuclear translocation of TSPAN8, the potential function of TSPAN8 in the nucleus, and the underlying molecular mechanisms all remain unclear. Here, we demonstrate that, epidermal growth factor receptor (EGFR) signaling induces TSPAN8 nuclear translocation by activating the kinase AKT, which in turn directly phosphorylates TSPAN8 at Ser129, an event essential for its binding with 14-3-3θ and importin ß1. In the nucleus, phosphorylated TSPAN8 interacts with STAT3 to enhance its chromatin occupancy and therefore regulates transcription of downstream cancer-promoting genes, such as MYC, BCL2, MMP9, etc. The EGFR-AKT-TSPAN8-STAT3 axis was found to be hyperactivated in multiple human cancers, and associated with aggressive phenotype and dismal prognosis. We further developed a humanized monoclonal antibody hT8Ab4 that specifically recognizes the large extracellular loop of TSPAN8 (TSPAN8-LEL), thus being able to block the extraction of TSPAN8 from the plasma membrane and consequently its nuclear localization. Importantly, both in vitro and in vivo studies demonstrated an antitumor effect of hT8Ab4. Collectively, we discovered an unconventional function of TSPAN8 and dissected the underlying molecular mechanisms, which not only showcase a new layer of biological complexity of traditional membrane proteins, but also shed light on TSPAN8 as a novel therapeutic target for refractory cancers.
Collapse
Affiliation(s)
- Xiaoqing Lu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Breast Surgery, Shanxi Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Guangjian Fan
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijuan Zang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjian Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyu Ge
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwei Huang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Jingxuan Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqian Du
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhao Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijing Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking University Joint Center for Life Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Fabro F, Lamfers MLM, Leenstra S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers (Basel) 2022; 14:600. [PMID: 35158868 PMCID: PMC8833415 DOI: 10.3390/cancers14030600] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.
Collapse
Affiliation(s)
| | | | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
18
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
19
|
Genomic instability as a major mechanism for acquired resistance to EGFR tyrosine kinase inhibitors in cancer. Protein Cell 2021; 13:82-89. [PMID: 34319535 PMCID: PMC8783936 DOI: 10.1007/s13238-021-00855-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
|
20
|
p85β alters response to EGFR inhibitor in ovarian cancer through p38 MAPK-mediated regulation of DNA repair. Neoplasia 2021; 23:718-730. [PMID: 34144267 PMCID: PMC8220107 DOI: 10.1016/j.neo.2021.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022] Open
Abstract
EGFR signaling promotes ovarian cancer tumorigenesis, and high EGFR expression correlates with poor prognosis. However, EGFR inhibitors alone have demonstrated limited clinical benefit for ovarian cancer patients, owing partly to tumor resistance and the lack of predictive biomarkers. Cotargeting EGFR and the PI3K pathway has been previously shown to yield synergistic antitumor effects in ovarian cancer. Therefore, we reasoned that PI3K may affect cellular response to EGFR inhibition. In this study, we revealed PI3K isoform-specific effects on the sensitivity of ovarian cancer cells to the EGFR inhibitor erlotinib. Gene silencing of PIK3CA (p110α) and PIK3CB (p110β) rendered cells more susceptible to erlotinib. In contrast, low expression of PIK3R2 (p85β) was associated with erlotinib resistance. Depletion of PIK3R2, but not PIK3CA or PIK3CB, led to increased DNA damage and reduced level of the nonhomologous end joining DNA repair protein BRD4. Intriguingly, these defects in DNA repair were reversed upon erlotinib treatment, which caused activation and nuclear import of p38 MAPK to promote DNA repair with increased protein levels of 53BP1 and BRD4 and foci formation of 53BP1. Remarkably, inhibition of p38 MAPK or BRD4 re-sensitized PIK3R2-depleted cells to erlotinib. Collectively, these data suggest that p38 MAPK activation and the subsequent DNA repair serve as a resistance mechanism to EGFR inhibitor. Combined inhibition of EGFR and p38 MAPK or DNA repair may maximize the therapeutic potential of EGFR inhibitor in ovarian cancer.
Collapse
|
21
|
Polymorphisms in EGFR Gene Predict Clinical Outcome in Unresectable Non-Small Cell Lung Cancer Treated with Radiotherapy and Platinum-Based Chemoradiotherapy. Int J Mol Sci 2021; 22:ijms22115605. [PMID: 34070597 PMCID: PMC8197839 DOI: 10.3390/ijms22115605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 01/29/2023] Open
Abstract
For non-small cell lung cancer (NSCLC), radiotherapy (RT) and platinum-based chemotherapy (CHT) are among the main treatment options. On the other hand, radioresistance and cytotoxic drug resistance are common causes of failure. The epidermal growth factor receptor (EGFR) plays an important role in radioresponse and therapy resistance. We hypothesized that single nucleotide polymorphisms (SNPs) in the EGFR gene might affect individual sensitivity to these treatments, and thus, therapy outcome and prognosis. The association between functional EGFR SNPs and overall (OS), locoregional recurrence-free (LFRS), and metastasis-free (MFS) survival was examined in 436 patients with unresectable NSCLC receiving RT and platinum-based CHTRT. In a multivariate analysis, the rs712830 CC homozygotes showed reduced OS in the whole group (p = 0.039) and in the curative treatment subset (p = 0.047). The rs712829 TT genotype was strongly associated with decreased LRFS (p = 0.006), and the T-C haplotype was a risk factor for locoregional recurrence in our patients (p = 0.003). The rs2227983 GG alone and in combination with rs712829 T was an indicator of unfavorable LRFS (p = 0.028 and 0.002, respectively). Moreover, significant independent effects of these SNPs on OS, LRFS, and MFS were observed. Our results demonstrate that inherited EGFR gene variants may predict clinical outcomes in NSCLC treated with DNA damage-inducing therapy.
Collapse
|
22
|
Mills JV, Osher E, Rieunier G, Mills IG, Macaulay VM. IGF-1R nuclear import and recruitment to chromatin involves both alpha and beta subunits. Discov Oncol 2021; 12:13. [PMID: 33969359 PMCID: PMC8084799 DOI: 10.1007/s12672-021-00407-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Mature type 1 insulin-like growth factor receptors (IGF-1Rs) are heterotetrameric structures comprising two extracellular α-subunits disulphide-bonded to two transmembrane β-subunits with tyrosine kinase activity. IGF-1R is a well-known cell surface mediator of malignant growth, with an incompletely understood role upon nuclear import as a transcriptional regulator. Previous characterisation of nuclear IGF-1R focused on IGF-1Rβ. Here, we aimed to clarify the source of nuclear IGF-1R and investigate whether α-subunits contribute to nuclear IGF-1R function. Using prostate cancer cell lines DU145 and 22Rv1 we detected nuclear α- and β-subunits, with increase in nuclear signal upon IGF-treatment and reduction in response to IGF-1R inhibitor BMS-754807. Following biotinylation of cell surface proteins, biotinylated α- and β-subunits were detected in nuclear extracts of both cell lines. Furthermore, α- and β-subunits reciprocally co-precipitated from nuclear extract. Finally, we detected recruitment of both subunits to regulatory regions of chromatin, including the promoter of the oncogene JUN, that we previously identified in ChIP-seq as sites of IGF-1Rβ enrichment. These data confirm the cell surface origin of nuclear IGF-1R, suggest the presence of nuclear αβ complexes and reveal that both IGF-1Rα- and β-subunits contribute to pro-tumorigenic functions of nuclear IGF-1R. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00407-8.
Collapse
Affiliation(s)
- Jack V. Mills
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Eliot Osher
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Guillaume Rieunier
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Ian G. Mills
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Valentine M. Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, OX3 7LJ UK
| |
Collapse
|
23
|
Bi Y, Gong L, Liu P, Xiong X, Zhao Y. Nuclear ErbB2 represses DEPTOR transcription to inhibit autophagy in breast cancer cells. Cell Death Dis 2021; 12:397. [PMID: 33854045 PMCID: PMC8047043 DOI: 10.1038/s41419-021-03686-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023]
Abstract
ErbB2, a classical receptor tyrosine kinase, is frequently overexpressed in breast cancer cells. Although the role of ErbB2 in the transmission of extracellular signals to intracellular matrix has been widely studied, the functions of nuclear ErbB2 remain largely elusive. Here, we report a novel function of nuclear ErbB2 in repressing the transcription of DEPTOR, a direct inhibitor of mTOR. Nuclear ErbB2 directly binds to the consensus binding sequence in the DEPTOR promoter to repress its transcription. The kinase activity of ErbB2 is required for its nuclear translocation and transcriptional repression of DEPTOR. Moreover, the repressed DEPTOR by nuclear ErbB2 inhibits the induction of autophagy by activating mTORC1. Thus, our study reveals a novel mechanism for autophagy regulation by functional ErbB2, which translocates to the nucleus and acts as a transcriptional regulator to suppress DEPTOR transcription, leading to activation of the PI3K/AKT/mTOR pathway to inhibit autophagy.
Collapse
Affiliation(s)
- Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyuan Gong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengyuan Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Srivastava S, Pang KM, Iida M, Nelson MS, Liu J, Nam A, Wang J, Mambetsariev I, Pillai R, Mohanty A, McDaniel N, Behal A, Kulkarni P, Wheeler DL, Salgia R. Activation of EPHA2-ROBO1 Heterodimer by SLIT2 Attenuates Non-canonical Signaling and Proliferation in Squamous Cell Carcinomas. iScience 2020; 23:101692. [PMID: 33196021 PMCID: PMC7644594 DOI: 10.1016/j.isci.2020.101692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.
Collapse
Affiliation(s)
- Saumya Srivastava
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ka Ming Pang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Michael S. Nelson
- Light Microscopy Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Jiayi Liu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jiale Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nellie McDaniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Amita Behal
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
25
|
Mohamadzade Z, Mahjoubi F, Soltani BM. Introduction of hsa-miR-512-3p as a new regulator of HER2 signaling pathway in breast cancer. Breast Cancer Res Treat 2020; 185:95-106. [PMID: 32974790 DOI: 10.1007/s10549-020-05937-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Dysregulation of HER2 signaling pathway in breast cancer is well documented. Our bioinformatics analysis predicted hsa-miR-512-3p (miR-512-3p) as a bona fide regulator of HER2 as well as HER3, PIK3R2, and AKT1 genes. Then, we intended to examine the effect of miR-512-3p on the predicted target genes that are involved in HER2 signaling pathway. METHODS AND RESULTS RT-qPCR results indicated lower expression of miR-512-3p in breast cancer specimens, compared to their normal pairs. Overexpression of miR-512-3p resulted in HER2, HER3, PIK3R2, and AKT1 gene downregulation, detected by RT-qPCR and the result was confirmed by western analysis and ELIZA test against p-AKT, BAX, FADD, and HER2 proteins in SKBR3 cells, respectively. Then, dual-luciferase assay supported the direct interaction of miR-512-3p with 3'UTR sequences of HER2, HER3, PIK3R2, and AKT1 target genes. When miR-512-3p was overexpressed, BAX/BCL2 expression ratio and proportion of sub-G1 cell population were increased in transfected SKBR3 cells, detected by RT-qPCR and flow cytometry, respectively. These results were consistent with the decreased viability of transfected cells, documented by MTT assay. In addition, results were consistent with the upregulation of BAX, BAK, BOK, PTEN, P53, and P21 genes and downregulation of CCND1 gene in SKBR3 cells. Although the overexpression of miR-512 resulted in cell cycle arrest at Sub-G1 stage in MDA-MB-231 cells, this effect seemed independent of targeting HER2, HER3, PIK3R2, and AKT1 target genes. CONCLUSION Overall, results indicated that miR-512-3p acts as a cell-type-specific tumor suppressor, through targeting HER2, HER3, PIK3R2, and AKT1 transcripts. These results suggest miR-512-3p as a potential candidate marker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Zahra Mohamadzade
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 111-14115, Iran
| | - Frouzande Mahjoubi
- Clinical Genetic Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 111-14115, Iran.
| |
Collapse
|
26
|
Anti-Metastatic Activity of an Anti-EGFR Monoclonal Antibody against Metastatic Colorectal Cancer with KRAS p.G13D Mutation. Int J Mol Sci 2020; 21:ijms21176037. [PMID: 32839411 PMCID: PMC7504481 DOI: 10.3390/ijms21176037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
The now clinically-used anti-epidermal growth factor receptor (EGFR) monoclonal antibodies have demonstrated significant efficacy only in patients with metastatic colorectal cancer (mCRC), with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS). However, no effective treatments for patients with mCRC with KRAS mutated tumors have been approved yet. Therefore, a new strategy for targeting mCRC with KRAS mutated tumors is desired. In the present study, we examined the anti-tumor activities of a novel anti-EGFR monoclonal antibody, EMab-17 (mouse IgG2a, kappa), in colorectal cancer (CRC) cells with the KRAS p.G13D mutation. This antibody recognized endogenous EGRF in CRC cells with or without KRAS mutations, and showed a high sensitivity for CRC cells in flow cytometry, indicating that EMab-17 possesses a high binding affinity to the endogenous EGFR. In vitro experiments showed that EMab-17 exhibited antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity activities against CRC cells. In vivo analysis revealed that EMab-17 inhibited the metastases of HCT-15 and HCT-116 cells in the livers of nude mouse metastatic models, unlike the anti-EGFR monoclonal antibody EMab-51 of subtype mouse IgG1. In conclusion, EMab-17 may be useful in an antibody-based therapy against mCRC with the KRAS p.G13D mutation.
Collapse
|
27
|
Pan C, Duan H, Wu Y, Zhu C, Yi C, Duan Y, Lu D, Guo C, Wu D, Wang Y, Fu X, Xu J, Chen Y, Luo M, Tian W, Pan T, Xu W, Zhang S, Huang J. Inhibition of DNA‑PK by gefitinib causes synergism between gefitinib and cisplatin in NSCLC. Int J Oncol 2020; 57:939-955. [PMID: 32945394 PMCID: PMC7473755 DOI: 10.3892/ijo.2020.5103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
Lung cancer has the highest incidence and mortality rates among the malignant tumor types worldwide. Platinum‑based chemotherapy is the main treatment for advanced non‑small‑cell lung cancer (NSCLC), and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) have greatly improved the survival of patients with EGFR‑sensitive mutations. However, there is no standard therapy for treating patients who are EGFR‑TKI resistant. Combining EGFR‑TKIs and platinum‑based chemotherapy is the most popular strategy in the clinical practice. However, the synergistic mechanism between EGFR‑TKIs and platinum remains unknown. Therefore, the aim of the present study was to determine the synergistic mechanism of gefitinib (an EGFR‑TKI) and cisplatin (a main platinum‑based drug). MTT assay, apoptosis analysis, tumorsphere formation and an orthotropic xenograft mouse model were used to examine the combination effects of gefitinib and cisplatin on NSCLC. Co‑immunoprecipitation and immunofluorescence were used to identify the underlying mechanism. It was found that gefitinib could selectively inhibit EGFR from entering the nucleus, decrease DNA‑PK activity and enhance the cytotoxicity of cisplatin on NSCLC. Collectively, the results suggested that inhibition of DNA‑dependent protein kinase by gefitinib may be due to the synergistic mechanism between gefitinib and cisplatin. Thus, the present study provides a novel insight into potential biomarkers for the selection of combination therapy of gefitinib and cisplatin.
Collapse
Affiliation(s)
- Chi Pan
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Huijie Duan
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yinan Wu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chenghao Yi
- Department of Breast Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yin Duan
- Department of Breast Surgery, The Zhejiang Provincial Hospital of Traditional Chinese Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Demin Lu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Cheng Guo
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Deqi Wu
- Department of Gastrointestinal Thyroid and Breast Surgery, The Shulan (Hangzhou) Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanyan Wang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xianhua Fu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jing Xu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Meng Luo
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Tian
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tao Pan
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhong Xu
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Suzhan Zhang
- Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jianjin Huang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
28
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
29
|
Chromenopyrimidinone Controls Stemness and Malignancy by suppressing CD133 Expression in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12051193. [PMID: 32397206 PMCID: PMC7281429 DOI: 10.3390/cancers12051193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133+ cells control tumor maintenance and progression, compounds that target CD133+ cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133+ cells in mixed HCC cell populations. CPO not only significantly inhibited cell proliferation in HCC cells exhibiting different CD133 expression levels, but also effectively induced apoptosis and increased the expression of LC3-II in HCC cells. CPO also exhibits in vivo therapeutic efficiency in HCC. Specifically, CPO suppressed the expression of CD133 by altering the subcellular localization of CD133 from the membrane to lysosomes in CD133+ HCC cells. Moreover, CPO treatment induced point mutations in the ADRB1, APOB, EGR2, and UBE2C genes and inhibited the expression of these proteins in HCC and the expression of UBE2C is particularly controlled by CD133 expression among those four proteins in HCC. Our results suggested that CPO may suppress stemness and malignancies in vivo and in vitro by decreasing CD133 and UBE2C expression in CD133+ HCC. Our study provides evidence that CPO could act as a novel therapeutic agent for the effective treatment of CD133+ HCC.
Collapse
|
30
|
Arnli MB, Meta R, Lydersen S, Torp SH. HER3 and HER4 are highly expressed in human meningiomas. Pathol Res Pract 2019; 215:152551. [PMID: 31400925 DOI: 10.1016/j.prp.2019.152551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 11/27/2022]
Abstract
HER3 and HER4 are tyrosine kinase receptors of the ErbB family that have been detected in several cancers but lack substantial investigation in human meningiomas. In this study, HER3 and -4 expression levels were evaluated as potential biomarkers by immunohistochemistry and explored for association to clinical features in a large series of human meningiomas. 186 primary intracranial meningiomas from adult patients were investigated with antibodies against HER3 and -4 intracellular domains. Tumors were scored with a staining index (SI) based on cytoplasmic/membranous staining intensity and on the percentage of positive cells. SIs were tested for associations with WHO malignancy grade, tumor subtype, localization, and prognosis. HER3 and HER4 were highly expressed in most tumors. Both cytoplasmic and membranous immunoreactivity occurred, and for HER4 nuclear immunoreactivity was observed as well. Non-neoplastic meningeal tissue was not immunoreactive. HER3 and -4 immunoreactivity was not associated with WHO malignancy grade, nor with recurrence or survival in adjusted analyses. Meningiomas of all grades were shown to widely express both HER3 and HER4 receptors. This feature may have diagnostic value since non-neoplastic meninges were not immunoreactive. There was no prognostic significance in adjusted survival analyses.
Collapse
Affiliation(s)
- Magnus Bossum Arnli
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Faculty of Medicine and Health Sciences, Department of Clinical and Molecular Medicine (IKOM), PO Box 8905, NO-7491 Trondheim, Norway.
| | - Rahmina Meta
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Faculty of Medicine and Health Sciences, Department of Clinical and Molecular Medicine (IKOM), PO Box 8905, NO-7491 Trondheim, Norway.
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Department of Mental Health, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; RKBU Midt-Norge, NTNU, Postboks 8905 MTFS, NO-7491 Trondheim, Norway.
| | - Sverre Helge Torp
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Faculty of Medicine and Health Sciences, Department of Clinical and Molecular Medicine (IKOM), PO Box 8905, NO-7491 Trondheim, Norway; Department of Pathology, St. Olavs Hospital, Trondheim, Norway; St. Olavs hospital HF, Postboks 3250 Torgarden, 7006 Trondheim, Norway.
| |
Collapse
|
31
|
Chen MK, Du Y, Sun L, Hsu JL, Wang YH, Gao Y, Huang J, Hung MC. H 2O 2 induces nuclear transport of the receptor tyrosine kinase c-MET in breast cancer cells via a membrane-bound retrograde trafficking mechanism. J Biol Chem 2019; 294:8516-8528. [PMID: 30962283 DOI: 10.1074/jbc.ra118.005953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/27/2019] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are cellular by-products produced from metabolism and also anticancer agents, such as ionizing irradiation and chemotherapy drugs. The ROS H2O2 has high rates of production in cancer cells because of their rapid proliferation. ROS oxidize DNA, protein, and lipids, causing oxidative stress in cancer cells and making them vulnerable to other stresses. Therefore, cancer cell survival relies on maintaining ROS-induced stress at tolerable levels. Hepatocyte growth factor receptor (c-MET) is a receptor tyrosine kinase overexpressed in malignant cancer types, including breast cancer. Full-length c-MET triggers a signal transduction cascade from the plasma membrane that, through downstream signaling proteins, up-regulates cell proliferation and migration. Recently, c-MET was shown to interact and phosphorylate poly(ADP-ribose) polymerase 1 in the nucleus and to induce poly(ADP-ribose) polymerase inhibitor resistance. However, it remains unclear how c-MET moves from the cell membrane to the nucleus. Here, we demonstrate that H2O2 induces retrograde transport of membrane-associated full-length c-MET into the nucleus of human MCF10A and MCF12A or primary breast cancer cells. We further show that knocking down either coatomer protein complex subunit γ1 (COPG1) or Sec61 translocon β subunit (SEC61β) attenuates the accumulation of full-length nuclear c-MET. However, a c-MET kinase inhibitor did not block nuclear c-MET transport. Moreover, nuclear c-MET interacted with KU proteins in breast cancer cells, suggesting a role of full-length nuclear c-MET in ROS-induced DNA damage repair. We conclude that a membrane-bound retrograde vesicle transport mechanism facilitates membrane-to-nucleus transport of c-MET in breast cancer cells.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yi Du
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Linlin Sun
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Yu-Han Wang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan
| | - Yuan Gao
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiaxing Huang
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mien-Chie Hung
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 402, Taiwan; Center of Molecular Medicine, China Medical University, Taichung 402, Taiwan.
| |
Collapse
|
32
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
33
|
Cordo Russo RI, Chervo MF, Madera S, Charreau EH, Elizalde PV. Nuclear ErbB-2: a Novel Therapeutic Target in ErbB-2-Positive Breast Cancer? Discov Oncol 2019; 10:64-70. [PMID: 30656558 DOI: 10.1007/s12672-018-0356-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Membrane overexpression of ErbB-2 (MErbB-2), a member of the ErbB family of receptor tyrosine kinases, occurs in 15-20% of breast cancers (BC) and constitutes a therapeutic target in this BC subtype (ErbB-2-positive). Although MErbB-2-targeted therapies have significantly improved patients' clinical outcome, resistance to available drugs is still a major issue in the clinic. Lack of accurate biomarkers for predicting responses to anti-ErbB-2 drugs at the time of diagnosis is also an important unresolved issue. Hence, a better understanding of the ErbB-2 signaling pathway constitutes a critical task in the battle against BC. In its canonical mechanism of action, MErbB-2 activates downstream signaling pathways, which transduce its proliferative effects in BC. The dogma of ErbB-2 mechanism of action has been challenged by the demonstration that MErbB-2 migrates to the nucleus, where it acts as a transcriptional regulator. Accumulating findings demonstrate that nuclear ErbB-2 (NErbB-2) is involved in BC growth and metastasis. Emerging evidence also reveal a role of NErbB-2 in the response to available anti-MErbB-2 agents. Here, we will review NErbB-2 function in BC and will particularly discuss the role of NErbB-2 as a novel target for therapy in ErbB-2-positive BC.
Collapse
Affiliation(s)
- Rosalía I Cordo Russo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| | - María F Chervo
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Santiago Madera
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Eduardo H Charreau
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
34
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
35
|
Wang YN, Lee HH, Hung MC. A novel ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases. J Biomed Sci 2018; 25:83. [PMID: 30449278 PMCID: PMC6241042 DOI: 10.1186/s12929-018-0484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ribonuclease is known to participate in host defense system against pathogens, such as parasites, bacteria, and virus, which results in innate immune response. Nevertheless, its potential impact to host cells remains unclear. Of interest, several ribonucleases do not act as catalytically competent enzymes, suggesting that ribonucleases may be associated with certain intrinsic functions other than their ribonucleolytic activities. Most recently, human pancreatic ribonuclease 5 (hRNase5; also named angiogenin; hereinafter referred to as hRNase5/ANG), which belongs to the human ribonuclease A superfamily, has been demonstrated to function as a ligand of epidermal growth factor receptor (EGFR), a member of the receptor tyrosine kinase family. As a newly identified EGFR ligand, hRNase5/ANG associates with EGFR and stimulates EGFR and the downstream signaling in a catalytic-independent manner. Notably, hRNase5/ANG, whose level in sera of pancreatic cancer patients, serves as a non-invasive serum biomarker to stratify patients for predicting the sensitivity to EGFR-targeted therapy. Here, we describe the hRNase5/ANG-EGFR pair as an example to highlight a ligand-receptor relationship between families of ribonucleases and receptor tyrosine kinases, which are thought as two unrelated protein families associated with distinct biological functions. The notion of serum biomarker-guided EGFR-targeted therapies will also be discussed. Furthering our understanding of this novel ligand-receptor interaction will shed new light on the search of ligands for their cognate receptors, especially those orphan receptors without known ligands, and deepen our knowledge of the fundamental research in membrane receptor biology and the translational application toward the development of precision medicine.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030 USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404 Taiwan
| |
Collapse
|
36
|
Kato T, Jin CS, Lee D, Ujiie H, Fujino K, Hu HP, Wada H, Wu L, Chen J, Weersink RA, kanno H, Hatanaka Y, Hatanaka KC, Kaga K, Matsui Y, Matsuno Y, De Perrot M, Wilson BC, Zheng G, Yasufuku K. Preclinical investigation of folate receptor-targeted nanoparticles for photodynamic therapy of malignant pleural mesothelioma. Int J Oncol 2018; 53:2034-2046. [PMID: 30226590 PMCID: PMC6192720 DOI: 10.3892/ijo.2018.4555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/01/2018] [Indexed: 11/07/2022] Open
Abstract
Photodynamic therapy (PDT) following lung-sparing extended pleurectomy for malignant pleural mesothelioma (MPM) has been investigated as a potential means to kill residual microscopic cells. High expression levels of folate receptor 1 (FOLR1) have been reported in MPM; therefore, targeting FOLR1 has been considered a novel potential strategy. The present study developed FOLR1‑targeting porphyrin-lipid nanoparticles (folate-porphysomes, FP) for the treatment of PDT. Furthermore, inhibition of activated epidermal growth factor (EGFR)-associated survival pathways enhance PDT efficacy. In the present study, these approaches were combined; FP-based PDT was used together with an EGFR-tyrosine kinase inhibitor (EGFR-TKI). The frequency of FOLR1 and EGFR expression in MPM was analyzed using tissue microarrays. Confocal microscopy and a cell viability assay were performed to confirm the specificity of FOLR1‑targeting cellular uptake and photocytotoxicity in vitro. In vivo fluorescence activation and therapeutic efficacy were subsequently examined. The effects of EGFR-TKI were also assessed in vitro. The in vivo combined antitumor effect of EGFR-TKI and FP-PDT was then evaluated. The results revealed that FOLR1 and EGFR were expressed in 79 and 89% of MPM samples, respectively. In addition, intracellular uptake of FP corresponded well with FOLR1 expression. When MPM cells were incubated with FP and then irradiated at 671 nm, there was significant in vitro cell death, which was inhibited in the presence of free folic acid, thus suggesting the specificity of FPs. FOLR1 targeting resulted in disassembly of the porphysomes and subsequent fluorescence activation in intrathoracic disseminated MPM tumors, as demonstrated by ex vivo tissue imaging. FP-PDT resulted in significant cellular damage and apoptosis in vivo. Furthermore, the combination of pretreatment with EGFR-TKI and FP-PDT induced a marked improvement of treatment responses. In conclusion, FP-based PDT induced selective destruction of MPM cells based on FOLR1 targeting, and pretreatment with EGFR-TKI further enhanced the therapeutic response.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Cheng s. Jin
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Kosuke Fujino
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Licun Wu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Juan Chen
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
| | - Rober a. Weersink
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Hiromi kanno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kanako c. Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido 060-8638, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Marc De Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Brian c. Wilson
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Gang Zheng
- Graduate Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9
- Guided Therapeutics, TECHNA Institute, University Health Network, Toronto, ON M5G 1L5
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
- DLVR Therapeutics Inc. and University Health Network, Toronto, ON M5G 0A3, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
37
|
Kakad PP, Penserga T, Davis BP, Henry B, Boerner J, Riso A, Pielage J, Godenschwege TA. An ankyrin-binding motif regulates nuclear levels of L1-type neuroglian and expression of the oncogene Myc in Drosophila neurons. J Biol Chem 2018; 293:17442-17453. [PMID: 30257867 DOI: 10.1074/jbc.ra118.004240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is well-known for its importance in nervous system development and cancer progression. In addition to its role as a plasma membrane protein in cytoskeletal organization, recent in vitro studies have revealed that both transmembrane and cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus. In vitro studies indicate that nuclear L1CAM affects genes with functions in DNA post-replication repair, cell cycle control, and cell migration and differentiation, but its in vivo role and how its nuclear levels are regulated is less well-understood. Here, we report that mutations in the conserved ankyrin-binding domain affect nuclear levels of the sole Drosophila homolog neuroglian (Nrg) and that it also has a noncanonical role in regulating transcript levels of the oncogene Myc in the adult nervous system. We further show that altered nuclear levels of Nrg correlate with altered transcript levels of Myc in neurons, similar to what has been reported for human glioblastoma stem cells. However, whereas previous in vitro studies suggest that increased nuclear levels of L1CAM promote tumor cell survival, we found here that elevated levels of nuclear Nrg in neurons are associated with increased sensitivity to oxidative stress and reduced life span of adult animals. We therefore conclude that these findings are of potential relevance to the management of neurodegenerative diseases associated with oxidative stress and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Riso
- the Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458 and
| | - Jan Pielage
- the Department of Biology, Division of Zoology/Neurobiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | | |
Collapse
|
38
|
Ebrahimi E, Almasi-Hashiani A, Ghaffari K, Shirkoohi R. Mitochondrial DNA copy number instability in ERBB2-amplified breast cancer tumors. EXCLI JOURNAL 2018; 17:149-158. [PMID: 29743853 PMCID: PMC5938539 DOI: 10.17179/excli2017-819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/12/2017] [Indexed: 11/10/2022]
Abstract
Increase in the copy number of ERBB2, a Tyrosine Kinase Receptor (TKR) leads to the overexpression of oncogene product and consequently uncontrolled cell proliferation which has been reported in different aggressive cancers with mitochondrial malfunctions. Although, amplification of ERBB2 has been reported in different studies; however, the association between changes in mitochondrial DNA content and the ERBB2 gene copy number is poorly understood. The relative mitochondrial DNA content of breast cancer tumor tissues of 70 patients who were referred to Imam Khomeini Hospital Complex was determined using quantitative Real-time PCR. Multiplex ligation-dependent probe amplification (MLPA) was conducted to evaluate the ERBB2 gene copy number variation and finally, two-sample Wilcoxon rank-sum (Mann-Whitney) test was used to investigate the possible association between mitochondrial DNA (mtDNA) content and the ERBB2 gene amplification. Seventeen out of 70 breast cancer tumor tissues were found with ERBB2 gene amplification. Comparison of the mitochondrial DNA content of the aforementioned samples with the rest of the cases showed a significant decrease in the mitochondrial DNA content of the ERBB2-amplified samples (P=0.01). Our data provided evidence that ERBB2 have the potential to have a regulatory role over mitochondrial activity by controlling the mtDNA content.
Collapse
Affiliation(s)
- Elmira Ebrahimi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Kimia Ghaffari
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7582730. [PMID: 29743983 PMCID: PMC5878876 DOI: 10.1155/2018/7582730] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/23/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Many cancer therapies produce toxic side effects whose molecular mechanisms await full elucidation. The most feared and studied side effect of chemotherapeutic drugs is cardiotoxicity. Also, skeletal muscle physiology impairment has been recorded after many chemotherapeutical treatments. However, only doxorubicin has been extensively studied for its side effects on skeletal muscle. Chemotherapeutic-induced adverse side effects are, in many cases, mediated by mitochondrial damage. In particular, trastuzumab and sunitinib toxicity is mainly associated with mitochondria impairment and is mostly reversible. Vice versa, doxorubicin-induced toxicity not only includes mitochondria damage but can also lead to a more robust and extensive cell injury which is often irreversible and lethal. Drugs interfering with mitochondrial functionality determine the depletion of ATP reservoirs and lead to subsequent reversible contractile dysfunction. Mitochondrial damage includes the impairment of the respiratory chain and the loss of mitochondrial membrane potential with subsequent disruption of cellular energetic. In a context of increased stress, AMPK has a key role in maintaining energy homeostasis, and inhibition of the AMPK pathway is one of the proposed mechanisms possibly mediating mitochondrial toxicity due to chemotherapeutics. Therapies targeting and protecting cell metabolism and energy management might be useful tools in protecting muscular tissues against the toxicity induced by chemotherapeutic drugs.
Collapse
|
40
|
An Z, Aksoy O, Zheng T, Fan QW, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene 2018; 37:1561-1575. [PMID: 29321659 PMCID: PMC5860944 DOI: 10.1038/s41388-017-0045-7] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/05/2023]
Abstract
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Collapse
Affiliation(s)
- Zhenyi An
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ozlem Aksoy
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Tina Zheng
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Qi-Wen Fan
- Department of Neurology, University of California, San Francisco, CA, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
41
|
Yamaoka T, Ohba M, Ohmori T. Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. Int J Mol Sci 2017; 18:ijms18112420. [PMID: 29140271 PMCID: PMC5713388 DOI: 10.3390/ijms18112420] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer therapies targeting epidermal growth factor receptor (EGFR), such as small-molecule kinase inhibitors and monoclonal antibodies, have been developed as standard therapies for several cancers, such as non-small cell lung cancer, colorectal cancer, pancreatic cancer, breast cancer, and squamous cell carcinoma of the head and neck. Although these therapies can significantly prolong progression-free survival, curative effects are not often achieved because of intrinsic and/or acquired resistance. The resistance mechanisms to EGFR-targeted therapies can be categorized as resistant gene mutations, activation of alternative pathways, phenotypic transformation, and resistance to apoptotic cell death. Analysis of the processes that modulate EGFR signal transduction by EGFR-targeted inhibitors, such as tyrosine kinase inhibitors and monoclonal antibodies, has revealed new therapeutic opportunities and has elucidated novel mechanisms contributing to the discovery of more effective anticancer treatments. In this review, we discuss the roles of EGFR in cancer development, therapeutic strategies for targeting EGFR, and resistance mechanisms to EGFR-targeted therapies, with a focus on cancer therapies for individual patients.
Collapse
Affiliation(s)
- Toshimitsu Yamaoka
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Motoi Ohba
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Tohru Ohmori
- Institute of Molecular Oncology, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|
42
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
43
|
Ray A. Tumor-linked HER2 expression: association with obesity and lipid-related microenvironment. Horm Mol Biol Clin Investig 2017; 32:/j/hmbci.ahead-of-print/hmbci-2017-0020/hmbci-2017-0020.xml. [PMID: 29087955 DOI: 10.1515/hmbci-2017-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
Abstract
Obesity is associated with the risk of several health disorders including certain cancers. Among obesity-related cancers, postmenopausal breast carcinoma is a well-studied one. Apart from an increase in certain types of lipids in obesity, excess adipose tissue releases many hormone-like cytokines/adipokines, which are usually pro-inflammatory in nature. Leptin is one of such adipokines and significantly linked with the intracellular signaling pathways of other growth factors such as insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2). In general, HER2 is overexpressed in roughly 30% of breast carcinomas; its presence indicates aggressive tumor behavior. Conversely, HER2 has certain effects in normal conditions such as differentiation of preadipocytes, cardiovascular health and vitamin D metabolism. HER2 has no known endogenous ligand, but it may form dimers with other three members of the epidermal growth factor receptor (EGFR) family and can activate downstream signaling pathways. Furthermore, HER2 is intimately connected with several enzymes, e.g. fatty acid synthase (FASN), phosphatidylinositol 3-kinase (PI3K), AKT and mechanistic target of rapamycin (mTOR), all of which play significant regulatory roles in lipogenic pathways or lipid metabolism. In obesity-related carcinogenesis, characteristics like insulin resistance and elevated IGF-1 are commonly observed. Both IGF-1 and leptin can modulate EGFR and HER2 signaling pathways. Although clinical studies have shown mixed results, the behavior of HER2+ tumor cells including HER2 levels can be altered by several factors such as obesity, leptin and fatty acids. A precise knowledge is useful in new therapeutic approaches against HER+ tumors.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, 20 Seton Hill Drive, Greensburg, PA 15601, USA, Phone: +(724) 552-2882, Fax: +(724) 552-2865
| |
Collapse
|
44
|
Döring P, Pilo GM, Calvisi DF, Dombrowski F. [Nuclear Her2 expression in hepatocytes in liver disease]. DER PATHOLOGE 2017; 38:211-217. [PMID: 29018945 DOI: 10.1007/s00292-017-0351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Her2 is a well-known member of the epidermal growth factor receptor (EGFR) superfamily, a group of transmembrane receptors that mediate effects of proliferation and survival and thus play an important role in tumorigenesis. EGFRs can translocate to the nucleus and may mediate DNA repair and cell cycle arrest. OBJECTIVES The aim of this study was to characterize hepatocellular Her2 expression in different liver diseases. MATERIALS AND METHODS Her2 expression was analyzed by immunohistochemistry in 674 liver biopsies. RESULTS Hepatocytes often revealed a nuclear and cytoplasmic Her2 expression in different liver diseases with the strongest association to alcoholic steatohepatitis. The histologic parameters of hepatocellular ballooning and the presence of Mallory-Denk bodies strongly correlated with Her2 positivity. Interestingly, in hepatocellular carcinomas (HCC) nuclear Her2 expression was frequently observed. Furthermore, Her2 positive hepatocytes showed a loss of estrogen receptor expression and increased expression of p21, a cell cycle regulator, and pSTAT3, a downstream effector of nuclear Her2. CONCLUSIONS Nuclear Her2 expression in hepatocytes with further metabolic and cell cycle alterations may imply a so far unknown mechanism of a stress response. So far, the effects on disease course and a possible role of nuclear Her2 in progression to HCC are unclear and the subject of future research.
Collapse
Affiliation(s)
- P Döring
- Institut für Pathologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475, Greifswald, Deutschland.
| | - G M Pilo
- Institut für Pathologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475, Greifswald, Deutschland
| | - D F Calvisi
- Institut für Pathologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475, Greifswald, Deutschland
| | - F Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, Friedrich-Loeffler-Str. 23e, 17475, Greifswald, Deutschland
| |
Collapse
|
45
|
Lan HN, Hong P, Li RN, Shan AS, Zheng X. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes. Domest Anim Endocrinol 2017; 61:39-47. [PMID: 28667940 DOI: 10.1016/j.domaniend.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/01/2022]
Abstract
The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal.
Collapse
Affiliation(s)
- H N Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - P Hong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P. R. China
| | - R N Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P. R. China
| | - A S Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - X Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P. R. China.
| |
Collapse
|
46
|
Burgermeister E, Höde P, Betge J, Gutting T, Merkel A, Wu W, Tänzer M, Mossner M, Nowak D, Magdeburg J, Rückert F, Sticht C, Breitkopf-Heinlein K, Schulte N, Härtel N, Belle S, Post S, Gaiser T, Heppner BI, Behrens HM, Röcken C, Ebert MPA. Epigenetic silencing of tumor suppressor candidate 3 confers adverse prognosis in early colorectal cancer. Oncotarget 2017; 8:84714-84728. [PMID: 29156678 PMCID: PMC5689568 DOI: 10.18632/oncotarget.20950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Colorectal cancer (CRC) is a biologically and clinically heterogeneous disease. Even though many recurrent genomic alterations have been identified that may characterize distinct subgroups, their biological impact and clinical significance as prognostic indicators remain to be defined. The tumor suppressor candidate-3 (TUSC3/N33) locates to a genomic region frequently deleted or silenced in cancers. TUSC3 is a subunit of the oligosaccharyltransferase (OST) complex at the endoplasmic reticulum (ER) which catalyzes bulk N-glycosylation of membrane and secretory proteins. However, the consequences of TUSC3 loss are largely unknown. Thus, the aim of the study was to characterize the functional and clinical relevance of TUSC3 expression in CRC patients' tissues (n=306 cases) and cell lines. TUSC3 mRNA expression was silenced by promoter methylation in 85 % of benign adenomas (n=46 cases) and 35 % of CRCs (n =74 cases). Epidermal growth factor receptor (EGFR) was selected as one exemplary ER-derived target protein of TUSC3-mediated posttranslational modification. We found that TUSC3 inhibited EGFR-signaling and promoted apoptosis in human CRC cells, whereas TUSC3 siRNA knock-down increased EGFR-signaling. Accordingly, in stage I/II node negative CRC patients (n=156 cases) loss of TUSC3 protein expression was associated with poor overall survival. In sum, our data suggested that epigenetic silencing of TUSC3 may be useful as a molecular marker for progression of early CRC.
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Patrick Höde
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Johannes Betge
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gutting
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Merkel
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wen Wu
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Tänzer
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Maximilian Mossner
- Department of Medicine III, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Nowak
- Department of Medicine III, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Magdeburg
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix Rückert
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- Center for Medical Research (ZMF), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadine Schulte
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicolai Härtel
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Belle
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Post
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Christoph Röcken
- Institute of Pathology, Christian-Albrechts University, Kiel, Germany
| | - Matthias P A Ebert
- Department of Medicine II, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
47
|
Torilis japonica extract fraction compound, EGFR-targeted inhibition of cancer abnormal metastasis in A549 lung cancer cells. Oncol Rep 2017; 38:1206-1212. [DOI: 10.3892/or.2017.5771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/14/2017] [Indexed: 11/05/2022] Open
|
48
|
Kumar R, Deivendran S, Santhoshkumar TR, Pillai MR. Signaling coupled epigenomic regulation of gene expression. Oncogene 2017. [DOI: 10.1038/onc.2017.201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Koustas E, Karamouzis MV, Mihailidou C, Schizas D, Papavassiliou AG. Co-targeting of EGFR and autophagy signaling is an emerging treatment strategy in metastatic colorectal cancer. Cancer Lett 2017; 396:94-102. [PMID: 28323034 DOI: 10.1016/j.canlet.2017.03.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Chrysovalantou Mihailidou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
50
|
Brand TM, Iida M, Corrigan KL, Braverman CM, Coan JP, Flanigan BG, Stein AP, Salgia R, Rolff J, Kimple RJ, Wheeler DL. RETRACTED: The receptor tyrosine kinase AXL mediates nuclear translocation of the epidermal growth factor receptor. Sci Signal 2017; 10:10/460/eaag1064. [PMID: 28049763 PMCID: PMC7094775 DOI: 10.1126/scisignal.aag1064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidermal growth factor receptor (EGFR) is a therapeutic target in patients with various cancers. Unfortunately, resistance to EGFR-targeted therapeutics is common. Previous studies identified two mechanisms of resistance to the EGFR monoclonal antibody cetuximab. Nuclear translocation of EGFR bypasses the inhibitory effects of cetuximab, and the receptor tyrosine kinase AXL mediates cetuximab resistance by maintaining EGFR activation and downstream signaling. Thus, we hypothesized that AXL mediated the nuclear translocation of EGFR in the setting of cetuximab resistance. Cetuximab-resistant clones of non-small cell lung cancer in culture and patient-derived xenografts in mice had increased abundance of AXL and nuclear EGFR (nEGFR). Cellular fractionation analysis, super-resolution microscopy, and electron microscopy revealed that genetic loss of AXL reduced the accumulation of nEGFR. SRC family kinases (SFKs) and HER family ligands promote the nuclear translocation of EGFR. We found that AXL knockdown reduced the expression of the genes encoding the SFK family members YES and LYN and the ligand neuregulin-1 (NRG1). AXL knockdown also decreased the interaction between EGFR and the related receptor HER3 and accumulation of HER3 in the nucleus. Overexpression of LYN and NRG1 in cells depleted of AXL resulted in accumulation of nEGFR, rescuing the deficit induced by lack of AXL. Collectively, these data uncover a previously unrecognized role for AXL in regulating the nuclear translocation of EGFR and suggest that AXL-mediated SFK and NRG1 expression promote this process.
Collapse
Affiliation(s)
- Toni M. Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Kelsey L. Corrigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Cara M. Braverman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - John P. Coan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Bailey G. Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Andrew P. Stein
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research. City of Hope Comprehensive Cancer Center. 1500 East Duarte Road, Duarte, CA, 91010
| | - Jana Rolff
- Experimental Pharmacology and Oncology Berlin-Buch GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Randall J. Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, Wisconsin, 53705 USA,Corresponding author.
| |
Collapse
|