1
|
Pinto E, Pelizzaro F, Cardin R, Battistel M, Palano G, Bertellini F, Kitenge MP, Peserico G, Farinati F, Russo FP. HIF-1α and VEGF as prognostic biomarkers in hepatocellular carcinoma patients treated with transarterial chemoembolization. Dig Liver Dis 2024; 56:872-879. [PMID: 37783655 DOI: 10.1016/j.dld.2023.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Neoangiogenesis plays a crucial role in the progression of hepatocellular carcinoma (HCC), and concerns have been raised about the role of neoangiogenesis on the effectiveness of transarterial chemoembolization (TACE). AIM In this study, we aimed to evaluate Vascular Endothelial Growth Factor (VEGF) and Hypoxia-Inducible Factor-1α (HIF-1α) as circulating prognostic biomarkers in HCC patients treated with TACE. METHODS Blood samples were collected from 163 patients before (t0) and four weeks after TACE (t1). RESULTS Higher levels of VEGF after TACE were demonstrated (264.0 [78.7-450.8] vs. 278.6 [95.0-576.6] pg/mL; p < 0.0001). Responders to TACE had lower levels of VEGF than non-responders both at t0 (200.0 [58.9-415.8] vs. 406.6 [181.4-558.6] pg/mL; p = 0.006) and at t1 (257.3 [68.5-528.6] vs. 425.9 [245.2-808.3] pg/mL; p = 0.003), and in both groups there was an increase in VEGF compared to measurements before treatment (p = 0.001 and p = 0.005, respectively). VEGF was not associated with overall survival (OS), while patients with HIF-1α ≤ 0.49 ng/mL showed better prognosis (median OS 28.0 months [95% CI 19.7-36.3] vs. 17.0 months [95% CI 11.1-22.9]; p = 0.01). Moreover, HIF-1α was identified as an independent prognostic parameter. CONCLUSIONS VEGF and HIF-1α can be considered useful prognostic biomarkers in HCC patients treated with TACE.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Romilda Cardin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Michele Battistel
- Radiology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Giorgio Palano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Federica Bertellini
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Maria Piera Kitenge
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Giulia Peserico
- Gastroenterology Unit, Veneto Institute of Oncology (IOV), Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy.
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Gastroenterology Unit, Azienda Ospedale-Università di Padova, Padova, Italy
| |
Collapse
|
2
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Wang X, Yuan Z, Li Z, He X, Zhang Y, Wang X, Su J, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Shen J, Yi T, Xiao Z. Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Front Immunol 2024; 15:1354313. [PMID: 38426090 PMCID: PMC10902128 DOI: 10.3389/fimmu.2024.1354313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) ranks first among primary liver cancers, and its mortality rate exhibits a consistent annual increase. The treatment of HCC has witnessed a significant surge in recent years, with the emergence of targeted immune therapy as an adjunct to early surgical resection. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) has shown promising results in other types of solid tumors. This article aims to provide a comprehensive overview of the intricate interactions between different types of TILs and their impact on HCC, elucidate strategies for targeting neoantigens through TILs, and address the challenges encountered in TIL therapies along with potential solutions. Furthermore, this article specifically examines the impact of oncogenic signaling pathways activation within the HCC tumor microenvironment on the infiltration dynamics of TILs. Additionally, a concise overview is provided regarding TIL preparation techniques and an update on clinical trials investigating TIL-based immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhengbo Li
- Department of Laboratory Medicine, The Longmatan District People’s Hospital, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|
4
|
An X, Zhong D, Wu W, Wang R, Yang L, Jiang Q, Zhou M, Xu X. Doxorubicin-Loaded Microalgal Delivery System for Combined Chemotherapy and Enhanced Photodynamic Therapy of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6868-6878. [PMID: 38294964 DOI: 10.1021/acsami.3c16995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Osteosarcoma (OS) is considered the most frequent type of primary malignant bone tumor. Currently, radiotherapy, photodynamic (PDT), and other therapies for osteosarcoma are limited by tumor hypoxia and single efficacy and serve side-effects. Herein, we reported a microalgal drug delivery system (SpiD), doxorubicin (DOX)-loaded Spirulina platensis (Spi) for OS therapy. The specific surface of Spirulina platensis allowed for effective loading of DOX via surface channels and electrostatic interactions. Under 650 nm laser irradiation, SpiD enabled high oxygen production by photosynthesis and enhanced reactive oxygen species (ROS) generation via chlorophyll-assisted photosensitization, synergistically killing tumor cells with the released DOX. Combined chemotherapy and enhanced PDT mediated by SpiD exerted synergic antitumor effects and resulted in potent therapeutic efficacy in orthotopic osteosarcoma mice. Furthermore, SpiD could reduce the side-effects of chemotherapy, showing excellent blood and tissue safety. Taken together, this microalgal drug delivery system provided a natural, efficient, safe, and inexpensive strategy for OS treatment.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Danni Zhong
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
| | - Ruoxi Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210093, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, China
| | - Min Zhou
- Eye Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Haining 314400, China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210093, China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing 210008, China
| |
Collapse
|
5
|
Ma R, Gao QY, Chen ZT, Liao GH, Li ST, Cai JW, Luo NS, Chen H, Zhang HF. SIRT3 suppression resulting from the enhanced β-catenin signaling drives glycolysis and promotes hypoxia-induced cell growth in hepatocellular carcinoma cells. Cell Cycle 2024; 23:435-447. [PMID: 38626328 PMCID: PMC11174062 DOI: 10.1080/15384101.2024.2340864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/04/2024] [Indexed: 04/18/2024] Open
Abstract
The precise mechanisms underlying the inhibitory effects of SIRT3, a mitochondrial sirtuin protein, on hepatocellular carcinoma (HCC) development, as well as its impact on mitochondrial respiration, remain poorly understood. We assessed sirtuins 3 (SIRT3) levels in HCC tissues and Huh7 cells cultured under hypoxic condition. We investigated the effects of SIRT3 on cell proliferation, glycolytic metabolism, mitochondrial respiration, mitophagy, and mitochondrial biogenesis in Huh7 cells. Besides, we explored the potential mechanisms regulating SIRT3 expression in hypoxically cultured Huh7 cells. Gradual reduction in SIRT3 expressions were observed in both adjacent tumor tissues and tumor tissues. Similarly, SIRT3 expressions were diminished in Huh7 cells cultured under hypoxic condition. Forced expression of SIRT3 attenuated the growth of hypoxically cultured Huh7 cells. SIRT3 overexpression led to a decrease in extracellular acidification rate while increasing oxygen consumption rate. SIRT3 downregulated the levels of hexokinase 2 and pyruvate kinase M2. Moreover, SIRT3 enhanced mitophagy signaling, as indicated by mtKeima, and upregulated key proteins involved in various mitophagic pathways while reducing intracellular reactive oxygen species levels. Furthermore, SIRT3 increased proxisome proliferator-activated receptor-gamma coactivator 1α levels and the amount of mitochondrial DNA in Huh7 cells. Notably, β-catenin expressions were elevated in Huh7 cells cultured under hypoxic condition. Antagonists and agonists of β-catenin respectively upregulated and downregulated SIRT3 expressions in hypoxically cultured Huh7 cells. The modulationsof glycolysis and mitochondrial respiration represent the primary mechanism through which SIRT3, suppressed by β-catenin, inhibits HCC cell proliferation.
Collapse
Affiliation(s)
- Rong Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Chengdu Medical College, Chengdu, PRC
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Guang-Hong Liao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Shu-Tai Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Jie-Wen Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Nian-Sang Luo
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| | - Hao Chen
- Department of Gastroenterology, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PRC
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PRC
| |
Collapse
|
6
|
Ruan G, Wu F, Shi D, Sun H, Wang F, Xu C. Metformin: update on mechanisms of action on liver diseases. Front Nutr 2023; 10:1327814. [PMID: 38192642 PMCID: PMC10773879 DOI: 10.3389/fnut.2023.1327814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-β1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.
Collapse
Affiliation(s)
- Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangquan Wu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Shin Y, Kim YJ, Jin J, Lee SB, Kim HS, Kim YG. Machine learning model for predicting immediate postoperative desaturation using spirometry signal data. Sci Rep 2023; 13:21881. [PMID: 38072984 PMCID: PMC10711018 DOI: 10.1038/s41598-023-49062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Postoperative desaturation is a common post-surgery pulmonary complication. The real-time prediction of postoperative desaturation can become a preventive measure, and real-time changes in spirometry data can provide valuable information on respiratory mechanics. However, there is a lack of related research, specifically on using spirometry signals as inputs to machine learning (ML) models. We developed an ML model and postoperative desaturation prediction index (DPI) by analyzing intraoperative spirometry signals in patients undergoing laparoscopic surgery. We analyzed spirometry data from patients who underwent laparoscopic, robot-assisted gynecologic, or urologic surgery, identifying postoperative desaturation as a peripheral arterial oxygen saturation level below 95%, despite facial oxygen mask usage. We fitted the ML model on two separate datasets collected during different periods. (Datasets A and B). Dataset A (Normal 133, Desaturation 74) was used for the entire experimental process, including ML model fitting, statistical analysis, and DPI determination. Dataset B (Normal 20, Desaturation 4) was only used for verify the ML model and DPI. Four feature categories-signal property, inter-/intra-position correlation, peak value/interval variability, and demographics-were incorporated into the ML models via filter and wrapper feature selection methods. In experiments, the ML model achieved an adequate predictive capacity for postoperative desaturation, and the performance of the DPI was unbiased.
Collapse
Affiliation(s)
- Youmin Shin
- Department of Transdisciplinary Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Interdisciplinary Program in Bio-engineering, Seoul National University, Seoul, Republic of Korea
| | - Yoon Jung Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Juseong Jin
- Interdisciplinary Program in Bio-engineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Seung-Bo Lee
- Department of Medical Informatics, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hee-Soo Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
| | - Young-Gon Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhang N, Chen R, Cao X, Wang L. Aberrantly expressed HIF-1α enhances HCC stem cell-like traits via Wnt/β-catenin signaling activation after insufficient radiofrequency ablation. J Cancer Res Ther 2023; 19:1517-1524. [PMID: 38156917 DOI: 10.4103/jcrt.jcrt_1458_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Radiofrequency ablation has become a favorable treatment modality for small hepatocellular carcinoma (HCC) recently; however, insufficient radiofrequency ablation (RFA) was shown to lead to enhanced invasiveness and metastasis of HCC in our previous study, while the underlying molecular mechanism has not been understood. MATERIALS AND METHODS In order to explore the influence of the hypoxic microenvironment on residual cancer and cancer stem cell (CSC)-like characteristics of HCC cells in this process, an in vitro hypoxic model and an insufficient RFA mouse model were established with HCC cancer cell lines. Immunochemistry staining and western blot were used to examine the expression of hypoxia-inducible factor (HIF)-1α and liver CSC markers. The 3D colon formation assay, tumor cell invasion assay, and gene transfection assays were applied to test the change in liver CSC stemness and HCC cell invasion. RESULTS After insufficient RFA treatment, the upregulated HIF-1α expression was associated with an increase in the CSC-like population in residual cancer. In vitro, hypoxic tumor cells showed aggressive CSC-like properties and phenotypes. Wnt/β-catenin signaling activation was shown to be necessary for the acquisition of liver CSC-like characteristics under hypoxic conditions. CONCLUSION Overall, the aberrantly enhanced HIF-1α expression enhanced the liver CSC-like traits via abnormal Wnt/β-catenin signaling activation after insufficient RFA, and the overexpressed HIF-1α would be a vital factor and useful biomarker during the HCC recurrence and metastasis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
9
|
Wang L, Peng JL. Association of hypoxia-inducible factor 1α expression with susceptibility to hepatitis B virus-related hepatocellular carcinoma: A meta-analysis. Int J Biol Markers 2023; 38:149-158. [PMID: 37787154 DOI: 10.1177/03936155231204391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) triggers tumorigenesis and progression in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Inconsistent findings have been reported on the influence of HIF-1α over-expression on the clinical outcomes of HBV-related HCC. This study aims to clarify the role of HIF-1α overexpression in the tumorigenesis and prognosis of HBV-induced HCC. Systematic and comprehensive search of online papers was carried out to elucidate the contribution of HIF-1α expression to susceptibility of HBV-induced HCC. STATA 12.0 software was utilized to analyze available data extracted from all eligible literature. Publication bias and sensitivity were comprehensively analyzed. A total of 23 published studies involving 2244 subjects were finally screened. The HIF-1α expression was remarkably upregulated in HBV-induced HCC tissues than in normal liver tissues, non-tumorous tissues, paraneoplastic tissues, and non-HBV HCC tissues. The high HIF-1α expression tended to be positively related to capsular infiltration (odds ratio (OR) 1.767; 95% confidence interval (CI) 1.058, 2.950). The HIF-1α expression was relevant to lymph node metastasis (OR 3.778; 95% CI 1.666, 8.568). High levels of HIF-1α expression tended to be closely implicated in portal vein invasion (OR 6.728, 95% CI 2.191, 20.656) but were irrelevant to alpha-fetoprotein, cirrhosis, Edmondson grading, tumor size, age, gender, and histological grade. Analysis of pooled data showed that HIF-1α was not statistically relevant to poor overall survival in HBV-related HCC. Our data provides compelling evidence that HIF-1α overexpression may imply a greater probability of invasion and metastasis in patients with HBV-induced HCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jin-Lin Peng
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan, China
| |
Collapse
|
10
|
Liu Y, Shen B, Huang T, Wang J, Jiang J. Construction and validation of 3-genes hypoxia-related prognostic signature to predict the prognosis and therapeutic response of hepatocellular carcinoma patients. PLoS One 2023; 18:e0288013. [PMID: 37406019 DOI: 10.1371/journal.pone.0288013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Previous studies have shown that the hypoxia microenvironment significantly impacted tumor progression. However, the clinical prognostic value of hypoxia-related risk signatures and their effects on the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains hazy. This study aimed to conduct novel hypoxia-related prognostic signatures and improve HCC prognosis and treatment. METHODS Differentially expressed hypoxia-related genes (HGs) were identified with the gene set enrichment analysis (GSEA). Univariate Cox regression was utilized to generate the tumor hypoxia-related prognostic signature, which consists of 3 HGs, based on the least absolute shrinkage and selection operator (LASSO) algorithm. Then the risk score for each patient was performed. The prognostic signature's independent prognostic usefulness was confirmed, and systematic analyses were done on the relationships between the prognostic signature and immune cell infiltration, somatic cell mutation, medication sensitivity, and putative immunological checkpoints. RESULTS A prognostic risk model of four HGs (FDPS, SRM, and NDRG1) was constructed and validated in the training, testing, and validation datasets. To determine the model's performance in patients with HCC, Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves analysis was implemented. According to immune infiltration analysis, the high-risk group had a significant infiltration of CD4+ T cells, M0 macrophages, and dendritic cells (DCs) than those of the low-risk subtype. In addition, the presence of TP53 mutations in the high-risk group was higher, in which LY317615, PF-562271, Pyrimethamine, and Sunitinib were more sensitive. The CD86, LAIR1, and LGALS9 expression were upregulated in the high-risk subtype. CONCLUSIONS The hypoxia-related risk signature is a reliable predictive model for better clinical management of HCC patients and offers clinicians a holistic viewpoint when determining the diagnosis and course of HCC treatment.
Collapse
Affiliation(s)
- Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Ting Huang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
11
|
Bo J, Xiang F, XiaoWei F, LianHua Z, ShiChun L, YuKun L. A Nomogram Based on Contrast-Enhanced Ultrasound to Predict the Microvascular Invasion in Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1561-1568. [PMID: 37003955 DOI: 10.1016/j.ultrasmedbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The aim of this study was to establish and validate a contrast-enhanced ultrasound (CEUS) nomogram for pre-operative microvascular invasion (MVI) prediction in hepatocellular carcinoma (HCC), and compare it with the nomogram based on gadopentetate dimeglumine-enhanced magnetic resonance imaging (Gd-MRI). METHODS A total of 251 patients with a single HCC were enrolled in this prospective study, including 176 patients in the training cohort and 75 patients in the validation cohort. Contrast-enhanced ultrasound (CEUS) with Sonazoid and Gd-MRI was performed pre-operatively. Post-operative histopathology was the gold standard for MVI. Univariate and multivariate logistic regression was performed to determine independent risk factors for MVI. Nomograms based on CEUS and Gd-MRI were established, and their discrimination, calibration and decision curve analysis were evaluated and compared. RESULTS Multivariate logistic regression revealed that arterial circular enhancement, non-enhancing area and thick ring-like enhancement in the post-vascular phase were independent risk factors for MVI. The areas under the receiver operating characteristic curve of the nomogram were 0.841 (0.779-0.892) and 0.914 (0.827-0.966) in the training and validation cohorts, with no significant difference compared with the Gd-MRI nomogram (p = 0.294, 0.321). The C-indexes were 0.821 and 0.870 in the training and validation cohorts. Decision curve analysis revealed that the CEUS nomogram had better clinical applicability than the Gd-MRI nomogram when the threshold probability was between 0.35 and 0.95. CONCLUSION The CEUS-based nomogram was available for predicting MVI in HCC, and its predictive performance was not inferior to that of Gd-MRI.
Collapse
Affiliation(s)
- Jiang Bo
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fei Xiang
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fan XiaoWei
- Department of Pathology, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhu LianHua
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lu ShiChun
- Department of Hepatobiliary Surgery, First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Luo YuKun
- Department of Ultrasound, First Medical Centre, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
12
|
Chen M, Zhou X, Cai H, Li D, Song C, You H, Ma R, Dong Z, Peng Z, Feng ST. Evaluation of Hypoxia in Hepatocellular Carcinoma Using Quantitative MRI: Significances, Challenges, and Advances. J Magn Reson Imaging 2023; 58:12-25. [PMID: 36971442 DOI: 10.1002/jmri.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
This review aimed to perform a scoping review of promising MRI methods in assessing tumor hypoxia in hepatocellular carcinoma (HCC). The hypoxic microenvironment and upregulated hypoxic metabolism in HCC are determining factors of poor prognosis, increased metastatic potential, and resistance to chemotherapy and radiotherapy. Assessing hypoxia in HCC is essential for personalized therapy and predicting prognoses. Oxygen electrodes, protein markers, optical imaging, and positron emission tomography can evaluate tumor hypoxia. These methods lack clinical applicability because of invasiveness, tissue depth, and radiation exposure. MRI methods, including blood oxygenation level-dependent, dynamic contrast-enhanced MRI, diffusion-weighted imaging, MRI spectroscopy, chemical exchange saturation transfer MRI, and multinuclear MRI, are promising noninvasive methods that evaluate the hypoxic microenvironment by observing biochemical processes in vivo, which may inform on therapeutic options. This review summarizes the recent challenges and advances in MRI techniques for assessing hypoxia in HCC and highlights the potential of MRI methods for examining the hypoxic microenvironment via specific metabolic substrates and pathways. Although the utilization of MRI methods for evaluating hypoxia in patients with HCC is increasing, rigorous validation is needed in order to translate these MRI methods into clinical use. Due to the limited sensitivity and specificity of current quantitative MRI methods, their acquisition and analysis protocols require further improvement. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Meicheng Chen
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Xiaoqi Zhou
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Huasong Cai
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Di Li
- Department of Medical Ultrasonics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Chenyu Song
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Huayu You
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Ruixia Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, People's Republic of China
| |
Collapse
|
13
|
Pinto E, Pelizzaro F, Farinati F, Russo FP. Angiogenesis and Hepatocellular Carcinoma: From Molecular Mechanisms to Systemic Therapies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1115. [PMID: 37374319 DOI: 10.3390/medicina59061115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. The hypervascular nature of the majority of HCCs and the peculiar vascular derangement occurring during liver carcinogenesis underscore the importance of angiogenesis in the development and progression of these tumors. Indeed, several angiogenic molecular pathways have been identified as deregulated in HCC. The hypervascular nature and the peculiar vascularization of HCC, as well as deregulated angiogenic pathways, represent major therapeutic targets. To a large extent, intra-arterial locoregional treatments (transarterial-(chemo)embolization) rely on tumor ischemia caused by embolization of tumor feeding arteries, even though this may represent the "primum movens" of tumor recurrence through the activation of neoangiogenesis. Considering systemic therapies, the currently available tyrosine kinase inhibitors (sorafenib, regorafenib, cabozantinib and lenvatinib) and monoclonal antibodies (ramucirumab and bevacizumab, in combination with the anti-PD-L1, atezolizumab) primarily target, among others, angiogenic pathways. Considering the importance of angiogenesis in the pathogenesis and treatment of liver cancer, in this paper, we aim to review the role of angiogenesis in HCC, addressing the molecular mechanisms, available antiangiogenic therapies and prognostic biomarkers in patients receiving these treatments.
Collapse
Affiliation(s)
- Elisa Pinto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Filippo Pelizzaro
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Fabio Farinati
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Azienda Ospedaliera di Padova, 35128 Padova, Italy
| |
Collapse
|
14
|
Papadakos SP, Arvanitakis K, Stergiou IE, Lekakis V, Davakis S, Christodoulou MI, Germanidis G, Theocharis S. The Role of TLR4 in the Immunotherapy of Hepatocellular Carcinoma: Can We Teach an Old Dog New Tricks? Cancers (Basel) 2023; 15:2795. [PMID: 37345131 DOI: 10.3390/cancers15102795] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Immunotherapy has emerged as the mainstay treatment option for unresectable HCC. Toll-like receptor 4 (TLR4) plays a crucial role in the innate immune response by recognizing and responding primarily to bacterial lipopolysaccharides. In addition to its role in the innate immune system, TLR4 has also been implicated in adaptive immunity, including specific anti-tumor immune responses. In particular, the TLR4 signaling pathway seems to be involved in the regulation of several cancer hallmarks, such as the continuous activation of cellular pathways that promote cell division and growth, the inhibition of programmed cell death, the promotion of several invasion and metastatic mechanisms, epithelial-to-mesenchymal transition, angiogenesis, drug resistance, and epigenetic modifications. Emerging evidence further suggests that TLR4 signaling holds promise as a potential immunotherapeutic target in HCC. The aim of this review was to explore the multilayer aspects of the TLR4 signaling pathway, regarding its role in liver diseases and HCC, as well as its potential utilization as an immunotherapy target for HCC.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E Stergiou
- Pathophysiology Department, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasileios Lekakis
- Department of Gastroenterology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Spyridon Davakis
- First Department of Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria-Ioanna Christodoulou
- Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Do Tumor Mechanical Stresses Promote Cancer Immune Escape? Cells 2022; 11:cells11233840. [PMID: 36497097 PMCID: PMC9740277 DOI: 10.3390/cells11233840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Immune evasion-a well-established cancer hallmark-is a major barrier to immunotherapy efficacy. While the molecular mechanisms and biological consequences underpinning immune evasion are largely known, the role of tissue mechanical stresses in these processes warrants further investigation. The tumor microenvironment (TME) features physical abnormalities (notably, increased fluid and solid pressures applied both inside and outside the TME) that drive cancer mechanopathologies. Strikingly, in response to these mechanical stresses, cancer cells upregulate canonical immune evasion mechanisms, including epithelial-mesenchymal transition (EMT) and autophagy. Consideration and characterization of the origins and consequences of tumor mechanical stresses in the TME may yield novel strategies to combat immunotherapy resistance. In this Perspective, we posit that tumor mechanical stresses-namely fluid shear and solid stresses-induce immune evasion by upregulating EMT and autophagy. In addition to exploring the basis for our hypothesis, we also identify explicit gaps in the field that need to be addressed in order to directly demonstrate the existence and importance of this biophysical relationship. Finally, we propose that reducing or neutralizing fluid shear stress and solid stress-induced cancer immune escape may improve immunotherapy outcomes.
Collapse
|
16
|
Shen X, Li M, Wang C, Liu Z, Wu K, Wang A, Bi C, Lu S, Long H, Zhu G. Hypoxia is fine-tuned by Hif-1α and regulates mesendoderm differentiation through the Wnt/β-Catenin pathway. BMC Biol 2022; 20:219. [PMID: 36199093 PMCID: PMC9536055 DOI: 10.1186/s12915-022-01423-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypoxia naturally happens in embryogenesis and thus serves as an important environmental factor affecting embryo development. Hif-1α, an essential hypoxia response factor, was mostly considered to mediate or synergistically regulate the effect of hypoxia on stem cells. However, the function and relationship of hypoxia and Hif-1α in regulating mesendoderm differentiation remains controversial. Results We here discovered that hypoxia dramatically suppressed the mesendoderm differentiation and promoted the ectoderm differentiation of mouse embryonic stem cells (mESCs). However, hypoxia treatment after mesendoderm was established promoted the downstream differentiation of mesendoderm-derived lineages. These effects of hypoxia were mediated by the repression of the Wnt/β-Catenin pathway and the Wnt/β-Catenin pathway was at least partially regulated by the Akt/Gsk3β axis. Blocking the Wnt/β-Catenin pathway under normoxia using IWP2 mimicked the effects of hypoxia while activating the Wnt/β-Catenin pathway with CHIR99021 fully rescued the mesendoderm differentiation suppression caused by hypoxia. Unexpectedly, Hif-1α overexpression, in contrast to hypoxia, promoted mesendoderm differentiation and suppressed ectoderm differentiation. Knockdown of Hif-1α under normoxia and hypoxia both inhibited the mesendoderm differentiation. Moreover, hypoxia even suppressed the mesendoderm differentiation of Hif-1α knockdown mESCs, further implying that the effects of hypoxia on the mesendoderm differentiation were Hif-1α independent. Consistently, the Wnt/β-Catenin pathway was enhanced by Hif-1α overexpression and inhibited by Hif-1α knockdown. As shown by RNA-seq, unlike hypoxia, the effect of Hif-1α was relatively mild and selectively regulated part of hypoxia response genes, which fine-tuned the effect of hypoxia on mESC differentiation. Conclusions This study revealed that hypoxia is fine-tuned by Hif-1α and regulates the mesendoderm and ectoderm differentiation by manipulating the Wnt/β-Catenin pathway, which contributed to the understanding of hypoxia-mediated regulation of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01423-y.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China. .,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Kun Wu
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Shan Lu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| |
Collapse
|
17
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
18
|
Guerber L, Pangou E, Sumara I. Ubiquitin Binding Protein 2-Like (UBAP2L): is it so NICE After All? Front Cell Dev Biol 2022; 10:931115. [PMID: 35794863 PMCID: PMC9250975 DOI: 10.3389/fcell.2022.931115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin Binding Protein 2-like (UBAP2L, also known as NICE-4) is a ubiquitin- and RNA-binding protein, highly conserved in metazoans. Despite its abundance, its functions have only recently started to be characterized. Several studies have demonstrated the crucial involvement of UBAP2L in various cellular processes such as cell cycle regulation, stem cell activity and stress-response signaling. In addition, UBAP2L has recently emerged as a master regulator of growth and proliferation in several human cancers, where it is suggested to display oncogenic properties. Given that this versatile protein is involved in the regulation of multiple and distinct cellular pathways, actively contributing to the maintenance of cell homeostasis and survival, UBAP2L might represent a good candidate for future therapeutic studies. In this review, we discuss the current knowledge and latest advances on elucidating UBAP2L cellular functions, with an aim to highlight the importance of targeting UBAP2L for future therapies.
Collapse
Affiliation(s)
- Lucile Guerber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Izabela Sumara,
| |
Collapse
|
19
|
Li T, Guan L, Tang G, He B, Huang L, Wang J, Li M, Bai Y, Li X, Zhang H. Downregulation of TMEM220 promotes tumor progression in Hepatocellular Carcinoma. Cancer Gene Ther 2022; 29:835-844. [PMID: 34321624 DOI: 10.1038/s41417-021-00370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
During the process of long-term carcinogenesis, cells accumulate many mutations. Deregulated genes expression causes profound changes in cell proliferation, which is one of the hallmarks of HCC. A comprehensive understanding of these changes will contribute to the molecular mechanism of HCC progression. Through clinical sample analysis, we found that TMEM220 is downregulated in tumor and lower levels of TMEM220 is associated with poor prognosis in HCC patients. Through overexpressing TMEM220 in HCC cell lines, we found that the proliferation of cancer cells was significantly slowed down and metastasis was significantly reduced. For further study of its molecular mechanism, we performed a reverse-phase protein array (RPPA). The results suggest that phenotypic changes caused by TMEM220 in HCC cells might be associated with FOXO and PI3K-Akt pathways. Mechanism studies showed that overexpression of TMEM220 could regulate β-catenin and FOXO3 transcriptional activity by altering their subcellular localization, affecting the expression of downstream gene p21 and SNAIL, and ultimately reducing the progression of HCC. Altogether, our study proposes a working model in which upregulation of TMEM220 expression alters the genes expression involved in cell proliferation, thereby inhibiting HCC progression, which suggests that TMEM220 might serve as a clinical biomarker.
Collapse
Affiliation(s)
- Ting Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Lei Guan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Guangbo Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Bing He
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Juan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, PR China
| | - Mingyue Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanxia Bai
- Department of Otolaryngology-Head-Neck Surgery, The First Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyuan Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huqin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
20
|
Tu H, Wang W, Feng Y, Zhang L, Zhou H, Cheng C, Ji L, Cai Q, Feng Y. β-Patchoulene represses hypoxia-induced proliferation and epithelial-mesenchymal transition of liver cancer cells. Bioengineered 2022; 13:11907-11922. [PMID: 35546067 PMCID: PMC9275994 DOI: 10.1080/21655979.2022.2065945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor originating from liver epithelial cells with a high clinical mortality rate. β-Patchoulene (β-PAE) is a compound extracted from patchouli, which has analgesic, anti-inflammatory and antioxidant effects. This research aims to probe the impacts of β-PAE on hypoxia-induced HCC cell proliferation and epithelial-mesenchymal transition (EMT). Firstly, hypoxic injury models were constructed in HCC Huh-7 and MHCC97 cells, and the hypoxic injury cell models were then treated with different concentrations of β-PAE. The cell viability, proliferation, migration, invasion and apoptosis were checked by the cell counting kit-8 (CCK-8) assay, colony formation assay, Transwell assay, flow cytometry and terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay. The expression of Survivin protein, EMT markers and the NF-κB/HIF-1α pathway was gauged by Western blot (WB) or cellular immunofluorescence or reverse transcription-polymerase chain reaction (RT-PCR). The in-vivo experiment was conducted to confirm the anti-tumor role of β-PAE. As a result, β-PAE abated hypoxia-induced HCC cell growth, proliferation, migration, invasion and EMT and facilitated apoptosis in vitro and in vivo dose-dependently. Further mechanism studies displayed that β-PAE inactivated the NF-κB/HIF-1α pathway, and HIF-1α activation significantly reversed the β-PAE-mediated tumor inhibition. β-PAE repressed the proliferation and EMT of hypoxia-induced HCC cells by choking the NF-κB/HIF-1α pathway, suggesting that β-PAE was a potential drug for HCC treatment.
Collapse
Affiliation(s)
- Huahua Tu
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yanqing Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Linfei Zhang
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Huadong Zhou
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Caitao Cheng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Lei Ji
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Qinghe Cai
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Yong Feng
- Department of Hepatobiliary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, P.R. China
| |
Collapse
|
21
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132:154515. [PMID: 35166233 PMCID: PMC8843739 DOI: 10.1172/jci154515] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Deregulated Wnt/β-catenin signaling is one of the main genetic alterations in human hepatocellular carcinoma (HCC). Comprehensive genomic analyses have revealed that gain-of-function mutation of CTNNB1, which encodes β-catenin, and loss-of-function mutation of AXIN1 occur in approximately 35% of human HCC samples. Human HCCs with activation of the Wnt/β-catenin pathway demonstrate unique gene expression patterns and pathological features. Activated Wnt/β-catenin synergizes with multiple signaling cascades to drive HCC formation, and it functions through its downstream effectors. Therefore, strategies targeting Wnt/β-catenin have been pursued as possible therapeutics against HCC. Here, we review the genetic alterations and oncogenic roles of aberrant Wnt/β-catenin signaling during hepatocarcinogenesis. In addition, we discuss the implication of this pathway in HCC diagnosis, classification, and personalized treatment.
Collapse
Affiliation(s)
- Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| |
Collapse
|
23
|
Tang X, Chen W, Liu H, Liu N, Chen D, Tian D, Wang J. Research progress on SLC7A11 in the regulation of cystine/cysteine metabolism in tumors. Oncol Lett 2022; 23:47. [PMID: 34992680 PMCID: PMC8721856 DOI: 10.3892/ol.2021.13165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Solute carrier family 7 member 11 (SLC7A11) is a major transporter regulating cysteine metabolism and is widely expressed in a variety of tumor cells. SLC7A11 plays an important role in the occurrence, development, invasion and metastasis of tumors by regulating the transport of cysteine in the tumor microenvironment. SLC7A11 is expected to become a new therapeutic target and prognostic indicator for the individualized treatment of patients. According to relevant research reports, SLC7A11 can predict the stages and metastasis of liver, breast and lung cancer. Therefore, an in-depth exploration of the role of SLC7A11 in tumors may be important for the screening, early diagnosis, treatment and prognosis of patients with tumors. The current review summarizes the research progress on SLC7A11 in liver cancer, lung cancer and other tumors on the basis of previous primary studies. In addition, the present review systematically elaborates on the three main aspects of SLC7A11 pathways in some tumors, the cancer-promoting mechanisms, and the therapeutic relationship between SLC7A11 and tumors. Finally, the present review aims to provide a reference for assessing whether SLC7A11 can be used as a prognostic indicator and treatment target for tumor patients, and the future research direction with regard to SLC7A11 in tumors.
Collapse
Affiliation(s)
- Xiang Tang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Wei Chen
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Hui Liu
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Na Liu
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Dalong Tian
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
24
|
Zhang H, Xu K, Xiang Q, Zhao L, Tan B, Ju P, Lan X, Liu Y, Zhang J, Fu Z, Li C, Wang J, Song J, Xiao Y, Cheng Z, Wang Y, Zhang S, Xiang T. LPCAT1 functions as a novel prognostic molecular marker in hepatocellular carcinoma. Genes Dis 2022; 9:151-164. [PMID: 35005115 PMCID: PMC8720658 DOI: 10.1016/j.gendis.2020.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate the relationships between LPCAT1 expression and clinicopathologic parameters of hepatocellular carcinoma (HCC), further, to explore the effect of LPCAT1 on overall survival (OS) in patients with HCC, and its possible mechanism. Bioinformatics analysis using high throughput RNA-sequencing data from TCGA was utilized to explore the differential expression of LPCAT1 between normal and tumor tissues, and the associations between LPCAT1 expression and clinicopathological parameters. Survival analyses and subgroup survival analyses were utilized to elucidate the effect of LPCAT1 on OS in patients with HCC. Univariate analysis and multivariate analysis were used to investigate the prognostic factors. Potential LPCAT1 related tumor genes were identified by the methodology of differentially expressed genes (DEGs) screening. GO term enrichment analysis, KEGG pathway analysis and the PPI network were used to explore the potential mechanism. LPCAT1 was significantly overexpressed in HCC tumor tissues compared with normal tissues. The LPCAT1 expression was related to tumor grade, ECOG score, AFP and TNM stage, with P values of 0.000, 0.000, 0.007 and 0.000, respectively. Multivariate analysis demonstrated that LPCAT1 expression was independently associated with OS, with an HR of 1.04 (CI: 1.01-1.06, P = 0.003). The KEGG pathway enrichment analyses showed that overlapped DEGs mainly participate in the cell cycle. Finally, we identified a hub gene, CDK1, which has been reported to act on the cell cycle, consistent with the result of KEGG enrichment analysis. Collectively, these data confirmed LPCAT1 was upregulated in HCC, and was an independent predictor of the prognosis.
Collapse
Affiliation(s)
- Hongbin Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
- Department of Oncology, People's Hospital of Juxian County, Rizhao, Shandong 276599, PR China
| | - Ke Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610599, PR China
| | - Qin Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Lijuan Zhao
- Department of Oncology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402177, PR China
| | - Benxu Tan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Ping Ju
- College of Science and Mathematics, West Chester University of Pennsylvania, West Chester, PA 19383, USA
| | - Xiufu Lan
- Department of Orthopedics, Daping Hospital, Army Medical University, Chongqing 400042, PR China
| | - Yi Liu
- Engineering Department, Women & Children's Health Care Hospital of Linyi, Linyi, Shandong 276016, PR China
| | - Jian Zhang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Zheng Fu
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250013, PR China
| | - Chao Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
| | - Jinzhi Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
| | - Jixiang Song
- Medical Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250013, PR China
| | - Yun Xiao
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400042, PR China
| | - Zhaobo Cheng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Shu Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250117, PR China
- Corresponding author.
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
- Corresponding author.
| |
Collapse
|
25
|
Gouda G, Gupta MK, Donde R, Behera L, Vadde R. Tumor microenvironment in heptocellular carcinoma. THERANOSTICS AND PRECISION MEDICINE FOR THE MANAGEMENT OF HEPATOCELLULAR CARCINOMA 2022:109-124. [DOI: 10.1016/b978-0-323-98806-3.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
26
|
Lin S, Yan Z, Tang Q, Zhang S. Ubiquitin-associated protein 2 like (UBAP2L) enhances growth and metastasis of gastric cancer cells. Bioengineered 2021; 12:10232-10245. [PMID: 34823423 PMCID: PMC8809994 DOI: 10.1080/21655979.2021.1982308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-proteasome pathway has emerged as therapeutic targets for cancer. GEPIA database analysis showed that the expression of ubiquitin-associated protein 2 like (UBAP2L) in gastric cancer specimens was significantly higher than that in non-tumor tissue, and its high expression is associated with poor survival of gastric cancer patients. This study aims to investigate the role of UBAP2L in gastric cancer. Real-time PCR and western blot results showed that UBAP2L expression was upregulated in gastric cancer cell lines. Loss- and gain-of-function experiments demonstrated that silencing of UBAP2L inhibited proliferation, migration and invasion, and induced apoptosis of gastric cancer cells, and overexpression of UBAP2L played opposite roles. Nude mice inoculated with UBAP2L-silenced gastric cancer cells generated smaller xenografted tumors in vivo. Furthermore, UBAP2L activated Wnt/β-catenin signaling - the accumulation of nuclear β-catenin and the expression of its downstream targets (cyclin D1, AXIN-2 and c-MYC) was facilitated, whereas knockdown of UBAP2L deactivated this signaling. The tumor-suppressing effect of UBAP2L silencing was abolished by forced activation of β-cateninS33A. UBAP2L has been confirmed as a novel and direct target of miR-148b-3p. The anti-tumor effect of miR-148b-3p was partly reversed by UBAP2L overexpression. The expression of miR-148b-3p was negatively correlated with that of UBAP2L in gastric cancer samples. Overall, our study indicates that UBAP2L is required to maintain malignant behavior of gastric cancer cells, which involves the activation of Wnt/β-catenin signaling pathway. We propose UBAP2L as a potential therapeutic target against gastric cancer.
Collapse
Affiliation(s)
- Sihan Lin
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhiyong Yan
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Qiaofei Tang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| | - Shuang Zhang
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shenyang Medical College, Shenyang, People’s Republic of China
| |
Collapse
|
27
|
Bruceine D inhibits HIF-1 α-mediated glucose metabolism in hepatocellular carcinoma by blocking ICAT/ β-catenin interaction. Acta Pharm Sin B 2021; 11:3481-3492. [PMID: 34900531 PMCID: PMC8642446 DOI: 10.1016/j.apsb.2021.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths, characterized by highly hypoxic tumor microenvironment. Hypoxia-inducible factor-1α (HIF-1α) is a major regulator involved in cellular response to changes of oxygen levels, supporting the adaptation of tumor cells to hypoxia. Bruceine D (BD) is an isolated natural quassinoid with multiple anti-cancer effects. Here, we identified BD could significantly inhibit the HIF-1α expression and its subsequently mediated HCC cell metabolism. Using biophysical proteomics approaches, we identified inhibitor of β-catenin and T-cell factor (ICAT) as the functional target of BD. By targeting ICAT, BD disrupted the interaction of β-catenin and ICAT, and promoted β-catenin degradation, which in turn induced the decrease of HIF-1α expression. Furthermore, BD could inhibit HCC cells proliferation and tumor growth in vivo, and knockdown of ICAT substantially increased resistance to BD treatment in vitro. Our data highlight the potential of BD as a modulator of β-catenin/HIF-1α axis mediated HCC metabolism.
Collapse
Key Words
- BD, bruceine D
- Bruceine D
- CETSA, cellular thermal shift assay
- Cyt c, cytochrome c
- DARTS, drug affinity responsive target stability
- HCC, hepatocellular carcinoma
- HIF-1α
- HIF-1α, hypoxia-inducible factor-1α
- HIF-1β, hypoxia-inducible factor-1β
- Hepatocellular carcinoma
- Hypoxia
- ICAT
- ICAT, inhibitor of β-catenin and T-cell factor
- MST, microscale thermophoresis
- Metabolism
- ROS, reactive oxygen species
- Tumor microenvironment
- β-Catenin
Collapse
|
28
|
Hawash M, Qneibi M, Jaradat N, Abualhasan M, Amer J, Amer EH, Ibraheem T, Hindieh S, Tarazi S, Sobuh S. The impact of filtered water-pipe smoke on healthy versus cancer cells and their neurodegenerative role on AMPA receptor. Drug Chem Toxicol 2021; 45:2292-2300. [PMID: 34121557 DOI: 10.1080/01480545.2021.1935397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Water pipe smoking is highly prevalent in developing countries, especially in Eastern Mediterranean regions. Research finds that more than 100 million people smoke a water pipe. Furthermore, tobacco smoking is one of the leading behavioral factors related to an increased risk of cancer, a leading cause of death globally. We aim to introduce a novel filtration system for water-pipe smoking and evaluate cytotoxic effects of common water pipe condensed smoke in comparison with our novel filtration system on normal (HEK293t) and cancer cell lines (Hep3B and MCF7) by MTS assay, alpha-fetoprotein (aFP), and apoptosis/necrosis effects. More so, the smoke substituents' neurotoxicity effect was evaluated by analyzing the depressive property on AMPA receptors (AMPARs). Our results showed that the silica filtration system was more effective than the water filtration system. The number of toxic compounds was reduced from 145 mg in distilled water extract (DWE) to 57.5 mg in silica solution extract (SSE). The SSE method also showed lower toxicity impacts on normal and cancerous cell lines (HEK293t, Hep3B, and MCF7) with CC50 values 149.9, 10.14, and 8.9 µg/ml, relative to the DWE method (CC50 values 77.1, 3.1, and 5.24 µg/ml, respectively). SSE extraction also reduced the α-FP (tumor marker test) to 2273.3 ng/ml which was closer in value to untreated cells (4066.7 ng/ml) in comparison with DWE which reduced it greatly to 1658.7 ng/ml, and the biophysical properties of AMPAR subunits demonstrate a reduced effect on desensitization rates of GluA2 homomer and GluA1/2 heteromer, using SSE relative to DWE. In conclusion, the condensed smoke of ordinary water pipe (DWE) has cytotoxic and neurotoxic impacts on various cell lines, while our newly developed system (SSE) was less toxic.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Qneibi
- Department of Biomedical Sciences, Physiology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Johnny Amer
- Department of Biomedical Sciences, Physiology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - El-Hamouz Amer
- Department of Chemical Engineering, An-Najah National University, Nablus, Palestine
| | - Tasneem Ibraheem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Siham Hindieh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sama Tarazi
- Department of Biomedical Sciences, Physiology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Physiology, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
29
|
El Shorbagy S, abuTaleb F, Labib HA, Ebian H, Harb OA, Mohammed MS, Rashied HA, Elbana KA, Haggag R. Prognostic Significance of VEGF and HIF-1 α in Hepatocellular Carcinoma Patients Receiving Sorafenib Versus Metformin Sorafenib Combination. J Gastrointest Cancer 2021; 52:269-279. [PMID: 32212089 DOI: 10.1007/s12029-020-00389-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major health problem. HCC burden has been increasing in Egypt in the past 10 years. Most HCC cases are diagnosed at an advanced stage with limited treatment options. Sorafenib is the standard therapy for advanced HCC, but the effectiveness is not satisfied. Metformin may decrease the risk of HCC development in diabetic patients, reduces tumor invasion, and augments sensitivity to sorafenib; however, safety and efficacy of combined treatment are still unclear. As HCC is characterized by high vascularity, and vascular endothelial growth factor (VEGF) plays an important role in vascularization, many studies questioned if VEGF and HIF-1 α could offer information about HCC response to sorafenib. We conducted this study to assess the benefits from adding metformin to HCC treatment, and appraise the role of VEGF and HIF-1 α in HCC prognosis. METHOD This was a prospective, randomized study in which 80 advanced measurable patients consecutively treated with sorafenib plus metformin (arm A) or sorafenib alone (arm B), prognostic value of plasma, and tissue levels of VEGF and HIF-1 α were evaluated. RESULTS We enrolled 61 men and 19 women with a median age of 60 years (range 49-68 years). Fifty-seven patients had Child-Pugh A while 23 had early B, the most common etiology of liver disease was hepatitis C (86%). Sixty percent of patients were diabetic. No significant difference was detected between arm A and arm B regarding response to treatment (p = 0.5), time to disease progression (p = 0.3), or overall survival (p = 0.6). Low VEGF and HIF-1 α plasma levels were significantly associated with better treatment response (p < 0.001 for both), and higher OS (p < 0.001). Patients with high expressions of VEGF and HIF in HCC tissue had significantly poor treatment outcome (p < 0.001, p = 0.03, respectively), and poor OS (p < 0.001, p < 0.001, respectively). CONCLUSIONS No superior efficacy of adding metformin to sorafenib in HCC treatment. VEGF and HIF-1 α had promising prognostic value in HCC.
Collapse
Affiliation(s)
- Shereen El Shorbagy
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Fouad abuTaleb
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hany A Labib
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Huda Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola A Harb
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mona Saeed Mohammed
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Khaled A Elbana
- Internal Medicine department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha Haggag
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
30
|
Ding ZN, Dong ZR, Chen ZQ, Yang YF, Yan LJ, Li HC, Liu KX, Yao CY, Yan YC, Yang CC, Li T. Effects of hypoxia-inducible factor-1α and hypoxia-inducible factor-2α overexpression on hepatocellular carcinoma survival: A systematic review with meta-analysis. J Gastroenterol Hepatol 2021; 36:1487-1496. [PMID: 33393670 DOI: 10.1111/jgh.15395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM The role of hypoxia-inducible factor-1α (HIF-1α) and hypoxia-inducible factor-2α (HIF-2α) has been implicated in the clinical prognosis of hepatocellular carcinoma (HCC), but the results remain controversial. We aim to investigate the association of HIF-1α and HIF-2α overexpression with the prognosis and clinicopathological features of HCC. METHODS A systematic search was conducted in PubMed, Embase, Scopus, Web of Science, and Cochrane Library until June 20, 2020. Meta-analysis was conducted to generate combined HRs with 95% confidence intervals (CI) for overall survival (OS) and disease-free survival (DFS). Odds ratios (ORs) with 95% CI were also derived by fixed or random effect model. RESULTS Twenty-two studies involving 3238 patients were included. Combined data suggested that overexpression of HIF-1α in HCC was not only correlated with poorer OS [HR = 1.75 (95% CI: 1.53-2.00)] and DFS [HR = 1.64 (95% CI: 1.34-2.00)] but was also positively associated with vascular invasion [OR = 1.83 (95% CI: 1.36-2.48)], tumor size [OR = 1.36 (95% CI: 1.12-1.66)], and tumor number [1.74 (95% CI: 1.34-2.25)]. In contrast, HIF-2α overexpression was not associated with the prognosis and clinicopathological features of HCC. CONCLUSION Our data provided compelling evidence of a worse prognosis of HCC in HIF-1α overexpression patients but not HIF-2α overexpression ones.
Collapse
Affiliation(s)
- Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Kai-Xuan Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Cheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
31
|
Yao B, Li Y, Chen T, Niu Y, Wang Y, Yang Y, Wei X, Liu Q, Tu K. Hypoxia-induced cofilin 1 promotes hepatocellular carcinoma progression by regulating the PLD1/AKT pathway. Clin Transl Med 2021; 11:e366. [PMID: 33784016 PMCID: PMC7982636 DOI: 10.1002/ctm2.366] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the fourth fatal malignant tumour type worldwide. However, the exact molecular mechanism involved in HCC progression remains unclear. METHODS Three pairs of HCC and matched portal vein tumour thrombus (PVTT) tissue samples were analysed by isobaric tags for relative and absolute quantification (iTRAQ) assay to investigate the differentially expressed proteins. Real-time quantitative PCR, immunostaining, and immunoblotting were performed to detect cofilin 1 (CFL1) in HCC and non-tumour tissues. CCK8 and EdU, and Transwell assays, respectively, determined cell proliferation, migration, and invasion of HCC cells. Further, subcutaneous and tail vein injection were performed in nude mice for investigating HCC growth and lung metastasis in vivo. Regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on CFL1 was confirmed by chromatin immunoprecipitation (ChIP) assay. Finally, interaction between CFL1 and phospholipase D1 (PLD1) was studied using immunoprecipitation (IP) assay. RESULTS The iTRAQ analysis identified expression of CFL1 to be significantly upregulated in PVTT than in HCC tissues. Increased expression of CFL1 was closely associated with unfavourable clinical features, and was an independent risk predictor of overall survival in HCC patients. The knockdown of CFL1 inhibited cell growth viability, invasiveness, and epithelial-mesenchymal transformation (EMT) in HCC cells. Furthermore, CFL1 silencing significantly suppressed the growth and lung metastasis of HCC cells in nude mice. Next, HIF-1α directly regulated CFL1 transcription by binding to the hypoxia-responsive element (HRE) in the promoter. Moreover, we disclosed the interaction between CFL1 and PLD1 in HCC cells using IP assay. Mechanistically, CFL1 maintained PLD1 expression by repressing ubiquitin-mediated protein degradation, thereby activating AKT signalling in HCC cells. Notably, the CFL1/PLD1 axis was found mediating the hypoxia-induced activation of the AKT pathway and EMT. CONCLUSION The analysis suggests that hypoxia-induced CFL1 increases the proliferation, migration, invasion, and EMT in HCC by activating the PLD1/AKT pathway.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yazhao Li
- Center for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tianxiang Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yongshen Niu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yufeng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science CenterXi'anChina
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science CenterXi'anChina
| | - Qingguang Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Kangsheng Tu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
32
|
Méndez-Blanco C, Fernández-Palanca P, Fondevila F, González-Gallego J, Mauriz JL. Prognostic and clinicopathological significance of hypoxia-inducible factors 1α and 2α in hepatocellular carcinoma: a systematic review with meta-analysis. Ther Adv Med Oncol 2021; 13:1758835920987071. [PMID: 33613697 PMCID: PMC7874357 DOI: 10.1177/1758835920987071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a highly recurrent tumor after resection and has been closely related to hypoxia. Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) have been shown to contribute to tumor progression and therapy resistance in HCC. We evaluated the prognostic and clinicopathological significance of HIF-1α and HIF-2α in HCC patients. Methods: We systematically searched Embase, Cochrane, PubMed, Scopus and Web of Science (WOS) from inception to 1 June 2020 for studies evaluating HIF-1α and/or HIF-2α expression in HCC. Selected articles evaluate at least one factor by immunohistochemistry (IHC) in HCC patients who underwent surgical resection, and its relationship with prognosis and/or clinicopathological features. Study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO; CDR42020191977). We meta-analyzed the data extracted or estimated according to the Parmar method employing STATA software. We evaluated the overall effect size for the hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI), as well as heterogeneity across studies with the I2 statistic and chi-square-based Q test. Moreover, we conducted subgroup analysis when heterogeneity was substantial. Publication bias was assessed by funnel plot asymmetry and Egger’s test. Results: HIF-1α overexpression was correlated with overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS) and clinicopathological features including Barcelona Clinic Liver Cancer (BCLC), capsule infiltration, intrahepatic metastasis, lymph node metastasis, tumor–node–metastasis (TNM), tumor differentiation, tumor number, tumor size (3 cm), vascular invasion and vasculogenic mimicry. We also detected a possible correlation of HIF-1α with alpha-fetoprotein (AFP), cirrhosis, histological grade, tumor size (5 cm) and albumin after subgroup analysis. Initially, only DFS/RFS appeared to be associated with HIF-2α overexpression. Subgroup analysis denoted that HIF-2α overexpression was related to OS and capsule infiltration. Conclusions: HIF-1α and HIF-2α overexpression is related to poor OS, DFS/RFS and some clinicopathological features of HCC patients, suggesting that both factors could be useful HCC biomarkers.
Collapse
Affiliation(s)
| | | | - Flavia Fondevila
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - José L Mauriz
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, León 24071, Spain
| |
Collapse
|
33
|
Rakotomalala A, Escande A, Furlan A, Meignan S, Lartigau E. Hypoxia in Solid Tumors: How Low Oxygenation Impacts the "Six Rs" of Radiotherapy. Front Endocrinol (Lausanne) 2021; 12:742215. [PMID: 34539584 PMCID: PMC8445158 DOI: 10.3389/fendo.2021.742215] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is an important component of cancer treatment, with approximately 50% of all cancer patients receiving radiation therapy during their course of illness. Nevertheless, solid tumors frequently exhibit hypoxic areas, which can hinder therapies efficacy, especially radiotherapy one. Indeed, hypoxia impacts the six parameters governing the radiotherapy response, called the « six Rs of radiation biology » (for Radiosensitivity, Repair, Repopulation, Redistribution, Reoxygenation, and Reactivation of anti-tumor immune response), by inducing pleiotropic cellular adaptions, such as cell metabolism rewiring, epigenetic landscape remodeling, and cell death weakening, with significant clinical repercussions. In this review, according to the six Rs, we detail how hypoxia, and associated mechanisms and pathways, impact the radiotherapy response of solid tumors and the resulting clinical implications. We finally illustrate it in hypoxic endocrine cancers through a focus on anaplastic thyroid carcinomas.
Collapse
Affiliation(s)
- Andria Rakotomalala
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Alexandre Escande
- Oscar Lambret Center, Academic Radiation Oncology Department, Lille, France
- University of Lille, H. Warembourg School of Medicine, Lille, France
- CRIStAL UMR CNRS 9189, University of Lille, Villeneuve-d’Ascq, France
| | - Alessandro Furlan
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Samuel Meignan
- Oscar Lambret center, Tumorigenesis and Resistance to Treatment Unit, Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
- *Correspondence: Samuel Meignan,
| | - Eric Lartigau
- Oscar Lambret Center, Academic Radiation Oncology Department, Lille, France
- University of Lille, H. Warembourg School of Medicine, Lille, France
- CRIStAL UMR CNRS 9189, University of Lille, Villeneuve-d’Ascq, France
| |
Collapse
|
34
|
Hawash M, Eid AM, Jaradat N, Abualhasan M, Amer J, Naser Zaid A, Draghmeh S, Daraghmeh D, Daraghmeh H, Shtayeh T, Sawaftah H, Mousa A. Synthesis and Biological Evaluation of Benzodioxole Derivatives as Potential Anticancer and Antioxidant agents. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2020-0105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstracta series of benzodioxole compounds were synthesized and evaluated for their cytotoxic activity against cervical (Hela), colorectal (Caco-2), and liver (Hep3B) cancer cell lines. Compounds 5a, 5b, 6a, 6b, 7a and 7b showed very weak or negligible anticancer activity with IC50 3.94-9.12 mM. On the contrary, carboxamide containing compounds 2a and 2b showed anticancer activity. Both 2a and 2b reduced Hep3B secretions of α-fetoprotein (α-FP) to 1625.8 ng/ml and 2340 ng/ml, respectively, compared to 2519.17 ng/ml in untreated cells. The results also showed that compound 2a has potent anticancer activity against Hep3B cancer cell line. Furthermore, in cell cycle analysis, compound 2a induced arrest in the G2-M phase in value of 8.07% that was very close to the activity of doxorubicin (7.4%). These results indicate that compound 2a has a potent and promising antitumor activity. However, benzodiazepine derivatives (7a and 7b) showed moderate antioxidant activity with IC50 values of 39.85 and 79.95 μM, respectively compared with the potent antioxidant agent Trolox (IC50 = 7.72 μM).
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Johnny Amer
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division. Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Saja Draghmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Donia Daraghmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Haifa Daraghmeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Tahrir Shtayeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Hadeel Sawaftah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, NablusP.O. Box 7, 00970, Palestine
| | - Ahmed Mousa
- Department of Biomedical Sciences, Physiology, Pharmacology & Toxicology Division. Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
35
|
Hu B, Yang XB, Sang XT. Development and Verification of the Hypoxia-Related and Immune-Associated Prognosis Signature for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2020; 7:315-330. [PMID: 33204664 PMCID: PMC7667586 DOI: 10.2147/jhc.s272109] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background It has been widely suggested that the association of hypoxia with the immune status within the microenvironment of hepatocellular carcinoma (HCC) is of great clinical significance. The present work was carried out aiming to establish the hypoxia-related and immune-associated gene signature to stratify the risks in HCC. Patients and Methods The ssGSEA and t-SNE algorithms were utilized to estimate the immune and hypoxia statuses, respectively, using the TCGA database-derived cohort transcriptome profiles. Different immune groups are distinguished according to the ssGSEA scores, while the hypoxia-high and -low groups are inferred based on the distinct overall survival (OS) of the two groups of patients. Moreover, prognostic genes were identified using the Cox regression model in combination with the LASSO approach, which were later used to establish the hypoxia-related and immune-associated gene signature. At the same time, an ICGC cohort was used for external validation. Results A total of 13 genes, namely, HAVCR1, PSRC1, CCNJL, PDSS1, MEX3A, EID3, EPO, PLOD2, KPNA2, CDCA8, ADAMTS5, SLC1A7 and PIGZ, were discovered by the LASSO approach for constructing a gene signature to stratify the risk of HCC. Those low-risk cases showed superior prognosis (OS) to the high-risk counterparts (p<0.05). Moreover, it was suggested by multivariate analysis that our constructed hypoxia-related and immune-associated prognosis signature might be used as the independent factor for prognosis prediction (p<0.001). Patients in high-risk groups had severe hypoxia, higher immune checkpoint expression such as PD-L1, and different immunocyte infiltration states (eg, higher infiltration of regulatory T cells in the high-risk group) compared with those low-risk patients. Conclusion Our as-constructed hypoxia-related and immune-associated prognosis signature can be used as an approach to stratify the risk of HCC.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
36
|
Lin YL, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis 2020; 7:336-350. [PMID: 32884988 PMCID: PMC7452459 DOI: 10.1016/j.gendis.2019.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death around the world due to advanced clinical stage at diagnosis, high incidence of recurrence and metastasis after surgical treatment. It is in urgent need to create appropriate animal models to explore the mechanism, patterns, risk factors, and therapeutic strategies of HCC metastasis and recurrence. However, most of the established models lack the phenotype of invasion and metastasis in patient, or have unstable phenotype. To establish HCC models with stable metastasis phenotype requires profound understanding in cancer metastasis biology and scientific methodology. Over the past 3 decades, HCC models with stable metastasis have been extensively studied. This paper reviewed the history and development of HCC animal models and cell models, focusing on the screening and maintaining of metastatic potential and phenotype. In-depth studies using these models vastly promote the understanding of cellular and molecular mechanisms and development of therapeutic strategies on HCC metastasis.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
37
|
Theodoraki K, Papadoliopoulou M, Petropoulou Z, Theodosopoulos T, Vassiliu P, Polydorou A, Xanthakos P, Fragulidis G, Smyrniotis V, Arkadopoulos N. Does vascular occlusion in liver resections predispose to recurrence of malignancy in the liver remnant due to ischemia/reperfusion injury? A comparative retrospective cohort study. Int J Surg 2020; 80:68-73. [PMID: 32619621 DOI: 10.1016/j.ijsu.2020.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Severe ischemic changes of the liver remnant after hepatectomy could expedite tumor recurrence on the residual liver. Our study aimed at assessing the effect of warm ischemic/reperfusion (I/R) injuries on surgery-to-local recurrence interval and patient overall survival, during major hepatectomies under inflow and outflow vascular control. METHODS One hundred and eighteen patients were subjected to liver resection under total inflow and outflow vascular clamping and were assigned as study group. These individuals were retrospectively matched to 112 counterparts, who underwent liver surgery applying inflow and outflow vascular clamping only of the segment harboring the tumor, sparing the liver remnant from any I/R injury (control group). The two cohorts were compared regarding recurrence-free survival and overall survival. RESULTS Reversible I/R injuries of the liver remnant subjected to vascular clamping were manifested, with increase of AST values at postoperative day 2 in the study group, as compared to the control group (603 ± 270 U/L vs. 450 ± 290 U/L, p < 0.001), reversing to normal by day 7. Recurrence-free survival and overall survival were no significantly different between the two groups (log rank statistic p = 0.298 and 0.639, respectively). CONCLUSION Reversible I/R injuries of the liver remnant do not seem to be implicated in the precipitation of local malignant recurrence or in shorter long-term survival, in comparison to a technique sparing the residual liver of I/R injury. This retrospective cohort study was registered at clinicaltrials.gov under unique identifying number: NCT04257240.
Collapse
Affiliation(s)
- Kassiani Theodoraki
- 1st Department of Anesthesiology, School of Medicine, National and Kapodistrian University of Athens, "Aretaieion" Hospital, Athens, Greece.
| | - Maria Papadoliopoulou
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Zoe Petropoulou
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Theodosios Theodosopoulos
- 2nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Aretaieion" Hospital, Athens, Greece
| | - Pantelis Vassiliu
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Andreas Polydorou
- 2nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Aretaieion" Hospital, Athens, Greece
| | - Pantelis Xanthakos
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - George Fragulidis
- 2nd Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Aretaieion" Hospital, Athens, Greece
| | - Vassilios Smyrniotis
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, School of Medicine, National and Kapodistrian University of Athens, "Attikon" Hospital, Athens, Greece
| |
Collapse
|
38
|
|
39
|
Feng D, Xu Y, Hu J, Zhang S, Li M, Xu L. A novel circular RNA, hsa-circ-0000211, promotes lung adenocarcinoma migration and invasion through sponging of hsa-miR-622 and modulating HIF1-α expression. Biochem Biophys Res Commun 2019; 521:395-401. [PMID: 31668923 DOI: 10.1016/j.bbrc.2019.10.134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/18/2019] [Indexed: 01/16/2023]
Abstract
Recently, several studies have evaluated the role of circular RNAs in the metastasis and development of multiple cancers. In our earlier microarray-based study, we had reported the aberrant expression of a novel circular RNA, hsa-circ-0000211 in lung adenocarcinoma (LAC) tissues. However, the roles of hsa-circ-0000211 in LAC have not been studied. Here hsa-circ-0000211 expression in the LAC tissues and cell lines was determined by quantitative real-time PCR (qRT-PCR). The function of hsa-circ-0000211 was evaluated by transwell assay and wound healing. Mechanisms of hsa-circ-0000211 was measured by luciferase reporter assay and western blot. Results revealed the expression of hsa-circ-0000211 in the human LAC tissues and LAC cell lines was higher than that in normal tissue and human lung normal epithelial cells, respectively. The knockdown of hsa-circ-0000211 could inhibit the migration and invasion properties of LAC. Furthermore, hsa-circ-0000211 promoted the migration and invasion of LAC by sponging miR-622. Moreover, hsa-circ-0000211 upregulated the HIF1-α expression by targeting miR-622. hsa-circ-0000211 promoted LAC cell migration and invasion by modulating the miR-622/HIF1-α network. Our study demonstrated that hsa-circ-0000211 can be a potential novel therapeutic target for LAC.
Collapse
Affiliation(s)
- Dongjie Feng
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Jingwen Hu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Shuai Zhang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ming Li
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
40
|
Wu CE, Zhuang YW, Zhou JY, Liu SL, Wang RP, Shu P. Cinnamaldehyde enhances apoptotic effect of oxaliplatin and reverses epithelial-mesenchymal transition and stemnness in hypoxic colorectal cancer cells. Exp Cell Res 2019; 383:111500. [PMID: 31306656 DOI: 10.1016/j.yexcr.2019.111500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/27/2022]
Abstract
Oxaliplatin has been widely applied in clinical tumor chemotherapy, the treatment failure of which mainly blames on low susceptibility resulted from intrinsic or acquired drug resistance in tumor cells. Microenvironmental hypoxia is one of the important pathological features of solid tumors, which is closely related to the radiochemotherapy tolerance and poor prognosis. Cinnamaldehyde is extracted from Cinnamomum cassia with inhibiting effect against kinds of tumors. In this study, we demonstrated that hypoxia reduced the sensitivity to oxaliplatin in colorectal cancer (CRC) cells via inducing EMT and stemness. Nonetheless, cinnamaldehyde increased the curative effect of oxaliplatin by promoting apoptosis both in vitro and in vivo. Mechanistically, cinnamaldehyde and oxaliplatin synergistically reversed hypoxia-induced EMT and stemness of CRC cells and suppressed hypoxia-activated Wnt/β-catenin pathway synergistically. These consequences uncovered the potential therapeutic value of cinnamaldehyde and provided novel ideas on improving the sensitivity of oxaliplatin in CRC therapy.
Collapse
Affiliation(s)
- Cun-En Wu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Yu-Wen Zhuang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China; Jinling Hospital Department of Integrated Traditional and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210002, Jiangsu, China; The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin-Yong Zhou
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Shen-Lin Liu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Rui-Ping Wang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| | - Peng Shu
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
41
|
Basil polysaccharide inhibits hypoxia-induced hepatocellular carcinoma metastasis and progression through suppression of HIF-1α-mediated epithelial-mesenchymal transition. Int J Biol Macromol 2019; 137:32-44. [PMID: 31252022 DOI: 10.1016/j.ijbiomac.2019.06.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/05/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022]
Abstract
Invasion and metastasis of cancerous cells affects the treatment and prognosis of hepatocellular carcinoma (HCC). HIF-1α-induced epithelial-mesenchymal transition (EMT) is a critical process associated with cancer metastasis. Basil polysaccharide (BPS), one of the major active ingredients isolated from Basil (Ocimum basilicum L.), has been identified to possess an antitumor activity for HCC. In our current study, BPS was obtained by water extraction and ethanol precipitation method and the characterization was analyzed through ultraviolet absorption spectra and Fourier-transform infrared spectrum. A CoCl2-induced hypoxia model and a HCC cell line-derived xenograft (CDX) model were used to explore the anti-metastasis efficacy and the mechanism that underlies the antitumor activity of BPS. The results showed that hypoxia could facilitate EMT and promote HCC cells migration and/or invasion. Conversely, BPS inhibited the progression and metastasis of tumor, as well as reversed EMT by causing cytoskeletal remodeling under hypoxic conditions. Moreover, BPS alleviated tumor hypoxia by targeting HIF1α, and the mesenchymal markers (β-catenin, N-cadherin and vimentin) were down-regulated, while the epithelial markers (E-cadherin, VMP1 and ZO-1) were up-regulated after BPS treatment under hypoxic conditions. Thus, these results suggested that BPS may be a valuable option for use in clinical treatment of HCC and other malignant tumors.
Collapse
|
42
|
Zhong W, Xu Z, Wen S, Xie T, Wang F, Wang Q, Chen J. Long non‐coding RNA myocardial infarction associated transcript promotes epithelial‐mesenchymal transition and is an independent risk factor for poor prognosis of tongue squamous cell carcinoma. J Oral Pathol Med 2019; 48:720-727. [PMID: 31166624 DOI: 10.1111/jop.12892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Waisheng Zhong
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Zi Xu
- Department of Head and Neck Radiation Oncology Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Senli Wen
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Tao Xie
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Fang Wang
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Qiwei Wang
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| | - Jie Chen
- Department of Head and Neck Surgery Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha China
| |
Collapse
|
43
|
Yan B, Li T, Shen L, Zhou Z, Liu X, Wang X, Sun X. Simultaneous knockdown of YAP and TAZ increases apoptosis of hepatocellular carcinoma cells under hypoxic condition. Biochem Biophys Res Commun 2019; 515:275-281. [PMID: 31146919 DOI: 10.1016/j.bbrc.2019.05.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignant tumors of the digestive system and its five-year survival rate is low. Hypoxia is an important feature of HCC, which can promote cell death resistance. However, the key regulator of HCC cell survival remains elusive in the hypoxic condition. Emerging researches have showed that the Hippo signaling pathway is involved in the initiation and progression of HCC. Here, we provide evidence that key downstream effectors YAP and its paralog TAZ play vital role in apoptosis resistance of HCC cells under hypoxia. Knockdown of YAP or TAZ does not affect the survival of HCC cells in normoxic and hypoxic microenvironment. In addition, the rate of apoptosis by knockdown or inhibition of both YAP and TAZ under hypoxic condition is largely higher than which under normoxia. In conclusion, simultaneous knockdown or inhibition of YAP and TAZ promote apoptosis of HCC cells dramatically. To our knowledge, this is the first research to explore the role of both YAP and TAZ in HCC hypoxic microenvironment in vitro and in vivo. Therefore, it may be useful for establishing novel targeted therapies of HCC, especially subtypes with plenty of hypoxic areas.
Collapse
Affiliation(s)
- Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Shen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijie Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Tang E, Wang Y, Liu T, Yan B. Gastrin promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in gastric cancer. Gene 2019; 704:42-48. [PMID: 30980943 DOI: 10.1016/j.gene.2019.04.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 01/27/2023]
Abstract
Angiogenesis is recognized as a sign of cancer and facilitates cancer progression and metastasis. Suppression of angiogenesis is a desirable strategy for gastric cancer (GC) management. In this study, we showed a novel role of gastrin in angiogenesis of GC. We observed that treatment with gastrin 17 (G17) increased the proliferation of AGS cells and enhanced tube formation during normoxia and hypoxia. The expression level of VEGF were increased by G17 treatment as well. Experiments on the mechanism showed that G17 promoted HIF-1α expression, which subsequently enhanced β-catenin nuclear localization and activation of TCF3 and LEF1 and finally resulted in angiogenesis by upregulating VEGF. An in vivo experiment confirmed that G17 enhanced GC cell proliferation and angiogenesis in the resultant tumor. In conclusion, our findings indicate that gastrin promotes angiogenesis via activating HIF-1α/β-catenin/VEGF axis in GC.
Collapse
Affiliation(s)
- E Tang
- Department of Gastroenterology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Yongfeng Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Tiemei Liu
- Department of Gastroenterology, Endoscopy Center, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China.
| | - Bin Yan
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China.
| |
Collapse
|
45
|
Kaowinn S, Oh S, Moon J, Yoo AY, Kang HY, Lee MR, Kim JE, Hwang DY, Youn SE, Koh SS, Chung YH. CGK062, a small chemical molecule, inhibits cancer upregulated gene 2‑induced oncogenesis through NEK2 and β‑catenin. Int J Oncol 2019; 54:1295-1305. [PMID: 30968157 PMCID: PMC6411349 DOI: 10.3892/ijo.2019.4724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
The mechanisms through which cancer‑upregulated gene 2 (CUG2), a novel oncogene, affects Wnt/β‑catenin signaling, essential for tumorigenesis, are unclear. In this study, we aimed to elucidate some of these mechanisms in A549 lung cancer cells. Under the overexpression of CUG2, the protein levels and activity of β‑catenin were evaluated by western blot analysis and luciferase assay. To examine a biological consequence of β‑catenin under CUG2 overexpression, cell migration, invasion and sphere formation assay were performed. The upregulation of β‑catenin induced by CUG2 overexpression was also accessed by xenotransplantation in mice. We first found that CUG2 overexpression increased β‑catenin expression and activity. The suppression of β‑catenin decreased cancer stem cell (CSC)‑like phenotypes, indicating that β‑catenin is involved in CUG2‑mediated CSC‑like phenotypes. Notably, CUG2 overexpression increased the phosphorylation of β‑catenin at Ser33/Ser37, which is known to recruit E3 ligase for β‑catenin degradation. Moreover, CUG2 interacted with and enhanced the expression and kinase activity of never in mitosis gene A‑related kinase 2 (NEK2). Recombinant NEK2 phosphorylated β‑catenin at Ser33/Ser37, while NEK2 knockdown decreased the phosphorylation of β‑catenin, suggesting that NEK2 is involved in the phosphorylation of β‑catenin at Ser33/Ser37. Treatment with CGK062, a small chemical molecule, which promotes the phosphorylation of β‑catenin at Ser33/Ser37 through protein kinase C (PKC)α to induce its degradation, reduced β‑catenin levels and inhibited the CUG2‑induced features of malignant tumors, including increased cell migration, invasion and sphere formation. Furthermore, CGK062 treatment suppressed CUG2‑mediated tumor formation in nude mice. Taken together, the findings of this study suggest that CUG2 enhances the phosphorylation of β‑catenin at Ser33/Ser37 by activating NEK2, thus stabilizing β‑catenin. CGK062 may thus have potential for use as a therapeutic drug against CUG2‑overexpressing lung cancer cells.
Collapse
Affiliation(s)
- Sirichat Kaowinn
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Jeong Moon
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ah Young Yoo
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Mi Rim Lee
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials, Pusan National University, Miryang 50463, Republic of Korea
| | - So Eun Youn
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Sang Seok Koh
- Department of Biosciences, Dong‑A University, Busan 49315, Republic of Korea
| | - Young-Hwa Chung
- BK21 Plus, Department of Cogno‑Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
46
|
Tan Y, Du B, Zhan Y, Wang K, Wang X, Chen B, Wei X, Xiao J. Antitumor effects of circ-EPHB4 in hepatocellular carcinoma via inhibition of HIF-1α. Mol Carcinog 2019; 58:875-886. [PMID: 30644610 DOI: 10.1002/mc.22976] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 12/14/2022]
Abstract
The protein EPHB4 plays a vital role in various tumor types. However, few studies into the function of circ-EPHB4 (hsa_circ_0001730) in tumors have been conducted. This study aimed to investigate the functions of circ-EPHB4 and the underlying mechanism of circ-EPHB4 in regulating hepatocellular carcinoma (HCC). The expression of circ-EPHB4 was found to be downregulated in HCC tumor tissues, whereas circ-EPHB4 overexpression suppressed cell viability, induced apoptosis, and inhibited cell migration and invasion in Huh7 and HepG2 cells. circ-EPHB4 levels were negatively correlated with tumor weight, size, and metastasis foci in nude mouse models, suggesting circ-EPHB4 inhibits tumorigenesis, tumor development, and metastasis. In addition, HIF-1α and PI3K-AKT pathways were markedly affected by circ-EPHB4 overexpression. HIF-1α could potentially be the target of circ-EPHB4. By overexpressing both HIF-1α and circ-EPHB4, the antitumor effect of circ-EPHB4 should be most probably correlated with HIF-1α. In conclusion, circ-EPHB4 is a tumor inhibitor in HCC and functions by inhibiting HIF-1α expression.
Collapse
Affiliation(s)
- Yuhui Tan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biaoyan Du
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujuan Zhan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaolan Wang
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bonan Chen
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianli Wei
- Department of Medical Instruments, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, China
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
47
|
Wingless modulates activator protein-1-mediated tumor invasion. Oncogene 2019; 38:3871-3885. [PMID: 30683884 DOI: 10.1038/s41388-018-0629-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022]
Abstract
Metastasis begins with a subset of local tumor cells acquiring the potential to invade into surrounding tissues, and remains to be a major obstacle for cancer treatments. More than 90% of cancer patients died from tumor metastasis, instead of primary tumor growth. The canonical Wnt/β-catenin pathway plays essential roles in promoting tumor formation, yet its function in regulating tumor metastasis and the underlying mechanisms remain controversial. Here we employed well-established Drosophila tumor models to investigate the regulating mechanism of Wingless (Wg) pathway in tumor invasion. Our results showed that Wg signaling is necessary and sufficient for cell polarity disruption-induced cell migration and molecular changes reminiscent of epithelial-mesenchymal transition (EMT). Moreover, reducing Wg signaling suppressed lgl-/-/RasV12-induced tumor invasion, and cooperation between Arm and RasV12 is sufficient to induce tumor invasion. Mechanistically, we found that cell polarity disruption activates JNK signaling, which in turn upregulate wg expression through transcription factor activator protein-1 (AP-1). We identified a consensus AP-1 binding site located in the 2nd intron of wg, and confirmed that it is essential for AP-1 induced wg transcription both in vitro and in vivo. Lastly, we confirmed that the transcriptional activation of WNT by AP-1 is conserved in human cancer cells. These evidences reveal a positive role of Wnt/β-catenin pathway in tumor invasion, and provide a conserved mechanism that connects JNK and Wnt signaling in regulating tumor progression.
Collapse
|
48
|
TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis 2019; 8:9. [PMID: 30683932 PMCID: PMC6350080 DOI: 10.1038/s41389-018-0115-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in nonmalignant pathological processes. However, TREM2’s function in malignant diseases, especially in hepatocellular carcinoma (HCC) remains unknown. In the present study, we report that TREM2 is a novel tumor suppressor in HCC. TREM2 expression was obviously decreased in hepatoma cells (especially metastatic HCC cells), and in most human HCC tissues (especially extrahepatic metastatic tumors). Reduced tumor TREM2 expression was correlated with poor prognosis of HCC patients, and with aggressive pathological features (BCLC stage, tumor size, tumor encapsulation, vascular invasion, and tumor differentiation). TREM2 knockdown substantially promoted cell growth, migration, and invasion in vitro and in vivo, while TREM2 overexpression produced the opposite effect. TREM2 suppressed HCC metastasis by inhibiting epithelial-mesenchymal transition, accompanied by abnormal expression of epithelial and mesenchymal markers. Further study revealed that downregulation of TREM2 in HCC was regulated by miR-31-5p. Moreover, by directly interacting with β-catenin, TREM2 attenuated oncogenic and metastatic behaviors by inhibiting Akt and GSK3β phosphorylation, and activating β-catenin. TREM2 suppressed carcinogenesis and metastasis in HCC by targeting the PI3K/Akt/β-catenin pathway. Thus, we propose that TREM2 may be a candidate prognostic biomarker in malignant diseases and TREM2 restoration might be a prospective strategy for HCC therapy.
Collapse
|
49
|
Shi C, Chen Y, Chen Y, Yang Y, Bing W, Qi J. CD4 + CD25 + regulatory T cells promote hepatocellular carcinoma invasion via TGF-β1-induced epithelial-mesenchymal transition. Onco Targets Ther 2018; 12:279-289. [PMID: 30643426 PMCID: PMC6314313 DOI: 10.2147/ott.s172417] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background CD4+ CD25+ regulatory T cells (Tregs), a crucial component of the infiltration of immune cells in tumor microenvironment, are associated with progression and metastasis of hepatocellular carcinoma (HCC). Methods The mechanism of Tregs in the invasion and metastasis of HCC was investigated in vivo and in vitro using immunohistochemical analysis, western blot, and quantitative reverse transcription-PCR (qRT-PCR). Results Analysis of 78 clinical HCC samples indicated that high expression of Tregs was strongly associated with poor cancer-free survival and overall survival of patients. The reduced expression of E-cadherin and enhanced expression of Vimentin and transforming growth factor-beta 1 (TGF-β1) were found in HCC tissue compared with normal liver tissue. The HCC Hepa1-6 cells were treated with the supernatant of Tregs-conditioned medium (Tregs-CM) to investigate the epithelial-mesenchymal transition (EMT) and TGF-β1. Western blot and qRT-PCR also showed that down-regulated E-cadherin and up-regulated Vimentin and TGF-β1 were found in Tregs-CM-treated Hepa1-6 cells. An experiment of tumorigenicity in C57 mice showed larger and heavier tumors in Tregs-CM-treated group than in the control group. Tregs produced higher TGF-β1 compared with Tregs treated with FOXP3 shRNA. TGF-β1 with neutralizing antibodies was used to deplete TGF-β1 in Tregs-CM, which enhanced expression of E-cadherin, reduced expression of Vimentin and TGF-β1, and decreased migratory and invasive capacity of Hepa1-6 cells. Conclusion Tregs could promote the invasion and migration of Hepa1-6 cells, which are possibly maintained by TGF-β1-induced EMT. This study showed that the development of therapeutic strategies against TGF-β1 pathway is valuable in HCC therapy.
Collapse
Affiliation(s)
- Chunying Shi
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Ying Chen
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Yaodong Chen
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Yuchuan Yang
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Wang Bing
- Department of Radiology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, Harbin 150001, China,
| |
Collapse
|
50
|
Huang F, Chen J, Lan R, Wang Z, Chen R, Lin J, Fu L. Hypoxia induced δ-Catenin to enhance mice hepatocellular carcinoma progression via Wnt signaling. Exp Cell Res 2018; 374:94-103. [PMID: 30458179 DOI: 10.1016/j.yexcr.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Hypoxia frequently occurs in solid tumors, hepatocellular carcinoma included. Hypoxia-inducible factors (HIFs) upregulated in hypoxia can induce various downstream target genes to resist hypoxia stress, resulting in tumor growth, angiogenesis and metastasis in vivo. Therefore, hypoxia associated genes are usually cancer progression associated genes and can be potential therapy targets for cancer therapy. In our present work, we find that the hypoxia-inducible transcriptional factor, HIF1α, can directly upregulate the expression of the gene Ctnnd2, which codes the protein δ-Catenin. Then, δ-Catenin can stabilize β-Catenin by disrupting the destruction complex, which leads to the activation of Wnt signaling. As a result, δ-Catenin can promote the proliferation and migration of HCC cells in vitro, further enhance mice HCC tumorigenesis in vivo. In summary, our work reveals that δ-Catenin is a direct downstream target gene of HIF1α. It can activate Wnt signaling via β-Catenin stabilization. δ-Catenin can enhance HCC progression.
Collapse
Affiliation(s)
- Fei Huang
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China.
| | - Junying Chen
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Ruilong Lan
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Zeng Wang
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Ruiqing Chen
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Jingan Lin
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| | - Lengxi Fu
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian Platform for Medical Research at First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Fujian key Lab of Individualized Active Immunotherapy, Fuzhou 350005, China; Key Laboratory of Radiation Biology of Fujian Province Universities, Fuzhou 350005, China
| |
Collapse
|