1
|
Fasano M, Pirozzi M, De Falco V, Miceli CC, Farese S, Zotta A, Famiglietti V, Vitale P, Di Giovanni I, Brancati C, Carfora V, Solari D, Somma T, Cavallo LM, Cappabianca P, Conson M, Pacelli R, Ciardiello F, Addeo R. Temozolomide based treatment in glioblastoma: 6 vs. 12 months. Oncol Lett 2024; 28:418. [PMID: 39006948 PMCID: PMC11240269 DOI: 10.3892/ol.2024.14551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 07/16/2024] Open
Abstract
The Stupp regimen remains the standard treatment for newly diagnosed glioblastomas, although the prognosis remains poor. Several temozolomide alternative schedules have been studied, with extended adjuvant treatment (>6 cycles of temozolomide) frequently used, although different trials have indicated contrasting results. Survival data of 87 patients who received 6 ('6C' group) or 12 ('12C' group) cycles of temozolomide were collected between 2012 and 2022. A total of 45 patients were included in the 6C group and 42 patients were included in the 12C group. Data on isocitrate dehydrogenase mutation and methylguanine-DNA-methyltransferase (MGMT) promoter methylation status were also collected. The 12C group exhibited statistically significantly improved overall survival [OS; 22.8 vs. 17.5 months; hazard ratio (HR), 0.47; 95% CI, 0.30-0.73; P=0.001] and progression-free survival (15.3 vs. 9 months; HR, 0.39; 95% CI, 0.25-0.62; P=0.001). However, in the subgroup analysis according to MGMT status, OS in the 12C group was significantly superior to OS in the 6C group only in the MGMT unmethylated tumors. The present data suggested that extended adjuvant temozolomide appeared to be more effective than the conventional six cycles.
Collapse
Affiliation(s)
- Morena Fasano
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Mario Pirozzi
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Vincenzo De Falco
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Chiara Carmen Miceli
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Stefano Farese
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Alessia Zotta
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Vincenzo Famiglietti
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Pasquale Vitale
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Ilaria Di Giovanni
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Christian Brancati
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| | - Vincenzo Carfora
- Radiation Oncology Unit, Department of Radiation Oncology, 'San Pio' Hospital, I-82100 Benevento, Italy
| | - Domenico Solari
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Luigi Maria Cavallo
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Paolo Cappabianca
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Manuel Conson
- Department of Advanced Biomedical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Roberto Pacelli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology Unit, Department of Precision Medicine, University of Campania Luigi Vanvitelli, I-80131 Naples, Italy
| | - Raffaele Addeo
- Oncology Unit, 'San Giovanni di Dio' Hospital, ASL Napoli 2 Nord, I-80020 Frattamaggiore, Italy
| |
Collapse
|
2
|
Kinslow CJ, Mercurio A, Kumar P, Rae AI, Siegelin MD, Grinband J, Taparra K, Upadhyayula PS, McKhann GM, Sisti MB, Bruce JN, Canoll PD, Iwamoto FM, Kachnic LA, Yu JB, Cheng SK, Wang TJC. Association of MGMT Promoter Methylation With Survival in Low-grade and Anaplastic Gliomas After Alkylating Chemotherapy. JAMA Oncol 2023; 9:919-927. [PMID: 37200021 PMCID: PMC10196932 DOI: 10.1001/jamaoncol.2023.0990] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/13/2023] [Indexed: 05/19/2023]
Abstract
Importance O6-methylguanine-DNA methyltransferase (MGMT [OMIM 156569]) promoter methylation (mMGMT) is predictive of response to alkylating chemotherapy for glioblastomas and is routinely used to guide treatment decisions. However, the utility of MGMT promoter status for low-grade and anaplastic gliomas remains unclear due to molecular heterogeneity and the lack of sufficiently large data sets. Objective To evaluate the association of mMGMT for low-grade and anaplastic gliomas with chemotherapy response. Design, Setting, and Participants This cohort study aggregated grade II and III primary glioma data from 3 prospective cohort studies with patient data collected from August 13, 1995, to August 3, 2022, comprising 411 patients: MSK-IMPACT, EORTC (European Organization of Research and Treatment of Cancer) 26951, and Columbia University. Statistical analysis was performed from April 2022 to January 2023. Exposure MGMT promoter methylation status. Main Outcomes and Measures Multivariable Cox proportional hazards regression modeling was used to assess the association of mMGMT status with progression-free survival (PFS) and overall survival (OS) after adjusting for age, sex, molecular class, grade, chemotherapy, and radiotherapy. Subgroups were stratified by treatment status and World Health Organization 2016 molecular classification. Results A total of 411 patients (mean [SD] age, 44.1 [14.5] years; 283 men [58%]) met the inclusion criteria, 288 of whom received alkylating chemotherapy. MGMT promoter methylation was observed in 42% of isocitrate dehydrogenase (IDH)-wild-type gliomas (56 of 135), 53% of IDH-mutant and non-codeleted gliomas (79 of 149), and 74% of IDH-mutant and 1p/19q-codeleted gliomas (94 of 127). Among patients who received chemotherapy, mMGMT was associated with improved PFS (median, 68 months [95% CI, 54-132 months] vs 30 months [95% CI, 15-54 months]; log-rank P < .001; adjusted hazard ratio [aHR] for unmethylated MGMT, 1.95 [95% CI, 1.39-2.75]; P < .001) and OS (median, 137 months [95% CI, 104 months to not reached] vs 61 months [95% CI, 47-97 months]; log-rank P < .001; aHR, 1.65 [95% CI, 1.11-2.46]; P = .01). After adjusting for clinical factors, MGMT promoter status was associated with chemotherapy response in IDH-wild-type gliomas (aHR for PFS, 2.15 [95% CI, 1.26-3.66]; P = .005; aHR for OS, 1.69 [95% CI, 0.98-2.91]; P = .06) and IDH-mutant and codeleted gliomas (aHR for PFS, 2.99 [95% CI, 1.44-6.21]; P = .003; aHR for OS, 4.21 [95% CI, 1.25-14.2]; P = .02), but not IDH-mutant and non-codeleted gliomas (aHR for PFS, 1.19 [95% CI, 0.67-2.12]; P = .56; aHR for OS, 1.07 [95% CI, 0.54-2.12]; P = .85). Among patients who did not receive chemotherapy, mMGMT status was not associated with PFS or OS. Conclusions and Relevance This study suggests that mMGMT is associated with response to alkylating chemotherapy for low-grade and anaplastic gliomas and may be considered as a stratification factor in future clinical trials of patients with IDH-wild-type and IDH-mutant and codeleted tumors.
Collapse
Affiliation(s)
- Connor J. Kinslow
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ann Mercurio
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Prashanth Kumar
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Ali I. Rae
- Department of Neurological Surgery, Oregon Health & Sciences University, Portland
| | - Markus D. Siegelin
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Pathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Jack Grinband
- Department of Psychiatry, Columbia University, New York, New York
- Department of Radiology, Columbia University, New York, New York
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Pavan S. Upadhyayula
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Guy M. McKhann
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Michael B. Sisti
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Jeffrey N. Bruce
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Peter D. Canoll
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Pathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Fabio M. Iwamoto
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Lisa A. Kachnic
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - James B. Yu
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Simon K. Cheng
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Tony J. C. Wang
- Department of Radiation Oncology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Girardi F, Matz M, Stiller C, You H, Marcos Gragera R, Valkov MY, Bulliard JL, De P, Morrison D, Wanner M, O'Brian DK, Saint-Jacques N, Coleman MP, Allemani C, Hamdi-Chérif M, Kara L, Meguenni K, Regagba D, Bayo S, Cheick Bougadari T, Manraj SS, Bendahhou K, Ladipo A, Ogunbiyi OJ, Somdyala NIM, Chaplin MA, Moreno F, Calabrano GH, Espinola SB, Carballo Quintero B, Fita R, Laspada WD, Ibañez SG, Lima CA, Da Costa AM, De Souza PCF, Chaves J, Laporte CA, Curado MP, de Oliveira JC, Veneziano CLA, Veneziano DB, Almeida ABM, Latorre MRDO, Rebelo MS, Santos MO, Azevedo e Silva G, Galaz JC, Aparicio Aravena M, Sanhueza Monsalve J, Herrmann DA, Vargas S, Herrera VM, Uribe CJ, Bravo LE, Garcia LS, Arias-Ortiz NE, Morantes D, Jurado DM, Yépez Chamorro MC, Delgado S, Ramirez M, Galán Alvarez YH, Torres P, Martínez-Reyes F, Jaramillo L, Quinto R, Castillo J, Mendoza M, Cueva P, Yépez JG, Bhakkan B, Deloumeaux J, Joachim C, Macni J, Carrillo R, Shalkow Klincovstein J, Rivera Gomez R, Perez P, Poquioma E, Tortolero-Luna G, Zavala D, Alonso R, Barrios E, Eckstrand A, Nikiforuk C, Woods RR, Noonan G, Turner D, Kumar E, Zhang B, Dowden JJ, Doyle GP, Saint-Jacques N, Walsh G, Anam A, De P, McClure CA, Vriends KA, Bertrand C, Ramanakumar AV, Davis L, Kozie S, Freeman T, George JT, Avila RM, O’Brien DK, Holt A, Almon L, Kwong S, Morris C, Rycroft R, Mueller L, Phillips CE, Brown H, Cromartie B, Ruterbusch J, Schwartz AG, Levin GM, Wohler B, Bayakly R, Ward KC, Gomez SL, McKinley M, Cress R, Davis J, Hernandez B, Johnson CJ, Morawski BM, Ruppert LP, Bentler S, Charlton ME, Huang B, Tucker TC, Deapen D, Liu L, Hsieh MC, Wu XC, Schwenn M, Stern K, Gershman ST, Knowlton RC, Alverson G, Weaver T, Desai J, Rogers DB, Jackson-Thompson J, Lemons D, Zimmerman HJ, Hood M, Roberts-Johnson J, Hammond W, Rees JR, Pawlish KS, Stroup A, Key C, Wiggins C, Kahn AR, Schymura MJ, Radhakrishnan S, Rao C, Giljahn LK, Slocumb RM, Dabbs C, Espinoza RE, Aird KG, Beran T, Rubertone JJ, Slack SJ, Oh J, Janes TA, Schwartz SM, Chiodini SC, Hurley DM, Whiteside MA, Rai S, Williams MA, Herget K, Sweeney C, Kachajian J, Keitheri Cheteri MB, Migliore Santiago P, Blankenship SE, Conaway JL, Borchers R, Malicki R, Espinoza J, Grandpre J, Weir HK, Wilson R, Edwards BK, Mariotto A, Rodriguez-Galindo C, Wang N, Yang L, Chen JS, Zhou Y, He YT, Song GH, Gu XP, Mei D, Mu HJ, Ge HM, Wu TH, Li YY, Zhao DL, Jin F, Zhang JH, Zhu FD, Junhua Q, Yang YL, Jiang CX, Biao W, Wang J, Li QL, Yi H, Zhou X, Dong J, Li W, Fu FX, Liu SZ, Chen JG, Zhu J, Li YH, Lu YQ, Fan M, Huang SQ, Guo GP, Zhaolai H, Wei K, Chen WQ, Wei W, Zeng H, Demetriou AV, Mang WK, Ngan KC, Kataki AC, Krishnatreya M, Jayalekshmi PA, Sebastian P, George PS, Mathew A, Nandakumar A, Malekzadeh R, Roshandel G, Keinan-Boker L, Silverman BG, Ito H, Koyanagi Y, Sato M, Tobori F, Nakata I, Teramoto N, Hattori M, Kaizaki Y, Moki F, Sugiyama H, Utada M, Nishimura M, Yoshida K, Kurosawa K, Nemoto Y, Narimatsu H, Sakaguchi M, Kanemura S, Naito M, Narisawa R, Miyashiro I, Nakata K, Mori D, Yoshitake M, Oki I, Fukushima N, Shibata A, Iwasa K, Ono C, Matsuda T, Nimri O, Jung KW, Won YJ, Alawadhi E, Elbasmi A, Ab Manan A, Adam F, Nansalmaa E, Tudev U, Ochir C, Al Khater AM, El Mistiri MM, Lim GH, Teo YY, Chiang CJ, Lee WC, Buasom R, Sangrajrang S, Suwanrungruang K, Vatanasapt P, Daoprasert K, Pongnikorn D, Leklob A, Sangkitipaiboon S, Geater SL, Sriplung H, Ceylan O, Kög I, Dirican O, Köse T, Gurbuz T, Karaşahin FE, Turhan D, Aktaş U, Halat Y, Eser S, Yakut CI, Altinisik M, Cavusoglu Y, Türkköylü A, Üçüncü N, Hackl M, Zborovskaya AA, Aleinikova OV, Henau K, Van Eycken L, Atanasov TY, Valerianova Z, Šekerija M, Dušek L, Zvolský M, Steinrud Mørch L, Storm H, Wessel Skovlund C, Innos K, Mägi M, Malila N, Seppä K, Jégu J, Velten M, Cornet E, Troussard X, Bouvier AM, Guizard AV, Bouvier V, Launoy G, Dabakuyo Yonli S, Poillot ML, Maynadié M, Mounier M, Vaconnet L, Woronoff AS, Daoulas M, Robaszkiewicz M, Clavel J, Poulalhon C, Desandes E, Lacour B, Baldi I, Amadeo B, Coureau G, Monnereau A, Orazio S, Audoin M, D’Almeida TC, Boyer S, Hammas K, Trétarre B, Colonna M, Delafosse P, Plouvier S, Cowppli-Bony A, Molinié F, Bara S, Ganry O, Lapôtre-Ledoux B, Daubisse-Marliac L, Bossard N, Uhry Z, Estève J, Stabenow R, Wilsdorf-Köhler H, Eberle A, Luttmann S, Löhden I, Nennecke AL, Kieschke J, Sirri E, Justenhoven C, Reinwald F, Holleczek B, Eisemann N, Katalinic A, Asquez RA, Kumar V, Petridou E, Ólafsdóttir EJ, Tryggvadóttir L, Murray DE, Walsh PM, Sundseth H, Harney M, Mazzoleni G, Vittadello F, Coviello E, Cuccaro F, Galasso R, Sampietro G, Giacomin A, Magoni M, Ardizzone A, D’Argenzio A, Di Prima AA, Ippolito A, Lavecchia AM, Sutera Sardo A, Gola G, Ballotari P, Giacomazzi E, Ferretti S, Dal Maso L, Serraino D, Celesia MV, Filiberti RA, Pannozzo F, Melcarne A, Quarta F, Andreano A, Russo AG, Carrozzi G, Cirilli C, Cavalieri d’Oro L, Rognoni M, Fusco M, Vitale MF, Usala M, Cusimano R, Mazzucco W, Michiara M, Sgargi P, Boschetti L, Marguati S, Chiaranda G, Seghini P, Maule MM, Merletti F, Spata E, Tumino R, Mancuso P, Cassetti T, Sassatelli R, Falcini F, Giorgetti S, Caiazzo AL, Cavallo R, Piras D, Bella F, Madeddu A, Fanetti AC, Maspero S, Carone S, Mincuzzi A, Candela G, Scuderi T, Gentilini MA, Rizzello R, Rosso S, Caldarella A, Intrieri T, Bianconi F, Contiero P, Tagliabue G, Rugge M, Zorzi M, Beggiato S, Brustolin A, Gatta G, De Angelis R, Vicentini M, Zanetti R, Stracci F, Maurina A, Oniščuka M, Mousavi M, Steponaviciene L, Vincerževskienė I, Azzopardi MJ, Calleja N, Siesling S, Visser O, Johannesen TB, Larønningen S, Trojanowski M, Macek P, Mierzwa T, Rachtan J, Rosińska A, Kępska K, Kościańska B, Barna K, Sulkowska U, Gebauer T, Łapińska JB, Wójcik-Tomaszewska J, Motnyk M, Patro A, Gos A, Sikorska K, Bielska-Lasota M, Didkowska JA, Wojciechowska U, Forjaz de Lacerda G, Rego RA, Carrito B, Pais A, Bento MJ, Rodrigues J, Lourenço A, Mayer-da-Silva A, Coza D, Todescu AI, Valkov MY, Gusenkova L, Lazarevich O, Prudnikova O, Vjushkov DM, Egorova A, Orlov A, Pikalova LV, Zhuikova LD, Adamcik J, Safaei Diba C, Zadnik V, Žagar T, De-La-Cruz M, Lopez-de-Munain A, Aleman A, Rojas D, Chillarón RJ, Navarro AIM, Marcos-Gragera R, Puigdemont M, Rodríguez-Barranco M, Sánchez Perez MJ, Franch Sureda P, Ramos Montserrat M, Chirlaque López MD, Sánchez Gil A, Ardanaz E, Guevara M, Cañete-Nieto A, Peris-Bonet R, Carulla M, Galceran J, Almela F, Sabater C, Khan S, Pettersson D, Dickman P, Staehelin K, Struchen B, Egger Hayoz C, Rapiti E, Schaffar R, Went P, Mousavi SM, Bulliard JL, Maspoli-Conconi M, Kuehni CE, Redmond SM, Bordoni A, Ortelli L, Chiolero A, Konzelmann I, Rohrmann S, Wanner M, Broggio J, Rashbass J, Stiller C, Fitzpatrick D, Gavin A, Morrison DS, Thomson CS, Greene G, Huws DW, Grayson M, Rawcliffe H, Allemani C, Coleman MP, Di Carlo V, Girardi F, Matz M, Minicozzi P, Sanz N, Ssenyonga N, James D, Stephens R, Chalker E, Smith M, Gugusheff J, You H, Qin Li S, Dugdale S, Moore J, Philpot S, Pfeiffer R, Thomas H, Silva Ragaini B, Venn AJ, Evans SM, Te Marvelde L, Savietto V, Trevithick R, Aitken J, Currow D, Fowler C, Lewis C. Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000-2014 (CONCORD-3). Neuro Oncol 2023; 25:580-592. [PMID: 36355361 PMCID: PMC10013649 DOI: 10.1093/neuonc/noac217] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. METHODS We analyzed individual data for adults (15-99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000-2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. RESULTS The study included 556,237 adults. In 2010-2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%-38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000-2004 and 2005-2009. These improvements were more noticeable among adults diagnosed aged 40-70 years than among younger adults. CONCLUSIONS To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines.
Collapse
Affiliation(s)
- Fabio Girardi
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK.,Division of Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Melissa Matz
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Charles Stiller
- National Cancer Registration and Analysis Service, Public Health England, London, UK
| | - Hui You
- Cancer Information Analysis Unit, Cancer Institute NSW, St Leonards, New South Wales, Australia
| | - Rafael Marcos Gragera
- Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology, Girona, Spain
| | - Mikhail Y Valkov
- Department of Radiology, Radiotherapy and Oncology, Northern State Medical University, Arkhangelsk, Russia
| | - Jean-Luc Bulliard
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.,Neuchâtel and Jura Tumour Registry, Neuchâtel, Switzerland
| | - Prithwish De
- Surveillance and Cancer Registry, and Research Office, Clinical Institutes and Quality Programs, Ontario Health, Toronto, Ontario, Canada
| | - David Morrison
- Scottish Cancer Registry, Public Health Scotland, Edinburgh, UK
| | - Miriam Wanner
- Cancer Registry Zürich, Zug, Schaffhausen and Schwyz, University Hospital Zürich, Zürich, Switzerland
| | - David K O'Brian
- Alaska Cancer Registry, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Nathalie Saint-Jacques
- Department of Medicine and Community Health and Epidemiology, Centre for Clinical Research, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel P Coleman
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claudia Allemani
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Willman M, Willman J, Figg J, Dioso E, Sriram S, Olowofela B, Chacko K, Hernandez J, Lucke-Wold B. Update for astrocytomas: medical and surgical management considerations. EXPLORATION OF NEUROSCIENCE 2023; 2:1-26. [PMID: 36935776 PMCID: PMC10019464 DOI: 10.37349/en.2023.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/10/2022] [Indexed: 02/25/2023]
Abstract
Astrocytomas include a wide range of tumors with unique mutations and varying grades of malignancy. These tumors all originate from the astrocyte, a star-shaped glial cell that plays a major role in supporting functions of the central nervous system (CNS), including blood-brain barrier (BBB) development and maintenance, water and ion regulation, influencing neuronal synaptogenesis, and stimulating the immunological response. In terms of epidemiology, glioblastoma (GB), the most common and malignant astrocytoma, generally occur with higher rates in Australia, Western Europe, and Canada, with the lowest rates in Southeast Asia. Additionally, significantly higher rates of GB are observed in males and non-Hispanic whites. It has been suggested that higher levels of testosterone observed in biological males may account for the increased rates of GB. Hereditary syndromes such as Cowden, Lynch, Turcot, Li-Fraumeni, and neurofibromatosis type 1 have been linked to increased rates of astrocytoma development. While there are a number of specific gene mutations that may influence malignancy or be targeted in astrocytoma treatment, O 6-methylguanine-DNA methyltransferase (MGMT) gene function is an important predictor of astrocytoma response to chemotherapeutic agent temozolomide (TMZ). TMZ for primary and bevacizumab in the setting of recurrent tumor formation are two of the main chemotherapeutic agents currently approved in the treatment of astrocytomas. While stereotactic radiosurgery (SRS) has debatable implications for increased survival in comparison to whole-brain radiotherapy (WBRT), SRS demonstrates increased precision with reduced radiation toxicity. When considering surgical resection of astrocytoma, the extent of resection (EoR) is taken into consideration. Subtotal resection (STR) spares the margins of the T1 enhanced magnetic resonance imaging (MRI) region, gross total resection (GTR) includes the margins, and supramaximal resection (SMR) extends beyond the margin of the T1 and into the T2 region. Surgical resection, radiation, and chemotherapy are integral components of astrocytoma treatment.
Collapse
Affiliation(s)
- Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Figg
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Emma Dioso
- School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - Sai Sriram
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Bankole Olowofela
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin Chacko
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jairo Hernandez
- College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
5
|
Li Y, Qin Q, Zhang Y, Cao Y. Noninvasive Determination of the IDH Status of Gliomas Using MRI and MRI-Based Radiomics: Impact on Diagnosis and Prognosis. Curr Oncol 2022; 29:6893-6907. [PMID: 36290819 PMCID: PMC9600456 DOI: 10.3390/curroncol29100542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/13/2023] Open
Abstract
Gliomas are the most common primary malignant brain tumors in adults. The fifth edition of the WHO Classification of Tumors of the Central Nervous System, published in 2021, provided molecular and practical approaches to CNS tumor taxonomy. Currently, molecular features are essential for differentiating the histological subtypes of gliomas, and recent studies have emphasized the importance of isocitrate dehydrogenase (IDH) mutations in stratifying biologically distinct subgroups of gliomas. IDH plays a significant role in gliomagenesis, and the association of IDH status with prognosis is very clear. Recently, there has been much progress in conventional MR imaging (cMRI), advanced MR imaging (aMRI), and radiomics, which are widely used in the study of gliomas. These advances have resulted in an improved correlation between MR signs and IDH mutation status, which will complement the prediction of the IDH phenotype. Although imaging cannot currently substitute for genetic tests, imaging findings have shown promising signs of diagnosing glioma subtypes and evaluating the efficacy and prognosis of individualized molecular targeted therapy. This review focuses on the correlation between MRI and MRI-based radiomics and IDH gene-phenotype prediction, discussing the value and application of these techniques in the diagnosis and evaluation of the prognosis of gliomas.
Collapse
Affiliation(s)
- Yurong Li
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Qin Qin
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Yumeng Zhang
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
| | - Yuandong Cao
- Department of Radiation Oncology, Nanjing Medical University First Affiliated Hospital, Nanjing 210029, China
- Correspondence:
| |
Collapse
|
6
|
Lassman AB, Hoang-Xuan K, Polley MYC, Brandes AA, Cairncross JG, Kros JM, Ashby LS, Taphoorn MJ, Souhami L, Dinjens WN, Laack NN, Kouwenhoven MC, Fink KL, French PJ, Macdonald DR, Lacombe D, Won M, Gorlia T, Mehta MP, van den Bent MJ. Joint Final Report of EORTC 26951 and RTOG 9402: Phase III Trials With Procarbazine, Lomustine, and Vincristine Chemotherapy for Anaplastic Oligodendroglial Tumors. J Clin Oncol 2022; 40:2539-2545. [PMID: 35731991 PMCID: PMC9362869 DOI: 10.1200/jco.21.02543] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/24/2022] [Accepted: 05/11/2022] [Indexed: 11/20/2022] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the basis of the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Anaplastic oligodendroglial tumors (AOTs) are chemotherapy-sensitive brain tumors. We report the final very long-term survival results from European Organization for the Research and Treatment of Cancer 26951 and Radiation Therapy Oncology Group 9402 phase III trials initiated in 1990s, which both studied radiotherapy with/without neo/adjuvant procarbazine, lomustine, and vincristine (PCV) for newly diagnosed anaplastic oligodendroglial tumors. The median follow-up duration in both was 18-19 years. For European Organization for the Research and Treatment of Cancer 26951, median, 14-year, and probable 20-year overall survival rates without versus with PCV were 2.6 years, 13.4%, and 10.1% versus 3.5 years, 25.1%, and 16.8% (N = 368 overall; hazard ratio [HR] 0.78; 95% CI, 0.63 to 0.98; P = .033), with 1p19q codeletion 9.3 years, 26.2%, and 13.6% versus 14.2 years, 51.0%, and 37.1% (n = 80; HR 0.60; 95% CI, 0.35 to 1.03; P = .063), respectively. For Radiation Therapy Oncology Group 9402, analogous results were 4.8 years, 16.5%, and 11.2% versus 4.8 years, 29.1%, and 24.6% (N = 289 overall; HR 0.79; 95% CI, 0.61 to 1.03; P = .08), with codeletion 7.3 years, 25.0%, and 14.9% versus 13.2 years, 46.1%, and 37% (n = 125; HR 0.61; 95% CI, 0.40 to 0.94; P = .02), respectively. With that, the studies show similar long-term survival even without tumor recurrence in a significant proportion of patients after first-line treatment with radiotherapy/PCV.
Collapse
Affiliation(s)
- Andrew B. Lassman
- Division of Neuro-Oncology, Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
- Herbert Irving Comprehensive Cancer Center, New York, NY
- NewYork-Presbyterian Hospital, New York, NY
| | - Khê Hoang-Xuan
- AP-HP, Sorbonne Université, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2, Paris, France
| | - Mei-Yin C. Polley
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | - Alba A. Brandes
- Department of Medical Oncology, AUSL/IRCCS Institute of Neurological Sciences, Bologna, Italy
| | | | - Johan M. Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | | | - Martin J.B. Taphoorn
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haaglanden Medical Center, the Hague, the Netherlands
| | - Luis Souhami
- Department of Radiation Oncology, McGill University, Montreal, Quebec, Canada
| | - Winand N.M. Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, the Netherlands
| | - Nadia N. Laack
- Mayo Clinic Accruals for Rochester Methodist Hospital, Rochester, MN
| | - Mathilde C.M. Kouwenhoven
- Department of Neurology, Amsterdam Universities Medical Centers, location VUmc, Amsterdam, the Netherlands
| | | | - Pim J. French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Minhee Won
- NRG Oncology Statistics and Data Management Center, Philadelphia, PA
| | | | | | | |
Collapse
|
7
|
Gong Y, Wei S, Wei Y, Chen Y, Cui J, Yu Y, Lin X, Yan H, Qin H, Yi L. IDH2: A novel biomarker for environmental exposure in blood circulatory system disorders (Review). Oncol Lett 2022; 24:278. [PMID: 35814829 PMCID: PMC9260733 DOI: 10.3892/ol.2022.13398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
As the risk of harmful environmental exposure is increasing, it is important to find suitable targets for the diagnosis and treatment of the diseases caused. Isocitrate dehydrogenase 2 (IDH2) is an enzyme located in the mitochondria; it plays an important role in numerous cell processes, including maintaining redox homeostasis, participating in the tricarboxylic acid cycle and indirectly taking part in the transmission of the oxidative respiratory chain. IDH2 mutations promote progression in acute myeloid leukemia, glioma and other diseases. The present review mainly summarizes the role and mechanism of IDH2 with regard to the biological effects, such as the mitophagy and apoptosis of animal or human cells, caused by environmental pollution such as radiation, heavy metals and other environmental exposure factors. The possible mechanisms of these biological effects are described in terms of IDH2 expression, reduced nicotine adenine dinucleotide phosphate content and reactive oxygen species level, among other variables. The impact of environmental pollution on human health is increasingly attracting attention. IDH2 may therefore become useful as a potential diagnostic and therapeutic target for environmental exposure-induced diseases.
Collapse
Affiliation(s)
- Ya Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yong Chen
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Cui
- Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Yan
- Pediatric Intensive Care Unit, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
8
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
9
|
Brat DJ, Aldape K, Bridge JA, Canoll P, Colman H, Hameed MR, Harris BT, Hattab EM, Huse JT, Jenkins RB, Lopez-Terrada DH, McDonald WC, Rodriguez FJ, Souter LH, Colasacco C, Thomas NE, Yount MH, van den Bent MJ, Perry A. Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas. Arch Pathol Lab Med 2022; 146:547-574. [PMID: 35175291 PMCID: PMC9311267 DOI: 10.5858/arpa.2021-0295-cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.— To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.— The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.— Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.— Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.
Collapse
Affiliation(s)
- Daniel J Brat
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois (Brat)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland (Aldape)
| | - Julia A Bridge
- The Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska (Bridge)
- Cytogenetics, ProPath, Dallas, Texas (Bridge)
| | - Peter Canoll
- The Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York (Canoll)
| | - Howard Colman
- The Department of Neurosurgery and Huntsman Cancer Institute, University of Utah, Salt Lake City (Colman)
| | - Meera R Hameed
- The Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York (Hameed)
| | - Brent T Harris
- The Department of Neurology and Pathology, MedStar Georgetown University Hospital, Washington, DC (Harris)
| | - Eyas M Hattab
- The Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky (Hattab)
| | - Jason T Huse
- The Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston (Huse)
| | - Robert B Jenkins
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Jenkins)
| | - Dolores H Lopez-Terrada
- The Departments of Pathology and Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas (Lopez-Terrada)
| | - William C McDonald
- The Department of Pathology, Abbott Northwestern Hospital, Minneapolis, Minnesota (McDonald)
| | - Fausto J Rodriguez
- The Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland (Rodriguez)
| | | | - Carol Colasacco
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | - Nicole E Thomas
- Surveys, College of American Pathologists, Northfield, Illinois (Colasacco, Thomas)
| | | | - Martin J van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute University Medical Center Rotterdam, Rotterdam, the Netherlands (van den Bent)
| | - Arie Perry
- The Departments of Pathology and Neurological Surgery, University of California San Francisco School of Medicine, San Francisco (Perry)
| |
Collapse
|
10
|
The oligodendroglial histological features are not independently predictive of patient prognosis in lower-grade gliomas. Brain Tumor Pathol 2022; 39:79-87. [PMID: 35292862 DOI: 10.1007/s10014-022-00426-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
The relevance of oligodendroglial histological features to patient prognoses is controversial. 93 LrGGs resected for about 2 decades were re-assessed based on WHO2007 with special interest to pure oligodendroglial diagnosis (oligodendroglioma or anaplastic oligodendroglioma) and presence of CFO features. Those histological features, patients OS, and tumor chromosomal/genetic characteristics were correlated each other in each of the 3 IDH-1p/19q-based molecular groups. There was significant association between 1p19q status with the oligodendroglial histological diagnosis as well as presence of CFO in the entire cohort. The oligodendroglial diagnosis was associated with longer OS in IDHmut/codel group; however, this association was not significant in the multivariate analyses. In IDHmut/noncodel and IDH-wildtype groups, the oligodendroglial diagnosis was not associated with patient OS. Presence of CFO was not associated with patient OS in any molecular groups. Gain of 8q was associated with the oligodendroglial diagnosis in IDHmut/noncodel group. Neither the oligodendroglial diagnosis nor CFO was predictive for the methylation status of the MGMT gene in any molecular groups. The oligodendroglial histological features are not independently predictive of either patient prognosis or chemotherapeutic response in LrGGs, leaving the possibility of marginal favorable association only in IDHmut/codel tumors.
Collapse
|
11
|
Corr F, Grimm D, Saß B, Pojskić M, Bartsch JW, Carl B, Nimsky C, Bopp MHA. Radiogenomic Predictors of Recurrence in Glioblastoma—A Systematic Review. J Pers Med 2022; 12:jpm12030402. [PMID: 35330402 PMCID: PMC8952807 DOI: 10.3390/jpm12030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 12/10/2022] Open
Abstract
Glioblastoma, as the most aggressive brain tumor, is associated with a poor prognosis and outcome. To optimize prognosis and clinical therapy decisions, there is an urgent need to stratify patients with increased risk for recurrent tumors and low therapeutic success to optimize individual treatment. Radiogenomics establishes a link between radiological and pathological information. This review provides a state-of-the-art picture illustrating the latest developments in the use of radiogenomic markers regarding prognosis and their potential for monitoring recurrence. Databases PubMed, Google Scholar, and Cochrane Library were searched. Inclusion criteria were defined as diagnosis of glioblastoma with histopathological and radiological follow-up. Out of 321 reviewed articles, 43 articles met these inclusion criteria. Included studies were analyzed for the frequency of radiological and molecular tumor markers whereby radiogenomic associations were analyzed. Six main associations were described: radiogenomic prognosis, MGMT status, IDH, EGFR status, molecular subgroups, and tumor location. Prospective studies analyzing prognostic features of glioblastoma together with radiological features are lacking. By reviewing the progress in the development of radiogenomic markers, we provide insights into the potential efficacy of such an approach for clinical routine use eventually enabling early identification of glioblastoma recurrence and therefore supporting a further personalized monitoring and treatment strategy.
Collapse
Affiliation(s)
- Felix Corr
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
- Correspondence:
| | - Dustin Grimm
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- EDU Institute of Higher Education, Villa Bighi, Chaplain’s House, KKR 1320 Kalkara, Malta
| | - Benjamin Saß
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Mirza Pojskić
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Barbara Carl
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Department of Neurosurgery, Helios Dr. Horst Schmidt Kliniken, Ludwig-Erhard-Strasse 100, 65199 Wiesbaden, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| | - Miriam H. A. Bopp
- Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; (D.G.); (B.S.); (M.P.); (J.W.B.); (B.C.); (C.N.); (M.H.A.B.)
- Center for Mind, Brain and Behavior (CMBB), 35043 Marburg, Germany
| |
Collapse
|
12
|
Wu S, Zhang X, Rui W, Sheng Y, Yu Y, Zhang Y, Yao Z, Qiu T, Ren Y. A nomogram strategy for identifying the subclassification of IDH mutation and ATRX expression loss in lower-grade gliomas. Eur Radiol 2022; 32:3187-3198. [PMID: 35133485 DOI: 10.1007/s00330-021-08444-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To construct a radiomics nomogram based on multiparametric MRI data for predicting isocitrate dehydrogenase 1 mutation (IDH +) and loss of nuclear alpha thalassemia/mental retardation syndrome X-linked expression (ATRX -) in patients with lower-grade gliomas (LrGG; World Health Organization [WHO] 2016 grades II and III). METHODS A total of 111 LrGG patients (76 mutated IDH and 35 wild-type IDH) were enrolled, divided into a training set (n = 78) and a validation set (n = 33) for predicting IDH mutation. IDH + LrGG patients were further stratified into the ATRX - (n = 38) and ATRX + (n = 38) subtypes. A total of 250 radiomics features were extracted from the region of interest of each tumor, including that from T2 fluid-attenuated inversion recovery (T2 FLAIR), contrast-enhanced T1 WI, ASL-derived cerebral blood flow (CBF), DWI-derived ADC, and exponential ADC (eADC). A radiomics signature was selected using the Elastic Net regression model, and a radiomics nomogram was finally constructed using the age, gender information, and above features. RESULTS The radiomics nomogram identified LrGG patients for IDH mutation (C-index: training sets = 0.881, validation sets = 0.900) and ATRX loss (C-index: training sets = 0.863, validation sets = 0.840) with good calibration. Decision curve analysis further confirmed the clinical usefulness of the two nomograms for predicting IDH and ATRX status. CONCLUSIONS The nomogram incorporating age, gender, and the radiomics signature provided a clinically useful approach in noninvasively predicting IDH and ATRX mutation status for LrGG patients. The proposed method could facilitate MRI-based clinical decision-making for the LrGG patients. KEY POINTS • Non-invasive determination of IDH and ATRX gene status of LrGG patients can be obtained with a radiomics nomogram. • The proposed nomogram is constructed by radiomics signature selected from 250 radiomics features, combined with age and gender. • The proposed radiomics nomogram exhibited good calibration and discrimination for IDH and ATRX gene mutation stratification of LrGG patients in both training and validation sets.
Collapse
Affiliation(s)
- Shiman Wu
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Xi Zhang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yaru Sheng
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yang Yu
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Yong Zhang
- GE Healthcare, Shanghai, People's Republic of China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China.
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Jing'an District, 12 Middle Urumqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
13
|
Antoni D, Feuvret L, Biau J, Robert C, Mazeron JJ, Noël G. Radiation guidelines for gliomas. Cancer Radiother 2021; 26:116-128. [PMID: 34953698 DOI: 10.1016/j.canrad.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gliomas are the most frequent primary brain tumour. The proximity of organs at risk, the infiltrating nature, and the radioresistance of gliomas have to be taken into account in the choice of prescribed dose and technique of radiotherapy. The management of glioma patients is based on clinical factors (age, KPS) and tumour characteristics (histology, molecular biology, tumour location), and strongly depends on available and associated treatments, such as surgery, radiation therapy, and chemotherapy. The knowledge of molecular biomarkers is currently essential, they are increasingly evolving as additional factors that facilitate diagnostics and therapeutic decision-making. We present the update of the recommendations of the French society for radiation oncology on the indications and the technical procedures for performing radiation therapy in patients with gliomas.
Collapse
Affiliation(s)
- D Antoni
- Service de radiothérapie, institut cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg cedex, France.
| | - L Feuvret
- Service de radiothérapie, CHU Pitié-Salpêtrière, Assistance publique-hôpitaux de Paris (AP-HP), 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - J Biau
- Département universitaire de radiothérapie, centre Jean-Perrin, Unicancer, 58, rue Montalembert, BP 392, 63011 Clermont-Ferrand cedex 01, France
| | - C Robert
- Département de radiothérapie, institut de cancérologie Gustave-Roussy, 39, rue Camille-Desmoulin, 94800 Villejuif, France
| | - J-J Mazeron
- Service de radiothérapie, CHU Pitié-Salpêtrière, Assistance publique-hôpitaux de Paris (AP-HP), 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - G Noël
- Service de radiothérapie, institut cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg cedex, France
| |
Collapse
|
14
|
Bou Zerdan M, Assi HI. Oligodendroglioma: A Review of Management and Pathways. Front Mol Neurosci 2021; 14:722396. [PMID: 34675774 PMCID: PMC8523914 DOI: 10.3389/fnmol.2021.722396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
Anaplastic oligodendrogliomas are a type of glioma that occurs primarily in adults but are also found in children. These tumors are genetically defined according to the mutations they harbor. Grade II and grade III tumors can be differentiated most of the times by the presence of anaplastic features. The earliest regimen used for the treatment of these tumors was procarbazine, lomustine, and vincristine. The treatment modalities have shifted over time, and recent studies are considering immunotherapy as an option as well. This review assesses the latest management modalities along with the pathways involved in the pathogenesis of this malignancies.
Collapse
Affiliation(s)
| | - Hazem I. Assi
- Division of Hematology and Oncology, Department of Internal Medicine, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
15
|
Agopyan-Miu AHCW, Banu MA, Miller ML, Troy C, Hargus G, Canoll P, Wang TJC, Feldstein N, Haggiagi A, McKhann GM. Synchronous supratentorial and infratentorial oligodendrogliomas with incongruous IDH1 mutations, a case report. Acta Neuropathol Commun 2021; 9:160. [PMID: 34587990 PMCID: PMC8482672 DOI: 10.1186/s40478-021-01265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Infratentorial oligodendrogliomas, a rare pathological entity, are generally considered metastatic lesions from supratentorial primary tumors. Here, we report the case of a 23-year-old man presenting with a histopathologically confirmed right precentral gyrus grade 2 oligodendroglioma and a concurrent pontine grade 3 oligodendroglioma. The pontine lesion was biopsied approximately a year after the biopsy of the precentral lesion due to disease progression despite 4 cycles of procarbazine-CCNU-vincristine (PCV) chemotherapy and stable supratentorial disease. Histology and genetic analysis of the pontine biopsy were consistent with grade 3 oligodendroglioma, and comparison of the two lesions demonstrated common 1p/19q co-deletions and TERT promoter mutations but distinct IDH1 mutations, with a non-canonical IDH1 R132G mutation identified in the infratentorial lesion and a R132H mutation identified in the cortical lesion. Initiation of Temozolomide led to complete response of the supratentorial lesion and durable disease control, while Temozolomide with subsequent radiation therapy of 54 Gy in 30 fractions resulted in partial response of the pontine lesion. This case report supports possible distinct molecular pathogenesis in supratentorial and infratentorial oligodendrogliomas and raises questions about the role of different IDH1 mutant isoforms in explaining treatment resistance to different chemotherapy regimens. Importantly, this case suggests that biopsies of all radiographic lesions, when feasible and safe, should be considered in order to adequately guide management in multicentric oligodendrogliomas.
Collapse
|
16
|
Kayabolen A, Yilmaz E, Bagci-Onder T. IDH Mutations in Glioma: Double-Edged Sword in Clinical Applications? Biomedicines 2021; 9:799. [PMID: 34356864 PMCID: PMC8301439 DOI: 10.3390/biomedicines9070799] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
Discovery of point mutations in the genes encoding isocitrate dehydrogenases (IDH) in gliomas about a decade ago has challenged our view of the role of metabolism in tumor progression and provided a new stratification strategy for malignant gliomas. IDH enzymes catalyze the conversion of isocitrate to alpha-ketoglutarate (α-KG), an intermediate in the citric acid cycle. Specific mutations in the genes encoding IDHs cause neomorphic enzymatic activity that produces D-2-hydroxyglutarate (2-HG) and result in the inhibition of α-KG-dependent enzymes such as histone and DNA demethylases. Thus, chromatin structure and gene expression profiles in IDH-mutant gliomas appear to be different from those in IDH-wildtype gliomas. IDH mutations are highly common in lower grade gliomas (LGG) and secondary glioblastomas, and they are among the earliest genetic events driving tumorigenesis. Therefore, inhibition of mutant IDH enzymes in LGGs is widely accepted as an attractive therapeutic strategy. On the other hand, the metabolic consequences derived from IDH mutations lead to selective vulnerabilities within tumor cells, making them more sensitive to several therapeutic interventions. Therefore, instead of shutting down mutant IDH enzymes, exploiting the selective vulnerabilities caused by them might be another attractive and promising strategy. Here, we review therapeutic options and summarize current preclinical and clinical studies on IDH-mutant gliomas.
Collapse
Affiliation(s)
- Alisan Kayabolen
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Ebru Yilmaz
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Lab, Koç University School of Medicine, 34450 Istanbul, Turkey; (A.K.); (E.Y.)
- Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey
| |
Collapse
|
17
|
IDH Inhibitors and Beyond: The Cornerstone of Targeted Glioma Treatment. Mol Diagn Ther 2021; 25:457-473. [PMID: 34095989 DOI: 10.1007/s40291-021-00537-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
Diffuse low-grade gliomas account for approximately 20% of all primary brain tumors, they arise from glial cells and show infiltrative growth without histological features of malignancy. Mutations of the IDH1 and IDH2 genes constitute a reliable molecular signature of low-grade gliomas and are the earliest driver mutations occurring during gliomagenesis, representing a relevant biomarker with diagnostic, prognostic, and predictive value. IDH mutations induce a neomorphic enzyme that converts α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate, which leads to widespread effects on cellular epigenetics and metabolism. Currently, there are no approved molecularly targeted therapies and the standard treatment for low-grade gliomas consists of radiation therapy and chemotherapy, with rising concern about treatment-related toxicities. Targeting D-2-hydroxyglutarate is considered a novel attractive therapeutic approach for low-grade gliomas and the insights from clinical trials suggest that mutant-selective IDH inhibitors are the ideal candidates, with a favorable benefit/risk ratio. A pivotal question is whether blocking IDH neomorphic activity may activate alternative oncogenetic pathways, inducing acquired resistance to IDH inhibitors. Based on this rationale, combination therapies to enhance the antitumor activity of IDH inhibitors and approaches aimed at exploiting, rather than inhibiting, the metabolism of IDH-mutant cancer cells, such as poly (adenosine 5'-diphosphate-ribose) polymerase inhibitors, are emerging from preclinical research and clinical trials. In this review, we discuss the pivotal role of IDH mutations in gliomagenesis and the complex interactions between the genomic and epigenetic landscapes, providing an overview of how, in the last decade, therapeutic approaches for low-grade gliomas have evolved.
Collapse
|
18
|
van den Bent MJ, Tesileanu CMS, Wick W, Sanson M, Brandes AA, Clement PM, Erridge S, Vogelbaum MA, Nowak AK, Baurain JF, Mason WP, Wheeler H, Chinot OL, Gill S, Griffin M, Rogers L, Taal W, Rudà R, Weller M, McBain C, Reijneveld J, Enting RH, Caparrotti F, Lesimple T, Clenton S, Gijtenbeek A, Lim E, Herrlinger U, Hau P, Dhermain F, de Heer I, Aldape K, Jenkins RB, Dubbink HJ, Kros JM, Wesseling P, Nuyens S, Golfinopoulos V, Gorlia T, French P, Baumert BG. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol 2021; 22:813-823. [PMID: 34000245 PMCID: PMC8191233 DOI: 10.1016/s1470-2045(21)00090-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND The CATNON trial investigated the addition of concurrent, adjuvant, and both current and adjuvant temozolomide to radiotherapy in adults with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas. The benefit of concurrent temozolomide chemotherapy and relevance of mutations in the IDH1 and IDH2 genes remain unclear. METHODS This randomised, open-label, phase 3 study done in 137 institutions across Australia, Europe, and North America included patients aged 18 years or older with newly diagnosed 1p/19q non-co-deleted anaplastic gliomas and a WHO performance status of 0-2. Patients were randomly assigned (1:1:1:1) centrally using a minimisation technique to radiotherapy alone (59·4 Gy in 33 fractions; three-dimensional conformal radiotherapy or intensity-modulated radiotherapy), radiotherapy with concurrent oral temozolomide (75 mg/m2 per day), radiotherapy with adjuvant oral temozolomide (12 4-week cycles of 150-200 mg/m2 temozolomide given on days 1-5), or radiotherapy with both concurrent and adjuvant temozolomide. Patients were stratified by institution, WHO performance status score, age, 1p loss of heterozygosity, the presence of oligodendroglial elements on microscopy, and MGMT promoter methylation status. The primary endpoint was overall survival adjusted by stratification factors at randomisation in the intention-to-treat population. A second interim analysis requested by the independent data monitoring committee was planned when two-thirds of total required events were observed to test superiority or futility of concurrent temozolomide. This study is registered with ClinicalTrials.gov, NCT00626990. FINDINGS Between Dec 4, 2007, and Sept 11, 2015, 751 patients were randomly assigned (189 to radiotherapy alone, 188 to radiotherapy with concurrent temozolomide, 186 to radiotherapy and adjuvant temozolomide, and 188 to radiotherapy with concurrent and adjuvant temozolomide). Median follow-up was 55·7 months (IQR 41·0-77·3). The second interim analysis declared futility of concurrent temozolomide (median overall survival was 66·9 months [95% CI 45·7-82·3] with concurrent temozolomide vs 60·4 months [45·7-71·5] without concurrent temozolomide; hazard ratio [HR] 0·97 [99·1% CI 0·73-1·28], p=0·76). By contrast, adjuvant temozolomide improved overall survival compared with no adjuvant temozolomide (median overall survival 82·3 months [95% CI 67·2-116·6] vs 46·9 months [37·9-56·9]; HR 0·64 [95% CI 0·52-0·79], p<0·0001). The most frequent grade 3 and 4 toxicities were haematological, occurring in no patients in the radiotherapy only group, 16 (9%) of 185 patients in the concurrent temozolomide group, and 55 (15%) of 368 patients in both groups with adjuvant temozolomide. No treatment-related deaths were reported. INTERPRETATION Adjuvant temozolomide chemotherapy, but not concurrent temozolomide chemotherapy, was associated with a survival benefit in patients with 1p/19q non-co-deleted anaplastic glioma. Clinical benefit was dependent on IDH1 and IDH2 mutational status. FUNDING Merck Sharpe & Dohme.
Collapse
Affiliation(s)
| | | | - Wolfgang Wick
- Neurologische Klinik und Nationales Zentrum für Tumorerkrankungen Universitätsklinik Heidelberg, Heidelberg, Germany
| | - Marc Sanson
- Sorbonne Universités, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM AP-HP, Paris, France; Hôpital Univeristaires Pitié-salpêtrière -Chales Foix, service de Neurologie 2-Mazarin, Paris, France
| | - Alba Ariela Brandes
- Medical Oncology Department, AUSL-IRCCS Scienze Neurologiche, Bologna, Italy
| | - Paul M Clement
- Department of Oncology, KU Leuven and Department of General Medical Oncology, UZ Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Sarah Erridge
- Edinburgh Centre for Neuro-Oncology, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Anna K Nowak
- Medical School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia; CoOperative Group for NeuroOncology, University of Sydney, Camperdown, NSW, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jean Français Baurain
- Medical Oncology Department, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Warren P Mason
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Helen Wheeler
- Northern Sydney Cancer Centre, St Leonards, Sydney, NSW, Australia
| | - Olivier L Chinot
- Aix-Marseille University, AP-HM, Neuro-Oncology division, Marseille, France
| | - Sanjeev Gill
- Department of Medical Oncology, Alfred Hospital, Melbourne, QLD, Australia
| | - Matthew Griffin
- Department of Clinical Oncology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Leland Rogers
- Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Walter Taal
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Roberta Rudà
- Department of Neuro-Oncology, City of Health and Science Hospital and University of Turin, Turin, Italy
| | - Michael Weller
- Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Catherine McBain
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Jaap Reijneveld
- Brain Tumor Center Amsterdam and Department of Neurology, VU University Medical Center, Amsterdam, Netherlands; Department of Neurology, Academic Medical Center, Amsterdam, Netherlands
| | - Roelien H Enting
- Department of Neurology, UMCG, University of Groningen, Groningen, Netherlands
| | - Francesca Caparrotti
- Department of Radiation Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Thierry Lesimple
- Department of Clinical Oncology, Comprehensive Cancer Center Eugène Marquis, Rennes, France
| | | | - Anja Gijtenbeek
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Elizabeth Lim
- Department of Clinical Oncology, Plymouth Hospitals NHS Trust, Plymouth, UK
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Peter Hau
- Wilhelm Sander-NeuroOncology Unit and Department of Neurology, University Hospital, Regensburg, Regensburg, Germany
| | - Frederic Dhermain
- Radiotherapy Department, Gustave Roussy University Hospital, Villejuif, Cedex, France
| | - Iris de Heer
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN, USA
| | | | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Pathology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | | | | | - Pim French
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Brigitta G Baumert
- Department of Radiation-Oncology (MAASTRO), Maastricht University Medical Center (MUMC) GROW (School for Oncology), Maastricht, Netherlands; Institute of Radiation-Oncology, Cantonal Hospital Graubünden, Chur, Switzerland
| |
Collapse
|
19
|
Alghamri MS, McClellan BL, Hartlage MS, Haase S, Faisal SM, Thalla R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Front Pharmacol 2021; 12:680021. [PMID: 34084145 PMCID: PMC8167057 DOI: 10.3389/fphar.2021.680021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are one of the most lethal types of cancers accounting for ∼80% of all central nervous system (CNS) primary malignancies. Among gliomas, glioblastomas (GBM) are the most aggressive, characterized by a median patient survival of fewer than 15 months. Recent molecular characterization studies uncovered the genetic signatures and methylation status of gliomas and correlate these with clinical prognosis. The most relevant molecular characteristics for the new glioma classification are IDH mutation, chromosome 1p/19q deletion, histone mutations, and other genetic parameters such as ATRX loss, TP53, and TERT mutations, as well as DNA methylation levels. Similar to other solid tumors, glioma progression is impacted by the complex interactions between the tumor cells and immune cells within the tumor microenvironment. The immune system’s response to cancer can impact the glioma’s survival, proliferation, and invasiveness. Salient characteristics of gliomas include enhanced vascularization, stimulation of a hypoxic tumor microenvironment, increased oxidative stress, and an immune suppressive milieu. These processes promote the neuro-inflammatory tumor microenvironment which can lead to the loss of blood-brain barrier (BBB) integrity. The consequences of a compromised BBB are deleteriously exposing the brain to potentially harmful concentrations of substances from the peripheral circulation, adversely affecting neuronal signaling, and abnormal immune cell infiltration; all of which can lead to disruption of brain homeostasis. In this review, we first describe the unique features of inflammation in CNS tumors. We then discuss the mechanisms of tumor-initiating neuro-inflammatory microenvironment and its impact on tumor invasion and progression. Finally, we also discuss potential pharmacological interventions that can be used to target neuro-inflammation in gliomas.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Margaret S Hartlage
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed Mohd Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ali Dabaja
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anzar A Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Kang K, Xie F, Wu Y, Wang Z, Wang L, Long J, Lian X, Zhang F. Comprehensive exploration of tumor mutational burden and immune infiltration in diffuse glioma. Int Immunopharmacol 2021; 96:107610. [PMID: 33848908 DOI: 10.1016/j.intimp.2021.107610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been used as a novel treatment for diffuse gliomas, but the efficacy varies with patients, which may be associated with the tumor mutational burden (TMB) and immune infiltration. We aimed to explore the relationship between the two and their impacts on the prognosis. METHODS The data of the training set were downloaded from The Cancer Genome Atlas (TCGA). "DESeq2" R package was used for differential analysis and identification of differentially expressed genes (DEGs). A gene risk score model was constructed based on DEGs, and a nomogram was developed combined with clinical features. With the CIBERSORT algorithm, the relationship between TMB and immune infiltration was analyzed, and an immune risk score model was constructed. Two models were verification in the validation set downloaded from the Chinese Glioma Genome Atlas (CGGA). RESULTS Higher TMB was related to worse prognosis, older age, higher grade, and higher immune checkpoint expression. The gene risk score model was constructed based on BIRC5, SAA1, and TNFRSF11B, and their expressions were all negatively correlated with prognosis. The nomogram was developed combined with age and grade. The immune risk score model was constructed based on M0 macrophages, neutrophils, naïve CD4+ T cells, and activated mast cells. The proportions of the first two were higher in the high-TMB group and correlated with worse prognosis, while the latter two were precisely opposite. CONCLUSIONS In diffuse gliomas, TMB was negatively correlated with prognosis. The association of immune infiltration with TMB and prognosis varied with the type of immune cells. The nomogram and risk score models can accurately predict prognosis. The results can help identify patients suitable for ICIs and potential therapeutic targets, thus improve the treatment of diffuse gliomas.
Collapse
Affiliation(s)
- Kai Kang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijun Wu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhile Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Lian
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Ayad E, Ghattas SM, Abdel Moneim R, Ismail A, Khairy RA. Assessment of Isocitrate Dehydrogenase 1 Mutation by Immunohistochemistry in Egyptian Patients with High-grade Gliomas. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: At present, the classification of central nervous system tumors relies on molecular factors in addition to histologic features to identify many tumor types. This should subsequently results in more accurate diagnosis as well as addressing specific markers of potential prognostic and predictive value.
AIM: This study was conducted to emphasize the importance of including isocitrate dehydrogenase 1 (IDH1) evaluation as a crucial part of the diagnosis and categorization of high-grade glioma cases. This also may help to individualize the treatment of high-grade glioma patients.
MATERIALS AND METHODS: The current study included 60 cases of high-grade gliomas, studied histologically and immunohistochemically for the detection of IDH1 mutation. The results were correlated with different clinicopathologic variables and course of the disease.
RESULTS: IDH1 immunohistochemical expression was positive in 46.67% of the studied high-grade glioma cases. A statistically significant relationship was detected between IDH1 expression and tumor histologic grade as 100% of Grade III anaplastic oligodendroglioma cases and 80% of the Grade III anaplastic astrocytoma cases were IDH1 positive while only 40.4% of Grade IV glioblastoma cases were IDH1 positive (p = 0.03). In addition, patients who were IDH1 mutant were in a better category of response to radiotherapy (p = 0.019) and also to chemotherapy (p < 0.001). Moreover, patients who expressed IDH1 had prolonged overall survival (OS) and progression-free survival than those who showed negative IDH1expression (p < 0.001). On the other hand, no statistically significant relationship was detected between IDH1 expression and patients age, sex, tumor site, tumor size, motor symptoms, sensory symptoms, and increased intracranial tension (p > 0.05).
CONCLUSIONS: It is suggested that IDH1 is a good prognostic marker for gliomas and is a good predictive marker for response to treatment. IDH1 is a promising target for therapy in high-grade gliomas through the emerging IDH1 inhibitors. Immunohistochemical testing for IDH1 is a practical and cost-effective method that should be applied in all glioma cases. Further study on a larger sample size is recommended to validate the current results. Moreover, applying molecular analysis to detect IDH1 mutation is recommended to be able to precisely detect the IDH1 wild-type tumor
Collapse
|
22
|
Girardi F, Rous B, Stiller CA, Gatta G, Fersht N, Storm HH, Rodrigues JR, Herrmann C, Marcos-Gragera R, Peris-Bonet R, Valkov M, Weir HK, Woods RR, You H, Cueva PA, De P, Di Carlo V, Johannesen TB, Lima CA, Lynch CF, Coleman MP, Allemani C. The histology of brain tumours for 67,331 children and 671,085 adults diagnosed in 60 countries during 2000-2014: a global, population-based study (CONCORD-3). Neuro Oncol 2021; 23:1765-1776. [PMID: 33738488 DOI: 10.1093/neuonc/noab067] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Global variations in survival for brain tumours are very wide when all histological types are considered together. Appraisal of international differences should be informed by the distribution of histology, but little is known beyond Europe and North America. PATIENTS AND METHODS The source for the analysis was the CONCORD data base, a programme of global surveillance of cancer survival trends, which includes the tumour records of individual patients from more than 300 population-based cancer registries. We considered all patients aged 0-99 years who were diagnosed with a primary brain tumour during 2000-2014, whether malignant or non-malignant. We presented the histology distribution of these tumours, for patients diagnosed during 2000-2004, 2005-2009, and 2010-2014. RESULTS Records were submitted from 60 countries on five continents, 67,331 for children and 671,085 for adults. After exclusion of irrelevant morphology codes, the final study population comprised 60,783 children and 602,112 adults. Only 59 of 60 countries covered in CONCORD-3 were included, because none of the Mexican records were eligible. We defined 12 histology groups for children, and 11 histology groups for adults. In children (0-14 years), the proportion of low-grade astrocytomas ranged between 6% and 50%. Medulloblastoma was the most common sub-type in countries where low-grade astrocytoma was less commonly reported. In adults (15-99 years), the proportion of glioblastomas varied between 9% and 69%. International comparisons were made difficult by wide differences in the proportion of tumours with unspecified histology, which accounted for up to 52% of diagnoses in children and up to 65% in adults. CONCLUSIONS To our knowledge, this is the first account of the global histology distribution of brain tumours, in children and adults. Our findings provide insights into the practices and the quality of cancer registration worldwide.
Collapse
Affiliation(s)
- Fabio Girardi
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, United Kingdom.,Division of Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Brian Rous
- National Cancer Registration and Analysis Service, Public Health England, London, United Kingdom
| | - Charles A Stiller
- National Cancer Registration and Analysis Service, Public Health England, London, United Kingdom
| | - Gemma Gatta
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Naomi Fersht
- Cancer Division, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | | | | | | | | | | | - Mikhail Valkov
- Arkhangelsk Regional Cancer Registry, Arkhangelsk, Russian Federation
| | - Hannah K Weir
- Centers for Disease Control and Prevention, Atlanta, United States
| | - Ryan R Woods
- British Columbia Cancer Registry, Vancouver, Canada
| | - Hui You
- New South Wales Cancer Registry, Alexandria, Australia
| | | | | | - Veronica Di Carlo
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Carlos A Lima
- Registro de Câncer de Base Populacional de Aracaju, Aracaju, Brazil
| | | | - Michel P Coleman
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Claudia Allemani
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Menze B, Isensee F, Wiest R, Wiestler B, Maier-Hein K, Reyes M, Bakas S. Analyzing magnetic resonance imaging data from glioma patients using deep learning. Comput Med Imaging Graph 2021; 88:101828. [PMID: 33571780 PMCID: PMC8040671 DOI: 10.1016/j.compmedimag.2020.101828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022]
Abstract
The quantitative analysis of images acquired in the diagnosis and treatment of patients with brain tumors has seen a significant rise in the clinical use of computational tools. The underlying technology to the vast majority of these tools are machine learning methods and, in particular, deep learning algorithms. This review offers clinical background information of key diagnostic biomarkers in the diagnosis of glioma, the most common primary brain tumor. It offers an overview of publicly available resources and datasets for developing new computational tools and image biomarkers, with emphasis on those related to the Multimodal Brain Tumor Segmentation (BraTS) Challenge. We further offer an overview of the state-of-the-art methods in glioma image segmentation, again with an emphasis on publicly available tools and deep learning algorithms that emerged in the context of the BraTS challenge.
Collapse
Affiliation(s)
- Bjoern Menze
- Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
| | | | - Roland Wiest
- Support Center for Advanced Neuroimaging, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.
| | | | | | | | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
The distribution of isocitrate dehydrogenase mutations, O6-methylguanine-DNA methyltransferase promoter methylation, and 1p/19q codeletion in different glioma subtypes and their correlation with glioma prognosis in Taiwanese population: A single center study. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Favorable role of IDH1/2 mutations aided with MGMT promoter gene methylation in the outcome of patients with malignant glioma. Future Sci OA 2020; 7:FSO663. [PMID: 33552543 PMCID: PMC7849969 DOI: 10.2144/fsoa-2020-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim The implications of molecular biomarkers IDH1/2 mutations and MGMT gene promoter methylation were evaluated for prognostic outcome of glioma patients. Materials & methods Glioma cases were analyzed for IDH1/2 mutations and MGMT promoter methylation by DNA sequencing and methylation-specific PCR, respectively. Results Mutations found in IDH1/2 genes totaled 63.4% (N = 40) wherein IDH1 mutations were significantly associated with oligidendrioglioma (p = 0.005) and astrocytoma (p = 0.0002). IDH1 mutants presented more, 60.5% in MGMT promoter-methylated cases (p = 0.03). IDH1 mutant cases had better survival for glioblastoma and oligodendrioglioma (log-rank p = 0.01). Multivariate analysis confirmed better survival in MGMT methylation carriers (hazard ratio [HR]: 0.59; p = 0.031). Combination of both biomarkers showed better prognosis on temozolomide (p < 0.05). Conclusion IDH1/2 mutations proved independent prognostic factors in glioma and associated with MGMT methylation for better survival.
Collapse
|
26
|
Malueka RG, Theresia E, Fitria F, Argo IW, Donurizki AD, Shaleh S, Innayah MR, Wicaksono AS, Dananjoyo K, Asmedi A, Hartanto RA, Dwianingsih EK. Comparison of Polymerase Chain Reaction-Restriction Fragment Length Polymorphism, Immunohistochemistry, and DNA Sequencing for the Detection of IDH1 Mutations in Gliomas. Asian Pac J Cancer Prev 2020; 21:3229-3234. [PMID: 33247679 PMCID: PMC8033136 DOI: 10.31557/apjcp.2020.21.11.3229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND IDH1 mutation shows diagnostic, prognostic, and predictive value in gliomas. Direct Sanger sequencing is considered the gold standard to detect IDH1 mutation. However, this technology is not available in most neuropathological centers in developing countries such as Indonesia. Immunohistochemistry (IHC) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) have also been used to detect IDH1 mutation. This study aimed to compare DNA sequencing, IHC, and PCR-RFLP in detecting IDH1 mutations in gliomas. METHODS Research subjects were recruited from Dr. Sardjito Hospital. Genomic DNA was extracted from fresh or formalin-fixed paraffin-embedded samples of tumor tissue. DNA sequencing, PCR-RFLP and IHC were performed to detect IDH1 mutation. Sensitivity, specificity, and accuracy of PCR-RFLP and IHC were calculated by comparing them to DNA sequencing as the gold standard. RESULTS Among 61 recruited patients, 13 (21.3%) of them carried a mutation in codon 132 of the IDH1 gene, as shown by DNA sequencing. PCR-RFLP and DNA sequencing have a concordance value of 100%. Meanwhile, the concordance value between IDH1 R132H IHC and DNA sequencing was 96.7%. The sensitivity, specificity, positive predictive values, negative predictive values, and accuracy for PCR-RFLP were all 100%. On the other hand, the sensitivity, specificity, and accuracy of IHC were 92.3%, 97.9%, and 96.7%, respectively. CONCLUSION This study showed that both PCR-RFLP and IHC have high accuracy in detecting IDH1 mutation. We recommend a combination of PCR-RFLP and IHC to detect IDH1 mutation in resource-limited settings.<br />.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Emilia Theresia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Fitria Fitria
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ibnu Widya Argo
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Aditya Dwi Donurizki
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sabillal Shaleh
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Meutia Rizki Innayah
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kusumo Dananjoyo
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rachmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
27
|
MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Int J Mol Sci 2020; 21:ijms21218004. [PMID: 33121211 PMCID: PMC7662499 DOI: 10.3390/ijms21218004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
Patients with gliomas, isocitrate dehydrogenase 1 (IDH1) mutation status have been studied as a prognostic indicator. Recent advances in machine learning (ML) have demonstrated promise in utilizing radiomic features to study disease processes in the brain. We investigate whether ML analysis of multiparametric radiomic features from preoperative Magnetic Resonance Imaging (MRI) can predict IDH1 mutation status in patients with glioma. This retrospective study included patients with glioma with known IDH1 status and preoperative MRI. Radiomic features were extracted from Fluid-Attenuated Inversion Recovery (FLAIR) and Diffused Weighted Imaging (DWI). The dataset was split into training, validation, and testing sets by stratified sampling. Synthetic Minority Oversampling Technique (SMOTE) was applied to the training sets. eXtreme Gradient Boosting (XGBoost) classifiers were trained, and the hyperparameters were tuned. Receiver operating characteristic curve (ROC), accuracy, and f1-scores were collected. A total of 100 patients (age: 55 ± 15, M/F 60/40); with IDH1 mutant (n = 22) and IDH1 wildtype (n = 78) were included. The best performance was seen with a DWI-trained XGBoost model, which achieved ROC with Area Under the Curve (AUC) of 0.97, accuracy of 0.90, and f1-score of 0.75 on the test set. The FLAIR-trained XGBoost model achieved ROC with AUC of 0.95, accuracy of 0.90, f1-score of 0.75 on the test set. A model that was trained on combined FLAIR-DWI radiomic features did not provide incremental accuracy. The results show that a XGBoost classifier using multiparametric radiomic features derived from preoperative MRI can predict IDH1 mutation status with > 90% accuracy.
Collapse
|
28
|
Taher MM, Dairi G, Butt EM, Al-Quthami K, Al-Khalidi H, Jastania RA, Nageeti TH, Bogari NM, Athar M, Al-Allaf FA, Valerie K. EGFRvIII expression and isocitrate dehydrogenase mutations in patients with glioma. Oncol Lett 2020; 20:384. [PMID: 33193845 PMCID: PMC7656109 DOI: 10.3892/ol.2020.12247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Molecular pathology and personalized medicine are still being evolved in Saudi Arabia, and genetic testing for the detection of mutations as cancer markers have not been established in the diagnostics laboratories in Saudi Arabia. The aim of the present study was to determine the prevalence of isocitrate dehydrogenase (IDH1 and IDH2) mutations and epidermal growth factor receptor variant (EGFRv)III transcript expression in Saudi Arabian patients with glioma. Out of 117 brain tumors tested by reverse transcription-quantitative PCR for EGFRvIII, 41 cases tested positive. In the glioblastoma (GBM) category, 28/55 tumors were positive, in astrocytoma tumors 5/22, and in oligodendrogliomas 4/13 cases were positive respectively. EGFRvIII transcript was sequenced by capillary electrophoresis to demonstrate the presence of EGFRvIII-specific junction where exons 2–7 were deleted. In the present study 106 tumors were sequenced for IDH1 exon-4 mutations using the capillary sequencing method. The most common substitution missense mutation c.395G>A was found in 16 tumors. In the case of adamantinomatous craniopharyngioma, a novel missense mutation in c.472C>T was detected in IDH2 gene. Using next-generation sequencing (NGS), 74 tumors were sequenced for the IDH1 gene, and a total of 8 missense variants were identified in 36 tumors in a population of Saudi Arabia. The missense mutation (c.395G>A) was detected in 29/36 of tumors. A novel intronic mutation in c.414+9T>A was found in 13 cases in the IDH1 gene. In addition, one case exhibited a novel synonymous mutation in c.369A>G. Eleven tumors were found to have compound mutations in the IDH1 gene. In IDH2 gene, out of a total of 16 variants found in 6 out of 45 tumors, nine were missense, five were synonymous and one was intronic. This is the first report from Saudi Arabian laboratories analyzing glioma tumors for EGFRvIII expression, and the first study from Saudi Arabia to analyze IDH mutations in gliomas using the capillary and NGS methods.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ejaz Muhammad Butt
- Department of Laboratory Medicine and Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia
| | - Khalid Al-Quthami
- Department of Laboratory Medicine and Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia
| | - Hisham Al-Khalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Raid A Jastania
- Department of Pathology, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Department of Pathology, College of Medicine, King Abdul Aziz Medical City, Jeddah 21423, Saudi Arabia
| | - Tahani H Nageeti
- Radiation Oncology Department, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Neda M Bogari
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammad Athar
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal A Al-Allaf
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Kristoffer Valerie
- Department of Radiation Oncology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
29
|
Main genetic differences in high-grade gliomas may present different MR imaging and MR spectroscopy correlates. Eur Radiol 2020; 31:749-763. [PMID: 32875375 DOI: 10.1007/s00330-020-07138-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To assess whether the main genetic differences observed in high-grade gliomas (HGG) will present different MR imaging and MR spectroscopy correlates that could be used to better characterize lesions in the clinical setting. METHODS Seventy-nine patients with histologically confirmed HGG were recruited. Immunohistochemistry analyses for isocitrate dehydrogenase gene 1 (IDH1), alpha thalassemia mental retardation X-linked gene (ATRX), Ki-67, and p53 protein expression were performed. Tumour radiological features were examined on MR images. Metabolic profile and infiltrative pattern were assessed with MR spectroscopy. MR features were analysed to identify imaging-molecular associations. The Kaplan-Meier method and the Cox regression model were used to identify survival prognostic factors. RESULTS In total, 17.7% of the lesions were IDH1-mutated, 8.9% presented ATRX-mutated, 70.9% presented p53 unexpressed, and 22.8% had Ki-67 > 5%. IDH1 wild-type tumours had higher levels of mobile lipids (p = 0.001). The tumour-infiltrative pattern was higher in HGG with unexpressed p53 (p = 0.009). Mutated ATRX tumours presented higher levels of glutamate and glutamine (Glx) (p = 0.001). An association was observed between Glx tumour levels (p = 0.038) and Ki-67 expression (p = 0.008) with the infiltrative pattern. Survival analyses identified IDH1 status, age, and tumour choline levels as independent predictors of prognostic significance. CONCLUSIONS Our results suggest that IDH1-wt tumours are more necrotic than IDH1-mut. And that the presence of an infiltrative pattern in HGG is associated with loss of p53 expression, Ki-67 index, and Glx levels. Finally, tumour choline levels could be used as a predictive factor in survival in addition to the IDH1 status to provide a more accurate prediction of survival in HGG patients. KEY POINTS • IDH1-wt tumours present higher levels of mobile lipids than IDH1-mut. • Mutated ATRX tumours exhibit higher levels of glutamate and glutamine. • Loss of p53 expression, Ki-67 expression, and glutamate and glutamine levels may contribute to the presence of an infiltrative pattern in HGG.
Collapse
|
30
|
Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate Dehydrogenase Mutations in Glioma: Genetics, Biochemistry, and Clinical Indications. Biomedicines 2020; 8:biomedicines8090294. [PMID: 32825279 PMCID: PMC7554955 DOI: 10.3390/biomedicines8090294] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) are commonly observed in lower-grade glioma and secondary glioblastomas. IDH mutants confer a neomorphic enzyme activity that converts α-ketoglutarate to an oncometabolite D-2-hydroxyglutarate, which impacts cellular epigenetics and metabolism. IDH mutation establishes distinctive patterns in metabolism, cancer biology, and the therapeutic sensitivity of glioma. Thus, a deeper understanding of the roles of IDH mutations is of great value to improve the therapeutic efficacy of glioma and other malignancies that share similar genetic characteristics. In this review, we focused on the genetics, biochemistry, and clinical impacts of IDH mutations in glioma.
Collapse
Affiliation(s)
- Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Fu-Ju Chou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (Y.L.); (F.L.); (F.-J.C.)
- Correspondence: ; Tel.: +1-240-760-7083
| |
Collapse
|
31
|
Malueka RG, Dwianingsih EK, Bayuangga HF, Panggabean AS, Argo IW, Donurizki AD, Shaleh S, Wicaksono AS, Dananjoyo K, Asmedi A, Hartanto RA. Clinicopathological Features and Prognosis of Indonesian Patients with Gliomas with IDH Mutation: Insights into Its Significance in a Southeast Asian Population. Asian Pac J Cancer Prev 2020; 21:2287-2295. [PMID: 32856857 PMCID: PMC7771930 DOI: 10.31557/apjcp.2020.21.8.2287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Gliomas remain one of the most common primary brain tumors. Mutations in the isocitrate dehydrogenase (IDH) gene are associated with a distinct set of clinicopathological profiles. However, the distribution and significance of these mutations have never been studied in the Indonesian population. This study aimed to elucidate the association between IDH mutations and clinicopathological as well as prognostic profiles of Indonesian patients with gliomas. Methods: In total, 106 patients with gliomas were recruited from a tertiary academic medical center in Yogyakarta, Indonesia. Formalin-fixed paraffin-embedded and fresh tissue specimens were obtained and sectioned for hematoxylin-eosin staining and immunohistochemical examinations. Genomic DNA was isolated and analyzed for the presence of IDH mutations using standard polymerase chain reaction and nucleotide sequencing methods. Clinicopathological data were collected from medical records. Results: Although no IDH2 mutation was identified, IDH1 mutations were found in 23 (21.7%) of the patients. Patients with IDH1 mutations tended to have a history of smoking and a shorter interval between onset of symptoms and initial surgical interventions. Frontal lobe involvement, oligodendroglial histology, lower Ki67 expression, WHO grades II and III gliomas, and methylated O6-methylguanine-DNA methyltransferase (MGMT) promoters were significantly associated with the presence of IDH1 mutations. Compared with patients with IDH1-wild-type, patients with IDH1 mutation were observed to have a longer overall survival. Conclusions: IDH1 mutations are associated with certain clinicopathological and prognostic profiles in Indonesian patients with gliomas. This finding demonstrates the importance of identifying IDH mutations as part of the management of patients with glioma in Indonesia.
Collapse
Affiliation(s)
- Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Halwan Fuad Bayuangga
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Andre Stefanus Panggabean
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ibnu Widya Argo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Aditya Dwi Donurizki
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sabillal Shaleh
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Kusumo Dananjoyo
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rachmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
32
|
Shen G, Wang R, Gao B, Zhang Z, Wu G, Pope W. The MRI Features and Prognosis of Gliomas Associated With IDH1 Mutation: A Single Center Study in Southwest China. Front Oncol 2020; 10:852. [PMID: 32582544 PMCID: PMC7280555 DOI: 10.3389/fonc.2020.00852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose: To investigate the associations of MRI radiological features and prognosis of glioma with the status of isocitrate dehydrogenase 1 (IDH1). Material and Methods: A total of 116 patients with gliomas were retrospectively recruited from January 2013 to December 2015. All patients were undergone routine MRI (T1WI, T2WI, T2-FLAIR) scanning and contrast-enhanced MRI T1WI before surgery. The following imaging features were included: tumor location, diameter, the pattern of growth, boundary, the degree of enhancement, mass effect, edema, cross the middle line, under the ependyma. χ2 and Fisher's exact probability tests were used to determine the significance of associations between MRI features and IDH1 mutation of glioma. The survival distributions were estimated using Kaplan-Meier compared by Log-rank test. Univariate and multivariate analyses were performed using Cox regression. Results: Gliomas with IDH1 mutant were significantly more likely to exhibit homogeneous signal intensity (p = 0.009) on non-contrast MRI protocols and less contrast enhancement (p = 0.000) on contrast enhanced T1WI. IDH1 mutant type glioma was more inclined to cross the midline to invade contralateral hemisphere (p = 0.001). The overall survival between IDH1 mutated and wild type glioma were significantly different (p = 0.000), age ≤ 40 (p = 0.003), KPS scores > 80 before operation (p = 0.000) and low grade glioma (p = 0.000). Conclusions: Our results suggest IDH1 mutant in gliomas is more likely to exhibit homogeneous signal intensity, less contrast enhancement and more inclined to cross the midline. Patients with IDH1 mutated, age ≤ 40, KPS scores > 80 before operation and low-grade glioma may have a longer life and better prognosis.
Collapse
Affiliation(s)
- Guiquan Shen
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rujia Wang
- Tangshan Gongren Hospital, Tangshan, China
| | - Bo Gao
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | | | - Guipeng Wu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Whitney Pope
- UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
33
|
Mellinghoff IK, Ellingson BM, Touat M, Maher E, De La Fuente MI, Holdhoff M, Cote GM, Burris H, Janku F, Young RJ, Huang R, Jiang L, Choe S, Fan B, Yen K, Lu M, Bowden C, Steelman L, Pandya SS, Cloughesy TF, Wen PY. Ivosidenib in Isocitrate Dehydrogenase 1 -Mutated Advanced Glioma. J Clin Oncol 2020; 38:3398-3406. [PMID: 32530764 PMCID: PMC7527160 DOI: 10.1200/jco.19.03327] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Diffuse gliomas are malignant brain tumors that include lower-grade gliomas (LGGs) and glioblastomas. Transformation of low-grade glioma into a higher tumor grade is typically associated with contrast enhancement on magnetic resonance imaging. Mutations in the isocitrate dehydrogenase 1 (IDH1) gene occur in most LGGs (> 70%). Ivosidenib is an inhibitor of mutant IDH1 (mIDH1) under evaluation in patients with solid tumors. METHODS We conducted a multicenter, open-label, phase I, dose escalation and expansion study of ivosidenib in patients with mIDH1 solid tumors. Ivosidenib was administered orally daily in 28-day cycles. RESULTS In 66 patients with advanced gliomas, ivosidenib was well tolerated, with no dose-limiting toxicities reported. The maximum tolerated dose was not reached; 500 mg once per day was selected for the expansion cohort. The grade ≥ 3 adverse event rate was 19.7%; 3% (n = 2) were considered treatment related. In patients with nonenhancing glioma (n = 35), the objective response rate was 2.9%, with 1 partial response. Thirty of 35 patients (85.7%) with nonenhancing glioma achieved stable disease compared with 14 of 31 (45.2%) with enhancing glioma. Median progression-free survival was 13.6 months (95% CI, 9.2 to 33.2 months) and 1.4 months (95% CI, 1.0 to 1.9 months) for the nonenhancing and enhancing glioma cohorts, respectively. In an exploratory analysis, ivosidenib reduced the volume and growth rates of nonenhancing tumors. CONCLUSION In patients with mIDH1 advanced glioma, ivosidenib 500 mg once per day was associated with a favorable safety profile, prolonged disease control, and reduced growth of nonenhancing tumors.
Collapse
Affiliation(s)
- Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Mehdi Touat
- Drug Development Department, Gustave Roussy Cancer Center, Villejuif, France
| | - Elizabeth Maher
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Macarena I De La Fuente
- Department of Neurology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD
| | - Gregory M Cote
- Henri and Belinda Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA
| | | | - Filip Janku
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert J Young
- Radiology, Neuroradiology Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raymond Huang
- Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Liewen Jiang
- Biostatistics, Agios Pharmaceuticals, Cambridge, MA
| | - Sung Choe
- Bioinformatics, Agios Pharmaceuticals, Cambridge, MA
| | - Bin Fan
- Pharmacology, Agios Pharmaceuticals, Cambridge, MA
| | - Katharine Yen
- Clinical Sciences, Agios Pharmaceuticals, Cambridge, MA
| | - Min Lu
- Clinical Sciences, Agios Pharmaceuticals, Cambridge, MA
| | | | | | | | - Timothy F Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
34
|
Zeng WJ, Yang YL, Wen ZP, Chen P, Chen XP, Gong ZC. Identification of gene expression and DNA methylation of SERPINA5 and TIMP1 as novel prognostic markers in lower-grade gliomas. PeerJ 2020; 8:e9262. [PMID: 32547876 PMCID: PMC7275683 DOI: 10.7717/peerj.9262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lower-grade gliomas (LGGs) is characteristic with great difference in prognosis. Due to limited prognostic biomarkers, it is urgent to identify more molecular markers to provide a more objective and accurate tumor classification system for LGGs. Methods In the current study, we performed an integrated analysis of gene expression data and genome-wide methylation data to determine novel prognostic genes and methylation sites in LGGs. Results To determine genes that differentially expressed between 44 short-term survivors (<2 years) and 48 long-term survivors (≥2 years), we searched LGGs TCGA RNA-seq dataset and identified 106 differentially expressed genes. SERPINA5 and TIMP1 were selected for further study. Kaplan-Meier plots showed that SERPINA5 and TIMP1 expression were significantly correlated with overall survival (OS) and relapse-free survival (RFS) in TCGA LGGs patients. We next validated the correlation between the candidate genes expression and clinical outcome in CGGA LGGs patients. Multivariate analysis showed that TIMP1 mRNA expression had a significant prognostic value independent of other variables (HR = 4.825, 95% CI = 1.370-17.000, P = 0.014). Then, differential methylation sites were identified from differentially candidate gene expression groups, and all four methylation sites were significantly negatively correlated with gene expression (spearman r < - 0.5, P < 0.0001). Moreover, hyper-methylation of four methylation sites indicated better OS (P < 0.05), and three of them also shown statistical significantly association with better RFS, except for SERPINA5 cg15509705 (P = 0.0762). Conclusion Taken together, these findings indicated that the gene expression and methylation of SERPINA5 and TIMP1 may serve as prognostic predictors in LGGs and may help to precise the current histology-based tumors classification system and to provide better stratification for future clinical trials.
Collapse
Affiliation(s)
- Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-Long Yang
- Department of Clinical Pharmacology Research Center, Changsha Carnation Geriatrics Hospital, Changsha, Hunan, China
| | - Zhi-Peng Wen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Okita Y, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y, Mano M, Kinoshita M, Nonaka M, Fujinaka T, Kanemura Y. The association between 11C-methionine uptake, IDH gene mutation, and MGMT promoter methylation in patients with grade II and III gliomas. Clin Radiol 2020; 75:622-628. [PMID: 32321646 DOI: 10.1016/j.crad.2020.03.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/23/2020] [Indexed: 01/08/2023]
Abstract
AIM To evaluate the association between 11C-methionine positron-emission tomography (11C-methionine PET) findings, isocitrate dehydrogenase (IDH) gene mutation, and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in patients with grade II and III gliomas. MATERIALS AND METHODS Data were collected from 40 patients with grade II and III gliomas who underwent both magnetic resonance imaging (MRI) and 11C-methionine PET as part of their pre-surgical examination. IDH mutation was examined via DNA sequencing, and MGMT promoter methylation via quantitative methylation-specific polymerase chain reaction (PCR). RESULTS A threshold of MGMT promoter methylation of 1% was significantly associated with tumour/normal tissue (T/N) ratio. The T/N ratio in samples with MGMT promoter methylation ≥1% was higher than that in samples with MGMT promoter methylation <1%, and the difference was statistically significant (p=0.011). Reliable prediction of MGMT promoter methylation (<1% versus ≥1%) was possible using the T/N ratio under the receiver operator characteristic (ROC) curve with a sensitivity and specificity of 75% each (cut-off value=1.6: p=0.0226, area under the ROC curve [AUC]=0.76172). Conversely, the T/N ratio had no association with IDH mutation (p=0.6). The ROC curve revealed no reliable prediction of IDH mutation using the T/N ratio (p=0.606, AUC=0.60577). CONCLUSION 11C-methionine PET parameters can predict MGMT promoter methylation but not IDH mutation status. 11C-methionine uptake may have limited potential to reflect DNA methylation processes in grade II and III gliomas.
Collapse
Affiliation(s)
- Y Okita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan.
| | - T Shofuda
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - D Kanematsu
- Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - E Yoshioka
- Division of Stem Cell Research, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - Y Kodama
- Division of Pathology Network, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe City, 650-0017, Japan; Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - M Mano
- Department of Central Laboratory and Surgical Pathology, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - M Kinoshita
- Department of Neurosurgery, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka, 541-8567, Japan; Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - M Nonaka
- Department of Neurosurgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka, 573-1010, Japan
| | - T Fujinaka
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| | - Y Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan; Division of Regenerative Medicine, Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka City, 540-0006, Japan
| |
Collapse
|
36
|
van den Bent MJ, Mellinghoff IK, Bindra RS. Gray Areas in the Gray Matter: IDH1/2 Mutations in Glioma. Am Soc Clin Oncol Educ Book 2020; 40:1-8. [PMID: 32186930 PMCID: PMC7673204 DOI: 10.1200/edbk_280967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Since the first discovery of isocitrate dehydrogenase (IDH) mutations in cancer, considerable progress has been made in our understanding of their contribution to cancer development. For glioma, this has helped to identify two diagnostic groups of tumors (oligodendroglioma and astrocytoma IDHmt) with distinct clinical characteristics and that are now diagnosed by the presence of the IDH mutations. The metabolic changes occurring as the consequence of the altered substrate affinity of the mutant IDH protein results in a cascade of intracellular changes, also inducing a relative sensitivity to chemotherapy and radiotherapy compared with IDHwt tumors. Pharmacologic blockade of the mutant enzyme with first-in-class inhibitors has been efficacious for the treatment of IDH-mutant acute myeloid leukemia (AML) and is currently being evaluated in phase III trials for IDH-mutant glioma (INDIGO) and cholangiocarcinoma (ClarIDHy). It seems likely that acquired resistance to mutant IDH inhibitors will eventually emerge, and combination therapies to augment the antitumor activity of mutant IDH inhibitors have already been initiated. Approaches to exploit, rather than inhibit, the unique metabolism of IDH-mutant cancer cells have emerged from laboratory studies and are now also being tested in the clinic. Results of these clinical trials are eagerly awaited and will likely provide new key insights and direction of the treatment of IDH-mutant human cancer.
Collapse
Affiliation(s)
- Martin J. van den Bent
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ingo K. Mellinghoff
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Ranjit S. Bindra
- Departments of Therapeutic Radiology and Pathology, Yale School of Medicine, New Haven, CT
- Brain Tumor Center, Yale Cancer Center, New Haven, CT
| |
Collapse
|
37
|
Lisi L, Chiavari M, Ciotti GMP, Lacal PM, Navarra P, Graziani G. DNA inhibitors for the treatment of brain tumors. Expert Opin Drug Metab Toxicol 2020; 16:195-207. [PMID: 32067518 DOI: 10.1080/17425255.2020.1729352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: The worldwide incidence of central nervous system (CNS) primary tumors is increasing. Most of the chemotherapeutic agents used for treating these cancer types induce DNA damage, and their activity is affected by the functional status of repair systems involved in the detection or correction of DNA lesions. Unfortunately, treatment of malignant high-grade tumors is still an unmet medical need.Areas covered: We summarize the action mechanisms of the main DNA inhibitors used for the treatment of brain tumors. In addition, studies on new agents or drug combinations investigated for this indication are reviewed, focusing our attention on clinical trials that in the last 3 years have been completed, terminated or are still recruiting patients.Expert opinion: Much still needs to be done to render aggressive CNS tumors curable or at least to transform them from lethal to chronic diseases, as it is possible for other cancer types. Drugs with improved penetration in the CNS, toxicity profile, and activity against primary and recurrent tumors are eagerly needed. Targeted agents with innovative mechanisms of action and ability to harness the cells of the tumor microenvironment against cancer cells represent a promising approach for improving the clinical outcome of CNS tumors.
Collapse
Affiliation(s)
- Lucia Lisi
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | - Marta Chiavari
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy
| | | | - Pedro M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - Pierluigi Navarra
- Department of Safety and Bioethics, Catholic University Medical School, Rome, Italy.,Department of Safety and Bioethics, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
38
|
Han Y, Wang W, Yang Y, Sun YZ, Xiao G, Tian Q, Zhang J, Cui GB, Yan LF. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade II/III Gliomas Based on Support Vector Machine. Front Neurosci 2020; 14:144. [PMID: 32153362 PMCID: PMC7047712 DOI: 10.3389/fnins.2020.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background To compare the efficacies of univariate and radiomics analyses of amide proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1) mutation of grade II/III gliomas. Methods Fifty-nine grade II/III glioma patients with known IDH1 mutation status were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044 quantitative radiomics features were extracted from APTW images. The efficacies of univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature values were compared between two groups with independent t-test and receiver operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy of each feature. Cases were randomly assigned to either the training (n = 49) or test cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse impact of the imbalance dataset in the training cohort was solved by synthetic minority oversampling technique (SMOTE). Subsequently, the performance of SVM model was assessed on both training and test cohort. Results As for univariate analysis, 18 features were significantly different between IDH1 wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve (AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1 mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and 0.84, respectively. Conclusion Radiomics strategy based on APT image features is potentially useful for preoperative estimating IDH1 mutation status.
Collapse
Affiliation(s)
- Yu Han
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Zhi Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Xiao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Tian
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Ogawa K, Kurose A, Kamataki A, Asano K, Katayama K, Kurotaki H. Giant cell glioblastoma is a distinctive subtype of glioma characterized by vulnerability to DNA damage. Brain Tumor Pathol 2020; 37:5-13. [PMID: 31655917 PMCID: PMC7028818 DOI: 10.1007/s10014-019-00355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
Giant cell glioblastoma (GC-GBM) consists of large cells with pleomorphic nuclei. As a contrast to GC-GBM, we defined monotonous small GBM (MS-GBM) as GBM that consists of small cells with monotonous small nuclei, and compared the DNA damage as well as other pathological features. GC-GBM showed minimal invasion (< 2 mm) and focal sarcomatous areas. TERTp was wild type in GC-GBM but mutant in MS-GBM. OLIG2 expression was significantly higher in MS-GBM (P < 0.01) (77% in MS-GBM and 7% in GC-GBM). GC-GBM showed significantly higher DNA double-strand breaks (DSBs) compared with MS-GBM (P < 0.01) (76% in GC-GBM and 15% in MS-GBM). Nearly, all large cells in GC-GBM underwent DSBs. Thus, significant DSBs in GC-GBM might be induced by an innate lesser stemness characteristic and be followed by mitotic slippage, resulting in polyploidization and the large pleomorphic nuclei. We conclude that GC-GBM is a distinctive subtype of glioma characterized by its vulnerability to DNA damage and that wild-type TERTp and lower OLIG2 function might induce this feature. Notably, even large pleomorphic nuclei with severe DSBs demonstrated Ki67 positivity, which alerts pathologists to the interpretation of Ki67 positivity, because cells with large nuclei undergoing severe DSBs cannot be recognized as proliferating cells that contribute to tumor aggressiveness.
Collapse
Affiliation(s)
- Kaoru Ogawa
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Akira Kurose
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan.
| | - Akihisa Kamataki
- Department of Anatomic Pathology, Hirosaki University Graduate School of Medicine, 5 Zaifu, Hirosaki, 036-8562, Japan
| | - Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosuke Katayama
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidekachi Kurotaki
- Department of Pathology, Aomori Prefectural Central Hospital, Aomori, Japan
| |
Collapse
|
40
|
Hwang K, Kim TM, Park CK, Chang JH, Jung TY, Kim JH, Nam DH, Kim SH, Yoo H, Hong YK, Kim EY, Lee DE, Joo J, Kim YJ, Choe G, Choi BS, Kang SG, Kim JH, Kim CY. Concurrent and Adjuvant Temozolomide for Newly Diagnosed Grade III Gliomas without 1p/19q Co-deletion: A Randomized, Open-Label, Phase 2 Study (KNOG-1101 Study). Cancer Res Treat 2019; 52:505-515. [PMID: 31671938 PMCID: PMC7176949 DOI: 10.4143/crt.2019.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/26/2019] [Indexed: 11/22/2022] Open
Abstract
Purpose We investigated the efficacy of temozolomide during and after radiotherapy in Korean adults with anaplastic gliomas without 1p/19q co-deletion. Materials and Methods This was a randomized, open-label, phase 2 study and notably the first multicenter trial for Korean grade III glioma patients. Eligible patients were aged 18 years or older and had newly diagnosed non-co-deleted anaplastic glioma with an Eastern Cooperative Oncology Group performance status of 0-2. Patients were randomized 1:1 to receive radiotherapy alone (60 Gy in 30 fractions of 2 Gy) (control group, n=44) or to receive radiotherapy with concurrent temozolomide (75 mg/m2/day) followed by adjuvant temozolomide (150-200 mg/m2/day for 5 days during six 28-day cycles) (treatment group, n=40). The primary end-point was 2-year progression-free survival (PFS). Seventy patients (83.3%) were available for the analysis of the isocitrate dehydrogenase 1 gene (IDH1) mutation status. Results The two-year PFS was 42.2% in the treatment group and 37.2% in the control group. Overall survival (OS) did not reach to significant difference between the groups. In multivariable analysis, age was a significant risk factor for PFS (hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.04 to 4.16). The IDH1 mutation was the only significant prognostic factor for PFS (HR, 0.28; 95% CI, 0.13 to 0.59) and OS (HR, 0.19; 95% CI, 0.07 to 0.50). Adverse events over grade 3 were seen in 16 patients (40.0%) in the treatment group and were reversible. Conclusion Concurrent and adjuvant temozolomide in Korean adults with newly diagnosed non-co- deleted anaplastic gliomas showed improved 2-year PFS. The survival benefit of this regimen needs further analysis with long-term follow-up at least more than 10 years.
Collapse
Affiliation(s)
- Kihwan Hwang
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jin Hee Kim
- Department of Radiation Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se-Hyuk Kim
- Department of Neurosurgery, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Heon Yoo
- Department of Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, Korea
| | - Yong-Kil Hong
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Young Kim
- Department of Neurosurgery, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Dong-Eun Lee
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Byung Se Choi
- Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
41
|
Young adults diagnosed with high grade gliomas: Patterns of care, outcomes, and impact on employment. J Clin Neurosci 2019; 68:45-50. [PMID: 31371189 DOI: 10.1016/j.jocn.2019.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022]
Abstract
There is limited information on the patterns of care and outcomes of high grade gliomas (HGGs) in young adults, in particular, the impact it has on a person's employment. We retrospectively identified young adult patients (age ≤ 40 years old) with newly diagnosed high grade gliomas treated between January 2013 and June 2018 across four major neuro-oncology centres in Australia. Patient demographics, tumour characteristics and treatment parameters were collected and outcomes determined. A total of 113 patients were identified with a median follow up of 27.0 months (range 1.0-70.2 months). The median age was 31 years, majority were male (65%) and employed (71.6%). IDH mutations were detected in 66 (62%) cases. The median progression-free survival (PFS) was 38.0 months (95% CI 23.3-52.7 months) and median overall survival (OS) was not reached. Patients with IDH wild type anaplastic astrocytoma and glioblastoma had a significantly shorter median PFS (19.3 months vs. NR, p = 0.001) and median OS (43.5 months vs NR, p = 0.007) than those with IDH mutated grade III anaplastic astrocytoma and oligodendroglioma. There was no significant difference in median OS or PFS between patients who underwent gross or subtotal tumour resection. Significantly, after diagnosis only 36 (32%) patients reported being employed. Young patients with IDH wild type astrocytomas and glioblastoma had better outcomes than reported historical controls. Most patients did not continue in employment post diagnosis.
Collapse
|
42
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
43
|
Radiosensitization and a Less Aggressive Phenotype of Human Malignant Glioma Cells Expressing Isocitrate Dehydrogenase 1 (IDH1) Mutant Protein: Dissecting the Mechanisms. Cancers (Basel) 2019; 11:cancers11060889. [PMID: 31242696 PMCID: PMC6627228 DOI: 10.3390/cancers11060889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
The presence of an isocitrate dehydrogenase 1 (IDH1) mutation is associated with a less aggressive phenotype, increased sensitivity to radiation, and increased overall survival in patients with diffuse glioma. Based on in vitro experimentations in malignant glioma cell lines, the consequences on cellular processes of IDH1R132H expression were analyzed. The results revealed that IDH1R132H expression enhanced the radiation induced accumulation of residual γH2AX foci and decreased the amount of glutathione (GSH) independent of the oxygen status. In addition, expression of the mutant IDH1 caused a significant increase of cell stiffness and induced an altered organization of the cytoskeleton, which has been shown to reinforce cell stiffness. Furthermore, IDH1R132H expression decreased the expression of vimentin, an important component of the cytoskeleton and regulator of the cell stiffness. The results emphasize the important role of mutant IDH1 in treatment of patients with diffuse gliomas especially in response to radiation. Hence, detection of the genetic status of IDH1 before therapy massively expands the utility of immunohistochemistry to accurately distinguish patients with a less aggressive and radiosensitive IDH1-mutant diffuse glioma suitable for radiotherapy from those with a more aggressive IDH1-wildtype diffuse glioma who might benefit from an individually intensified therapy comprising radiotherapy and alternative medical treatments.
Collapse
|
44
|
Molinari E, Curran OE, Grant R. Clinical importance of molecular markers of adult diffuse glioma. Pract Neurol 2019; 19:412-416. [PMID: 31175262 DOI: 10.1136/practneurol-2018-002116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2019] [Indexed: 11/04/2022]
Abstract
In 2016, the WHO incorporated molecular markers, in addition to histology, into the diagnostic classification of central nervous system (CNS) tumours. This improves diagnostic accuracy and prognostication: oligo-astrocytoma no longer exists as a clinical entity; isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted oligodendroglioma is a smaller category with better prognosis; IDH wild-type 'low-grade' glioma has a much poorer prognosis; and glioblastoma is divided into IDH mutant (with an better prognosis than pre-2016 glioblastoma) and IDH wild type (with a poorer prognosis). Previous advice based on phenotype alone will change with respect to median survival, best management plan and response to treatment. There are implications for routine neuropathology reporting and future trial design. Cases that are difficult to classify may need more advanced molecular genetic classification through DNA methylation-based classification of CNS tumours (Heidelberg Classifier). We discuss the practical implications.
Collapse
Affiliation(s)
- Emanuela Molinari
- Department of Neurology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Olimpia E Curran
- Neuropathology Unit, Department of Pathology, Western General Hospital, Edinburgh, UK
| | - Robin Grant
- Department of Neurology and Neurosurgery, Western General Hospital, Edinburgh, UK
| |
Collapse
|
45
|
Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, Niazi T, Abdulkarim B. Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation. Front Oncol 2019; 9:374. [PMID: 31165039 PMCID: PMC6536622 DOI: 10.3389/fonc.2019.00374] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiomics analysis has had remarkable progress along with advances in medical imaging, most notability in central nervous system malignancies. Radiomics refers to the extraction of a large number of quantitative features that describe the intensity, texture and geometrical characteristics attributed to the tumor radiographic data. These features have been used to build predictive models for diagnosis, prognosis, and therapeutic response. Such models are being combined with clinical, biological, genetics and proteomic features to enhance reproducibility. Broadly, the four steps necessary for radiomic analysis are: (1) image acquisition, (2) segmentation or labeling, (3) feature extraction, and (4) statistical analysis. Major methodological challenges remain prior to clinical implementation. Essential steps include: adoption of an optimized standard imaging process, establishing a common criterion for performing segmentation, fully automated extraction of radiomic features without redundancy, and robust statistical modeling validated in the prospective setting. This review walks through these steps in detail, as it pertains to high grade gliomas. The impact on precision medicine will be discussed, as well as the challenges facing clinical implementation of radiomic in the current management of glioblastoma.
Collapse
Affiliation(s)
- Ahmad Chaddad
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | | | - Paul Daniel
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Siham Sabri
- Department of Pathology, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC, Canada
| | - Bertrand J Jean-Claude
- Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Tamim Niazi
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada
| | - Bassam Abdulkarim
- Division of Radiation Oncology, Department of Oncology, McGill University, Montreal, QC, Canada.,Research Institute of the McGill University Health Centre, Glen Site, Montreal, QC, Canada
| |
Collapse
|
46
|
Livermore LJ, Isabelle M, Bell IM, Scott C, Walsby-Tickle J, Gannon J, Plaha P, Vallance C, Ansorge O. Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy. Neurooncol Adv 2019; 1:vdz008. [PMID: 31608327 PMCID: PMC6777649 DOI: 10.1093/noajnl/vdz008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The molecular genetic classification of gliomas, particularly the identification of isocitrate dehydrogenase (IDH) mutations, is critical for clinical and surgical decision-making. Raman spectroscopy probes the unique molecular vibrations of a sample to accurately characterize its molecular composition. No sample processing is required allowing for rapid analysis of tissue. The aim of this study was to evaluate the ability of Raman spectroscopy to rapidly identify the common molecular genetic subtypes of diffuse glioma in the neurosurgical setting using fresh biopsy tissue. In addition, classification models were built using cryosections, formalin-fixed paraffin-embedded (FFPE) sections and LN-18 (IDH-mutated and wild-type parental cell) glioma cell lines. METHODS Fresh tissue, straight from neurosurgical theatres, underwent Raman analysis and classification into astrocytoma, IDH-wild-type; astrocytoma, IDH-mutant; or oligodendroglioma. The genetic subtype was confirmed on a parallel section using immunohistochemistry and targeted genetic sequencing. RESULTS Fresh tissue samples from 62 patients were collected (36 astrocytoma, IDH-wild-type; 21 astrocytoma, IDH-mutated; 5 oligodendroglioma). A principal component analysis fed linear discriminant analysis classification model demonstrated 79%-94% sensitivity and 90%-100% specificity for predicting the 3 glioma genetic subtypes. For the prediction of IDH mutation alone, the model gave 91% sensitivity and 95% specificity. Seventy-nine cryosections, 120 FFPE samples, and LN18 cells were also successfully classified. Meantime for Raman data collection was 9.5 min in the fresh tissue samples, with the process from intraoperative biopsy to genetic classification taking under 15 min. CONCLUSION These data demonstrate that Raman spectroscopy can be used for the rapid, intraoperative, classification of gliomas into common genetic subtypes.
Collapse
Affiliation(s)
- Laurent James Livermore
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Ian Mac Bell
- Renishaw plc., Spectroscopy Products Division, UK
| | - Connor Scott
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Joan Gannon
- Department of Chemistry, University of Oxford, UK
| | - Puneet Plaha
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| | | | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
47
|
Jacob J, Feuvret L, Mazeron JJ, Simon JM, Canova CH, Riet FG, Blais E, Jenny C, Maingon P. Radioterapia dei tumori cerebrali primitivi dell’adulto. Neurologia 2019. [DOI: 10.1016/s1634-7072(18)41587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Consequences of IDH1/2 Mutations in Gliomas and an Assessment of Inhibitors Targeting Mutated IDH Proteins. Molecules 2019; 24:molecules24050968. [PMID: 30857299 PMCID: PMC6429355 DOI: 10.3390/molecules24050968] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022] Open
Abstract
Isocitrate dehydrogenases (IDH) 1 and 2 are key metabolic enzymes that generate reduced nicotinamide adenine dinucleotide phosphate (NADPH) to maintain a pool of reduced glutathione and peroxiredoxin, and produce α-ketoglutarate, a co-factor of numerous enzymes. IDH1/2 is mutated in ~70–80% of lower-grade gliomas and the majority of secondary glioblastomas. The mutant IDH1 (R132H), in addition to losing its normal catalytic activity, gains the function of producing the d-(R)-2-hydroxyglutarate (2-HG). Overproduction of 2-HG in cancer cells interferes with cellular metabolism and inhibits histone and DNA demethylases, which results in histone and DNA hypermethylation and the blockade of cellular differentiation. We summarize recent findings characterizing molecular mechanisms underlying oncogenic alterations associated with mutated IDH1/2, and their impact on tumor microenvironment and antitumor immunity. Isoform-selective IDH inhibitors which suppress 2-HG production and induce antitumor responses in cells with IDH1 and IDH2 mutations were developed and validated in preclinical settings. Inhibitors of mutated IDH1/2 enzymes entered clinical trials and represent a novel drug class for targeted therapy of gliomas. We describe the development of small-molecule compounds and peptide vaccines targeting IDH-mutant gliomas and the results of their testing in preclinical and clinical studies. All those results support the translational potential of strategies targeting gliomas carrying IDH1 mutations.
Collapse
|
49
|
Ventero MP, Fuentes-Baile M, Quereda C, Perez-Valeciano E, Alenda C, Garcia-Morales P, Esposito D, Dorado P, Manuel Barbera V, Saceda M. Radiotherapy resistance acquisition in Glioblastoma. Role of SOCS1 and SOCS3. PLoS One 2019; 14:e0212581. [PMID: 30811476 PMCID: PMC6392282 DOI: 10.1371/journal.pone.0212581] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/05/2019] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a poor prognosis type of tumour due to its resistance to chemo and radiotherapy. SOCS1 and SOCS3 have been associated with tumour progression and response to treatments in different kinds of cancers, including GBM. In this study, cell lines of IDH-wildtype GBM from primary cultures were obtained, and the role of SOCS1 and SOCS3 in the radiotherapy response was analysed. Fifty-two brain aspirates from GBM patients were processed, and six new cell lines of IDH-wildtype GBM were established. These new cell lines were characterized according to the WHO classification of CNS tumours. SOCS1 and SOCS3 expression levels were determined, at mRNA level by Q-PCR, at protein level by immunocytochemistry, and Western blot analysis. The results showed that SOCS1 and SOCS3 are overexpressed in GBM, as compared to a non-tumoral brain RNA pool. SOCS1 and SOCS3 expression were reduced by siRNA, and it was found that SOCS3 inhibition increases radioresistance in GBM cell lines, suggesting a key role of SOCS3 in radioresistant acquisition. In addition, radioresistant clonal populations obtained by selective pressure on these cell cultures also showed a significant decrease in SOCS3 expression, while SOCS1 remained unchanged. Furthermore, the induction of SOCS3 expression, under a heterologous promoter, in a radiotherapy resistant GBM cell line increased its radiosensitivity, supporting an important implication of SOCS3 in radiotherapy resistance acquisition. Finally, the treatment with TSA in the most radioresistant established cell line produced an increase in the effect of radiotherapy, that correlated with an increase in the expression of SOCS3. These effects of TSA disappeared if the increase in the expression of SOCS3 prevented with an siRNA against SOCS3. Thus, SOCS3 signal transduction pathway (JAK/STAT) could be useful to unmask new putative targets to improve radiotherapy response in GBM.
Collapse
Affiliation(s)
- Maria Paz Ventero
- Hospital General Universitario de Elche, FISABIO, Camí de l'Almazara, Elx (Alicante), Spain
| | - Maria Fuentes-Baile
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/ Maestro Alonso, Alicante (Alicante), Spain
| | - Cristina Quereda
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante (Alicante), Spain
| | - Elizabeth Perez-Valeciano
- Instituto de Biología Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Cristina Alenda
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Hospital General Universitario de Alicante, C/ Maestro Alonso, Alicante (Alicante), Spain
| | - Pilar Garcia-Morales
- Instituto de Biología Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernández, Elche (Alicante), Spain
| | - Danilo Esposito
- Unidad de Oncología Radioterápica, ERESA, Hospital General Universitario de Elche, Camí de l'Almazara, Elx (Alicante), Spain
| | - Pilar Dorado
- Unidad de Oncología Radioterápica, ERESA, Hospital General Universitario de Elche, Camí de l'Almazara, Elx (Alicante), Spain
| | - Victor Manuel Barbera
- Hospital General Universitario de Elche, FISABIO, Camí de l'Almazara, Elx (Alicante), Spain
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante (Alicante), Spain
- * E-mail: (VMB); (MS)
| | - Miguel Saceda
- Hospital General Universitario de Elche, FISABIO, Camí de l'Almazara, Elx (Alicante), Spain
- Instituto de Biología Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernández, Elche (Alicante), Spain
- * E-mail: (VMB); (MS)
| |
Collapse
|
50
|
Liu S, Liu X, Xiao Y, Chen S, Zhuang W. Prognostic factors associated with survival in patients with anaplastic oligodendroglioma. PLoS One 2019; 14:e0211513. [PMID: 30699183 PMCID: PMC6353193 DOI: 10.1371/journal.pone.0211513] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
Anaplastic oligodendroglioma is a rare disease with an inadequately understood prognosis. The aim of this study was to investigate factors associated with survival outcome in anaplastic oligodendroglioma patients. A population-based cohort study was conducted based on the Surveillance, Epidemiology, and End Results program. In total, 1899 patients with a histological diagnosis of anaplastic oligodendroglioma from 1973 to 2015 were included. Mean age at diagnosis was 49.2 years, and 56.19% were male. In our study, 62.40% of patients were married, and 87.05% were white. Most patients (90.42%) were diagnosed with anaplastic oligodendroglioma as their first malignant primary tumor, but 9.58% had a diagnosis of at least one other primary malignancy; 87.89% of patients had received cancer-directed surgery. Patients receiving surgery had a better prognosis for overall survival compared to those not receiving surgery after propensity score matching analysis (p<0.05). The overall 1-, 3-, 5-, and 10-year survival of anaplastic oligodendroglioma was 78.7%, 60%, 50.2%, and 36.2%, respectively. Kaplan-Meier analysis indicated that age, marital status, presence of multiple primary malignancies, and surgical treatment were associated with overall survival, whereas sex and race were not. Moreover, age at diagnosis of 52 years was calculated as an optimal cutoff value to distinguish better and worse overall survival. Multivariate Cox proportional hazard analysis indicated that older age (OR 1.040, 95%CI1.035-1.045), single patients (OR 1.293, 95%CI 1.103-1.515), and presence of multiple primary malignancies (OR 1.501, 95%CI 1.238-1.820) were significantly associated with worse overall survival, whereas surgery (OR 0.584, 95%CI 0.494-0.689) was associated with better overall survival. A nomogram predicting 5-, and 10-year survival probability for anaplastic oligodendroglioma was constructed based on these variables. In conclusion, age, marital status, presence of multiple primary malignancies, and surgical treatment were associated with survival of anaplastic oligodendroglioma.
Collapse
Affiliation(s)
- Shuo Liu
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqiang Liu
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yingxiu Xiao
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shuying Chen
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiduan Zhuang
- Neurology Department, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|