1
|
Dewhirst MW. A translational review of hyperthermia biology. Int J Hyperthermia 2025; 42:2447952. [PMID: 39799944 DOI: 10.1080/02656736.2024.2447952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted. The effects of hyperthermia are time and temperature dependent. Because intra-tumoral temperatures are non-uniform in tumors, one has to account for differential biologic effects in different parts of a tumor that occur simultaneously during and after hyperthermia.
Collapse
Affiliation(s)
- Mark W Dewhirst
- Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Xu A, Li X, Cai Q, Yang C, Yang M, Gao H, Cheng M, Chen X, Ji F, Tang H, Wang K. CircXPO6 promotes breast cancer progression through competitively inhibiting the ubiquitination degradation of c-Myc. Mol Cell Biochem 2025; 480:1731-1745. [PMID: 39179754 DOI: 10.1007/s11010-024-05093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The number of breast cancer (BC) patients is increasing year by year, which is severely endangering to human life and health. c-Myc is a transcription factor, studies have shown that it is a very significant factor in tumor progression, but how it is regulated in BC is still not well understood. Here, we used the RIP microarray sequencing to confirm circXPO6, which had a high affinity with c-Myc and highly expressed in triple-negative breast cancer (TNBC) tissues and cells. CircXPO6 overexpression promoted tumor growth in vivo and in vitro. Furthermore, circXPO6 largely promoted the expression of genes related to glucose metabolism, such as GLUT1, HK2, and MCT4 in TNBC cells. Finally, high levels of circXPO6 expression were found to be closely associated with malignant pathological factors, such as tumor size, lymph node metastasis, TNM staging, and histopathological grading of TNBC. Mechanistically, circXPO6 interacted with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation, thus promoting TNBC progression. Through the regulation of c-Myc-mediated signal transduction, circXPO6 plays a key role in TNBC progresses. This discovery can provide new ideas for TNBC molecular targeted therapy.
Collapse
Affiliation(s)
- Aiqi Xu
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xi Li
- Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, Guangzhou, 510180, People's Republic of China
| | - Qiaoting Cai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ciqiu Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Mei Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Hongfei Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Minyi Cheng
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Xianzhe Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Fei Ji
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Kun Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
3
|
Tanimoto S, Sone K, Jonouchi Y, Hachijo R, Suzuki E, Tsuboyama N, Toyohara Y, Inoue F, Honjoh H, Fukuda T, Taguchi A, Miyamoto Y, Iriyama T, Mori M, Asada K, Komatsu M, Kaneko S, Hamamoto R, Wada-Hiraike O, Oda K, Hirota Y, Osuga Y. BET inhibitor JQ1 induces apoptosis of ovarian and endometrial endometrioid carcinoma cells by downregulating c‑Myc. Oncol Lett 2025; 29:106. [PMID: 39736925 PMCID: PMC11683525 DOI: 10.3892/ol.2024.14852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/23/2024] [Indexed: 01/01/2025] Open
Abstract
Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer. BET inhibitors have been reported as promising cancer drugs. The present study aimed to assess the role of JQ1, a BET inhibitor, in ovarian and endometrial cancers. The sensitivity of OEC and EEC cell lines to JQ1 was assessed using cell viability and colony formation assays. Additionally, western blotting and cell cycle assays were performed to evaluate changes in c-Myc expression and apoptosis markers. Cell proliferation and colony formation assays revealed significant tumor suppression in both OEC and EEC cell lines in response to JQ1 treatment. Furthermore, treatment with JQ1 induced a decrease in c-Myc expression and an increase in apoptosis markers, such as cleaved PARP and the cell population in the sub-G1 phase, in both OEC and EEC cell lines. The findings of the present study indicate that JQ1 may induce cell death through c-Myc inhibition and could be a potentially novel therapeutic agent in the treatment in OEC and EEC. However, the direct mechanism, has not been fully elucidated, warranting further investigation.
Collapse
Affiliation(s)
- Saki Tanimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuri Jonouchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryuta Hachijo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Natsumi Tsuboyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Futaba Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomohiko Fukuda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo 104-0045, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Katsutoshi Oda
- Division of Integrated Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
4
|
Shi H, Cao Z, Wei K. Etomidate Induces Mitochondrial Dysfunction in Glioma Cancer Cells by Inhibiting Mitochondrial Biogenesis Mediated by CREB/PGC-1α. Biotechnol Appl Biochem 2025. [PMID: 39957363 DOI: 10.1002/bab.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025]
Abstract
Gliomas are one of the most prevalent types of solid tumors in the brain. Imbalances in mitochondrial metabolism have been implicated in the pathological progression of gliomas. Etomidate, an agonist of the γ-aminobutyric acid type A (GABAA) receptor, is widely used in clinical settings. In this study, we report a novel pharmacological function of etomidate in regulating mitochondrial metabolism in glioma cancer cells. U87 glioma tumor cells were treated with etomidate (0.5, 1.0, and 2.0 µg/mL) for 24 h. Quantitative real-time PCR, western blot analysis, mtDNA/nDNA ratio, MitoTracker Red staining, Complex I and IV activity, intracellular ATP levels, and mitochondrial respiration were assessed. First, etomidate exposure inhibited the expression of PGC-1α in U87 glioma tumor cells. Further investigation revealed that etomidate suppressed the expression of Nrf1 and TFAM, the two key executors of mitochondrial biogenesis. Etomidate treatment led to damage in mitochondrial biogenesis by decreasing the mtDNA/nDNA ratio, reducing the protein expression of cytochrome B, and lowering mitochondrial mass. These changes suggest impaired mitochondrial replication and function. Correspondingly, etomidate exposure induced a "loss of mitochondrial function" by diminishing the activities of Complex I and Complex IV, the mitochondrial respiratory rate (MRR), and ATP generation. These effects highlight the detrimental impact of etomidate on the energy metabolism of glioma cells. Mechanistically, etomidate inactivated the transcription factor CREB by reducing its phosphorylation at Ser133. Activation of CREB with the second messenger cAMP restored the expression of PGC-1α, the mtDNA/nDNA ratio, Complex IV activity, summarized mitochondrial respiratory rate (MRR), and ATP production. This suggests that CREB activation may serve as a potential therapeutic strategy to counteract etomidate's inhibitory effects on mitochondrial function in glioma cells. Our results suggest that damage to mitochondrial biogenesis is a key step in the anticancer properties of etomidate in gliomas, and the decrease in PGC-1α and its downstream molecules may be the critical mechanism behind this effect.
Collapse
Affiliation(s)
- Hailiang Shi
- Department of Neurosurgery, The First People's Hospital of Jiangxia District, Wuhan City, Wuhan, Hubei, China
| | - Zhongcheng Cao
- Department of Anesthesiology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Kai Wei
- Department of Anesthesiology, Hubei Maternal and Child Health Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Xu N, Lin H, Ding X, Wang P, Lin JM. Isotope tracing-assisted chip-based solid-phase extraction mass spectrometry for monitoring metabolic changes and vitamin D3 regulation in cells. Talanta 2025; 288:127754. [PMID: 39970803 DOI: 10.1016/j.talanta.2025.127754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Cellular metabolism is a dynamic and essential process, with alterations in metabolic pathways serving as hallmark features of cancer. In this study, we developed a chip-based solid-phase extraction mass spectrometry (Chip-SPE-MS) platform for high-sensitivity, high-throughput analysis of cellular metabolites and real-time tracking of metabolic fluxes. The system achieved detection limits ranging from 0.10 to 9.43 μmol/mL for various amino acids and organic acids, with excellent linearity (r ≥ 0.992). By incorporating isotope tracing, the platform enabled derivatization-free, real-time monitoring of 13C-labeled metabolites, such as lactic acid. Our analysis revealed significant metabolic differences between normal (L02) and cancerous (HepG2, HCT116) cells, including enhanced glycolytic activity and elevated lactate production in cancer cells. Furthermore, treatment with 1,25-dihydroxyvitamin D3 was shown to suppress glucose uptake and modulate metabolic activity in HCT116 cells, highlighting the regulatory effects of vitamin D3 on cancer metabolism. This study not only provides novel insights into the metabolic reprogramming associated with cancer but also demonstrates the potential of the Chip-SPE-MS platform as a powerful tool for real-time monitoring of dynamic metabolic processes. The findings have broad implications for cancer therapy and the study of metabolic diseases.
Collapse
Affiliation(s)
- Ning Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaodan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Schickel E, Bender T, Kaysan L, Hufgard S, Mayer M, Grosshans DR, Thielemann C, Schroeder IS. Human cerebral organoids model tumor infiltration and migration supported by astrocytes in an autologous setting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635456. [PMID: 39974912 PMCID: PMC11838324 DOI: 10.1101/2025.01.29.635456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Efforts to achieve precise and efficient tumor targeting of highly malignant brain tumors are constrained by the dearth of appropriate models to study the effects and potential side effects of radiation, chemotherapy, and immunotherapy on the most complex human organ, the brain. We established a cerebral organoid model of brain tumorigenesis in an autologous setting by overexpressing c-MYC as one of the most common oncogenes in brain tumors. GFP + /c-MYC high cells were isolated from tumor organoids and used in two different culture approaches: assembloids comprising of a normal cerebral organoid with a GFP + /c-MYC high tumor sphere and co-culture of cerebral organoid slices at air-liquid interface with GFP + /c-MYC high cells. GFP + /c-MYC high cells used in both approaches exhibited tumor-like properties, including overexpression of the c-MYC oncogene, high proliferative and invasive potential, and an immature phenotype as evidenced by increased expression of Ki-67, VIM, and CD133. Organoids and organoid slices served as suitable scaffolds for infiltrating tumor-like cells. Using our highly reproducible and powerful model system that allows long-term culture, we demonstrated that the migratory and infiltrative potential of tumor-like cells is shaped by the environment in which glia cells provide support to tumor-like cells.
Collapse
|
7
|
Huang B, Shen W, Jia Y, Qin L, Wang H, Sun Q, Xiao Z, Zhang R, Wang H. LDHAα, a lactate dehydrogenase A isoform, promotes glycolysis and tumor progression. FEBS J 2025. [PMID: 39828959 DOI: 10.1111/febs.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Lactate dehydrogenase A (LDHA) is upregulated in multiple cancer types and contributes to the Warburg effect. Several studies have found that many tumor-related genes have subtypes and play important roles in promoting cancer development. Here, we identified a novel LDHA transcript, which produced a new protein 3 kDa larger than LDHA, which we named LDHAα. We found that multiple cancer cell lines express LDHAα, and ectopic expression of LDHAα led to a higher proliferation and migration rate in vitro. Ectopic expression of LDHAα could also promote tumor cell growth in vivo. Conversely, deletion of LDHAα by CRISPR-sgRNA significantly inhibited the growth of tumor cells. LDHAα was found to be mainly located in the cytoplasm, and overexpression or deletion of LDHAα could significantly affect the glucose uptake and lactate production of tumor cells. Further investigation showed that c-MYC and FOXM1 could markedly modulate the expression of both LDHA and LDHAα, especially c-MYC. We found that a small molecular compound targeting LDHA could also inhibit the enzyme activity of LDHAα. LDHAα, LDHA and c-MYC expression was significantly higher in human acute lymphocytic leukemia and colorectal cancer tissue specimens compared to normal controls. In conclusion, our study identified LDHAα as a subtype of LDHA and highlighted its critical role in tumor metabolism, providing a potential new therapeutic target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Bingqing Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wencui Shen
- Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital & Eye Institute, NanKai University, Tianjin, China
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Li Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoxu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qi Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
8
|
Wang C, Ma X. The role of acetylation and deacetylation in cancer metabolism. Clin Transl Med 2025; 15:e70145. [PMID: 39778006 PMCID: PMC11706801 DOI: 10.1002/ctm2.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
As a hallmark of cancer, metabolic reprogramming adjusts macromolecular synthesis, energy metabolism and redox homeostasis processes to adapt to and promote the complex biological processes of abnormal growth and proliferation. The complexity of metabolic reprogramming lies in its precise regulation by multiple levels and factors, including the interplay of multiple signalling pathways, precise regulation of transcription factors and dynamic adjustments in metabolic enzyme activity. In this complex regulatory network, acetylation and deacetylation, which are important post-translational modifications, regulate key molecules and processes related to metabolic reprogramming by affecting protein function and stability. Dysregulation of acetylation and deacetylation may alter cancer cell metabolic patterns by affecting signalling pathways, transcription factors and metabolic enzyme activity related to metabolic reprogramming, increasing the susceptibility to rapid proliferation and survival. In this review, we focus on discussing how acetylation and deacetylation regulate cancer metabolism, thereby highlighting the central role of these post-translational modifications in metabolic reprogramming, and hoping to provide strong support for the development of novel cancer treatment strategies. KEY POINTS: Protein acetylation and deacetylation are key regulators of metabolic reprogramming in tumour cells. These modifications influence signalling pathways critical for tumour metabolism. They modulate the activity of transcription factors that drive gene expression changes. Metabolic enzymes are also affected, altering cellular metabolism to support tumour growth.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyang CityLiaoning ProvinceChina
- Key Laboratory of Gynecological Oncology of Liaoning ProvinceDepartment of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
9
|
Kaur R, Gupta S, Kulshrestha S, Khandelwal V, Pandey S, Kumar A, Sharma G, Kumar U, Parashar D, Das K. Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis. Cells 2024; 14:5. [PMID: 39791706 PMCID: PMC11720085 DOI: 10.3390/cells14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples. In the case of breast cancer, little is known about the regulatory pathways that could be resolved through metabolic reprogramming. Evidence related to the significant changes taking place during the onset and prognosis of breast cancer can be obtained using metabolomics. Innovative metabolomics approaches identify metabolites that lead to the discovery of biomarkers for breast cancer therapy, diagnosis, and early detection. The use of diverse analytical methods and instruments for metabolomics includes Magnetic Resonance Spectroscopy, LC/MS, UPLC/MS, etc., which, along with their high-throughput analysis, give insights into the metabolites and the molecular pathways involved. For instance, metabolome research has led to the discovery of the glutamate-to-glutamate ratio and aerobic glycolysis as biomarkers in breast cancer. The present review comprehends the updates in metabolomic research and its processes that contribute to breast cancer prognosis and metastasis. The metabolome holds a future, and this review is an attempt to amalgamate the present relevant literature that might yield crucial insights for creating innovative therapeutic strategies aimed at addressing metastatic breast cancer.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Sunanda Kulshrestha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Vishal Khandelwal
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; (R.K.); (S.K.); (V.K.); (S.P.)
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Anil Kumar
- National Institute of Immunology, New Delhi 110067, India;
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Advanced Imaging Research Center (AIRC), University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), Ghaziabad 201015, Uttar Pradesh, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
10
|
Mehta D, Rajput K, Jain D, Bajaj A, Dasgupta U. Unveiling the Role of Mechanistic Target of Rapamycin Kinase (MTOR) Signaling in Cancer Progression and the Emergence of MTOR Inhibitors as Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:3758-3779. [PMID: 39698262 PMCID: PMC11650738 DOI: 10.1021/acsptsci.4c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024]
Abstract
The mechanistic target of rapamycin kinase (MTOR) is pivotal for cell growth, metabolism, and survival. It functions through two distinct complexes, mechanistic TORC1 and mechanistic TORC2 (mTORC1 and mTORC2). These complexes function in the development and progression of cancer by regulating different cellular processes, such as protein synthesis, lipid metabolism, and glucose homeostasis. The mTORC1 complex senses nutrients and initiates proliferative signals, and mTORC2 is crucial for cell survival and cytoskeletal rearrangements. mTORC1 and mTORC2 have therefore emerged as potential targets for cancer treatment. Several mTOR inhibitors, including rapamycin and its analogs (rapalogs), primarily target mTORC1 and are effective for specific cancer types. However, these inhibitors often lead to resistance and limited long-term advantages due to the activation of survival pathways through feedback mechanisms. Researchers have created next-generation inhibitors targeting mTORC1 and mTORC2 and dual PI3K/mTOR inhibitors to address these difficulties. These inhibitors demonstrate enhanced anti-tumor effects by simultaneously disrupting multiple signaling pathways and show promise for improved and long-lasting therapies. However, development of resistance and adverse side effects remain a significant obstacle. Recent additions known as RapaLinks have emerged as a boon to counter drug-resistant cancer cells, as they are more potent and provide a more comprehensive blockade of mTOR signaling pathways. This Review combines current research findings and clinical insights to enhance our understanding of the crucial role of mTOR signaling in cancer biology and highlights the evolution of mTOR inhibitors as promising therapeutic approaches.
Collapse
Affiliation(s)
- Devashish Mehta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Kajal Rajput
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| | - Dolly Jain
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad-121001, Haryana, India
| | - Ujjaini Dasgupta
- Amity
Institute of Integrative Sciences and Health, Amity University Haryana, Panchgaon, Manesar, Gurgaon-122413, Haryana, India
| |
Collapse
|
11
|
Fan S, Guo J, Nie H, Xiong H, Xia Y. Aberrant Energy Metabolism in Tumors and Potential Therapeutic Targets. Genes Chromosomes Cancer 2024; 63:e70008. [PMID: 39584783 PMCID: PMC11587691 DOI: 10.1002/gcc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Energy metabolic reprogramming is frequently observed during tumor progression as tumor cells necessitate adequate energy production for rapid proliferation. Although current medical research shows promising prospects in studying the characteristics of tumor energy metabolism and developing anti-tumor drugs targeting energy metabolism, there is a lack of systematic compendiums and comprehensive reviews in this field. The objective of this study is to conduct a systematic review on the characteristics of tumor cells' energy metabolism, with a specific focus on comparing abnormalities between tumor and normal cells, as well as summarizing potential targets for tumor therapy. Additionally, this review also elucidates the aberrant mechanisms underlying four major energy metabolic pathways (glucose, lipid, glutamine, and mitochondria-dependent) during carcinogenesis and tumor progression. Through the utilization of graphical representations, we have identified anomalies in crucial energy metabolism pathways, encompassing transporter proteins (glucose transporter, CD36, and ASCT2), signaling molecules (Ras, AMPK, and PTEN), as well as transcription factors (Myc, HIF-1α, CREB-1, and p53). The key molecules responsible for aberrant energy metabolism in tumors may serve as potential targets for cancer therapy. Therefore, this review provides an overview of the distinct energy-generating pathways within tumor cells, laying the groundwork for developing innovative strategies for precise cancer treatment.
Collapse
Affiliation(s)
- Shuhao Fan
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Jianhua Guo
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Hui Nie
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical UniversityJiningShandongPeople's Republic of China
| | - Yong Xia
- Shandong First Medical UniversityJinanShandongPeople's Republic of China
- College of Medical EngineeringJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
12
|
Pérez SE, Gooz M, Maldonado EN. Mitochondrial Dysfunction and Metabolic Disturbances Induced by Viral Infections. Cells 2024; 13:1789. [PMID: 39513896 PMCID: PMC11545457 DOI: 10.3390/cells13211789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses are intracellular parasites that utilize organelles, signaling pathways, and the bioenergetics machinery of the cell to replicate the genome and synthesize proteins to build up new viral particles. Mitochondria are key to supporting the virus life cycle by sustaining energy production, metabolism, and synthesis of macromolecules. Mitochondria also contribute to the antiviral innate immune response. Here, we describe the different mechanisms involved in virus-mitochondria interactions. We analyze the effects of viral infections on the metabolism of glucose in the Warburg phenotype, glutamine, and fatty acids. We also describe how viruses directly regulate mitochondrial function through modulation of the activity of the electron transport chain, the generation of reactive oxygen species, the balance between fission and fusion, and the regulation of voltage-dependent anion channels. In addition, we discuss the evasion strategies used to avoid mitochondrial-associated mechanisms that inhibit viral replication. Overall, this review aims to provide a comprehensive view of how viruses modulate mitochondrial function to maintain their replicative capabilities.
Collapse
Affiliation(s)
- Sandra E. Pérez
- Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Campus Universitario, Tandil CC7000, Buenos Aires, Argentina;
| | - Monika Gooz
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
| | - Eduardo N. Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, DD 506 Drug Discovery Building, 70 President Street, MSC 139, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
13
|
Dong B, Zhang Y, Gao H, Liu J, Li J. Machine Learning Developed a MYC Expression Feature-Based Signature for Predicting Prognosis and Chemoresistance in Pancreatic Adenocarcinoma. Biochem Genet 2024; 62:4191-4214. [PMID: 38245886 DOI: 10.1007/s10528-023-10625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
MYC has been identified to profoundly influence a wide range of pathologic processes in cancers. However, the prognostic value of MYC-related genes in pancreatic adenocarcinoma (PAAD) remains unclarified. Gene expression data and clinical information of PAAD patients were obtained from The Cancer Genome Atlas (TCGA) database (training set). Validation sets included GSE57495, GSE62452, and ICGC-PACA databases. LASSO regression analysis was used to develop a risk signature for survival prediction. Single-cell sequencing data from GSE154778 and CRA001160 datasets were analyzed. Functional studies were conducted using siRNA targeting RHOF and ITGB6 in PANC-1 cells. High MYC expression was found to be significantly associated with a poor prognosis in patients with PAAD. Additionally, we identified seven genes (ADGRG6, LINC00941, RHOF, SERPINB5, INSYN2B, ITGB6, and DEPDC1) that exhibited a strong correlation with both MYC expression and patient survival. They were then utilized to establish a risk model (MYCsig), which showed robust predictive ability. Furthermore, MYCsig demonstrated a positive correlation with the expression of HLA genes and immune checkpoints, as well as the chemotherapy response of PAAD. RHOF and ITGB6, expressed mainly in malignant cells, were identified as key oncogenes regulating chemosensitivity through EMT. Downregulation of RHOF and ITGB6 reduced cell proliferation and invasion in PANC-1 cells. The developed MYCsig demonstrates its potential in enhancing the management of patients with PAAD by facilitating risk assessment and predicting response to adjuvant chemotherapy. Additionally, our study identifies RHOF and ITGB6 as novel oncogenes linked to EMT and chemoresistance in PAAD.
Collapse
Affiliation(s)
- Biao Dong
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Han Gao
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China
| | - Jia Liu
- Department of Precision Medicine, Accb Biotech. Ltd, Beijing, China
| | - Jiankun Li
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
14
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
15
|
Glibetic N, Bowman S, Skaggs T, Weichhaus M. The Use of Patient-Derived Organoids in the Study of Molecular Metabolic Adaptation in Breast Cancer. Int J Mol Sci 2024; 25:10503. [PMID: 39408832 PMCID: PMC11477048 DOI: 10.3390/ijms251910503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Around 13% of women will likely develop breast cancer during their lifetime. Advances in cancer metabolism research have identified a range of metabolic reprogramming events, such as altered glucose and amino acid uptake, increased reliance on glycolysis, and interactions with the tumor microenvironment (TME), all of which present new opportunities for targeted therapies. However, studying these metabolic networks is challenging in traditional 2D cell cultures, which often fail to replicate the three-dimensional architecture and dynamic interactions of real tumors. To address this, organoid models have emerged as powerful tools. Tumor organoids are 3D cultures, often derived from patient tissue, that more accurately mimic the structural and functional properties of actual tumor tissues in vivo, offering a more realistic model for investigating cancer metabolism. This review explores the unique metabolic adaptations of breast cancer and discusses how organoid models can provide deeper insights into these processes. We evaluate the most advanced tools for studying cancer metabolism in three-dimensional culture models, including optical metabolic imaging (OMI), matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), and recent advances in conventional techniques applied to 3D cultures. Finally, we explore the progress made in identifying and targeting potential therapeutic targets in breast cancer metabolism.
Collapse
Affiliation(s)
- Natalija Glibetic
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- The IDeA Networks of Biomedical Research Excellence (INBRE) Program, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
- United Nations CIFAL Honolulu Center, Chaminade University, Honolulu, HI 96816, USA
| | - Scott Bowman
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biochemistry, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Tia Skaggs
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
- Undergraduate Program in Biology, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, HI 96816, USA
| | - Michael Weichhaus
- Laboratory of Molecular Cancer Research, School of Natural Sciences and Mathematics, Chaminade University of Honolulu, Honolulu, HI 96816, USA; (N.G.); (S.B.); (T.S.)
| |
Collapse
|
16
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Bhardwaj JK, Siwach A, Sachdeva SN. Metabolomics and cellular altered pathways in cancer biology: A review. J Biochem Mol Toxicol 2024; 38:e23807. [PMID: 39148273 DOI: 10.1002/jbt.23807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Cancer is a deadly disease that affects a cell's metabolism and surrounding tissues. Understanding the fundamental mechanisms of metabolic alterations in cancer cells would assist in developing cancer treatment targets and approaches. From this perspective, metabolomics is a great analytical tool to clarify the mechanisms of cancer therapy as well as a useful tool to investigate cancer from a distinct viewpoint. It is a powerful emerging technology that detects up to thousands of molecules in tissues and biofluids. Like other "-omics" technologies, metabolomics involves the comprehensive investigation of micromolecule metabolites and can reveal important details about the cancer state that is otherwise not apparent. Recent developments in metabolomics technologies have made it possible to investigate cancer metabolism in greater depth and comprehend how cancer cells utilize metabolic pathways to make the amino acids, nucleotides, and lipids required for tumorigenesis. These new technologies have made it possible to learn more about cancer metabolism. Here, we review the cellular and systemic effects of cancer and cancer treatments on metabolism. The current study provides an overview of metabolomics, emphasizing the current technologies and their use in clinical and translational research settings.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
18
|
Xiao Q, Xue K, Li L, Zhu K, Fu R, Xiong Z. RNF122 promotes glioblastoma growth via the JAK2/STAT3/c-Myc signaling Axis. CNS Neurosci Ther 2024; 30:e70017. [PMID: 39218810 PMCID: PMC11366496 DOI: 10.1111/cns.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The E3 ubiquitin ligase is well recognized as a significant contributor to glioblastoma (GBM) progression and has promise as a prospective therapeutic target. This study explores the contribution of E3 ubiquitin ligase RNF122 in the GBM progression and the related molecular mechanisms. METHODS RNF122 expression levels were evaluated using qRT-PCR, WB, and IHC, while functional assays besides animal experiments were used to assess RNF122's effect on GBM progression. We also tested the RNF122 impact on JAK2/STAT3/c-Myc signaling using WB. RESULTS RNF122 was upregulated in GBM and correlated to the advanced stage and poor clinical outcomes, representing an independent prognostic factor. Based on functional assays, RNF122 promotes GBM growth and cell cycle, which was validated further in subsequent analyses by JAK2/STAT3/c-Myc pathway activation. Moreover, JAK2/STAT3 signaling pathway inhibitor WP1066 can weaken the effect of overexpression RNF122 on promoting GBM progression. CONCLUSION Our results revealed that RNF122 caused an aggressive phenotype to GBM and was a poor prognosticator; thus, targeting RNF122 may be effectual in GBM treatment.
Collapse
Affiliation(s)
- Qingbao Xiao
- Department of Neurosurgery, Wuhan Third HospitalTongren Hospital of Wuhan UniversityWuhanHubeiChina
| | - Kaming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Lin Li
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Kai Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhiyong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
19
|
Mohapatra B, Pakala SB. Emerging roles of the chromatin remodeler MORC2 in cancer metabolism. Med Oncol 2024; 41:221. [PMID: 39117768 DOI: 10.1007/s12032-024-02464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Cancer is characterized by metabolic reprogramming in cancer cells, which is crucial for tumorigenesis. The highly deregulated chromatin remodeler MORC2 contributes to cell proliferation, invasion, migration, DNA repair, and chemoresistance. MORC2 also plays a key role in metabolic reprogramming, including lipogenesis, glucose, and glutamine metabolism. A recent study showed that MORC2-regulated glucose metabolism affects the expression of E-cadherin, a crucial protein in the epithelial-to-mesenchymal transition. This review discusses recent developments in MORC2 regulated cancer cell metabolism and its role in cancer progression.
Collapse
Affiliation(s)
- Bibhukalyan Mohapatra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Suresh B Pakala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
20
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
21
|
Ramirez-Gamero A, Martínez-Cordero H, Beltrán BE, Florindez J, Malpica L, Castillo JJ. Plasmablastic lymphoma: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:1586-1594. [PMID: 38767403 DOI: 10.1002/ajh.27376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/22/2024]
Abstract
DISEASE OVERVIEW Plasmablastic lymphoma (PBL) is a rare CD20-negative aggressive lymphoma with a poor prognosis under standard treatment options. Though PBL is associated with human immunodeficiency virus infection and other immunosuppressed states, it can also affect immunocompetent individuals. DIAGNOSIS The diagnosis requires a high clinical suspicion and pathological confirmation. EBER expression and MYC gene rearrangements are frequently detected. The differential diagnosis includes EBV+ diffuse large B-cell lymphoma, extracavitary primary effusion lymphoma, ALK+ DLBCL, and HHV8+ large B-cell lymphoma, among others. RISK STRATIFICATION Age ≥60 years, advanced clinical stage, and high intermediate and high International Prognostic Index scores are associated with worse survival. MANAGEMENT Combination chemotherapy regimens, such as EPOCH, are recommended. The addition of bortezomib, lenalidomide, or daratumumab might improve outcomes. Including PBL patients and their participation in prospective clinical trials is warranted.
Collapse
MESH Headings
- Humans
- Plasmablastic Lymphoma/diagnosis
- Plasmablastic Lymphoma/therapy
- Plasmablastic Lymphoma/drug therapy
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Risk Assessment
- Cyclophosphamide/therapeutic use
- Doxorubicin/therapeutic use
- Doxorubicin/administration & dosage
- Vincristine/therapeutic use
- Vincristine/administration & dosage
- Prednisone/therapeutic use
- Lenalidomide/therapeutic use
- Lenalidomide/administration & dosage
- Prognosis
- Bortezomib/therapeutic use
- Bortezomib/administration & dosage
- Diagnosis, Differential
- Disease Management
- Middle Aged
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antibodies, Monoclonal
- Etoposide
Collapse
Affiliation(s)
- Andres Ramirez-Gamero
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Brady E Beltrán
- Department of Oncology and Radiotherapy, Hospital Edgardo Rebagliati Martins and Instituto de Ciencias Biomedicas, Universidad Ricardo Palma, Lima, Peru
| | - Jorge Florindez
- Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Luis Malpica
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Takahashi K, Kitaoka Y, Hatta H. Better maintenance of enzymatic capacity and higher levels of substrate transporter proteins in skeletal muscle of aging female mice. Appl Physiol Nutr Metab 2024; 49:1100-1114. [PMID: 38710106 DOI: 10.1139/apnm-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
23
|
Srivastava G, Mukherjee E, Mittal R, Ganjewala D. Geraniol and citral: recent developments in their anticancer credentials opening new vistas in complementary cancer therapy. Z NATURFORSCH C 2024; 79:163-177. [PMID: 38635829 DOI: 10.1515/znc-2023-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
About 10 million people are diagnosed with cancer each year. Globally, it is the second leading cause of death after heart disease, and by 2035, the death toll could reach 14.6 million. Several drugs and treatments are available to treat cancer, but survival rates remain low. Many studies in recent years have shown that plant-derived monoterpenes, particularly geraniol and citral, are effective against various cancers, including breast, liver, melanoma, endometrial, colon, prostate, and skin cancers. This trend has opened new possibilities for the development of new therapeutics or adjuvants in the field of cancer therapy. These monoterpenes can improve the efficacy of chemotherapy by modulating many signaling molecules and pathways within tumors. Analysis of reports on the anticancer effects published in the past 5 years provided an overview of the most important results of these and related properties. Also, the molecular mechanisms by which they exert their anticancer effects in cell and animal studies have been explained. Therefore, this review aims to highlight the scope of geraniol and citral as complementary or alternative treatment options in cancer therapy.
Collapse
Affiliation(s)
- Gauri Srivastava
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Esha Mukherjee
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Ruchika Mittal
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, 77282 Amity University , Sector-125, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
24
|
Ghasemi N, Azizi H. Exploring Myc puzzle: Insights into cancer, stem cell biology, and PPI networks. Gene 2024; 916:148447. [PMID: 38583818 DOI: 10.1016/j.gene.2024.148447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
"The grand orchestrator," "Universal Amplifier," "double-edged sword," and "Undruggable" are just some of the Myc oncogene so-called names. It has been around 40 years since the discovery of the Myc, and it remains in the mainstream of cancer treatment drugs. Myc is part of basic helix-loop-helix leucine zipper (bHLH-LZ) superfamily proteins, and its dysregulation can be seen in many malignant human tumors. It dysregulates critical pathways in cells that are connected to each other, such as proliferation, growth, cell cycle, and cell adhesion, impacts miRNAs action, intercellular metabolism, DNA replication, differentiation, microenvironment regulation, angiogenesis, and metastasis. Myc, surprisingly, is used in stem cell research too. Its family includes three members, MYC, MYCN, and MYCL, and each dysfunction was observed in different cancer types. This review aims to introduce Myc and its function in the body. Besides, Myc deregulatory mechanisms in cancer cells, their intricate aspects will be discussed. We will look at promising drugs and Myc-based therapies. Finally, Myc and its role in stemness, Myc pathways based on PPI network analysis, and future insights will be explained.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| |
Collapse
|
25
|
Sim N, Carter JM, Deka K, Tan BKT, Sim Y, Tan SM, Li Y. TWEAK/Fn14 signalling driven super-enhancer reprogramming promotes pro-metastatic metabolic rewiring in triple-negative breast cancer. Nat Commun 2024; 15:5638. [PMID: 38965263 PMCID: PMC11224303 DOI: 10.1038/s41467-024-50071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive breast cancer subtype suffering from limited targeted treatment options. Following recent reports correlating Fibroblast growth factor-inducible 14 (Fn14) receptor overexpression in Estrogen Receptor (ER)-negative breast cancers with metastatic events, we show that Fn14 is specifically overexpressed in TNBC patients and associated with poor survival. We demonstrate that constitutive Fn14 signalling rewires the transcriptomic and epigenomic landscape of TNBC, leading to enhanced tumour growth and metastasis. We further illustrate that such mechanisms activate TNBC-specific super enhancers (SE) to drive the transcriptional activation of cancer dependency genes via chromatin looping. In particular, we uncover the SE-driven upregulation of Nicotinamide phosphoribosyltransferase (NAMPT), which promotes NAD+ and ATP metabolic reprogramming critical for filopodia formation and metastasis. Collectively, our study details the complex mechanistic link between TWEAK/Fn14 signalling and TNBC metastasis, which reveals several vulnerabilities which could be pursued for the targeted treatment of TNBC patients.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Benita Kiat Tee Tan
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore, 168583, Singapore
- Division of Surgery and Surgical Oncology, Department of Breast Surgery, Singapore General Hospital, 31 Third Hospital Ave, Singapore, 168753, Singapore
- SingHealth Duke-NUS Breast Centre, Singapore, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
26
|
Yu J, Zhang Y, Xue Y, Pei H, Li B. Emerging roles of long noncoding RNAs in enzymes related intracellular metabolic pathways in cancer biology. Biomed Pharmacother 2024; 176:116831. [PMID: 38824835 DOI: 10.1016/j.biopha.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Metabolic reprogramming plays critical roles in the development and progression of tumor by providing cancer cells with a sufficient supply of nutrients and other factors needed for fast-proliferating. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are involved in the initiation of metastasis via regulating the metabolic reprogramming in various cancers. In this paper, we aim to summarize that lncRNAs could participate in intracellular nutrient metabolism including glucose, amino acid, lipid, and nucleotide, regardless of whether lncRNAs have tumor-promoting or tumor-suppressor function. Meanwhile, modulation of lncRNAs in glucose metabolic enzymes in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle (TCA) in cancer is reviewed. We also discuss therapeutic strategies targeted at interfering with enzyme activity to decrease the utilization of glucoses, amino acid, nucleotide acid and lipid in tumor cells. This review focuses on our current understanding of lncRNAs participating in cancer cell metabolic reprogramming, paving the way for further investigation into the combination of such approaches with existing anti-cancer therapies.
Collapse
Affiliation(s)
- Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of clinical laboratory Center, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Zhang
- School of Clinical Medicine, Medical College of Soochow University, Suzhou 215123, China
| | - Yaqi Xue
- Department of Clinical Nutrition, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Centre of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
27
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
28
|
Sim DY, Lee HJ, Ahn CH, Park J, Park SY, Kil BJ, Shim BS, Kim B, Kim SH. Negative Regulation of CPSF6 Suppresses the Warburg Effect and Angiogenesis Leading to Tumor Progression Via c-Myc Signaling Network: Potential Therapeutic Target for Liver Cancer Therapy. Int J Biol Sci 2024; 20:3442-3460. [PMID: 38993554 PMCID: PMC11234225 DOI: 10.7150/ijbs.93462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
In this study, we explored the oncogenic mechanism of cleavage and polyadenylation-specific factor 6 (CPSF6) in hepatocellular carcinoma (HCC). CPSF6 was overexpressed in HCC tissues with poor survival rates compared to normal tissues. Hence, CPSF6 depletion suppressed cell viability and colony formation, induced apoptosis via PARP cleavage, and increased the sub-G1 population of Hep3B and Huh7 cells. In addition, CPSF6 enhanced the stability of c-Myc via their binding through nuclear co-localization by binding to c-Myc at the site of 258-360. Furthermore, c-Myc degradation by CPSF6 depletion was disturbed by FBW7 depletion or treatment with the proteasomal inhibitor MG132. Additionally, CPSF6 depletion suppressed the Warburg effect by inhibiting glucose, HK2, PKM2, LDH, and lactate; showed a synergistic effect with Sorafenib in Hep3B cells; and inhibited angiogenesis by tube formation and CAM assays, along with decreased expression and production of vascular endothelial growth factor (VEGF). Notably, CPSF6 depletion attenuated PD-L1 expression and increased Granzyme B levels, along with an increase in the percentage of CD4/CD8 cells in the splenocytes of BALB/c nude mice bearing Hep3B cells. Consistently, immunohistochemistry showed that CPSF6 depletion reduced the growth of Hep3B cells in BALB/c mice in orthotopic and xenograft tumor models by inhibiting tumor microenvironment-associated proteins. Overall, these findings suggest that CPSF6 enhances the Warburg effect for immune escape and angiogenesis, leading to cancer progression via c-Myc, mediated by the HK, PD-L1, and VEGF networks, with synergistic potential with sorafenib as a molecular target for liver cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bonglee Kim
- Cancer Molecular Targeted Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447
| | - Sung-Hoon Kim
- Cancer Molecular Targeted Herbal Research Laboratory, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447
| |
Collapse
|
29
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
30
|
Wu Z, Yu J, Han T, Tu Y, Su F, Li S, Huang Y. System analysis based on Anoikis-related genes identifies MAPK1 as a novel therapy target for osteosarcoma with neoadjuvant chemotherapy. BMC Musculoskelet Disord 2024; 25:437. [PMID: 38835052 PMCID: PMC11149263 DOI: 10.1186/s12891-024-07547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone malignant tumor in children, and its prognosis is often poor. Anoikis is a unique mode of cell death.However, the effects of Anoikis in OS remain unexplored. METHOD Differential analysis of Anoikis-related genes was performed based on the metastatic and non-metastatic groups. Then LASSO logistic regression and SVM-RFE algorithms were applied to screen out the characteristic genes. Later, Univariate and multivariate Cox regression was conducted to identify prognostic genes and further develop the Anoikis-based risk score. In addition, correlation analysis was performed to analyze the relationship between tumor microenvironment, drug sensitivity, and prognostic models. RESULTS We established novel Anoikis-related subgroups and developed a prognostic model based on three Anoikis-related genes (MAPK1, MYC, and EDIL3). The survival and ROC analysis results showed that the prognostic model was reliable. Besides, the results of single-cell sequencing analysis suggested that the three prognostic genes were closely related to immune cell infiltration. Subsequently, aberrant expression of two prognostic genes was identified in osteosarcoma cells. Nilotinib can promote the apoptosis of osteosarcoma cells and down-regulate the expression of MAPK1. CONCLUSIONS We developed a novel Anoikis-related risk score model, which can assist clinicians in evaluating the prognosis of osteosarcoma patients in clinical practice. Analysis of the tumor immune microenvironment and chemotherapeutic drug sensitivity can provide necessary insights into subsequent mechanisms. MAPK1 may be a valuable therapeutic target for neoadjuvant chemotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Zhouwei Wu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Jiapei Yu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Tao Han
- Department of Orthopedics, the Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, 312000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Yiting Tu
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China
| | - Fang Su
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shi Li
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
- Department of Orthopaedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyuan Road, Wenzhou, 325027, Zhejiang Province, China.
| | - Yixing Huang
- Department of Orthopedics, the Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, China.
| |
Collapse
|
31
|
Duan K, Fang K, Sui C. TFAIP6 facilitates hepatocellular carcinoma cell glycolysis through upregulating c-myc/PKM2 axis. Heliyon 2024; 10:e30959. [PMID: 38813227 PMCID: PMC11133704 DOI: 10.1016/j.heliyon.2024.e30959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent liver cancer. Despite of the improvement of therapies, the durable response rate and survival benefit are still limited for HCC patients. It's urgent to clarify the molecular mechanisms and find therapeutic strategies to improve the clinical outcome. TNFα-stimulated gene-6 (TNFAIP6) plays a critical role in the prognosis of various tumors, but its roles in HCC are still unclear. Methods Quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) analysis were employed to evaluate the clinical relevance of TNFAIP6 expressions in HCC patients. Cell counting kit-8 (CCK-8), Edu assay, and transwell assay were performed to evaluate the malignancy of HCC cells. Glucose uptake, lactate production, ATP production, extracellular acidification rate (ECAR) by Seahorse XF analyzer were employed to evaluate the role of TNFAIP6 in the regulation of aerobic glycolysis. The expressions of key proteins involved in glycolysis were examined by Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) were used for protein-protein interactions or protein-RNA interactions respectively. Knockdown and overexpression of TNFAIP6 in HCC cells were employed for analyzing the functions of TNFAIP6 in HCC. Results TNFAIP6 was significantly upregulated in HCC and predicted a poor clinical prognosis. Knockdown of TNFAIP6 inhibited in vitro cell proliferation, invasion, migration, as well as glycolysis in HCC cells. Mechanistically, we clarified that TNFAIP6 interacted with heterogeneous nuclear ribonucleoprotein C (HNRNPC), stabilized c-Myc mRNA and upregulated pyruvate kinase M2 (PKM2) to promote glycolysis. Conclusions Our study reveals a molecular mechanism by which TNFAIP6 promotes aerobic glycolysis, which is beneficial for malignance of HCC and provides a potential clinical therapy for disease management.
Collapse
Affiliation(s)
- Kecai Duan
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Kunpeng Fang
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| | - Chengjun Sui
- Department of Special Medical Services, Third Affiliated Hospital of Naval Medical University (Shanghai Eastern Hepatobiliary Surgery Hospital), China
| |
Collapse
|
32
|
Littleflower AB, Parambil ST, Antony GR, Subhadradevi L. The determinants of metabolic discrepancies in aerobic glycolysis: Providing potential targets for breast cancer treatment. Biochimie 2024; 220:107-121. [PMID: 38184121 DOI: 10.1016/j.biochi.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
33
|
Paška J, Wang B, Chen AM, Madelin G, Brown R. Triple-tuned birdcage and single-tuned dipole array for quadri-nuclear head MRI at 7 T. Magn Reson Med 2024; 91:2188-2199. [PMID: 38116692 PMCID: PMC10950522 DOI: 10.1002/mrm.29977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The purpose of this work was to design and build a coil for quadri-nuclear MRI of the human brain at 7 T. METHODS We built a transmit/receive triple-tuned (45.6 MHz for 2 $$ {}^2 $$ H, 78.6 MHz for 23 $$ {}^{23} $$ Na, and 120.3 MHz for 31 $$ {}^{31} $$ P) quadrature four-rod birdcage that was geometrically interleaved with a transmit/receive four-channel dipole array (297.2 MHz for 1 $$ {}^1 $$ H). The birdcage rods contained passive, two-pole resonant circuits that emulated capacitors required for single-tuning at three frequencies. The birdcage assembly also included triple-tuned matching networks, baluns, and transmit/receive switches. We assessed the performance of the coil with quality factor (Q) and signal-to-noise ratio (SNR) measurements, and performed in vivo multinuclear MRI and MR spectroscopic imaging (MRSI). RESULTS Q measurements showed that the triple-tuned birdcage efficiency was within 33% of that of single-tuned baseline birdcages at all three frequencies. The quadri-tuned coil SNR was 78%, 59%, 44%, and 48% lower than that of single or dual-tuned reference coils for 1 $$ {}^1 $$ H, 2 $$ {}^2 $$ H, 23 $$ {}^{23} $$ Na, and 31 $$ {}^{31} $$ P, respectively. Quadri-nuclear MRI and MRSI was demonstrated in brain in vivo in about 30 min. CONCLUSION While the SNR of the quadruple tuned coil was significantly lower than dual- and single-tuned reference coils, it represents a step toward truly simultaneous quadri-nuclear measurements.
Collapse
Affiliation(s)
- Jan Paška
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bili Wang
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Anna M. Chen
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Guillaume Madelin
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
34
|
Sandhya S, Talukdar J, Gogoi G, Dey KS, Das B, Baishya D. Impact of coconut kernel extract on carcinogen-induced skin cancer model: Oxidative stress, C-MYC proto-oncogene and tumor formation. Heliyon 2024; 10:e29385. [PMID: 38665592 PMCID: PMC11043960 DOI: 10.1016/j.heliyon.2024.e29385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed at analysing the effects of coconut (Cocos nucifera L.) kernel extract (CKE) on oxidative stress, C-MYC proto-oncogene, and tumour formation in a skin cancer model. Tumorigenesis was induced by dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA). In vitro antioxidant activity of CKE was assessed using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), total phenolic and flavonoid content assays. CKE showed a higher antioxidant activity then ascorbic acid (*P < 0.05, ****P < 0.0001). HPLC and NMR study of the CKE revealed the presence of lauric acid (LA). Following the characterization of CKE, mice were randomly assigned to receive DMBA/TPA Induction and CKE treatment at different doses (50, 100, and 200 mg/kg) of body weight. LA 100 mg/kg of body weight used as standard. Significantly, the CKE200 and control groups' mice did not develop tumors; however, the CKE100 and CKE50 treated groups did develop tumors less frequently than the DMBA/TPA-treated mice. Histopathological analysis revealed that the epidermal layer in DMBA-induced mice was thicker and had squamous pearls along with a hyperplasia/dysplasia lesion, indicating skin squamous cell carcinoma (SCC), whereas the epidermal layers in CKE200-treated and control mice were normal. Additionally, the CKE treatment demonstrated a significant stimulatory effect on the activities of reactive oxygen species (ROS), glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD), as well as an inhibitory effect on lipid peroxidase (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001) and c-MYC protein expression (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). In conclusion, CKE prevents the growth of tumors on mouse skin by reducing oxidative stress and suppressing c-MYC overexpression brought on by DMBA/TPA induction. This makes it an effective dietary antioxidant with anti-tumor properties.
Collapse
Affiliation(s)
- Sorra Sandhya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Joyeeta Talukdar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
| | - Gayatri Gogoi
- Department of Pathology, Assam Medical College and Hospital (AMCH), Assam, India
| | | | - Bikul Das
- Department of Cancer and Stem Cell Biology, KaviKrishna Laboratory, Indian Institute of Technology-Guwahati Research Park, Assam, India
- Department of Stem Cell and Infection, Thoreau Lab for Global Health, University of Massachusetts, Lowell, MA, USA
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
35
|
Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo ME, Mayol E, Jiménez-Vega S, García-Peña P, Jordi-Cruz J, Baquero C, Porras A, Íñigo-Rodríguez B, Benavente CM, López-Pastor AR, Gómez-Delgado I, Urcelay E, Candel FJ, Anguita E. Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production. Int J Mol Sci 2024; 25:4887. [PMID: 38732105 PMCID: PMC11084384 DOI: 10.3390/ijms25094887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.
Collapse
Affiliation(s)
- Carlos Ramos-Acosta
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Laura Huerta-Pantoja
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Milton Eduardo Salazar-Hidalgo
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Elsa Mayol
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Selene Jiménez-Vega
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Pablo García-Peña
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Jenifeer Jordi-Cruz
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Belén Íñigo-Rodríguez
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Celina M. Benavente
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Francisco Javier Candel
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| |
Collapse
|
36
|
Nakagawa S, Yamaguchi K, Takane K, Tabata S, Ikenoue T, Furukawa Y. Wnt/β-catenin signaling regulates amino acid metabolism through the suppression of CEBPA and FOXA1 in liver cancer cells. Commun Biol 2024; 7:510. [PMID: 38684876 PMCID: PMC11058205 DOI: 10.1038/s42003-024-06202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Deregulation of the Wnt/β-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the β-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of β-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/β-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.
Collapse
Affiliation(s)
- Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
37
|
Peng L, Guangshi L, Wusman LB, Tao L. STK16 promoted colorectal cancer progress in a c-MYC signaling-dependent manner. Mol Med 2024; 30:50. [PMID: 38622518 PMCID: PMC11020453 DOI: 10.1186/s10020-024-00816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Colorectal cancer standed as a global health challenge, ranking third in cancer incidence and second in cancer-related deaths worldwide. A deeper understanding of the intricate mechanisms driving colorectal cancer development was pressing need. STK16 had garnered attention in recent researches, while its involvement in cancer had been minimally explored. c-MYC had emerged as a key player in cancer biology. Due to its complex structure, multifunctionality, and intricate interactions, directly inhibiting the activity of c-MYC proves to be challenging. Hence, current research was directing efforts towards modulating c-MYC expression levels. METHODS Immunoblot, Immunohistochemistry and immunoprecipitation assays were conducted to assess the indicated protein expression levels. RT-PCR was performed to detect the corresponding mRNA expression levels. The proliferation, migration, invasion, and colony formation abilities of the specified cancer cells were investigated using CCK8 assays, Brdu assays, transwell assays, and colony formation assays, respectively. Cellular and animal experiments were performed to investigate the correlation between STK16 signaling and c-MYC signaling. RESULTS STK16 plays a positive regulatory role in the progression of colorectal cancer. Delving into the molecular mechanisms, we unveiled that STK16 phosphorylated c-MYC at serine 452, a pivotal event hindering the ubiquitin-proteasome pathway degradation of c-MYC. Importantly, colorectal cancer proliferation mediated by STK16 was found to be dependent on the phosphorylation of c-MYC at S452. Furthermore, the researchers demonstrated that STK16 knockout or pharmacological inhibition significantly curtailed colorectal cancer proliferation and c-MYC expression in in vivo animal models. CONCLUSION We discovered that STK16 phosphorylates c-MYC at serine 452, hindering its degradation via the ubiquitin-proteasome pathway. STK16 inhibition, either genetically or pharmacologically, effectively curtails cancer growth and c-MYC expression in vivo. These findings highlight STK16 as a potential therapeutic target for colorectal cancer.
Collapse
Affiliation(s)
- Li Peng
- Gastrointestinal Surgery department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Province, China
| | - Liu Guangshi
- Gastrointestinal Surgery department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Province, China
| | - Lai Bijiang Wusman
- Gastrointestinal Surgery department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Province, China
| | - Li Tao
- Gastrointestinal Surgery department, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang Province, China.
| |
Collapse
|
38
|
Zhou H, Wu Y, Cai J, Zhang D, Lan D, Dai X, Liu S, Song T, Wang X, Kong Q, He Z, Tan J, Zhang J. Micropeptides: potential treatment strategies for cancer. Cancer Cell Int 2024; 24:134. [PMID: 38622617 PMCID: PMC11020647 DOI: 10.1186/s12935-024-03281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/23/2024] [Indexed: 04/17/2024] Open
Abstract
Some noncoding RNAs (ncRNAs) carry open reading frames (ORFs) that can be translated into micropeptides, although noncoding RNAs (ncRNAs) have been previously assumed to constitute a class of RNA transcripts without coding capacity. Furthermore, recent studies have revealed that ncRNA-derived micropeptides exhibit regulatory functions in the development of many tumours. Although some of these micropeptides inhibit tumour growth, others promote it. Understanding the role of ncRNA-encoded micropeptides in cancer poses new challenges for cancer research, but also offers promising prospects for cancer therapy. In this review, we summarize the types of ncRNAs that can encode micropeptides, highlighting recent technical developments that have made it easier to research micropeptides, such as ribosome analysis, mass spectrometry, bioinformatics methods, and CRISPR/Cas9. Furthermore, based on the distribution of micropeptides in different subcellular locations, we explain the biological functions of micropeptides in different human cancers and discuss their underestimated potential as diagnostic biomarkers and anticancer therapeutic targets in clinical applications, information that may contribute to the discovery and development of new micropeptide-based tools for early diagnosis and anticancer drug development.
Collapse
Affiliation(s)
- He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi, 563000, China
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi563000, China
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi, 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi City, Guizhou Province, 563000, China.
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi, 563000, China.
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
39
|
Wang S, Gu S, Chen J, Yuan Z, Liang P, Cui H. Mechanism of Notch Signaling Pathway in Malignant Progression of Glioblastoma and Targeted Therapy. Biomolecules 2024; 14:480. [PMID: 38672496 PMCID: PMC11048644 DOI: 10.3390/biom14040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of glioma and the most common primary tumor of the central nervous system. Despite significant advances in clinical management strategies and diagnostic techniques for GBM in recent years, it remains a fatal disease. The current standard of care includes surgery, radiation, and chemotherapy, but the five-year survival rate for patients is less than 5%. The search for a more precise diagnosis and earlier intervention remains a critical and urgent challenge in clinical practice. The Notch signaling pathway is a critical signaling system that has been extensively studied in the malignant progression of glioblastoma. This highly conserved signaling cascade is central to a variety of biological processes, including growth, proliferation, self-renewal, migration, apoptosis, and metabolism. In GBM, accumulating data suggest that the Notch signaling pathway is hyperactive and contributes to GBM initiation, progression, and treatment resistance. This review summarizes the biological functions and molecular mechanisms of the Notch signaling pathway in GBM, as well as some clinical advances targeting the Notch signaling pathway in cancer and glioblastoma, highlighting its potential as a focus for novel therapeutic strategies.
Collapse
Affiliation(s)
- Shenghao Wang
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
| | - Sikuan Gu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Junfan Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Zhiqiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
| | - Ping Liang
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, China;
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (S.G.); (J.C.); (Z.Y.)
- Department of Neurosurgery, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
40
|
Zhao Z, Liu M, Lin Z, Zhu M, Lv L, Zhu X, Fan R, Al-Danakh A, He H, Tan G. The mechanism of USP43 in the development of tumor: a literature review. Aging (Albany NY) 2024; 16:6613-6626. [PMID: 38613804 PMCID: PMC11042928 DOI: 10.18632/aging.205731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Ubiquitination of the proteins is crucial for governing protein degradation and regulating fundamental cellular processes. Deubiquitinases (DUBs) have emerged as significant regulators of multiple pathways associated with cancer and other diseases, owing to their capacity to remove ubiquitin from target substrates and modulate signaling. Consequently, they represent potential therapeutic targets for cancer and other life-threatening conditions. USP43 belongs to the DUBs family involved in cancer development and progression. This review aims to provide a comprehensive overview of the existing scientific evidence implicating USP43 in cancer development. Additionally, it will investigate potential small-molecule inhibitors that target DUBs that may have the capability to function as anti-cancer medicines.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Meichen Liu
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| | - Mengru Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Xinqing Zhu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Rui Fan
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, National, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Abdullah Al-Danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian 116011, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian 116000, China
| |
Collapse
|
41
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Liu J, Zhu Y, Wang H, Han C, Wang Y, Tang R. LINC00629, a HOXB4-downregulated long noncoding RNA, inhibits glycolysis and ovarian cancer progression by destabilizing c-Myc. Cancer Sci 2024; 115:804-819. [PMID: 38182548 PMCID: PMC10920983 DOI: 10.1111/cas.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024] Open
Abstract
Ovarian cancer (OC) cells typically reprogram their metabolism to promote rapid proliferation. However, the role of long noncoding RNAs (lncRNAs) in the metabolic reprogramming of ovarian cancer, especially in glucose metabolic reprogramming, remains largely unknown. LINC00629 has been reported in our previous study to promote osteosarcoma progression. Upregulated LINC00629 was found to enhance the growth-suppressive effect of apigenin on oral squamous cell carcinoma. However, the precise function of LINC00629 in ovarian cancer development remains poorly understood. In this study, we found that LINC00629 was significantly downregulated in OC tissues and that low LINC00629 expression was associated with poor survival. Inhibition of LINC00629 was required for increased glycolysis activity and cell proliferation in ovarian cancer. In vivo, overexpression of LINC00629 dramatically inhibited tumor growth and lung metastasis. Mechanistically, LINC00629 interacted with and destabilized c-Myc, leading to its ubiquitination and proteasome degradation, further resulting in increased expression of downstream glycolysis-related genes and glucose metabolic reprogramming in OC. Interestingly, HOXB4 bound to the LINC00629 promoter and inhibited its transcription, indicating that LINC00629 is a transcriptional target of HOXB4. Collectively, these findings establish a direct role for LINC00629 in suppressing glucose metabolism, and HOXB4/LINC00629/c-Myc might serve as a potential biomarker and an effective therapeutic strategy for OC cancer treatment.
Collapse
Affiliation(s)
- Jia Liu
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Yuan Zhu
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Huan Wang
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| | - Chuanchun Han
- The Second Affiliated Hospital and Institute of Cancer Stem CellDalian Medical UniversityDalianLiaoningChina
| | - Yongpeng Wang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
| | - Ranran Tang
- Department of GynecologyCancer Hospital of China Medical University, Liaoning Cancer Hospital and InstituteShenyangChina
- Department of GynecologyWomen's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare HospitalNanjingChina
| |
Collapse
|
43
|
Cheng C, Liu Z, Liu D, Chen H, Wang Y, Sun B. LncRNA CCAT1 participates in pancreatic ductal adenocarcinoma progression by forming a positive feedback loop with c-Myc. Carcinogenesis 2024; 45:69-82. [PMID: 37936306 DOI: 10.1093/carcin/bgad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play fundamental roles in cancer development; however, the underlying mechanisms for a large proportion of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) have not been elucidated. The expression of colon cancer-associated transcript-1 (CCAT1) in PDAC specimens and cell lines was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The function of CCAT1 was examined in vitro and in vivo. The interactions among CCAT1, miR-24-3p and c-Myc were determined by bioinformatics analysis, RNA immunoprecipitation (RIP), dual-luciferase reporter assay, and rescue experiments. CCAT1 was significantly increased in PDAC, positively correlated with PDAC progression and predicted a worse prognosis. Furthermore, CCAT1 enhanced Adenosine triphosphate (ATP) production to facilitate PDAC cell proliferation, colony formation and motility in vitro and tumor growth in vivo. CCAT1 may serve as an miR-24-3p sponge, thereby counteracting its repression by c-Myc expression. Reciprocally, c-Myc may act as a transcription factor to alter CCAT1 expression by directly targeting its promoter region, thus forming a positive feedback loop with CCAT1. Collectively, these results demonstrate that a positive feedback loop of CCAT1/miR-24-3p/c-Myc is involved in PDAC development, which may serve as a biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zonglin Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
44
|
Yu J, Li M, Ju L, Zhou F, Wang Y, Zhang Y, Zhang R, Du W, Huang R, Qian K, Wang G, Xiao Y, Wang X. TRAIP suppresses bladder cancer progression by catalyzing K48-linked polyubiquitination of MYC. Oncogene 2024; 43:470-483. [PMID: 38123820 DOI: 10.1038/s41388-023-02922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
TRAF-interacting protein (TRAIP), an E3 ligase containing a RING domain, has emerged as a significant contributor to maintaining genome integrity and is closely associated with cancer. Our study reveals that TRAIP shows reduced expression in bladder cancer (BLCA), which correlates with an unfavorable prognosis. In vitro and in vivo, TRAIP inhibits proliferation and migration of BLCA cells. MYC has been identified as a novel target for TRAIP, wherein direct interaction promotes K48-linked polyubiquitination at neighboring K428 and K430 residues, ultimately resulting in proteasome-dependent degradation and downregulation of MYC transcriptional activity. This mechanism effectively impedes the progression of BLCA. Restoring MYC expression reverses suppressed proliferation and migration of BLCA cells induced by TRAIP. Moreover, our results suggest that MYC may bind to the transcriptional start region of TRAIP, thereby exerting regulatory control over TRAIP transcription. Consequently, this interaction establishes a negative feedback loop that regulates MYC expression, preventing excessive levels. Taken together, this study reveals a mechanism that TRAIP inhibits proliferation and migration of BLCA by promoting ubiquitin-mediated degradation of MYC.
Collapse
Affiliation(s)
- Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ruoyu Huang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
45
|
Li M, Yu J, Ju L, Wang Y, Jin W, Zhang R, Xiang W, Ji M, Du W, Wang G, Qian K, Zhang Y, Xiao Y, Wang X. USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis 2024; 15:44. [PMID: 38218970 PMCID: PMC10787741 DOI: 10.1038/s41419-024-06446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
A hallmark of tumor cells, including bladder cancer (BLCA) cells, is metabolic reprogramming toward aerobic glycolysis (Warburg effect). The classical oncogene MYC, which is crucial in regulating glycolysis, is amplified and activated in BLCA. However, direct targeting of the c-Myc oncoprotein, which regulates glycolytic metabolism, presents great challenges and necessitates the discovery of a more clarified regulatory mechanism to develop selective targeted therapy. In this study, a siRNA library targeting deubiquitinases identified a candidate enzyme named USP43, which may regulate glycolytic metabolism and c-Myc transcriptional activity. Further investigation using functional assays and molecular studies revealed a USP43/c-Myc positive feedback loop that contributes to the progression of BLCA. Moreover, USP43 stabilizes c-Myc by deubiquitinating c-Myc at K148 and K289 primarily through deubiquitinase activity. Additionally, upregulation of USP43 protein in BLCA increased the chance of interaction with c-Myc and interfered with FBXW7 access and degradation of c-Myc. These findings suggest that USP43 is a potential therapeutic target for indirectly targeting glycolytic metabolism and the c-Myc oncoprotein consequently enhancing the efficacy of bladder cancer treatment.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yejinpeng Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Jin
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Euler Technology, ZGC Life Sciences Park, Beijing, China
| | - Renjie Zhang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wan Xiang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Meng Ji
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenzhi Du
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Gang Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China.
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
46
|
Donati B, Reggiani F, Torricelli F, Santandrea G, Rossi T, Bisagni A, Gasparini E, Neri A, Cortesi L, Ferrari G, Bisagni G, Ragazzi M, Ciarrocchi A. Spatial Distribution of Immune Cells Drives Resistance to Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer. Cancer Immunol Res 2024; 12:120-134. [PMID: 37856875 DOI: 10.1158/2326-6066.cir-23-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/22/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Neoadjuvant chemotherapy (NAC) alone or combined with target therapies represents the standard of care for localized triple-negative breast cancer (TNBC). However, only a fraction of patients have a response, necessitating better understanding of the complex elements in the TNBC ecosystem that establish continuous and multidimensional interactions. Resolving such complexity requires new spatially-defined approaches. Here, we used spatial transcriptomics to investigate the multidimensional organization of TNBC at diagnosis and explore the contribution of each cell component to response to NAC. Starting from a consecutive retrospective series of TNBC cases, we designed a case-control study including 24 patients with TNBC of which 12 experienced a pathologic complete response (pCR) and 12 no-response or progression (pNR) after NAC. Over 200 regions of interest (ROI) were profiled. Our computational approaches described a model that recapitulates clinical response to therapy. The data were validated in an independent cohort of patients. Differences in the transcriptional program were detected in the tumor, stroma, and immune infiltrate comparing patients with a pCR with those with pNR. In pCR, spatial contamination between the tumor mass and the infiltrating lymphocytes was observed, sustained by a massive activation of IFN-signaling. Conversely, pNR lesions displayed increased pro-angiogenetic signaling and oxygen-based metabolism. Only modest differences were observed in the stroma, revealing a topology-based functional heterogeneity of the immune infiltrate. Thus, spatial transcriptomics provides fundamental information on the multidimensionality of TNBC and allows an effective prediction of tumor behavior. These results open new perspectives for the improvement and personalization of therapeutic approaches to TNBCs.
Collapse
Affiliation(s)
- Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giacomo Santandrea
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Gasparini
- Oncology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliera Policlinico di Modena, Modena, Italy
| | - Guglielmo Ferrari
- Breast Surgery Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giancarlo Bisagni
- Oncology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
47
|
Xuan T. Tripartite Motif-containing Protein 11 Silencing Inhibits Proliferation and Glycolysis and Promotes Apoptosis of Esophageal Squamous Cell Carcinoma Cells by Inactivating Signal Transduction and Activation of Transcription Factor 3/c-Myc Signaling. CHINESE J PHYSIOL 2024; 67:37-46. [PMID: 38780271 DOI: 10.4103/ejpi.ejpi-d-23-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 05/25/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common type of human digestive tract cancer with poor survival. Tripartite motif-containing protein 11 (TRIM11) is an oncogene in certain cancers that can regulate glycolysis and signal transduction and activation of transcription factor 3 (STAT3) signaling. This study was designed to investigate the role and the mechanism of TRIM11 in ESCC. First, TRIM11 expression in ESCC tissues and the correlation between TRIM11 expression and prognosis were analyzed using bioinformatics tools. After TRIM11 expression was detected by Western blot in ESCC cells, TRIM11 was silenced to evaluate its effect on the malignant phenotypes of ESCC cells. Cell proliferation and apoptosis were assessed by cell counting kit-8 assay, ethynyl-2'- deoxyuridine staining, and flow cytometry, respectively. The glucose uptake and lactate secretion were detected to examine glycolysis. In addition, Western blot was employed to detect the expression of proteins related to apoptosis, glycolysis, and STAT3/c-Myc signaling. Then, ESCC cells were treated with STAT3 activator further to clarify the regulatory effect of TRIM11 on STAT3/c-Myc signaling. TRIM11 was upregulated in ESCC tissues and cells, and high expression of TRIM11 was associated with a poor prognosis. TRIM11 knockdown inhibited the proliferation and glycolysis while facilitating apoptosis of ESCC cells. Besides, the expression of p-STAT3 and c-Myc was significantly downregulated by TRIM11 silencing. Of note, the STAT3 activator partially reversed the effects of TRIM11 depletion on the proliferation, apoptosis, and glycolysis in ESCC cells. Collectively, TRIM11 loss-of-function affects the proliferation, apoptosis, and glycolysis in ESCC cells by inactivating STAT3/c-Myc signaling.
Collapse
Affiliation(s)
- Tingting Xuan
- Department of Radiotherapy, The First People's Hospital of Nantong, Nantong, Jiangsu, China
| |
Collapse
|
48
|
Popper H, Brcic L, Eidenhammer S. Does subtyping of high-grade pulmonary neuroendocrine carcinomas have an impact on therapy selection? Transl Lung Cancer Res 2023; 12:2412-2426. [PMID: 38205203 PMCID: PMC10775006 DOI: 10.21037/tlcr-23-505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
Background Small cell lung cancer (SCLC) and large cell neuroendocrine carcinomas (LCNEC) are characterized by a rapid progressive course. Therapy for SCLC has not much changed for decades, and in LCNEC controversies exist, favoring either SCLC-like or non-small cell lung cancer (NSCLC)-like therapy. Three subtypes of SCLC identified in cell cultures, namely ASCL1, NeuroD1, and POU2F3 have been confirmed by immunohistochemistry. The fourth type based on the expression of YAP1 was questioned, and another type, inflamed SCLC, was proposed. Methods SCLC and LCNEC samples were investigated by immunohistochemistry for different subtypes. Additionally, immunohistochemical markers as potential tools to identify patients who might respond to targeted treatment were investigated. For validation a biopsy set was added. Results ASCL1, NeuroD1, and POU2F3 were expressed in different percentages in SCLC and LCNEC. Similar percentages of expression were found in biopsies. ATOH was expressed in combination with one of the subtypes. YAP1 and TAZ were expressed in some SCLC and LCNEC cases. HES1 expression was seen in few cases. Predominantly stroma cells expressed programmed cell death ligand 1 (PD-L1). The dominant MYC protein was N-MYC. Aurora kinase A (AURKA) was expressed in the majority of both carcinomas, whereas fibroblast growth factor receptor 2 (FGFR2) in few. Conclusions SCLC and LCNEC can be subtyped into ASCL1-, NeuroD1-, and POU2F3-positive types. AURKA expression and positivity for N-MYC protein was not associated with subtypes. AURKA and FGFR2 are both possible targets for inhibition in SCLC and LCNEC, but patients' selection should be based on expression of the enzyme. Combined chemo- and immunotherapy might be decided by PD-L1 staining of stroma cells.
Collapse
Affiliation(s)
| | - Luka Brcic
- D&F Institute of Pathology, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
49
|
Qi Y, Ma N, Zhang J. Tripartite motif containing 33 demonstrated anticancer effect by degrading c‑Myc: Limitation of glutamine metabolism and proliferation in endometrial carcinoma cells. Int J Oncol 2023; 63:133. [PMID: 37859625 PMCID: PMC10622177 DOI: 10.3892/ijo.2023.5581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023] Open
Abstract
Tripartite motif containing 33 (TRIM33) has been reported to be involved in various tumor progression. However, its role in endometrial carcinoma (EC) remains to be elucidated. By mining the publicly available databases UALCAN and TIMER, low expression of TRIM33 was found in tumor tissues of EC patients. Clinically, downregulation of TRIM33 in EC tissues was positively correlated with the extensive muscle invasion and poor differentiation grade. In vitro, experiments performed on human HEC‑1‑A and AN3CA cells showed that overexpression of TRIM33 inhibited the proliferation, migration and invasion of EC cells, whereas TRIM33 knockdown resulted in the opposite results. Furthermore, upregulation of TRIM33 significantly inhibited the glutamine uptake and decreased the intracellular glutamate in EC cells, which is evidenced by the reduction of solute carrier family 1 member 5 and glutaminase. In vivo, TRIM33 also dramatically inhibited tumor growth and glutamine metabolism. Additionally, co‑immunoprecipitation assay confirmed the interaction between TRIM33 and c‑Myc. Overexpression of TRIM33 could reduce the protein stability of c‑Myc by promoting its degradation. In addition, upregulation of c‑Myc could reverse the effects of TRIM33 on EC cells. Together, the present study demonstrated that TRIM33 acted as a tumor suppressor in EC, which is manifested in its inhibition of glutamine metabolism and cell growth via promoting c‑Myc protein degradation.
Collapse
Affiliation(s)
| | | | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
50
|
Hasani S, Fathabadi F, Saeidi S, Mohajernoei P, Hesari Z. The role of NFATc1 in the progression and metastasis of prostate cancer: A review on the molecular mechanisms and signaling pathways. Cell Biol Int 2023; 47:1895-1904. [PMID: 37814550 DOI: 10.1002/cbin.12094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/27/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A common type of cancer among men is the prostate cancer that kills many people every year. The multistage of this disease and the involvement of the vital organs of the body have reduced the life span and quality of life of the people involved and turned the treatment process into a complex one. NFATc1 biomarker contributes significantly in the diagnosis and treatment of this disease by increasing its expression in prostate cancer and helping the proliferation, differentiation, and invasion of cancer cells through different signaling pathways. NFATc1 is also able to target the metabolism of cancer cells by inserting specific oncogene molecules such as c-myc that it causes cell growth and proliferation. Bone is a common tissue where prostate cancer cells metastasize. In this regard, the activity of NFATc1, through the regulation of different signaling cascades, including the RANKL/RANK signaling pathway, in turn, increases the activity of osteoclasts, and as a result, bone tissue is gradually ruined. Using Silibinin as a medicinal plant extract can inhibit the activity of osteoclasts related to prostate cancer by targeting NFATc. Undoubtedly, NFATc1 is one of the effective oncogenes related to prostate cancer, which has the potential to put this cancer on the path of progression and metastasis. In this review, we will highlight the role of NFATc1 in the progression and metastasis of prostate cancer. Furthermore, we will summarize signaling pathways and molecular mechanism, through which NFATc1 regulates the process of prostate cancer.
Collapse
Affiliation(s)
- Samaneh Hasani
- Department of Nursing, Faculty of Medical Sciences, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Farshid Fathabadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saman Saeidi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pouya Mohajernoei
- Department of Medicine and Surgery, Università degli Studi di Padova, Padua, Italy
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|