1
|
Wang K, Liu J, Hai P, Zhang W, Shan Y, Zhang J. Novel angiogenesis inhibitors with superoxide anion radical amplification effect: Surmounting the Achilles' heels of angiogenesis inhibitors and photosensitizers. Eur J Med Chem 2024; 272:116495. [PMID: 38744089 DOI: 10.1016/j.ejmech.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Angiogenesis inhibitors and photosensitizers are pivotal in tumor clinical treatment, yet their utilization is constrained. Herein, eleven novel angiogenesis inhibitors were developed through hybridization strategy to overcome their clinical limitations. These title compounds boast excitation wavelengths within the "therapeutic window", enabling deep tissue penetration. Notably, they could generate superoxide anion radicals via the Type I mechanism, with compound 36 showed the strongest superoxide anion radical generating capacity. Biological evaluation demonstrated remarkable cellular activity of all the title compounds, even under hypoxic conditions. Among them, compound 36 stood out for its superior anti-proliferative activity in both normoxic and hypoxic environments, surpassing individual angiogenesis inhibitors and photosensitizers. Compound 36 induced cell apoptosis via superoxide anion radical generation, devoid of dark toxicity. Molecular docking revealed that the target-recognizing portion of compound 36 was able to insert into the ATP binding pocket of the target protein similar to sorafenib. Collectively, our results suggested that hybridization of angiogenesis inhibitors and photosensitizers was a potential strategy to address the limitations of their clinical use.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junhua Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Hai
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Wei Zhang
- NMPA Key Laboratory for Quality Control of Traditional Chinese and Tibetan Medicine, Qinghai Provincial Drug Inspection and Testing Institute, Xining, 810016, China
| | - Yuanyuan Shan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
2
|
Hsieh MY, Hsu SK, Liu TY, Wu CY, Chiu CC. Melanoma biology and treatment: a review of novel regulated cell death-based approaches. Cancer Cell Int 2024; 24:63. [PMID: 38336727 PMCID: PMC10858604 DOI: 10.1186/s12935-024-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
The incidence of melanoma, the most lethal form of skin cancer, has increased due to ultraviolet exposure. The treatment of advanced melanoma, particularly metastatic cases, remains challenging with poor outcomes. Targeted therapies involving BRAF/MEK inhibitors and immunotherapy based on anti-PD1/anti-CTLA4 antibodies have achieved long-term survival rates of approximately 50% for patients with advanced melanoma. However, therapy resistance and inadequate treatment response continue to hinder further breakthroughs in treatments that increase survival rates. This review provides an introduction to the molecular-level pathogenesis of melanoma and offers an overview of current treatment options and their limitations. Cells can die by either accidental or regulated cell death (RCD). RCD is an orderly cell death controlled by a variety of macromolecules to maintain the stability of the internal environment. Since the uncontrolled proliferation of tumor cells requires evasion of RCD programs, inducing the RCD of melanoma cells may be a treatment strategy. This review summarizes studies on various types of nonapoptotic RCDs, such as autophagy-dependent cell death, necroptosis, ferroptosis, pyroptosis, and the recently discovered cuproptosis, in the context of melanoma. The relationships between these RCDs and melanoma are examined, and the interplay between these RCDs and immunotherapy or targeted therapy in patients with melanoma is discussed. Given the findings demonstrating melanoma cell death in response to different stimuli associated with these RCDs, the induction of RCD shows promise as an integral component of treatment strategies for melanoma.
Collapse
Affiliation(s)
- Ming-Yun Hsieh
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tzu-Yu Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chang-Yi Wu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Puri M, Gawri K, Dawar R. Therapeutic strategies for BRAF mutation in non-small cell lung cancer: a review. Front Oncol 2023; 13:1141876. [PMID: 37645429 PMCID: PMC10461310 DOI: 10.3389/fonc.2023.1141876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer related deaths. Among the two broad types of lung cancer, non-small cell lung cancer accounts for 85% of the cases. The study of the genetic alteration has facilitated the development of targeted therapeutic interventions. Some of the molecular alterations which are important targets for drug therapy include Kirsten rat sarcoma (KRAS), Epidermal Growth Factor Receptor (EGFR), V-RAF murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase gene (ALK). In the setting of extensive on-going clinical trials, it is imperative to periodically review the advancements and the newer drug therapies being available. Among all mutations, BRAF mutation is common with incidence being 8% overall and 1.5 - 4% in NSCLC. Here, we have summarized the BRAF mutation types and reviewed the various drug therapy available - for both V600 and nonV600 group; the mechanism of resistance to BRAF inhibitors and strategies to overcome it; the significance of comprehensive profiling of concurrent mutations, and the role of immune checkpoint inhibitor in BRAF mutated NSCLC. We have also included the currently ongoing clinical trials and recent advancements including combination therapy that would play a role in improving the overall survival and outcome of NSCLC.
Collapse
Affiliation(s)
- Megha Puri
- Department of Internal Medicine, Saint Peter’s University Hospital, New Brunswick, NJ, United States
| | - Kunal Gawri
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Buffalo, Buffalo, NY, United States
| | - Richa Dawar
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
| |
Collapse
|
4
|
Diaz MJ, Mark I, Rodriguez D, Gelman B, Tran JT, Kleinberg G, Levin A, Beneke A, Root KT, Tran AXV, Lucke-Wold B. Melanoma Brain Metastases: A Systematic Review of Opportunities for Earlier Detection, Diagnosis, and Treatment. Life (Basel) 2023; 13:life13030828. [PMID: 36983983 PMCID: PMC10053844 DOI: 10.3390/life13030828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction: Melanoma continues to represent the most serious skin cancer worldwide. However, few attempts have been made to connect the body of research on advanced melanoma. In the present review, we report on strides made in the diagnosis and treatment of intracranial metastatic melanoma. Methods: Relevant Cochrane reviews and randomized-controlled trials published by November 2022 were systematically retrieved from the Cochrane Library, EMBASE, and PubMed databases (N = 27). Search and screening methods adhered to the 2020 revision of the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Results: Although the research surrounding the earlier detection of melanoma brain metastasis is scarce, several studies have highlighted specific markers associated with MBM. Such factors include elevated BRAFV600 mutant ctDNA, high LDH concentration, and high IGF-1R. The approach to treating MBM is moving away from surgery and toward nonsurgical management, namely, a combination of stereotactic radiosurgery (SRS) and immunotherapeutic agents. There is an abundance of emerging research seeking to identify and improve both novel and established treatment options and diagnostic approaches for MBM, however, more research is still needed to maximize the clinical efficacy, especially for new immunotherapeutics. Conclusions: Early detection is optimal for the efficacy of treatment and MBM prognosis. Current treatment utilizes chemotherapies and targeted therapies. Emerging approaches emphasize biomarkers and joint treatments. Further exploration toward preliminary identification, the timing of therapies, and methods to ameliorate adverse treatment effects are needed to advance MBM patient care.
Collapse
Affiliation(s)
| | - Isabella Mark
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Daphnee Rodriguez
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Beata Gelman
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jasmine Thuy Tran
- School of Medicine, University of Indiana, Indianapolis, IN 46202, USA
| | - Giona Kleinberg
- College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Anna Levin
- School of Arts and Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Alice Beneke
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Kevin Thomas Root
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Andrew Xuan Vinh Tran
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Monge C, Stoppa I, Ferraris C, Bozza A, Battaglia L, Cangemi L, Miglio G, Pizzimenti S, Clemente N, Gigliotti CL, Boggio E, Dianzani U, Dianzani C. Parenteral Nanoemulsions Loaded with Combined Immuno- and Chemo-Therapy for Melanoma Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234233. [PMID: 36500861 PMCID: PMC9740980 DOI: 10.3390/nano12234233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/01/2023]
Abstract
High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid®, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc. The inhibition of tumor growth in subcutaneous melanoma mouse models has been achieved using sub-therapeutic drug doses, which is most likely the result of the nanoemulsion's targeting properties. If translated to the human setting, this approach should therefore allow therapeutic efficacy to be achieved without increasing the risk of toxic effects.
Collapse
Affiliation(s)
- Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Gianluca Miglio
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10124 Torino, Italy
| | - Nausicaa Clemente
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Corso Giuseppe Mazzini 18, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
6
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
7
|
Tabbò F, Pisano C, Mazieres J, Mezquita L, Nadal E, Planchard D, Pradines A, Santamaria D, Swalduz A, Ambrogio C, Novello S, Ortiz-Cuaran S. How far we have come targeting BRAF-mutant non-small cell lung cancer (NSCLC). Cancer Treat Rev 2022; 103:102335. [DOI: 10.1016/j.ctrv.2021.102335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
|
8
|
Wilkes JG, Patel A, McClure E, Pina Y, Zager JS. Developments in therapy for brain metastases in melanoma patients. Expert Opin Pharmacother 2021; 22:1443-1453. [PMID: 33688795 DOI: 10.1080/14656566.2021.1900117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Cutaneous melanoma brain metastases (MBM) are a major cause of morbidity and mortality. While cytotoxic agents, interferon, or interleukin-2, have been used with some success in extracranial disease, limited efficacy is demonstrated in MBM. The rare patient with long-term survival presented with limited intracranial disease amenable to surgery or radiation therapy. However, the development of targeted therapy and immunotherapy over the last decade has significantly improved overall survival in this formerly devastating presentation of metastatic melanoma.Areas covered: This article reviews the mechanism of brain metastasis, challenges with treating the central nervous system, historical treatment of MBM, and outcomes in clinical trials with targeted therapy and immunotherapy.Expert opinion: The MBM patient population now, more than ever, requires a multidisciplinary approach with surgery, radiation therapy, and the use of newer systemic therapies such as immunotherapy agents and targeted therapy agents. MBM has traditionally been excluded from clinical trials for systemic therapy due to poor survival. However, recent data show overall survival rates have significantly improved, supporting the need for inclusion of MBM patients in systemic therapy clinical trials. Understanding the mechanisms of therapeutic activity in the brain, resistance mechanisms, and the appropriate multi-modality treatment approach requires further investigation. Nevertheless, these therapies continue to give some hope to patients with historically poor survival.
Collapse
Affiliation(s)
- Justin G Wilkes
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ayushi Patel
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Erin McClure
- University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yolanda Pina
- Department of Neuro-Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA.,University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
9
|
Ny L, Hernberg M, Nyakas M, Koivunen J, Oddershede L, Yoon M, Wang X, Guyot P, Geisler J. BRAF mutational status as a prognostic marker for survival in malignant melanoma: a systematic review and meta-analysis. Acta Oncol 2020; 59:833-844. [PMID: 32285732 DOI: 10.1080/0284186x.2020.1747636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: The analysis of the BRAF mutational status has been established as a standard procedure during diagnosis of advanced malignant melanoma due to the fact that BRAF inhibitors constitute a cornerstone in the treatment of metastatic disease. However, the general impact of BRAF mutational status on survival remains unclear. Our study aimed to assess the underlying prognostic significance of BRAF mutant versus wild type (WT) malignant melanoma on overall survival (OS), disease-free survival (DFS) and progression-free survival (PFS).Material and methods: A systematic literature search in EMBASE, Medline and Cochrane CENTRAL was performed. Studies were included if they reported survival outcomes for BRAF mutant versus WT patients as hazard ratios (HR) or in Kaplan-Meier (KM) curves. Random-effects meta-analysis models were used to pool HRs across the studies.Results: Data from 52 studies, representing 7519 patients, were pooled for analysis of OS. The presence of a BRAF mutation was statistically significantly associated with a reduced OS (HR [95% confidence interval (CI)]: 1.23 [1.09-1.38]), however, with substantial heterogeneity between the studies (I2: 58.0%). Meta-regression and sensitivity analyses showed that age, sex and BRAF mutation testing method did not have a significant effect on the OS HR. BRAF mutant melanoma showed comparable effect on DFS to non-BRAF mutant melanoma in stage I-III melanoma (combined HR: 1.16, 95% CI: 0.92-1.46), and on PFS in stage III-IV (HR: 0.98 (95% CI: 0.68-1.40)).Conclusion: Although there was substantial heterogeneity between the studies, the overall results demonstrated a poorer prognosis and OS in patients harbouring BRAF mutations. Future studies should take this into account when evaluating epidemiological data and treatment effects of new interventions in patients with malignant melanoma.
Collapse
Affiliation(s)
- L. Ny
- Department of Oncology, Institute of Clinical Science, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M. Hernberg
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - M. Nyakas
- Oslo University Hospital, Oslo, Norway
| | - J. Koivunen
- Department of Oncology and Radiotherapy, Oulu University Hospital, MRC Oulu, Oulu, Finland
| | | | - M. Yoon
- Novartis Healthcare A/S, Copenhagen, Denmark
| | - X. Wang
- Commercialization & Outcomes, ICON plc, Stockholm, Sweden
| | - P. Guyot
- Commercialization & Outcomes, ICON plc, Lyon, France
| | - J. Geisler
- Institute of Clinical Medicine, Campus AHUS, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
10
|
Shin MH, Kim J, Lim SA, Kim J, Lee KM. Current Insights into Combination Therapies with MAPK Inhibitors and Immune Checkpoint Blockade. Int J Mol Sci 2020; 21:E2531. [PMID: 32260561 PMCID: PMC7177307 DOI: 10.3390/ijms21072531] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022] Open
Abstract
The recent development of high-throughput genomics has revolutionized personalized medicine by identifying key pathways and molecular targets controlling tumor progression and survival. Mitogen-activated protein kinase (MAPK) pathways are examples of such targets, and inhibitors against these pathways have shown promising clinical responses in patients with melanoma, non-small-cell lung cancer, colorectal cancer, pancreatic cancer, and thyroid cancer. Although MAPK pathway-targeted therapies have resulted in significant clinical responses in a large proportion of cancer patients, the rate of tumor recurrence is high due to the development of resistance. Conversely, immunotherapies have shown limited clinical responses, but have led to durable tumor regression in patients, and complete responses. Recent evidence indicates that MAPK-targeted therapies may synergize with immune cells, thus providing rationale for the development of combination therapies. Here, we review the current status of ongoing clinical trials investigating MAPK pathway inhibitors, such as BRAF and MAPK/ERK kinase (MEK) inhibitors, in combination with checkpoint inhibitors targeting programmed death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T cell associated antigen-4 (CTLA-4). A better understanding of an individual drug's mechanism of action, patterns of acquired resistance, and the influence on immune cells will be critical for the development of novel combination therapies.
Collapse
Affiliation(s)
| | | | | | | | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
11
|
Bertoli E, Giavarra M, Vitale MG, Minisini AM. Neuroblastoma rat sarcoma mutated melanoma: That's what we got so far. Pigment Cell Melanoma Res 2019; 32:744-752. [PMID: 31403745 DOI: 10.1111/pcmr.12819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Neuroblastoma rat sarcoma (NRAS) mutation, occurring in about 20%-30% of cutaneous melanomas, leads to activation of RAS-RAF-MAPK cascade and represents a clear distinct clinicopathological entity in melanoma. In contrast with BRAF mutant melanoma, no specific target therapies are available outside the setting of clinical trials. In the field of immunoncology, the predictive role of NRAS mutation with respect to checkpoint inhibitors treatment has not clearly established and deserves further investigation. At present, the standard treatment is the same as for BRAF wild type melanoma. Ongoing trials are exploring novel combination strategies among patients with advanced NRAS mutant melanoma.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Marco Giavarra
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Maria Grazia Vitale
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | |
Collapse
|
12
|
El Mubarak MA, Stylos EK, Chatziathanasiadou MV, Danika C, Alexiou GA, Tsekeris P, Renziehausen A, Crook T, Syed N, Sivolapenko GB, Tzakos AG. Development and validation of simple step protein precipitation UHPLC-MS/MS methods for quantitation of temozolomide in cancer patient plasma samples. J Pharm Biomed Anal 2019; 162:164-170. [DOI: 10.1016/j.jpba.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/16/2022]
|
13
|
Xia Y, Sun J. Synergistic inhibition of cell proliferation by combined targeting with kinase inhibitors and dietary xanthone is a promising strategy for melanoma treatment. Clin Exp Dermatol 2018; 43:149-157. [PMID: 29168273 DOI: 10.1111/ced.13283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 01/28/2023]
Abstract
α-Mangostin is a dietary xanthone that displays various biological activities, and numerous reports have shown its efficacy in cancer prevention and inhibition. As most agents have been shown to be ineffective as single-agent therapy for malignant melanoma (MM), the principle of targeted chemotherapy for MM is to use effective inhibitors and combination methods. In this study, we tested the cytotoxicity of several kinase inhibitors, including the glycogen synthase kinase (GSK)-3 inhibitor CHIR99021, and rapamycin, in combination with a dietary xanthone, α-mangostin, by screening from a kinase inhibitor library for melanogenesis in SK-MEL-2 MM cells, and verified these by clone formation efficiency, terminal dUTP nick end labelling, and expression of apoptosis-related proteins. We also explored the molecular mechanisms for the apoptosis-inducing effects reported. We found a marked synergistic effect of CHIR99021 or rapamycin in combination with α-mangostin, which we verified through apoptosis-related methods. These data provide a strong rationale for the use of α-mangostin as an adjunct to GSK-3 inhibitor or mammalian target of rapamycin inhibitor treatment. The intrinsic mechanism behind α-mangostin might be inhibition of phosphatidylinositol 3-kinase/AKT signalling and autophagy, and induction of reactive oxygen species generation.
Collapse
Affiliation(s)
- Y Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Abstract
Melanoma is the malignancy with the highest rate of dissemination to the central nervous system once it metastasizes. Until recently, the prognosis of patients with melanoma brain metastases (MBM) was poor. In recent years, however, the prognosis has improved due to high-resolution imaging that facilitates early detection of small asymptomatic brain metastases and early intervention with local modalities such as stereotactic radiosurgery. More recently, a number of systemic therapies have been approved by the Food and Drug Administration for metastatic melanoma, resulting in improved survival for many MBM patients. Registration trials for these newer therapies excluded patients with untreated brain metastases, and a number of studies specifically tailored to this population of patients have been conducted or are underway. Herein, we review contemporary locoregional and systemic therapies and describe the unique challenges posed by treatment of brain metastases, such as radionecrosis, cerebral edema, and pseudoprogression. Since the number of systemic and combined modality clinical trials has increased, we expect that the treatment landscape for patients with melanoma brain metastasis will change dramatically. In addition to ongoing clinical trials, which show great promise, we conclude that our understanding of intracranial metastasis remains quite limited. In addition to inter-disciplinary, multi-modality studies, bench-side work to better understand the process of cerebrotropism is needed to fuel more drug development and further improve outcomes.
Collapse
|
15
|
Eigentler TK, Mühlenbein C, Follmann M, Schadendorf D, Garbe C. S3-Leitlinie Diagnostik, Therapie und Nachsorge des Melanoms - Update 2015/2016, Kurzversion 2.0. J Dtsch Dermatol Ges 2017; 15:e1-e41. [DOI: 10.1111/ddg.13247] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Fenton SE, Sosman JA, Chandra S. Emerging growth factor receptor antagonists for the treatment of advanced melanoma. Expert Opin Emerg Drugs 2017; 22:165-174. [PMID: 28562096 DOI: 10.1080/14728214.2017.1336537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Therapy for metastatic melanoma has undergone a rapid transformation over the past 5-10 years. Advances in immunotherapy with checkpoint inhibitors, including both anti-CTLA-4 and anti-PD-1/PD-L1, have led to durable responses in up to 50% of patients. As our understanding of the processes driving the transformation of melanocytes has improved, progress in targeted therapies has also continued. Areas covered: Angiogenesis and the tumor's dependence on an expanded vascular supply has been a target for novel therapies since the 1970's, as this tissue is derived from endothelial cells that are genetically stable in adults. A phase II trial studying combined therapy with bevacizumab (an inhibitor of angiogenesis) and ipilimumab found promising results. Other agents such as sorafenib have not been as successful, failing to extend progression free or overall survival in clinical trials. In this paper other targeted growth factor inhibitors will also be discussed. Expert opinion: Ultimately, melanoma may not be vulnerable solely to chemotherapy or targeted therapy, but may be efficaciously treated with immunotherapy due to its high mutational rate resulting in the expression of numerous neo-antigens. Therapies with combinations of agents including growth factor receptor and either other targeted therapies or immunotherapy may be a promising complimentary approach.
Collapse
|
17
|
Boespflug A, Caramel J, Dalle S, Thomas L. Treatment of NRAS-mutated advanced or metastatic melanoma: rationale, current trials and evidence to date. Ther Adv Med Oncol 2017; 9:481-492. [PMID: 28717400 PMCID: PMC5502949 DOI: 10.1177/1758834017708160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
The disease course of BRAF (v-raf murine sarcoma viral oncogene homolog B1)-mutant melanoma has been drastically improved by the arrival of targeted therapies. NRAS (neuroblastoma RAS viral oncogene homolog)-mutated melanoma represents 15–25% of all metastatic melanoma patients. It currently does not have an approved targeted therapy. Metastatic patients receive immune-based therapies as first-line treatments, then cytotoxic chemotherapy like carboplatin/paclitaxel (C/P), dacarbazine (DTIC) or temozolomide (TMZ) as a second-line treatment. We will review current preclinical and clinical developments in NRAS-mutated melanoma, and analyze ongoing clinical trials that are evaluating the benefit of different targeted and immune-based therapies, either tested as single agents or in combination, in NRAS-mutant melanoma.
Collapse
Affiliation(s)
| | - Julie Caramel
- Cancer Research Center of Lyon, Claude Bernard Lyon-1 University, INSERM1052, CNRS 5286, Lyon, France
| | | | - Luc Thomas
- Service de Dermatologie, CH Lyon Sud, 165 Chemin du Grand Revoyet, 69495 Pierre Bénite, Cedex, France
| |
Collapse
|
18
|
Amann V, Ramelyte E, Thurneysen S, Pitocco R, Bentele-Jaberg N, Goldinger S, Dummer R, Mangana J. Developments in targeted therapy in melanoma. Eur J Surg Oncol 2017; 43:581-593. [DOI: 10.1016/j.ejso.2016.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022] Open
|
19
|
Mattina J, Carlisle B, Hachem Y, Fergusson D, Kimmelman J. Inefficiencies and Patient Burdens in the Development of the Targeted Cancer Drug Sorafenib: A Systematic Review. PLoS Biol 2017; 15:e2000487. [PMID: 28158308 PMCID: PMC5291369 DOI: 10.1371/journal.pbio.2000487] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/06/2017] [Indexed: 02/06/2023] Open
Abstract
Failure in cancer drug development exacts heavy burdens on patients and research systems. To investigate inefficiencies and burdens in targeted drug development in cancer, we conducted a systematic review of all prelicensure trials for the anticancer drug, sorafenib (Bayer/Onyx Pharmaceuticals). We searched Embase and MEDLINE databases on October 14, 2014, for prelicensure clinical trials testing sorafenib against cancers. We measured risk by serious adverse event rates, benefit by objective response rates and survival, and trial success by prespecified primary endpoint attainment with acceptable toxicity. The first two clinically useful applications of sorafenib were discovered in the first 2 efficacy trials, after five drug-related deaths (4.6% of 108 total) and 93 total patient-years of involvement (2.4% of 3,928 total). Thereafter, sorafenib was tested in 26 indications and 67 drug combinations, leading to one additional licensure. Drug developers tested 5 indications in over 5 trials each, comprising 56 drug-related deaths (51.8% of 108 total) and 1,155 patient-years (29.4% of 3,928 total) of burden in unsuccessful attempts to discover utility against these malignancies. Overall, 32 Phase II trials (26% of Phase II activity) were duplicative, lacked appropriate follow-up, or were uninformative because of accrual failure, constituting 1,773 patients (15.6% of 11,355 total) participating in prelicensure sorafenib trials. The clinical utility of sorafenib was established early in development, with low burden on patients and resources. However, these early successes were followed by rapid and exhaustive testing against various malignancies and combination regimens, leading to excess patient burden. Our evaluation of sorafenib development suggests many opportunities for reducing costs and unnecessary patient burden in cancer drug development.
Collapse
Affiliation(s)
- James Mattina
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Benjamin Carlisle
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Yasmina Hachem
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
| | - Dean Fergusson
- Department of Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jonathan Kimmelman
- Studies of Translation, Ethics and Medicine (STREAM), Biomedical Ethics Unit, McGill University, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
20
|
Abstract
The age of personalized medicine continues to evolve within clinical oncology with the arsenal available to clinicians in a variety of malignancies expanding at an exponential rate. The development and advancement of molecular treatment modalities, including targeted therapy and immune checkpoint blockade, continue to flourish. Treatment with targeted therapy (BRAF, MEK, and other small molecule inhibitors) can be associated with swift disease control and high response rates, but limited durability when used as monotherapy. Conversely, treatment with immune checkpoint blockade monotherapy regimens (anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1/programmed cell death protein 1 ligand) tends to have lower response rates than that observed with BRAF-targeted therapy, although these treatments may offer long-term durable disease control. With the advent of these forms of therapy, there was interest early on in empirically combining targeted therapy with immune checkpoint blockade with the hopes of preserving high response rates and adding durability; however, there is now strong scientific rationale for combining these forms of therapy-and early evidence of synergy in preclinical models of melanoma. Clinical trials combining these strategies are ongoing, and mature data regarding response rates and durability are not yet available. Synergy may ultimately be apparent; however, it has also become clear that complexities exist regarding toxicity when combining these therapies. Nonetheless, this increased appreciation of the complex interplay between oncogenic mutations and antitumor immunity has opened up tremendous opportunities for studying targeted agents and immunotherapy in combination, which extends far beyond melanoma to other solid tumors and also to hematologic malignancies.
Collapse
|
21
|
Cicenas J, Tamosaitis L, Kvederaviciute K, Tarvydas R, Staniute G, Kalyan K, Meskinyte-Kausiliene E, Stankevicius V, Valius M. KRAS, NRAS and BRAF mutations in colorectal cancer and melanoma. Med Oncol 2017; 34:26. [DOI: 10.1007/s12032-016-0879-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 12/29/2016] [Indexed: 01/13/2023]
|
22
|
Hong DS, Kurzrock R, Falchook GS, Andresen C, Kwak J, Ren M, Xu L, George GC, Kim KB, Nguyen LM, O'Brien JP, Nemunaitis J. Phase 1b study of lenvatinib (E7080) in combination with temozolomide for treatment of advanced melanoma. Oncotarget 2016; 6:43127-34. [PMID: 26503473 PMCID: PMC4767496 DOI: 10.18632/oncotarget.5756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/19/2015] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE AND METHODS In this phase 1b study, patients with stage 4 or unresectable stage 3 melanoma were treated with escalating doses of lenvatinib (once daily) and temozolomide (TMZ) (days 1-5) in 28-day cycles, to determine the maximum tolerated dose (MTD) of the combination. Dose Level (DL)1: lenvatinib 20 mg, TMZ 100 mg/m2; DL2: lenvatinib 24 mg, TMZ 100 mg/m2; DL3: lenvatinib 24 mg, TMZ 150 mg/m2. Adverse events (AEs) were recorded and tumor response assessed per RECIST 1.0. RESULTS Dose-limiting toxicity occurred in 1 of 32 treated patients (DL1); MTD was not reached. The highest dose administered was lenvatinib 24 mg + TMZ 150 mg/m2. Most common treatment-related AEs included fatigue (56.3%), hypertension (53.1%), and proteinuria (46.9%). Overall objective response rate was 18.8% (6 patients), all partial response; (DL1, n = 1; DL3, n = 5). Stable disease (SD) ≥ 16 weeks was observed in 28.1% of patients (DL1 and DL2, n = 1 each; DL3, n = 7); 12.5% of patients had SD ≥ 23 weeks. Single and repeat-dose pharmacokinetics of lenvatinib were comparable across cycles and with concomitant TMZ administration. CONCLUSIONS Lenvatinib 24 mg/day + TMZ 150 mg/m2/day (days 1-5) demonstrated modest clinical activity, an acceptable safety profile, and was administered without worsening of either lenvatinib- or TMZ-related toxicities in this patient group.
Collapse
Affiliation(s)
- David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Razelle Kurzrock
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Jennifer Kwak
- Former employees of Eisai Inc., Woodcliff Lake, NJ, USA
| | - Min Ren
- Eisai Inc., Oncology, Woodcliff Lake, NJ, USA
| | - Lucy Xu
- Eisai Inc., Oncology, Woodcliff Lake, NJ, USA
| | - Goldy C George
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin B Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ly M Nguyen
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
23
|
Jour G, Ivan D, Aung PP. Angiogenesis in melanoma: an update with a focus on current targeted therapies. J Clin Pathol 2016; 69:472-83. [PMID: 26865640 DOI: 10.1136/jclinpath-2015-203482] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Angiogenesis plays a crucial role in melanoma metastasis and progression. In recent years, numerous studies have investigated the prognostic and clinical significance of this phenomenon, and the development of molecular techniques has enabled us to achieve a better understanding of angiogenesis in melanoma. Herein, we review the current state of knowledge regarding angiogenesis in melanoma, including the pathophysiological, histological and immunohistochemical aspects of this phenomenon. We also review the molecular pathways involved in angiogenesis and the interplay between different components that might be manipulated in the future development of efficient targeted therapies. Recently developed targeted antiangiogenic therapies in clinical trials and included in the treatment of advanced-stage melanoma are also reviewed.
Collapse
Affiliation(s)
- George Jour
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Doina Ivan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
24
|
Cohen JV, Alomari AK, Vortmeyer AO, Jilaveanu LB, Goldberg SB, Mahajan A, Chiang VL, Kluger HM. Melanoma Brain Metastasis Pseudoprogression after Pembrolizumab Treatment. Cancer Immunol Res 2015; 4:179-82. [PMID: 26701266 DOI: 10.1158/2326-6066.cir-15-0160] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022]
Abstract
The role of immunotherapy in treatment of brain metastases is unknown because most trials exclude patients with active brain lesions. As new immunomodulating agents gain approval for many malignancies, it is important to know if they have unique effects in the central nervous system (CNS). Here, we present a case of a patient with progressing brain metastases treated with a single cycle of pembrolizumab, who presented with mental status changes 11 days thereafter. MRI of the brain showed enlargement of CNS lesions with intense central enhancement and diffuse perilesional edema. Histologic evaluation of a resected lesion revealed isolated clusters of tumor cells surrounded by reactive astrocytosis, scattered inflammatory cells, and an abundance of microglial cells. Given the increasing use of immune checkpoint inhibitors in patients with brain metastases from melanoma and other diseases, recognition of pseudoprogression and management with immune suppression are essential.
Collapse
Affiliation(s)
- Justine V Cohen
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut
| | - Ahmed K Alomari
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Lucia B Jilaveanu
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut
| | - Sarah B Goldberg
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut
| | - Amit Mahajan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut
| | - Harriet M Kluger
- Department of Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
25
|
Yushak ML, Chiang VL, Kluger HM. Clinical trials in melanoma patients with brain metastases. Pigment Cell Melanoma Res 2015. [PMID: 26205399 DOI: 10.1111/pcmr.12401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
Abstract
INTRODUCTION Selective inhibition of the MAPK pathway with either BRAF or MEK inhibition has emerged as a key component for the treatment of BRAF-mutant metastatic melanoma. New evidence suggests that the combination of BRAF and MEK inhibitors improves tumor response rate and progression-free survival, while potentially attenuating some of the serious adverse events observed with monotherapy. AREAS COVERED This review covers the current data on the efficacy and safety of the selective BRAF (vemurafenib and dabrafenib) and MEK (trametinib) inhibitors as well as the available data on BRAF inhibitor + MEK inhibitor combination therapy (dabrafenib + trametinib and vemurafenib + cobimetinib). The efficacy, safety and toxicity data are discussed from Phase I, Phase II and Phase III trials of these drugs. EXPERT OPINION Combination therapy with the BRAF and MEK inhibitors improves response rates and progression-free survival in patients with BRAF-mutant metastatic melanoma. Some of the serious adverse events, in particular, the incidence of cutaneous squamous cell carcinoma, are attenuated with combination therapy, whereas milder side effects such as pyrexia can be more common with combination therapy. Although dose reductions and dose interruptions are slightly more common with combination therapy, overall data supports the notion that combination therapy is safe and improves the outcomes for patients compared to single agent BRAF inhibitors.
Collapse
Affiliation(s)
- Lesly A Dossett
- Moffitt Cancer Center, Complex General Surgical Oncology , 12902 Magnolia Drive, Tampa, FL 33612 , USA
| | | | | |
Collapse
|
27
|
Sullivan RJ, Flaherty KT. Major therapeutic developments and current challenges in advanced melanoma. Br J Dermatol 2015; 170:36-44. [PMID: 24443912 DOI: 10.1111/bjd.12698] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
Malignant melanoma is rising in incidence. The treatment options have been very limited but advances in molecular biology and immunology have led to a greater understanding of the pathogenesis of the disease. Four drugs have been approved for the treatment of advanced melanoma in the past 2 years and two new classes of agents have recently been shown to lead to durable responses in a substantial minority of patients. The identification of biomarkers has helped clinicians and researchers segregate patients into molecular subgroups, which facilitates the selection of therapy. Preliminary work has begun on determining the ideal sequences of the various therapies. Investigations have been carried out on why these treatments work and what the mechanisms of resistance are to these therapies. It is hoped that combinations of therapies will emerge that lead to a high percentage of durable responses.
Collapse
Affiliation(s)
- R J Sullivan
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Yawkey 9E, Boston, MA, 02114, U.S.A
| | | |
Collapse
|
28
|
Hao M, Song F, Du X, Wang G, Yang Y, Chen K, Yang J. Advances in targeted therapy for unresectable melanoma: new drugs and combinations. Cancer Lett 2015; 359:1-8. [PMID: 25578781 DOI: 10.1016/j.canlet.2014.12.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/26/2014] [Indexed: 12/20/2022]
Abstract
Melanoma is the most deadly cutaneous cancer primarily derived from melanocytes with a poor prognosis in advanced stage. The therapy regimen for early stage melanoma patients is surgical resection with adjuvant IFN-alpha-2b therapy. For metastatic lesions, standard chemotherapy such as dacarbazine (DTIC) has not achieved a satisfying response rate. Therefore, new approaches to manage this deadly disease are highly expected to enhance the cure rate and to extend clinical benefits to patients with unresectable melanoma. Fortunately, the targeted therapeutic drugs and immunotherapy such as vemurafenib, dabrafenib, ipilimumab, and trametinib have shown their special advantage in the treatment of advanced melanoma. This article is to overview the advances in targeted therapy for unresectable melanoma patients.
Collapse
Affiliation(s)
- Mengze Hao
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China; National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China
| | - Fengju Song
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China; Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China
| | - Xiaoling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 30060, PR China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China; National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China
| | - Yun Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China; National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China
| | - Kexin Chen
- National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China; Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China
| | - Jilong Yang
- Department of Bone and Soft Tissue Tumor, Tianjin Medical University Cancer Hospital & Institute, Tianjin 30060, PR China; National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute &Hospital, Tianjin 300060, PR China.
| |
Collapse
|
29
|
Kraya AA, Piao S, Xu X, Zhang G, Herlyn M, Gimotty P, Levine B, Amaravadi RK, Speicher DW. Identification of secreted proteins that reflect autophagy dynamics within tumor cells. Autophagy 2015; 11:60-74. [PMID: 25484078 PMCID: PMC4502670 DOI: 10.4161/15548627.2014.984273] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 01/15/2023] Open
Abstract
Macroautophagy, a catabolic process of cellular self-digestion, is an important tumor cell survival mechanism and a potential target in antineoplastic therapies. Recent discoveries have implicated autophagy in the cellular secretory process, but potential roles of autophagy-mediated secretion in modifying the tumor microenvironment are poorly understood. Furthermore, efforts to inhibit autophagy in clinical trials have been hampered by suboptimal methods to quantitatively measure tumor autophagy levels. Here, we leveraged the autophagy-based involvement in cellular secretion to identify shed proteins associated with autophagy levels in melanoma. The secretome of low-autophagy WM793 melanoma cells was compared to its highly autophagic metastatic derivative, 1205Lu in physiological 3-dimensional cell culture using quantitative proteomics. These comparisons identified candidate autophagy biomarkers IL1B (interleukin 1, β), CXCL8 (chemokine (C-X-C motif) ligand 8), LIF (leukemia inhibitory factor), FAM3C (family with sequence similarity 3, member C), and DKK3 (dickkopf WNT signaling pathway inhibitor 3) with known roles in inflammation and tumorigenesis, and these proteins were subsequently shown to be elevated in supernatants of an independent panel of high-autophagy melanoma cell lines. Secretion levels of these proteins increased when low-autophagy melanoma cells were treated with the autophagy-inducing tat-BECN1 (Beclin 1) peptide and decreased when ATG7 (autophagy-related 7) was silenced in high-autophagy cells, thereby supporting a mechanistic link between these secreted proteins and autophagy. In addition, serum from metastatic melanoma patients with high tumor autophagy levels exhibited higher levels of these proteins than serum from patients with low-autophagy tumors. These results suggest that autophagy-related secretion affects the tumor microenvironment and measurement of autophagy-associated secreted proteins in plasma and possibly in tumors can serve as surrogates for intracellular autophagy dynamics in tumor cells.
Collapse
Key Words
- ATG5, autophagy-related 5
- ATG7, autophagy-related 7
- AV, autophagic vacuole
- BECN1, Beclin 1, autophagy-related
- CXCL8, chemokine (C-X-C motif) ligand 8
- DKK3, dickkopf WNT signaling pathway inhibitor 3
- EGF, epidermal growth factor
- IF, interstitial fluid
- IL1B, interleukin 1, β
- LC3/MAP1LC3, microtubule-associated protein 1 light chain 3
- LIF, leukemia inhibitory factor
- M, media
- PtdIns3K, phosphatidylinositol 3-kinase
- SAM, significance analysis of microarrays
- autophagy
- biomarker
- cancer
- melanoma
- secretome
Collapse
Affiliation(s)
- Adam A. Kraya
- Center for Systems and Computational Biology; The Wistar Institute; Philadelphia, PA USA
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
- Biochemistry and Molecular Biophysics; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | - Shengfu Piao
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
| | - Phyllis Gimotty
- Department of Biostatistics and Epidemiology; University of Pennsylvania; Philadelphia, PA USA
| | - Beth Levine
- Department of Internal Medicine and Howard Hughes Medical Institute; University of Texas Southwestern Medical Center; Dallas, TX USA
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - David W Speicher
- Center for Systems and Computational Biology; The Wistar Institute; Philadelphia, PA USA
- Molecular and Cellular Oncogenesis Program; The Wistar Institute; Philadelphia, PA USA
- Biochemistry and Molecular Biophysics; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| |
Collapse
|
30
|
Iversen TZ, Brimnes MK, Nikolajsen K, Andersen RS, Hadrup SR, Andersen MH, Bastholt L, Svane IM. Depletion of T lymphocytes is correlated with response to temozolomide in melanoma patients. Oncoimmunology 2014; 2:e23288. [PMID: 23525955 PMCID: PMC3601183 DOI: 10.4161/onci.23288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Therapeutic strategies to deplete lymphocytes, especially regulatory T cells, in cancer patients have been proposed to increase the benefits of (immuno)chemotherapy. In this study, we explored the influence of temozolomide (TMZ) on different T-cell populations and addressed if the depletion of CD4+ T cells would be associated to the clinical benefits of TMZ. Patients were treated with TMZ (150 mg/m2 daily, every two weeks on a four-week schedule) until disease progression. Changes in T-lymphocyte subsets were characterized by flow cytometry. All patients enrolled in this study had histologically verified unresectable stage IV melanoma. Objective responses were induced in 12.5% of the patients, while 42.5% of them obtained short-term disease stabilization. The median progression-free survival (PFS) of this patient cohort was 8.7 mo. Lymphopenia (< 0.7 × 109 cells/L, grade 2) developed in 71% of the patients after 3 treatment cycles (~100 d). The development of grade 2 lymphopenia after the 3rd cycle of therapy positively correlated with clinical outcome (p = 0.01), and was linked, though non-significantly, to prolonged median PFS (303 vs. 200 d). In addition, significant changes in CD8+ T-cell subgroups were observed, notably a shift from naïve T cells toward more differentiated memory T cells. Finally, we demonstrated that specific CD8+ T-cell responses against selected tumor associated antigens (TAAs) were enhanced by the administration of TMZ (p = 0.04), while virus-specific T-cell responses were stable. Thus, immunological monitoring in the course of TMZ treatment might become an important tool for clinical guidance in the future.
Collapse
Affiliation(s)
- Trine Zeeberg Iversen
- Department of Haematology and Oncology; Center for Cancer Immune Therapy (CCIT); Copenhagen University Hospital at Herlev; Herlev, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Pastushenko I, Vermeulen PB, Van den Eynden GG, Rutten A, Carapeto FJ, Dirix LY, Van Laere S. Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications. Br J Dermatol 2014; 171:220-33. [PMID: 24641095 DOI: 10.1111/bjd.12973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/02/2023]
Abstract
Malignant melanoma represents < 10% of all skin cancers but is responsible for the majority of skin-cancer-related deaths. Metastatic melanoma has historically been considered as one of the most therapeutically challenging malignancies. Fortunately, for the first time after decades of basic research and clinical investigation, new drugs have produced major clinical responses. Angiogenesis has been considered an important target for cancer treatment. Initial efforts have focused primarily on targeting endothelial and tumour-related vascular endothelial growth factor signalling. Here, we review different mechanisms of tumour vascularization described in melanoma and discuss the potential clinical implications.
Collapse
Affiliation(s)
- I Pastushenko
- Department of Dermatology, Hospital Clínico Universitario 'Lozano Blesa', Zaragoza, 50009, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Hall RD, Kudchadkar RR. BRAF Mutations: Signaling, Epidemiology, and Clinical Experience in Multiple Malignancies. Cancer Control 2014; 21:221-30. [DOI: 10.1177/107327481402100307] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Richard D. Hall
- Hematology Oncology Fellowship Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ragini R. Kudchadkar
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
33
|
Abstract
From 1976 to 2010, only 2 medications were approved for treating metastatic melanoma. Between 2011 and 2013, 4 agents were approved and other therapies have shown great promise in clinical trials. Fundamental discoveries, such as the identification of oncogenic mutations in most melanomas, the elucidation of the molecular signaling resulting from these mutations, and the revelation that several cell surface molecules serve as regulators of immune activation, have been instrumental in this progress. This article summarizes the molecular pathogenesis of melanoma, describes the current efforts to target oncogene-driven signaling, and presents the rationale for combining immune and molecular targeting.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Bartlett 6, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
34
|
Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, Tan KS, Heitjan DF, Rodgers G, Gallagher M, Piao S, Troxel AB, Evans TL, DeMichele AM, Nathanson KL, O'Dwyer PJ, Kaiser J, Pontiggia L, Davis LE, Amaravadi RK. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 2014; 10:1369-79. [PMID: 24991839 PMCID: PMC4203514 DOI: 10.4161/auto.29118] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Blocking autophagy with hydroxychloroquine (HCQ) augments cell death associated with alkylating chemotherapy in preclinical models. This phase I study evaluated the maximum tolerated dose (MTD), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of HCQ in combination with dose-intense temozolomide (TMZ) in patients with advanced solid malignancies. Forty patients (73% metastatic melanoma) were treated with oral HCQ 200 to 1200 mg daily with dose-intense oral TMZ 150 mg/m2 daily for 7/14 d. This combination was well tolerated with no recurrent dose-limiting toxicities observed. An MTD was not reached for HCQ and the recommended phase II dose was HCQ 600 mg twice daily combined with dose-intense TMZ. Common toxicities included grade 2 fatigue (55%), anorexia (28%), nausea (48%), constipation (20%), and diarrhea (20%). Partial responses and stable disease were observed in 3/22 (14%) and 6/22 (27%) patients with metastatic melanoma. In the final dose cohort 2/6 patients with refractory BRAF wild-type melanoma had a near complete response, and prolonged stable disease, respectively. A significant accumulation in autophagic vacuoles (AV) in peripheral blood mononuclear cells was observed in response to combined therapy. Population pharmacokinetics (PK) modeling, individual PK simulations, and PK-pharmacodynamics (PD) analysis identified a threshold HCQ peak concentration that predicts therapy-associated AV accumulation. This study indicates that the combination of high-dose HCQ and dose-intense TMZ is safe and tolerable, and is associated with autophagy modulation in patients. Prolonged stable disease and responses suggest antitumor activity in melanoma patients, warranting further studies of this combination, or combinations of more potent autophagy inhibitors and chemotherapy in melanoma.
Collapse
Affiliation(s)
- Reshma Rangwala
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Robert Leone
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Yunyoung C Chang
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Leslie A Fecher
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Lynn M Schuchter
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Amy Kramer
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Kay-See Tan
- Center for Clinical Epidemiology and Biostatistics; University of Pennsylvania; Philadelphia, PA USA
| | - Daniel F Heitjan
- Center for Clinical Epidemiology and Biostatistics; University of Pennsylvania; Philadelphia, PA USA
| | - Glenda Rodgers
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Maryann Gallagher
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Shengfu Piao
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Andrea B Troxel
- Center for Clinical Epidemiology and Biostatistics; University of Pennsylvania; Philadelphia, PA USA
| | - Tracey L Evans
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Angela M DeMichele
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Katherine L Nathanson
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Peter J O'Dwyer
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| | - Jonathon Kaiser
- Philadelphia College of Pharmacy; University of the Sciences; Philadelphia, PA USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics; University of the Sciences; Philadelphia, PA USA
| | - Lisa E Davis
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA; Philadelphia College of Pharmacy; University of the Sciences; Philadelphia, PA USA
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
35
|
Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma. Br J Cancer 2014; 110:2655-61. [PMID: 24786603 PMCID: PMC4037825 DOI: 10.1038/bjc.2014.209] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023] Open
Abstract
Background: Sorafenib (Sb) is a multiple kinase inhibitor targeting both tumour cell proliferation and angiogenesis that may further act as a potent radiosensitizer by arresting cells in the most radiosensitive cell cycle phase. This phase I open-label, noncontrolled dose escalation study was performed to determine the safety and maximum tolerated dose (MTD) of Sb in combination with radiation therapy (RT) and temozolomide (TMZ) in 17 patients with newly diagnosed high-grade glioma. Methods: Patients were treated with RT (60 Gy in 2 Gy fractions) combined with TMZ 75 mg m−2 daily, and Sb administered at three dose levels (200 mg daily, 200 mg BID, and 400 mg BID) starting on day 8 of RT. Thirty days after the end of RT, patients received monthly TMZ (150–200 mg m−2 D1–5/28) and Sb (400 mg BID). Pharmacokinetic (PK) analyses were performed on day 8 (TMZ) and on day 21 (TMZ&Sb) (Clinicaltrials ID: NCT00884416). Results: The MTD of Sb was established at 200 mg BID. Dose-limiting toxicities included thrombocytopenia (two patients), diarrhoea (one patient) and hypercholesterolaemia (one patient). Sb administration did not affect the mean area under the curve(0–24) and mean Cmax of TMZ and its metabolite 5-amino-imidazole-4-carboxamide (AIC). Tmax of both TMZ and AIC was delayed from 0.75 (TMZ alone) to 1.5 h (combined TMZ/Sb). The median progression-free survival was 7.9 months (95% confidence interval (CI): 5.4–14.55), and the median overall survival was 17.8 months (95% CI: 14.7–25.6). Conclusions: Although Sb can be combined with RT and TMZ, significant side effects and moderate outcome results do not support further clinical development in malignant gliomas. The robust PK data of the TMZ/Sb combination could be useful in other cancer settings.
Collapse
|
36
|
Abstract
The RAS-RAF-MEK-ERK pathway is considered to be the most important signal transduction pathway in melanoma, and alterations in this pathway via various genetic mutations, such as BRAF and NRAS mutations, are known to be important drivers of melanomagenesis. As MEK is an essential intermediary kinase protein within this pathway, inhibition of MEK has been of a great interest as a molecular target therapy in melanoma. In fact, trametinib, a selective MEK inhibitor, has been shown to have a survival benefit over cytotoxic chemotherapy in patients with V600 BRAF-mutant metastatic melanoma, leading to the FDA approval for this patient population. MEK inhibitors may also be useful in treatment of advanced melanoma harboring other genetic mutations, such as NRAS and GNAQ/GNA11 mutations. Here, we review and discuss the preclinical and clinical data regarding MEK inhibitors and their role in the treatment of advanced melanoma.
Collapse
Affiliation(s)
- April K S Salama
- Division of Medical Oncology, Duke University Medical Center, DUMC 3476, Durham, NC, 27710, USA,
| | | |
Collapse
|
37
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Pflugfelder A, Kochs C, Blum A, Capellaro M, Czeschik C, Dettenborn T, Dill D, Dippel E, Eigentler T, Feyer P, Follmann M, Frerich B, Ganten MK, Gärtner J, Gutzmer R, Hassel J, Hauschild A, Hohenberger P, Hübner J, Kaatz M, Kleeberg UR, Kölbl O, Kortmann RD, Krause-Bergmann A, Kurschat P, Leiter U, Link H, Loquai C, Löser C, Mackensen A, Meier F, Mohr P, Möhrle M, Nashan D, Reske S, Rose C, Sander C, Satzger I, Schiller M, Schlemmer HP, Strittmatter G, Sunderkötter C, Swoboda L, Trefzer U, Voltz R, Vordermark D, Weichenthal M, Werner A, Wesselmann S, Weyergraf AJ, Wick W, Garbe C, Schadendorf D. S3-guideline "diagnosis, therapy and follow-up of melanoma" -- short version. J Dtsch Dermatol Ges 2014; 11:563-602. [PMID: 23721604 DOI: 10.1111/ddg.12044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Targeting brain metastases in patients with melanoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:186563. [PMID: 24455677 PMCID: PMC3884779 DOI: 10.1155/2013/186563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 12/02/2022]
Abstract
Patients with brain metastases from malignant melanoma historically have a very poor outcome. Surgery and radiotherapy can be used, but for the majority of patients the disease will progress quickly. In the recent past, patients with brain metastases derived only minimal benefit from cytotoxic chemotherapy. Novel therapies that have been shown to be superior to chemotherapy in metastatic melanoma have made their way in clinic and data regarding their use in patients with treated or untreated brain metastases are encouraging. In this paper we describe the use of vemurafenib, dabrafenib, and ipilimumab in patients with melanoma disseminated to the brain in addition to other treatments currently in development.
Collapse
|
40
|
Flanigan JC, Jilaveanu LB, Chiang VL, Kluger HM. Advances in therapy for melanoma brain metastases. Clin Dermatol 2013; 31:264-81. [PMID: 23608446 DOI: 10.1016/j.clindermatol.2012.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma cells frequently metastasize to the brain, and approximately 50% of patients with metastatic melanoma develop intracranial disease. Historically, central nervous system dissemination has portended a very poor prognosis. Recent advances in systemic therapies for melanoma, supported by improved local therapy control of brain lesions, have resulted in better median survival for these patients. We review current local and systemic approaches for patients with melanoma brain metastases.
Collapse
Affiliation(s)
- Jaclyn C Flanigan
- Department of Medicine, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
41
|
Romero AI, Chaput N, Poirier-Colame V, Rusakiewicz S, Jacquelot N, Chaba K, Mortier E, Jacques Y, Caillat-Zucman S, Flament C, Caignard A, Messaoudene M, Aupérin A, Vielh P, Dessen P, Porta C, Mateus C, Ayyoub M, Valmori D, Eggermont A, Robert C, Zitvogel L. Regulation of CD4(+)NKG2D(+) Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Rα and NKG2D triggering. Cancer Res 2013; 74:68-80. [PMID: 24197135 DOI: 10.1158/0008-5472.can-13-1186] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on patients with cancer and influences the effects of conventional chemotherapies. Metastatic melanoma is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here, we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates interleukin (IL)-15Rα in vitro and in vivo in patients with melanoma, and in conjunction with natural killer (NK) group 2D (NKG2D) ligands, contributes to the Th1 polarization and accumulation of peripheral CD4(+)NKG2D(+) T cells. Hence, the increase of blood CD4(+)NKG2D(+) T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase I/II trial enrolling 63 patients with metastatic melanoma who did not receive vemurafenib nor immune checkpoint-blocking antibodies. In contrast, in metastatic melanoma patients treated with classical treatment modalities, this CD4(+)NKG2D(+) subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an "adjuvant" molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MHC class I-related chain A/B (MICA/B) and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D(+) Th1 cells.
Collapse
Affiliation(s)
- Ana I Romero
- Authors' Affiliations: Cancer Institute Gustave Roussy; Departments of Epidemiology and Statistics and Dermatology; Stabilité génétique et oncogenèse UMR 8200; Clinical Oncology, Melanoma Branch, Cancer Institute Gustave Roussy; Department of BioPathology, Translational Research Laboratory and Biobank, Institute Gustave Roussy; Institut National de la Santé et de la Recherche Medicale (INSERM), U1015; Center of Clinical Investigations CBT507, Biotherapy, Villejuif; INSERM U1102, Institut de Cancérologie de l'Ouest, Saint Herblain; INSERM, U892, Institut de Recherche Thérapeutique, Nantes; INSERM, U1016, Saint Vincent de Paul Hospital; INSERM U1016, CNRS UMR8104, Cochin Institute; Faculté Paris Sud-Université Paris XI, Paris, France; and IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Papadatos-Pastos D, Januszewski A, Dalgleish A. Revisiting the role of systemic therapies in patients with metastatic melanoma to the CNS. Expert Rev Anticancer Ther 2013; 13:559-67. [PMID: 23617347 DOI: 10.1586/era.13.33] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The CNS is a common site of metastasis in patients with malignant melanoma. Locoregional control either with surgery or radiotherapy is first-line treatment for patients with brain metastasis should they be suitable candidates. For those patients who are not and those who progress after previous treatment, there is an unmet clinical need for effective systemic therapies. Systemic cytotoxics, such as temozolamide and fotemustine, have only modest activity, resulting in a median progression-free survival ranging from 1-2 months, in patients with metastatic melanoma to the brain. Newer systemic treatments such as vemurafenib and ipilimumab have been approved for the treatment of melanoma, but evidence regarding their activity in brain metastases is inconclusive due to the limited access of patients to clinical trials. This is now being revised and more data are emerging supporting the inclusion of patients with brain metastasis in trials. In this review, the authors present data regarding the efficacy of systemically administered therapies in patients with metastatic melanoma to the brain.
Collapse
|
43
|
Mansfield AS, Markovic SN. Inhibition of Angiogenesis for the Treatment of Metastatic Melanoma. Curr Oncol Rep 2013; 15:492-9. [DOI: 10.1007/s11912-013-0334-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
44
|
Salama AKS. Evolving pharmacotherapies for the treatment of metastatic melanoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2013; 7:137-49. [PMID: 23843723 PMCID: PMC3698188 DOI: 10.4137/cmo.s9565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metastatic melanoma remains a difficult disease to treat, and long term survivors are rare. Over the past few years, however, breakthroughs in both immunotherapy as well as targeted agents have had a tremendous impact on patients diagnosed with this disease. This review summarizes recent advances in systemic therapies for melanoma, including immune modulators directed against cytotoxic T lymphocyte associated antigen-4 (CTLA-4) and programmed death-1 (PD-1), as well as a number of targeted agents. These approaches hold great promise as the landscape of therapeutic options for advanced melanoma continues to evolve.
Collapse
Affiliation(s)
- April K S Salama
- Division of Medical Oncology, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
45
|
Salama AK, Flaherty KT. BRAF in Melanoma: Current Strategies and Future Directions. Clin Cancer Res 2013; 19:4326-34. [DOI: 10.1158/1078-0432.ccr-13-0779] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Nikolaou V, Stratigos A, Bafaloukos D, Katsambas A. Antiangiogenic and antiapoptotic treatment in advanced melanoma. Clin Dermatol 2013; 31:257-63. [DOI: 10.1016/j.clindermatol.2012.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling. Oncogene 2013; 33:1700-12. [PMID: 23624923 DOI: 10.1038/onc.2013.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/10/2013] [Accepted: 02/13/2013] [Indexed: 02/07/2023]
Abstract
Melanoma is an aggressive skin cancer that carries an extremely poor prognosis when local invasion, nodal spread or systemic metastasis has occurred. Recent advances in melanoma biology have revealed that RAS-RAF-MEK-ERK signaling has a pivotal role in governing disease progression and treatment resistance. Proof-of-concept clinical studies have shown that direct BRAF inhibition yields impressive responses in advanced disease but these are short-lived as treatment resistance rapidly emerges. Therefore, there is a pressing need to develop new targeted strategies for BRAF mutant melanoma. As such, oncolytic viruses represent a promising cancer-specific approach with significant activity in melanoma. This study investigated interactions between genetically-modified vaccinia virus (GLV-1h68) and radiotherapy in melanoma cell lines with BRAF mutant, Ras mutant or wild-type genotype. Preclinical studies revealed that GLV-1h68 combined with radiotherapy significantly increased cytotoxicity and apoptosis relative to either single agent in (V600D)BRAF/(V600E)BRAF mutant melanoma in vitro and in vivo. The mechanism of enhanced cytotoxicity with GLV-1h68/radiation (RT) was independent of viral replication and due to attenuation of JNK, p38 and ERK MAPK phosphorylation specifically in BRAF mutant cells. Further studies showed that JNK pathway inhibition sensitized BRAF mutant cells to GLV-1h68-mediated cell death, mimicking the effect of RT. GLV-1h68 infection activated MAPK signaling in (V600D)BRAF/(V600E)BRAF mutant cell lines and this was associated with TNF-α secretion which, in turn, provided a prosurvival signal. Combination GLV-1h68/RT (or GLV-1h68/JNK inhibition) caused abrogation of TNF-α secretion. These data provide a strong rationale for combining GLV-1h68 with irradiation in (V600D/E)BRAF mutant tumors.
Collapse
|
48
|
Biologics in dermatology. Pharmaceuticals (Basel) 2013; 6:557-78. [PMID: 24276125 PMCID: PMC3816698 DOI: 10.3390/ph6040557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/26/2013] [Accepted: 04/07/2013] [Indexed: 01/07/2023] Open
Abstract
Skin and subcutaneous diseases affect millions of people worldwide, causing significant morbidity. Biologics are becoming increasingly useful for the treatment of many skin diseases, particularly as alternatives for patients who have failed to tolerate or respond to conventional systemic therapies. Biological therapies provide a targeted approach to treatment through interaction with specific components of the underlying immune and inflammatory disease processes. This review article examines the increasing evidence base for biologics in dermatology, including well-established treatments and novel agents.
Collapse
|
49
|
Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer 2013; 49:1297-304. [DOI: 10.1016/j.ejca.2012.11.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/11/2012] [Indexed: 12/17/2022]
|
50
|
Fonkem E, Uhlmann EJ, Floyd SR, Mahadevan A, Kasper E, Eton O, Wong ET. Melanoma brain metastasis: overview of current management and emerging targeted therapies. Expert Rev Neurother 2013; 12:1207-15. [PMID: 23082737 DOI: 10.1586/ern.12.111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The high rate of brain metastasis in patients with advanced melanoma has been a clinical challenge for oncologists. Despite considerable progress made in the management of advanced melanoma over the past two decades, improvement in overall survival has been elusive. This is due to the high incidence of CNS metastases, which progress relentlessly and which are only anecdotally responsive to systemic therapies. Surgery, stereotactic radiosurgery and whole-brain radiotherapy with or without cytotoxic chemotherapy remain the mainstay of treatment. However, new drugs have been developed based on our improved understanding of the molecular signaling mechanisms responsible for host immune tolerance and for melanoma growth. In 2011, the US FDA approved two agents, one antagonizing each of these processes, for the treatment of advanced melanoma. The first is ipilimumab, an anti-CTLA-4 monoclonal antibody that enhances cellular immunity and reduces tolerance to tumor-associated antigens. The second is vemurafenib, an inhibitor that blocks the abnormal signaling for melanoma cellular growth in tumors that carry the BRAF(V600E) mutation. Both drugs have anecdotal clinical activity for brain metastasis and are being evaluated in clinical trial settings. Additional clinical trials of newer agents involving these pathways are also showing promise. Therefore, targeted therapies must be incorporated into the multimodality management of melanoma brain metastasis.
Collapse
Affiliation(s)
- Ekokobe Fonkem
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|