1
|
Ahsan R, Kifayat S, Pooniya KK, Kularia S, Adimalla BS, Sanapalli BKR, Sanapalli V, Sigalapalli DK. Bacterial Histidine Kinase and the Development of Its Inhibitors in the 21st Century. Antibiotics (Basel) 2024; 13:576. [PMID: 39061258 PMCID: PMC11274179 DOI: 10.3390/antibiotics13070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial histidine kinase (BHK) is a constituent of the two-component signaling (TCS) pathway, which is responsible for the regulation of a number of processes connected to bacterial pathogenicity, virulence, biofilm development, antibiotic resistance, and bacterial persistence. As BHK regulation is diverse, inhibitors can be developed, such as antibiotic synergists, bacteriostatic/bactericidal agents, virulence inhibitors, and biofilm inhibitors. Inhibition of essential BHK has always been an amenable strategy due to the conserved binding sites of the domains across bacterial species and growth dependence. Hence, an inhibitor of BHK might block multiple TCS regulatory networks. This review describes the TCS system and the role of BHK in bacterial virulence and discusses the available inhibitors of BHK, which is a specific response regulator with essential structural features.
Collapse
Affiliation(s)
- Ragib Ahsan
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sumaiya Kifayat
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Krishan Kumar Pooniya
- Department of Pharmacy, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India (S.K.)
| | - Sunita Kularia
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur 303121, Rajasthan, India;
| | - Bhavani Sailu Adimalla
- Department of Pharmaceutical Analysis, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, Guntur 522213, Andhra Pradesh, India;
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India;
| | - Vidyasrilekha Sanapalli
- Department of Pharmaceutical Chemistry, School of Pharmacy & Technology Management, SVKM’s Narsee Monjee Institute of Management Studies (NMIMS) Deemed to-be-University, Jadcherla 509301, Hyderabad, India
| | | |
Collapse
|
2
|
Ramisetty S, Subbalakshmi AR, Pareek S, Mirzapoiazova T, Do D, Prabhakar D, Pisick E, Shrestha S, Achuthan S, Bhattacharya S, Malhotra J, Mohanty A, Singhal SS, Salgia R, Kulkarni P. Leveraging Cancer Phenotypic Plasticity for Novel Treatment Strategies. J Clin Med 2024; 13:3337. [PMID: 38893049 PMCID: PMC11172618 DOI: 10.3390/jcm13113337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer cells, like all other organisms, are adept at switching their phenotype to adjust to the changes in their environment. Thus, phenotypic plasticity is a quantitative trait that confers a fitness advantage to the cancer cell by altering its phenotype to suit environmental circumstances. Until recently, new traits, especially in cancer, were thought to arise due to genetic factors; however, it is now amply evident that such traits could also emerge non-genetically due to phenotypic plasticity. Furthermore, phenotypic plasticity of cancer cells contributes to phenotypic heterogeneity in the population, which is a major impediment in treating the disease. Finally, plasticity also impacts the group behavior of cancer cells, since competition and cooperation among multiple clonal groups within the population and the interactions they have with the tumor microenvironment also contribute to the evolution of drug resistance. Thus, understanding the mechanisms that cancer cells exploit to tailor their phenotypes at a systems level can aid the development of novel cancer therapeutics and treatment strategies. Here, we present our perspective on a team medicine-based approach to gain a deeper understanding of the phenomenon to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ayalur Raghu Subbalakshmi
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Siddhika Pareek
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dana Do
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Dhivya Prabhakar
- City of Hope Atlanta, 600 Celebrate Life Parkway, Newnan, GA 30265, USA;
| | - Evan Pisick
- City of Hope Chicago, 2520 Elisha Avenue, Zion, IL 60099, USA;
| | - Sagun Shrestha
- City of Hope Phoenix, 14200 West Celebrate Life Way, Goodyear, AZ 85338, USA;
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Jyoti Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Sharad S. Singhal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (S.R.); (A.R.S.); (S.P.); (T.M.); (D.D.); (J.M.); (A.M.); (S.S.S.)
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
3
|
Chen Y, Zhang S, Li Z, Yin B, Liu Y, Zhang L. Discovery of a Dual-Target Inhibitor of CDK7 and HDAC1 That Induces Apoptosis and Inhibits Migration in Colorectal Cancer. ChemMedChem 2023; 18:e202300281. [PMID: 37821774 DOI: 10.1002/cmdc.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aberrant expression or dysfunction of cyclin-dependent kinase 7(CDK7) and histone deacetylase 1 (HDAC1) are associated with the occurrence and progression of various cancers. In this study, we developed a series of dual-target inhibitors by designing and synthesizing compounds that incorporate the pharmacophores of THZ2 and SAHA. The most potent dual-target inhibitor displayed robust inhibitory activity against several types of cancer cells and demonstrated promising inhibitory effects on both CDK7 and HDAC1. After further mechanistic studies, it was discovered that this inhibitor effectively arrested HCT-116 cells at the G2 phase and induced apoptosis. Additionally, it also significantly hindered the migration of HCT-116 cells and exhibited notable anti-tumor effects. These findings offer strong support for the development of dual-target inhibitors of CDK7 and HDAC1 and provide a promising avenue for future cancer therapy.
Collapse
Affiliation(s)
- Yao Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
4
|
Sharma N, Chaudhary A, Sachdeva M. An insight into the structure-activity relationship studies of anticancer medicinal attributes of 7-azaindole derivatives: a review. Future Med Chem 2023; 15:2309-2323. [PMID: 38112047 DOI: 10.4155/fmc-2023-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
In the current portfolio, there is a lot of interest in the 7-azaindole building block for drug discovery. The creation of synthetic, sophisticated methods for the modification of 7-azaindoles is a promising area of research. This review covers the structure-activity relationship of 7-azaindole analogs, which have been shown to be effective anticancer agents in the literature of the past two decades. Positions 1, 3 and 5 of the 7-azaindole ring are the most active sites. Disubstitution is used for the synthesis of a new analog of the 7-azaindole moiety. All positions are used to create novel molecules that are effective anticancer agents. The alkyl, aryl carboxamide group and heterocyclic ring are the most successful types of substitution.
Collapse
Affiliation(s)
- Neha Sharma
- Rajkumar Goel Institute of Technology (Pharmacy), NH-58, Ghaziabad, 201001, India
| | - Anurag Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, 250005, India
| | - Monika Sachdeva
- Rajkumar Goel Institute of Technology (Pharmacy), NH-58, Ghaziabad, 201001, India
| |
Collapse
|
5
|
Aljohani AKB, El Zaloa WAZ, Alswah M, Seleem MA, Elsebaei MM, Bayoumi AH, El-Morsy AM, Almaghrabi M, Awaji AA, Hammad A, Alsulaimany M, Ahmed HEA. Development of Novel Class of Phenylpyrazolo[3,4- d]pyrimidine-Based Analogs with Potent Anticancer Activity and Multitarget Enzyme Inhibition Supported by Docking Studies. Int J Mol Sci 2023; 24:15026. [PMID: 37834474 PMCID: PMC10573254 DOI: 10.3390/ijms241915026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.
Collapse
Affiliation(s)
- Ahmed K. B. Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed M. Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ahmed M. El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ali Hammad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| |
Collapse
|
6
|
Vallés-Martí A, Mantini G, Manoukian P, Waasdorp C, Sarasqueta AF, de Goeij-de Haas RR, Henneman AA, Piersma SR, Pham TV, Knol JC, Giovannetti E, Bijlsma MF, Jiménez CR. Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma. Cell Rep 2023; 42:112581. [PMID: 37269289 DOI: 10.1016/j.celrep.2023.112581] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a limited set of known driver mutations but considerable cancer cell heterogeneity. Phosphoproteomics provides a readout of aberrant signaling and has the potential to identify new targets and guide treatment decisions. Using two-step sequential phosphopeptide enrichment, we generate a comprehensive phosphoproteome and proteome of nine PDAC cell lines, encompassing more than 20,000 phosphosites on 5,763 phospho-proteins, including 316 protein kinases. By using integrative inferred kinase activity (INKA) scoring, we identify multiple (parallel) activated kinases that are subsequently matched to kinase inhibitors. Compared with high-dose single-drug treatments, INKA-tailored low-dose 3-drug combinations against multiple targets demonstrate superior efficacy against PDAC cell lines, organoid cultures, and patient-derived xenografts. Overall, this approach is particularly more effective against the aggressive mesenchymal PDAC model compared with the epithelial model in both preclinical settings and may contribute to improved treatment outcomes in PDAC patients.
Collapse
Affiliation(s)
- Andrea Vallés-Martí
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands
| | - Giulia Mantini
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Paul Manoukian
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | | | - Richard R de Goeij-de Haas
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Alex A Henneman
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Sander R Piersma
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Thang V Pham
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Jaco C Knol
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Pharmacology Laboratory, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam University Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Connie R Jiménez
- Amsterdam University Medical Center, VU University, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Nigam M, Mishra AP, Deb VK, Dimri DB, Tiwari V, Bungau SG, Bungau AF, Radu AF. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed Pharmacother 2023; 164:115015. [PMID: 37321055 DOI: 10.1016/j.biopha.2023.115015] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Among the most extensively researched processes in the development and treatment of cancer is inflammatory condition. Although acute inflammation is essential for the wound healing and reconstruction of tissues that have been damaged, chronic inflammation may contribute to the onset and growth of a number of diseases, including cancer. By disrupting the signaling processes of cells, which result in cancer induction, invasion, and development, a variety of inflammatory molecules are linked to the development of cancer. The microenvironment surrounding the tumor is greatly influenced by inflammatory cells and their subsequent secretions, which also contribute significantly to the tumor's growth, survivability, and potential migration. These inflammatory variables have been mentioned in several publications as prospective diagnostic tools for anticipating the onset of cancer. Targeting inflammation with various therapies can reduce the inflammatory response and potentially limit or block the proliferation of cancer cells. The scientific medical literature from the past three decades has been studied to determine how inflammatory chemicals and cell signaling pathways related to cancer invasion and metastasis are related. The current narrative review updates the relevant literature while highlighting the specifics of inflammatory signaling pathways in cancer and their possible therapeutic possibilities.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Abhay Prakash Mishra
- Department of Pharmacology, Faculty of Health Science, University of Free State, 9300 Bloemfontein, South Africa.
| | - Vishal Kumar Deb
- Dietetics and Nutrition Technology Division, CSIR Institute of Himalayan Bioresource Technology, 176061 Palampur, Himanchal Pradesh, India
| | - Deen Bandhu Dimri
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, 246174 Srinagar Garhwal, Uttarakhand, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology BHU, Varanasi 221005, Uttar Pradesh, India
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
8
|
El-Kalyoubi S, Elbaramawi SS, Zordok WA, Malebari AM, Safo MK, Ibrahim TS, Taher ES. Design and synthesis of uracil/thiouracil based quinoline scaffolds as topoisomerases I/II inhibitors for chemotherapy: A new hybrid navigator with DFT calculation. Bioorg Chem 2023; 136:106560. [PMID: 37121108 DOI: 10.1016/j.bioorg.2023.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
In this work, a novel promising hybrid mode of uracil/thiouracil based quinoline pharmacophore i.e. 5a-f was rationalized and synthesized based on rigidification and lipophilic principles, and following the reported pharmacophoric features of camptothecin & doxorubicin. Concurrently, a non-rigid mode pharmacophore i.e. 7a-f was also designed and synthesized. The anti-proliferative activity of the compounds was assessed against three different cancer cell lines, namely A549 lung cancer, MCF-7 breast adenocarcinoma, and HepG-2 hepatic carcinoma. Further, promising candidates were evaluated against A549, and MCF-7 and for their ability to inhibit topoisomerases I &II. Compound 5f was observed to be the most active congener, displaying the highest cell inhibition of 84.4% for topoisomerase I and 92%, for topoisomerase II at a concentration of 100 µM. When its cytotoxicity was evaluated against A549 cells, 5f arrested the cell cycle at the S phase and increased the apoptosis ratio by 46.31%. DFT calculation of 5f showed higher dipole moment and greater negative energy values (-247531.510 kcal/mol) with positive & negative poles, and better stability reflection. Furthermore, molecular docking of 5f to both enzymes showed good agreement with the biological assessment. This study has given insight for further consideration of the highly promising hybrid 5f.
Collapse
Affiliation(s)
- Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, 42511 Port Said, Egypt.
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Wael A Zordok
- Department of Chemistry (Physical Chemistry Division), Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martin K Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
| |
Collapse
|
9
|
Pal A, Das S, Basu S, Kundu R. Apoptotic and autophagic death union by Thuja occidentalis homeopathic drug in cervical cancer cells with thujone as the bioactive principle. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:463-472. [PMID: 35752587 DOI: 10.1016/j.joim.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE "Multi-targeting" drugs can prove fruitful to combat drug-resistance of multifactorial disease-cervical cancer. This study envisioned to reveal if Thuja homeopathic mother tincture (MT) and its bioactive component could combat human papillomavirus (HPV)-16-infected SiHa cervical cancer cells since it is globally acclaimed for HPV-mediated warts. METHODS Thuja MT was studied for its antiproliferative and antimigratory properties in SiHa cells followed by microscopic determination of reactive oxygen species (ROS) generation by 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining and loss in mitochondrial membrane potential (MtMP) by rhodamine 123 (Rh123) staining. Apoptosis and autophagy inductions were studied by acridine orange/ethidium bromide (AO/EB) staining and immunoblot analyses of marker proteins. The bioactive component of Thuja MT detected by gas chromatography-mass spectrometry was studied for antiproliferative and antimigratory properties along with in silico prediction of its cellular targets by molecular docking and oral drug forming competency. RESULTS Thuja MT showed significant antiproliferative and antimigratory potential in SiHa cells at a 50% inhibitory concentration (IC50) of 17.3 µL/mL. An increase in DCFDA fluorescence and loss in Rh123 fluorescence prove that Thuja MT acted through the burst of ROS and loss in MtMP respectively. AO/EB-stained cells under the microscope and immunoblot analyses supported Thuja-induced cellular demise via dual pathways-apoptosis and autophagy. Immunoblots showed cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) along with upregulation of Beclin-1, microtubule-associated protein 1 light chain 3B (LC3B)-II, and p62 proteins. Hence, the apoptotic cascade followed a caspase-3-dependent pathway supported by PARP-1 cleavage, while autophagic death was Beclin-1-dependent and mediated by accumulation of LC3BII and p62 proteins. Thujone, detected as the bioactive principle of Thuja MT, showed greater anti-proliferative and anti-migratory potential at an IC50 of 77 µg/mL, along with excellent oral drug competency with the ability for gastrointestinal absorption and blood-brain-barrier permeation with nil toxicity. Molecular docking depicted thujone with the strongest affinity for mammalian target of rapamycin, phosphoinositide 3-kinase, and protein kinase B followed by B-cell lymphoma 2, murine double minute 2 and adenosine monophosphate-activated protein kinase, which might act as upstream triggers of apoptotic-autophagic crosstalk. CONCLUSION Robust "multi-targeting" anticancer potential of Thuja drug and thujone for HPV-infected cervical cancer ascertained its therapeutic efficacy for HPV infections.
Collapse
Affiliation(s)
- Asmita Pal
- Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Sucharita Das
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, Kolkata, West Bengal 700019, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, Kolkata, West Bengal 700019, India.
| |
Collapse
|
10
|
Van Dort ME, Jang Y, Bonham CA, Heist K, Palagama DSW, McDonald L, Zhang EZ, Chenevert TL, Luker GD, Ross BD. Structural effects of morpholine replacement in ZSTK474 on Class I PI3K isoform inhibition: Development of novel MEK/PI3K bifunctional inhibitors. Eur J Med Chem 2022; 229:113996. [PMID: 34802837 PMCID: PMC8792322 DOI: 10.1016/j.ejmech.2021.113996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Established roles for PI3K and MAPK signaling pathways in tumorigenesis has prompted extensive research towards the discovery of small-molecule inhibitors as cancer therapeutics. However, significant compensatory regulation exists between these two signaling cascades, leading to redundancy among survival pathways. Consequently, initial clinical trials aimed at either PI3K or MEK inhibition alone have proven ineffective and highlight the need for development of targeted and innovative therapeutic combination strategies. We designed a series of PI3K inhibitor derivatives wherein a single morpholine group of the PI3K inhibitor ZSTK474 was substituted with a variety of 2-aminoethyl functional groups. Analogs with pendant hydroxyl or methoxy groups maintained low nanomolar inhibition towards PI3Kα, PI3Kγ, and PI3Kδ isoforms in contrast to those with pendant amino groups which were significantly less inhibitory. Synthesis of prototype PI3K/MEK bifunctional inhibitors (6r, 6s) was guided by the structure-activity data, where a MEK-targeting inhibitor was tethered directly via a short PEG linker to the triazine core of the PI3K inhibitor analogs. These compounds (6r, 6s) displayed nanomolar inhibition towards PI3Kα, δ, and MEK (IC50 ∼105-350 nM), and low micromolar inhibition for PI3Kβ and PI3Kγ (IC50 ∼1.5-3.9 μM) in enzymatic inhibition assays. Cell viability assays demonstrated superior anti-proliferative activity for 6s over 6r in three tumor-derived cell lines (A375, D54, SET-2), which correlated with inhibition of downstream AKT and ERK1/2 phosphorylation. Compounds 6r and 6s also demonstrated in vivo tolerability with therapeutic efficacy through reduction of kinase activation and amelioration of disease phenotypes in the JAK2V617F mutant myelofibrosis mouse cancer model. Taken together, these results support further structure optimization of 6r and 6s as promising leads for combination therapy in human cancer as a new class of PI3K/MEK bifunctional inhibitors.
Collapse
Affiliation(s)
- Marcian E Van Dort
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Youngsoon Jang
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Christopher A Bonham
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Kevin Heist
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Dilrukshika S W Palagama
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Lucas McDonald
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Edward Z Zhang
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Thomas L Chenevert
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Gary D Luker
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Brian D Ross
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA; Department of Biological Chemistry, The University of Michigan Medical School, MI, 48109, USA.
| |
Collapse
|
11
|
Guo M, Duan Y, Dai S, Li J, Chen X, Qu L, Chen Z, Wei H, Jiang L, Chen Y. Structural study of ponatinib in inhibiting SRC kinase. Biochem Biophys Res Commun 2022; 598:15-19. [PMID: 35151199 DOI: 10.1016/j.bbrc.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/26/2022]
Abstract
Ponatinib is a multi-target tyrosine kinase inhibitor that targets ABL, SRC, FGFR, and so on. It was designed to overcome the resistance of BCR-ABL mutation to imatinib, especially the gatekeeper mutation ABLT315I. The molecular mechanism by which ponatinib overcomes mutations of BCR-ABL and some other targets has been explained, but little information is known about the characteristics of ponatinib binding to SRC. Here, we showed that ponatinib inhibited wild type SRC kinase but failed to inhibit SRC gatekeeper mutants in both biochemical and cellular assays. We determined the crystal structure of ponatinib in complex with the SRC kinase domain. In addition, by structural analysis, we provided a possible explanation for why ponatinib showed different effects on SRC and other kinases with gatekeeper mutations. The resistance mechanism of SRC gatekeeper mutations to ponatinib may provide meaningful information for designing inhibitors against SRC family kinases in the future.
Collapse
Affiliation(s)
- Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yankun Duan
- Department of Infectious Diseases & State Local Joint Engineering Laboratory for Anticancer Drugs, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Longying Jiang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Department of Pathology, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
12
|
Yu F, Cai M, Shao L, Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front Chem 2021; 9:679120. [PMID: 34277564 PMCID: PMC8279777 DOI: 10.3389/fchem.2021.679120] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Kinase dysregulation is greatly associated with cell proliferation, migration and survival, indicating the importance of kinases as therapeutic targets for anticancer drug development. However, traditional kinase inhibitors binding to catalytic or allosteric sites are associated with significant challenges. The emergence of resistance and targeting difficult-to-degrade and multi-domain proteins are significant limiting factors affecting the efficacy of targeted anticancer drugs. The next-generation treatment approaches seem to have overcome these concerns, and the use of proteolysis targeting chimera (PROTAC) technology is one such method. PROTACs bind to proteins of interest and recruit E3 ligase for degrading the whole target protein via the ubiquitin-proteasome pathway. This review provides a detailed summary of the most recent signs of progress in PROTACs targeting different kinases, primarily focusing on new chemical entities in medicinal chemistry.
Collapse
Affiliation(s)
- Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ming Cai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy is set to emerge as the future of cancer therapy. However, recent immunotherapy trials in different cancers have yielded sub-optimal results, with durable responses seen in only a small fraction of patients. Engineered multifunctional nanomaterials and biological materials are versatile platforms that can elicit strong immune responses and improve anti-cancer efficacy when applied to cancer immunotherapy. While there are traditional systems such as polymer- and lipid-based nanoparticles, there is a wide variety of other materials with inherent and additive properties that can allow for more potent activation of the immune system. By synthesizing and applying multifunctional strategies, it allows for a more extensive and more effective repertoire of tools to use in the wide variety of situations that cancer presents itself. Here, several types of nanoscale and biological material strategies and platforms that provide their inherent benefits for targeting and activating multiple aspects of the immune system are discussed. Overall, this review aims to provide a comprehensive understanding of recent advances in the field of multifunctional cancer immunotherapy and trends that pave the way for more diverse and tactical regression of tumors through soliciting responses by either the adaptive or innate immune system, and even both simultaneously.
Collapse
Affiliation(s)
- Anthony Brouillard
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Nilesh Deshpande
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
14
|
Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M. Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model. Biomed Pharmacother 2021; 134:111140. [PMID: 33360052 DOI: 10.1016/j.biopha.2020.111140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine and theobromine are abundantly present in tea and cocoa, respectively. This study was performed to assess the chemopreventive effects of these phytochemicals, alone or together, on dimethylhydrazine (DMH)-induced colon cancer. Thirty male Wistar rats were divided into five groups and subcutaneously injected with saline (negative control group) or 30 mg/kg DMH (the other groups) two times/week for 12 weeks. The negative and positive control animals were orally treated with drinking water, and the other groups were gavaged with theanine (400 mg/kg), theobromine (100 mg/kg), or their mixture for two weeks before and throughout the injection period. At the end of the study, the morphological and histopathological features, Ki-67 proliferation marker, and the expression of Akt/mTOR, JAK2/STAT3, MAPK/ERK, and TGF-β/Smad pathways were investigated. Theanine and theobromine, alone or together, reduced the number of cancerous and precancerous lesions, the volume of tumors, the Ki-67 immunostaining, and the expression of Akt/mTOR and JAK2/STAT3 oncogenic pathways. The simultaneous treatment was more effective in the down-regulation of Akt and mTOR compared to either theanine or theobromine alone. Theobromine administration also caused more inhibitory effects on the Ki-67 and Akt/mTOR expression than theanine. Besides, all dietary interventions increased the mRNA and protein expression of Smad2. In conclusion, theanine and theobromine, alone and in combination, inhibited tumorigenesis through down-regulation of the Akt/mTOR and JAK2/STAT3 pathways and an increment of the Smad2 tumor suppressor. The inhibition of the Akt/mTOR pathway was more pronounced by simultaneous treatment.
Collapse
Affiliation(s)
- Sara Shojaei-Zarghani
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Rafraf
- Nutrition Research Center, Department of Community Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
The Crosstalk between FAK and Wnt Signaling Pathways in Cancer and Its Therapeutic Implication. Int J Mol Sci 2020; 21:ijms21239107. [PMID: 33266025 PMCID: PMC7730291 DOI: 10.3390/ijms21239107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Focal adhesion kinase (FAK) and Wnt signaling pathways are important contributors to tumorigenesis in several cancers. While most results come from studies investigating these pathways individually, there is increasing evidence of a functional crosstalk between both signaling pathways during development and tumor progression. A number of FAK-Wnt interactions are described, suggesting an intricate, context-specific, and cell type-dependent relationship. During development for instance, FAK acts mainly upstream of Wnt signaling; and although in intestinal homeostasis and mucosal regeneration Wnt seems to function upstream of FAK signaling, FAK activates the Wnt/β-catenin signaling pathway during APC-driven intestinal tumorigenesis. In breast, lung, and pancreatic cancers, FAK is reported to modulate the Wnt signaling pathway, while in prostate cancer, FAK is downstream of Wnt. In malignant mesothelioma, FAK and Wnt show an antagonistic relationship: Inhibiting FAK signaling activates the Wnt pathway and vice versa. As the identification of effective Wnt inhibitors to translate in the clinical setting remains an outstanding challenge, further understanding of the functional interaction between Wnt and FAK could reveal new therapeutic opportunities and approaches greatly needed in clinical oncology. In this review, we summarize some of the most relevant interactions between FAK and Wnt in different cancers, address the current landscape of Wnt- and FAK-targeted therapies in different clinical trials, and discuss the rationale for targeting the FAK-Wnt crosstalk, along with the possible translational implications.
Collapse
|
16
|
Ibrahim TS, Hawwas MM, Taher ES, Alhakamy NA, Alfaleh MA, Elagawany M, Elgendy B, Zayed GM, Mohamed MFA, Abdel-Samii ZK, Elshaier YAMM. Design and synthesis of novel pyrazolo[3,4-d]pyrimidin-4-one bearing quinoline scaffold as potent dual PDE5 inhibitors and apoptotic inducers for cancer therapy. Bioorg Chem 2020; 105:104352. [PMID: 33080494 DOI: 10.1016/j.bioorg.2020.104352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
PDE5 targeting represents a new and promising strategy for apoptosis induction and inhibition of tumor cell growth due to its over-expression in diverse types of human carcinomas. Accordingly, we report the synthesis of series of pyrazolo[3,4-d]pyrimidin-4-one carrying quinoline moiety (11a-r) with potential dual PDE5 inhibition and apoptotic induction for cancer treatment. These hybrids were structurally elucidated and characterized with variant spectroscopic techniques as 1H NMR, 13C NMR and elemental analysis. The assessment of their anticancer activities has been declared. All the rationalized compounds 11a-r have been selected for their cytotoxic activity screening by NCI against 60 cell lines. Compounds 11a, 11b, 11j and 11k were the most active hybrids. Among all, compound 11j was further selected for five dose tesing and it displayed outstanding activity with strong antitumor activity against the nine tumor subpanels tested with selectivity ratios ranging from 0.019 to 8.3 at the GI50 level. Further, the most active targets 11a, b, j and k were screened for their PDE5 inhibitory activity, compound 11j (with IC50 1.57 nM) exhibited the most potent PDE5 inhibitory activity. Moreover, compound 11j is also showed moderate EGFR inhibition with IC50 of 5.827 ± 0.46 µM, but significantly inhibited the Wnt/β-catenin pathway with IC501286.96 ± 12.37 ng/mL. In addition, compound 11j induced the intrinsic apoptotic mitochondrial pathway in HepG2 cells as evidenced by the lower expression levels of the anti-apoptotic Bcl-2 protein, and the higher expression of the pro-apoptotic protein Bax, p53, cytochrome c and the up-regulated active caspase-9 and caspase-3 levels. All results confirmed by western blotting assay. Compound 11j exhibit pre G1 apoptosis and cell cycle arrest at G2/M phase. In conclusion, hybridization of quinoline moiety with the privileged pyrazolo[3,4-d]pyrimidinon-4-one structure resulted in highly potent anticancer agent, 11j, which deserves more study, in particular, in vivo and clinical investiagtions, and it is expected that these results would be applied for more drug discovery process.
Collapse
Affiliation(s)
- Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ehab S Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Nabil A Alhakamy
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Bahaa Elgendy
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110, USA; Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Gamal M Zayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University at Assiut, Assiut, Egypt; Al-Azhar Centre of Nanosciences and Applications (ACNA), Assiut, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32958 Menoufia, Egypt
| |
Collapse
|
17
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
18
|
Fan S, Cao YX, Li GY, Lei H, Attiogbe MKI, Yao JC, Yang XY, Liu YJ, Hei YY, Zhang H, Cao L, Zhang XY, Du SS, Zhang GM, Zhang SQ. F10, a new camptothecin derivative, was identified as a new orally-bioavailable, potent antitumor agent. Eur J Med Chem 2020; 202:112528. [PMID: 32650182 DOI: 10.1016/j.ejmech.2020.112528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/12/2023]
Abstract
Topoisomerases are interesting targets for drug discovery. In the present study, we attached saturated carbon atoms to the 10-position of camptothecin and synthesized 10 new camptothecin derivatives from 10-HCPT or SN-38. The activities of new compounds were evaluated both in vitro and in vivo. The most promising compound F10, 7-ethyl-10-(2-oxo-2-(piperidin-1-yl)ethoxy)camptothecin, inhibited cancer cells growth with the IC50 of 0.002, 0.003, 0.011 and 0.081 μM on Raji, HCT116, A549 and Lovo cells, respectively. Meanwhile, oral administration of F10 remarkably suppressed the HCT116-xenograft tumor growth in the nude-mice model at the dosage of 0.5, 2.0 and 8.0 mg/kg in vivo. Intraperitoneal administration of F10 can completely inhibit Raji-xenograft tumor growth in established NPG mouse model at 2.0 and 4.0 mg/kg. In addition, the minimum lethal doses of F10 and SN-38 in mice by intravenous administration were 80 and 40 mg/kg (or 0.155, 0.102 mmol/kg), respectively. The solubility of F10 reached 9.86 μg/mL in a buffer solution of pH 4.5. The oral bioavailability of F10 achieved 22.4% in mice. The molecular docking model revealed that F10 can interact with topoisomerase I-DNA complex. Our findings indicate that F10 is a new orally-oavailable antitumor agent with potent anticancer effect. Furthermore, attaching a ring hydrophobic moiety to the 10-position of camptothecin provides a favorable approach in the optimization of camptothecin.
Collapse
Affiliation(s)
- Shu Fan
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Guang-Yan Li
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Hao Lei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Xue-Yan Yang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yan-Jie Liu
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yuan-Yuan Hei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Hao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| | - Xiao-Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Shuai-Shuai Du
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Gui-Min Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., LTD, Linyi, Shandong, 276000, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
19
|
Zhang H, Zhao HY, Xi XX, Liu YJ, Xin M, Mao S, Zhang JJ, Lu AX, Zhang SQ. Discovery of potent epidermal growth factor receptor (EGFR) degraders by proteolysis targeting chimera (PROTAC). Eur J Med Chem 2020; 189:112061. [DOI: 10.1016/j.ejmech.2020.112061] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 01/09/2023]
|
20
|
Rosales-Hurtado M, Meffre P, Szurmant H, Benfodda Z. Synthesis of histidine kinase inhibitors and their biological properties. Med Res Rev 2019; 40:1440-1495. [PMID: 31802520 DOI: 10.1002/med.21651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 11/11/2022]
Abstract
Infections caused by multidrug-resistant bacteria represent a significant and ever-increasing cause of morbidity and mortality. There is thus an urgent need to develop efficient and well-tolerated antibacterials targeting unique cellular processes. Numerous studies have led to the identification of new biological targets to fight bacterial resistance. Two-component signal transduction systems are widely employed by bacteria to translate external and cellular signals into a cellular response. They are ubiquitous in bacteria, absent in the animal kingdom and are integrated into various virulence pathways. Several chemical series, including isothiazolidones, imidazolium salts, benzoxazines, salicylanilides, thiophenes, thiazolidiones, benzimidazoles, and other derivatives deduced by different approaches have been reported in the literature to have histidine kinase (HK) inhibitory activity. In this review, we report on the design and the synthesis of these HKs inhibitors and their potential to serve as antibacterial agents.
Collapse
Affiliation(s)
| | | | - Hendrik Szurmant
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California
| | | |
Collapse
|
21
|
Salerno S, Barresi E, García-Argáez AN, Taliani S, Simorini F, Amendola G, Tomassi S, Cosconati S, Novellino E, Da Settimo F, Marini AM, Dalla Via L. Discovery of Pyrido[3',2':5,6]thiopyrano[4,3- d]pyrimidine-Based Antiproliferative Multikinase Inhibitors. ACS Med Chem Lett 2019; 10:457-462. [PMID: 30996779 DOI: 10.1021/acsmedchemlett.8b00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Protein kinases dysregulation is extremely common in cancer cells, and the development of new agents able to simultaneously target multiple kinase pathways involved in angiogenesis and tumor growth may offer several advantages in the treatment of cancer. Herein we report the discovery of new pyridothiopyranopyrimidine derivatives (2-4) showing high potencies in VEGFR-2 KDR inhibition as well as antiproliferative effect on a panel of human tumor cell lines. Investigation on the selectivity profile of the representative 2-anilino-substituted compounds 3b, 3i, and 3j revealed a multiplicity of kinase targets that should account for the potent antiproliferative effect produced by these pyridothiopyranopyrimidine derivatives.
Collapse
Affiliation(s)
- Silvia Salerno
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | | | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Francesca Simorini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Stefano Tomassi
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Anna Maria Marini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università di Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
22
|
Stitzlein L, Rao PSS, Dudley R. Emerging oral VEGF inhibitors for the treatment of renal cell carcinoma. Expert Opin Investig Drugs 2018; 28:121-130. [DOI: 10.1080/13543784.2019.1559296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lea Stitzlein
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - PSS Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - Richard Dudley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| |
Collapse
|
23
|
Totiger TM, Srinivasan S, Jala VR, Lamichhane P, Dosch AR, Gaidarski AA, Joshi C, Rangappa S, Castellanos J, Vemula PK, Chen X, Kwon D, Kashikar N, VanSaun M, Merchant NB, Nagathihalli NS. Urolithin A, a Novel Natural Compound to Target PI3K/AKT/mTOR Pathway in Pancreatic Cancer. Mol Cancer Ther 2018; 18:301-311. [PMID: 30404927 DOI: 10.1158/1535-7163.mct-18-0464] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy and is highly resistant to standard treatment regimens. Targeted therapies against KRAS, a mutation present in an overwhelming majority of PDAC cases, have been largely ineffective. However, inhibition of downstream components in the KRAS signaling cascade provides promising therapeutic targets in the management of PDAC and warrants further exploration. Here, we investigated Urolithin A (Uro A), a novel natural compound derived from pomegranates, which targets numerous kinases downstream of KRAS, in particular the PI3K/AKT/mTOR signaling pathways. We showed that treatment of PDAC cells with Uro A blocked the phosphorylation of AKT and p70S6K in vitro, successfully inhibited the growth of tumor xenografts, and increased overall survival of Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice compared with vehicle or gemcitabine therapy alone. Histologic evaluation of these Uro A-treated tumor samples confirmed mechanistic actions of Uro A via decreased phosphorylation of AKT and p70S6K, reduced proliferation, and increased cellular apoptosis in both xenograft and PKT mouse models. In addition, Uro A treatment reprogrammed the tumor microenvironment, as evidenced by reduced levels of infiltrating immunosuppressive cell populations such as myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Overall, this work provides convincing preclinical evidence for the utility of Uro A as a therapeutic agent in PDAC through suppression of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tulasigeri M Totiger
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Supriya Srinivasan
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Purushottam Lamichhane
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Austin R Dosch
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Alexander A Gaidarski
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Chandrashekhar Joshi
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS, Karnataka, India
| | - Jason Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Xi Chen
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Deukwoo Kwon
- Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Nilesh Kashikar
- Department of Pathology, University of Colorado, Denver, Colorado
| | - Michael VanSaun
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida
| | - Nagaraj S Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, Florida.
| |
Collapse
|
24
|
Outcomes of patients with sarcoma enrolled in clinical trials of pazopanib combined with histone deacetylase, mTOR, Her2, or MEK inhibitors. Sci Rep 2017; 7:15963. [PMID: 29162825 PMCID: PMC5698336 DOI: 10.1038/s41598-017-13114-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/19/2017] [Indexed: 12/29/2022] Open
Abstract
Pazopanib is US FDA approved for the treatment of advanced soft tissue sarcomas. All patients with this disease ultimately develop resistance to therapy. Mechanisms of resistance include activation of the mTOR, histone deacetylase (HDAC), MAPK, and ERBB4 pathways. We hypothesized that combining pazopanib with other targeted agents inhibiting these pathways would increase response rates. We retrospectively evaluated the safety and efficacy of pazopanib plus vorinostat, everolimus, lapatinib or trastuzumab, and MEK inhibitor in patients with advanced sarcoma. The Cancer Geneome Atlas (TCGA) data was analyzed for HDAC, PI3K, HER2, and MAPK/RAS/RAF gene alterations from sarcoma TCGA. Of the 44 advanced sarcoma patients in these trials, 27 (61%) were male; 18 (41%) had bone sarcoma, and 26 (59%) had soft tissue sarcoma. Best response was partial response (PR) in four patients [(overall response rate (ORR) = 9%, 95% confidence interval [CI] 3% to 22%)]. The median progression-free survival (PFS) for all patients was 9.6 weeks (95% CI 8.0 to 15.7 weeks). Analysis of TCGA data revealed HDAC, PI3K, HER2, and MAPK/RAS/RAF gene alterations in 112/243 (46%) of patients predominantly HDAC1-11 (41%) alterations. Pazopanib combinations did demonstrate safety in combination with other agents. TCGA data suggests further evaluation of epigenetic pathway inhibitors in sarcoma.
Collapse
|
25
|
Ling Y, Feng J, Luo L, Guo J, Peng Y, Wang T, Ge X, Xu Q, Wang X, Dai H, Zhang Y. Design and Synthesis of C3-Substituted β-Carboline-Based Histone Deacetylase Inhibitors with Potent Antitumor Activities. ChemMedChem 2017; 12:646-651. [PMID: 28425177 DOI: 10.1002/cmdc.201700133] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/04/2017] [Indexed: 12/11/2022]
Abstract
A series of hydroxamic acid histone deacetylase (HDAC) inhibitors in which the β-carboline motif has been incorporated were designed and synthesized. The effect of substitution at the C3 amide on HDAC inhibition and antiproliferative activities was investigated. Most of these compounds were found to display significant HDAC inhibitory effects and good antiproliferative activity, with IC50 values in the low-micromolar range. In particular, the HDAC inhibition IC50 value of N-(2-(dimethylamino)ethyl)-N-(4-(hydroxylcarbamoyl)benzyl)-1-(4-methoxyphenyl)-9H-pyrido[3,4-b]indole-3-carboxamide (9 h) is five-fold lower than that of suberoylanilide hydroxamic acid (SAHA, vorinostat). Furthermore, 9 h was found to increase the acetylation of histone H3 and α-tubulin, and to induce DNA damage as evidenced by hypochromism and enhanced phosphorylation of histone H2AX. Compound 9 h inhibits Stat3, Akt, and ERK signaling, important cell-growth-promoting pathways that are aberrantly activated in most cancers. Finally, 9 h showed reasonable solubility and permeability in Caco-2 cells. Our findings suggest that these novel β-carboline-based HDAC inhibitors may hold great promise as therapeutic agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Jiao Feng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Lin Luo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Yanfu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Tingting Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Xiang Ge
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Qibing Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| | - Xinyang Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Hong Dai
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China.,College of Chemistry and Chemical Engineering, Nantong University, Nantong, 226001, P.R. China
| | - Yanan Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong, 226001, P.R. China
| |
Collapse
|
26
|
Zheng J, Son DJ, Lee HL, Lee HP, Kim TH, Joo JH, Ham YW, Kim WJ, Jung JK, Han SB, Hong JT. (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol suppresses ovarian cancer cell growth via inhibition of ERK and STAT3. Mol Carcinog 2017; 56:2003-2013. [PMID: 28277616 DOI: 10.1002/mc.22648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/01/2017] [Accepted: 03/03/2017] [Indexed: 12/14/2022]
Abstract
In the present study, we synthesized several non-aldehyde analogues of (E)-2,4-bis(p-hydroxyphenyl)-2-butenal which showed anti-cancer effect. Interestingly, among the 16 compounds, we found that (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) showed the most significant anti-proliferative effect on PA-1 and SK-OV-3 ovarian epithelial cancer cells. MMPP treatment (0-15 µg/mL) induced apoptotic cell death, enhanced the expression of cleaved caspase-3, and cleaved caspase-9 in a concentration dependent manner. Notably, DNA binding activity of STAT3, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 was significantly decreased by MMPP treatment. However, ERK siRNA augmented MMPP-induced inhibitory effect on cell growth rather than p38 siRNA or JNK siRNA. Moreover, combination treatment of MMPP with ERK inhibitor U0126 (10 µM) augmented MMPP-induced inhibitory effect on cell growth and DNA binding activity of STAT3, and enhanced expression of cleaved caspase-3 and cleaved caspase-9. In addition, STAT3 siRNA transfection augmented MMPP-induced cell growth inhibition. In PA-1 bearing xenograft mice model, MMPP (5 mg/kg) suppressed tumor growth significantly. Immunohistochemistry staining showed that the expression levels of p-ERK, PCNA, p-STAT3 were decreased while the expression level of caspase-3 was increased by MMPP treatment. Thus, MMPP may be a promising anti-cancer agent in ovarian epithelial cancer treatment.
Collapse
Affiliation(s)
- Jie Zheng
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hye Lim Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Tae Hoon Kim
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jung Heun Joo
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Young Wan Ham
- Department of Chemistry, Utah Valley University 800 W, University Pkwy, Orem, Utah
| | - Wun Jae Kim
- College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae Kyung Jung
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy & Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
27
|
Kaur M, Silakari O. Ligand-based and e-pharmacophore modeling, 3D-QSAR and hierarchical virtual screening to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3). J Biomol Struct Dyn 2016; 35:3043-3060. [PMID: 27678281 DOI: 10.1080/07391102.2016.1240108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The clinical efficacy of multiple kinase inhibitors has caught the interest of Pharmaceutical and Biotech researchers to develop potential drugs with multi-kinase inhibitory activity for complex diseases. In the present work, we attempted to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3), keys players in immune signaling, by developing ideal pharmacophores integrating Ligand-based pharmacophore models (LBPMs) and Structure-based pharmacophore models (SBPMs), thereby projecting the optimum pharmacophoric required for inhibition of both the kinases. The four point LBPM; ADPR.14 suggested the presence of one hydrogen bond acceptor, one hydrogen bond donor, one positive ionizable, and one ring aromatic feature for Syk inhibitory activity and AADH.54 proposed the necessity of two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature for JAK3 inhibitory activity. To our interest, SBPMs identified additional ring aromatic features required for inhibition of both the kinases. For Syk inhibitory activity, the hydrogen bond acceptor feature indicated by LBPM was devoid of forming hydrogen bonding interaction with the hinge region amino acid residue (Ala451). Thus merging the information revealed by both LBPMs and SBPMs, ideal pharmacophore models i.e. ADPRR.14 (Syk) and AADHR.54 (JAK3) were generated. These models after rigorous statistical validation were used for screening of Asinex database. The systematic virtual screening protocol, including pharmacophore and docking-based screening, ADME property, and MM-GBSA energy calculations, retrieved final 10 hits as dual inhibitors of Syk and JAK3. Final 10 hits thus obtained can aid in the development of potential therapeutic agents for autoimmune disorders. Also the top two hits were evaluated against both the enzymes.
Collapse
Affiliation(s)
- Maninder Kaur
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , Punjab 147002 , India
| | - Om Silakari
- a Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research , Punjabi University , Patiala , Punjab 147002 , India
| |
Collapse
|
28
|
JUN dependency in distinct early and late BRAF inhibition adaptation states of melanoma. Cell Discov 2016; 2:16028. [PMID: 27648299 PMCID: PMC5012007 DOI: 10.1038/celldisc.2016.28] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 06/26/2016] [Indexed: 12/26/2022] Open
Abstract
A prominent mechanism of acquired resistance to BRAF inhibitors in BRAF (V600) -mutant melanoma is associated with the upregulation of receptor tyrosine kinases. Evidences suggested that this resistance mechanism is part of a more complex cellular adaptation process. Using an integrative strategy, we found this mechanism to invoke extensive transcriptomic, (phospho-) proteomic and phenotypic alterations that accompany a cellular transition to a de-differentiated, mesenchymal and invasive state. Even short-term BRAF-inhibitor exposure leads to an early adaptive, differentiation state change-characterized by a slow-cycling, persistent state. The early persistent state is distinct from the late proliferative, resistant state. However, both differentiation states share common signaling alterations including JUN upregulation. Motivated by the similarities, we found that co-targeting of BRAF and JUN is synergistic in killing fully resistant cells; and when used up-front, co-targeting substantially impairs the formation of the persistent subpopulation. We confirmed that JUN upregulation is a common response to BRAF inhibitor treatment in clinically treated patient tumors. Our findings demonstrate that events shared between early- and late-adaptation states provide candidate up-front co-treatment targets.
Collapse
|
29
|
Wu CH, Wu X, Zhang HW. Inhibition of acquired-resistance hepatocellular carcinoma cell growth by combining sorafenib with phosphoinositide 3-kinase and rat sarcoma inhibitor. J Surg Res 2016; 206:371-379. [PMID: 27884331 DOI: 10.1016/j.jss.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND To provide support for combined usage of phosphoinositide 3-kinase (PI3K) inhibitors or mitogen-activated protein kinase pathway inhibitors together with sorafenib in treatment of sorafenib-resistant hepatocellular carcinoma. MATERIALS AND METHODS The sorafenib-resistant cell lines were established to evaluate the effects of MK-2206 2HCL, a dual PI3K/mammalian target of rapamycin (mTOR) inhibitor, and PD0325901, an rat sarcoma (RAS) and/or extracellular signal-regulated kinase (ERK) inhibitor, on cell proliferation and apoptosis, as both single and combined treatments with sorafenib. In addition, multidrug resistance 1 gene expression, mutation status of key members in PI3K/mTOR, and RAS/ERK pathways and pathway activation were analyzed to identify predictors of drug response. RESULTS Molecular studies reveal that combining MK-2206 2HCL or PD0325901 with sorafenib not only has a synergistic effect, in suppressing PI3K/protein kinase B/mTOR and RAS/MEK/ERK signaling more effectively than either treatment alone, but also prevents the cross activation of the other pathway that occurs with single treatments in both sorafenib sensitive and resistant lines. PD0325901 exhibited a stronger synergic effect with sorafenib than MK-2206 2HCL. Sorafenib-resistant cell lines were characterized by activation of both of the two pathways, as indicated by multidrug resistance 1 gene expression profiles and pathway activity analysis. CONCLUSIONS Our studies have showed that both inhibitors of PI3K/mTOR and RAS/ERK signaling are potentially effective antihepatocellular carcinoma drugs especially in treating sorafenib-resistant hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chang-Hao Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiang Wu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong-Wei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
30
|
El-Damasy AK, Cho NC, Nam G, Pae AN, Keum G. Discovery of a Nanomolar Multikinase Inhibitor (KST016366): A New Benzothiazole Derivative with Remarkable Broad-Spectrum Antiproliferative Activity. ChemMedChem 2016; 11:1587-95. [PMID: 27405013 DOI: 10.1002/cmdc.201600224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/25/2016] [Indexed: 01/07/2023]
Abstract
Herein we report the discovery of compound 6 [KST016366; 4-((2-(3-(4-((4-ethylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)ureido)benzo[d]thiazol-6-yl)oxy)picolinamide] as a new potent multikinase inhibitor through minor structural modification of our previously reported RAF kinase inhibitor A. In vitro anticancer evaluation of 6 showed substantial broad-spectrum antiproliferative activity against 60 human cancer cell lines. In particular, it showed GI50 values of 51.4 and 19 nm against leukemia K-562 and colon carcinoma KM12 cell lines, respectively. Kinase screening of compound 6 revealed its nanomolar-level inhibitory activity of certain oncogenic kinases implicated in both tumorigenesis and angiogenesis. Interestingly, 6 displays IC50 values of 0.82, 3.81, and 53 nm toward Tie2, TrkA, and ABL-1 (wild-type and T315I mutant) kinases, respectively. Moreover, 6 is orally bioavailable with a favorable in vivo pharmacokinetic profile. Compound 6 may serve as a promising candidate for further development of potent anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Ashraf Kareem El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon, 305-350, Republic of Korea.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt
| | - Nam-Chul Cho
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Ghilsoo Nam
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon, 305-350, Republic of Korea
| | - Ae Nim Pae
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea.,Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon, 305-350, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea. .,Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon, 305-350, Republic of Korea.
| |
Collapse
|
31
|
Daste A, Gross-Goupil M, Quivy A, François L, Bernhard JC, Ravaud A. Efficacy of Rechallenge of Metastatic Renal Cell Carcinoma Patient With Sunitinib After Prior Resistance to Axitinib: Case Report and Review of the Literature. Clin Genitourin Cancer 2016; 14:e525-e527. [PMID: 27185091 DOI: 10.1016/j.clgc.2016.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/11/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Amaury Daste
- Department of Medical Oncology, Hôpital Saint-André, University of Bordeaux-CHU Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Marine Gross-Goupil
- Department of Medical Oncology, Hôpital Saint-André, University of Bordeaux-CHU Bordeaux, France
| | - Amandine Quivy
- Department of Medical Oncology, Hôpital Saint-André, University of Bordeaux-CHU Bordeaux, France
| | - Louis François
- Department of Medical Oncology, Hôpital Saint-André, University of Bordeaux-CHU Bordeaux, France; University of Bordeaux, Bordeaux, France
| | | | - Alain Ravaud
- Department of Medical Oncology, Hôpital Saint-André, University of Bordeaux-CHU Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Daydé-Cazals B, Fauvel B, Singer M, Feneyrolles C, Bestgen B, Gassiot F, Spenlinhauer A, Warnault P, Van Hijfte N, Borjini N, Chevé G, Yasri A. Rational Design, Synthesis, and Biological Evaluation of 7-Azaindole Derivatives as Potent Focused Multi-Targeted Kinase Inhibitors. J Med Chem 2016; 59:3886-905. [DOI: 10.1021/acs.jmedchem.6b00087] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bénédicte Daydé-Cazals
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Bénédicte Fauvel
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Mathilde Singer
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Clémence Feneyrolles
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Benoit Bestgen
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Fanny Gassiot
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Aurélia Spenlinhauer
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Pierre Warnault
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Nathalie Van Hijfte
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Nozha Borjini
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Gwénaël Chevé
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| | - Abdelaziz Yasri
- OriBase Pharma, Cap Gamma, Parc Euromédecine, 1682 rue de la Valsière, CS 17383, Montpellier 34189 CEDEX 4, France
| |
Collapse
|
33
|
Ahmad A, Jafar A, Alshatti Y. PI3K/MEK pathway-targeted therapy in non-small cell lung carcinoma. COGENT MEDICINE 2015. [DOI: 10.1080/2331205x.2015.1114709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Ali Ahmad
- Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Ali Jafar
- Department of Surgical & Interventional Sciences, University College London (UCL), London, UK
- Division of Surgical and Interventional Sciences, Royal Free Hospital, London, UK
| | - Yaqoub Alshatti
- Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
34
|
Klinke DJ, Birtwistle MR. In silico model-based inference: an emerging approach for inverse problems in engineering better medicines. Curr Opin Chem Eng 2015; 10:14-24. [PMID: 26309811 PMCID: PMC4545575 DOI: 10.1016/j.coche.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying the network of biochemical interactions that underpin disease pathophysiology is a key hurdle in drug discovery. While many components involved in these biological processes are identified, how components organize differently in health and disease remains unclear. In chemical engineering, mechanistic modeling provides a quantitative framework to capture our understanding of a reactive system and test this knowledge against data. Here, we describe an emerging approach to test this knowledge against data that leverages concepts from probability, Bayesian statistics, and chemical kinetics by focusing on two related inverse problems. The first problem is to identify the causal structure of the reaction network, given uncertainty as to how the reactive components interact. The second problem is to identify the values of the model parameters, when a network is known a priori.
Collapse
Affiliation(s)
- David J. Klinke
- Department of Chemical Engineering and Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University, Morgantown, WV
| | - Marc R. Birtwistle
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Liu HC, Tang SZ, Lu S, Ran T, Wang J, Zhang YM, Xu AY, Lu T, Chen YD. Studies on [5,6]-Fused Bicyclic Scaffolds Derivatives as Potent Dual B-RafV600E/KDR Inhibitors Using Docking and 3D-QSAR Approaches. Int J Mol Sci 2015; 16:24451-74. [PMID: 26501259 PMCID: PMC4632759 DOI: 10.3390/ijms161024451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/22/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023] Open
Abstract
Research and development of multi-target inhibitors has attracted increasing attention as anticancer therapeutics. B-RafV600E synergistically works with vascular endothelial growth factor receptor 2 (KDR) to promote the occurrence and progression of cancers, and the development of dual-target drugs simultaneously against these two kinds of kinase may offer a better treatment advantage. In this paper, docking and three-dimensional quantitative structure activity relationship (3D-QSAR) studies were performed on a series of dual B-Raf/KDR inhibitors with a novel hinge-binding group, [5,6]-fused bicyclic scaffold. Docking studies revealed optimal binding conformations of these compounds interacting with both B-Raf and KDR. Based on these conformations, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 3D-QSAR models were constructed, and the best CoMFA (q²=0.542, r²=0.989 for B-Raf; q²=0.768, r²=0.991 for KDR) and CoMSIA models (q²=0.519, r²=0.992 for B-Raf; q²=0.849, r²=0.993 for KDR) were generated. Further external validations confirmed their predictability, yielding satisfactory correlation coefficients (r²pred=0.764 (CoMFA), r²pred=0.841 (CoMSIA) for B-Raf, r²pred=0.912 (CoMFA), r²pred=0.846 (CoMSIA) for KDR, respectively). Through graphical analysis and comparison on docking results and 3D-QSAR contour maps, key amino acids that affect the ligand-receptor interactions were identified and structural features influencing the activities were discussed. New potent derivatives were designed, and subjected to preliminary pharmacological evaluation. The study may offer useful references for the modification and development of novel dual B-Raf/KDR inhibitors.
Collapse
Affiliation(s)
- Hai-Chun Liu
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - San-Zhi Tang
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - Ting Ran
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - Jian Wang
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - Yan-Min Zhang
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - An-Yang Xu
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211169, China.
| | - Ya-Dong Chen
- School of Science, China Pharmaceutical University, Nanjing 211169, China.
| |
Collapse
|
36
|
Ravichandran S, Luke BT, Collins JR. Can structural features of kinase receptors provide clues on selectivity and inhibition? A molecular modeling study. J Mol Graph Model 2015; 57:36-48. [PMID: 25635590 PMCID: PMC4361267 DOI: 10.1016/j.jmgm.2014.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Cancer is a complex disease resulting from the uncontrolled proliferation of cell signaling events. Protein kinases have been identified as central molecules that participate overwhelmingly in oncogenic events, thus becoming key targets for anticancer drugs. A majority of studies converged on the idea that ligand-binding pockets of kinases retain clues to the inhibiting abilities and cross-reacting tendencies of inhibitor drugs. Even though these ideas are critical for drug discovery, validating them using experiments is not only difficult, but also in some cases infeasible. To overcome these limitations and to test these ideas at the molecular level, we present here the results of receptor-focused in-silico docking of nine marketed drugs to 19 different wild-type and mutated kinases chosen from a wide range of families. This investigation highlights the need for using relevant models to explain the correct inhibition trends and the results are used to make predictions that might be able to influence future experiments. Our simulation studies are able to correctly predict the primary targets for each drug studied in majority of cases and our results agree with the existing findings. Our study shows that the conformations a given receptor acquires during kinase activation, and their micro-environment, defines the ligand partners. Type II drugs display high compatibility and selectivity for DFG-out kinase conformations. On the other hand Type I drugs are less selective and show binding preferences for both the open and closed forms of selected kinases. Using this receptor-focused approach, it is possible to capture the observed fold change in binding affinities between the wild-type and disease-centric mutations in ABL kinase for Imatinib and the second-generation ABL drugs. The effects of mutation are also investigated for two other systems, EGFR and B-Raf. Finally, by including pathway information in the design it is possible to model kinase inhibitors with potentially fewer side-effects.
Collapse
Affiliation(s)
- Sarangan Ravichandran
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research (FNLCR), P.O. Box B, Frederick, MD 21702, USA.
| | - Brian T Luke
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research (FNLCR), P.O. Box B, Frederick, MD 21702, USA
| | - Jack R Collins
- Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research (FNLCR), P.O. Box B, Frederick, MD 21702, USA
| |
Collapse
|
37
|
Awadallah FM, Abou-Seri SM, Abdulla MM, Georgey HH. Design and synthesis of potent 1,2,4-trisubstituted imidazolinone derivatives with dual p38αMAPK and ERK1/2 inhibitory activity. Eur J Med Chem 2015; 94:397-404. [DOI: 10.1016/j.ejmech.2015.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/03/2023]
|
38
|
Bem AE, Velikova N, Pellicer MT, Baarlen PV, Marina A, Wells JM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem Biol 2015; 10:213-24. [PMID: 25436989 DOI: 10.1021/cb5007135] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In this review, we discuss the biological importance of TCSs and bacterial HKs for the discovery of novel antibacterials, as well as published TCS and HK inhibitors that can be used as a starting point for structure-based approaches to develop novel antibacterials.
Collapse
Affiliation(s)
- Agnieszka E. Bem
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Nadya Velikova
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
| | - M. Teresa Pellicer
- R&D Department Interquim, Ferrer HealthTech, Joan Buscalla 10, 08137-Sant Cugat del Valles Barcelona, Spain
| | - Peter van Baarlen
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Alberto Marina
- Instituto
de Biomedicina
de Valencia-Consejo Superior de Investigaciones Cientificas (IBV-CSIC), Jaume Roig 11, 46010-Valencia, Spain
- Centro de Investigacion
Biomedica en Red de Enfermedades Raras (CIBER-ISCIII), Jaume Roig 11, 46010-Valencia, Spain
| | - Jerry M. Wells
- Host−Microbe
Interactomics, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
39
|
Miller MJ, Foy KC, Overholser JP, Nahta R, Kaumaya PT. HER-3 peptide vaccines/mimics: Combined therapy with IGF-1R, HER-2, and HER-1 peptides induces synergistic antitumor effects against breast and pancreatic cancer cells. Oncoimmunology 2014; 3:e956012. [PMID: 25941588 DOI: 10.4161/21624011.2014.956012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022] Open
Abstract
The human epidermal growth factor receptor 3 (HER-3/ErbB3) is a unique member of the human epidermal growth factor family of receptors, because it lacks intrinsic kinase activity and ability to heterodimerize with other members. HER-3 is frequently upregulated in cancers with epidermal growth factor receptor (EGFR/HER-1/ErbB1) or human epidermal growth factor receptor 2 (HER-2/ErBB2) overexpression, and targeting HER-3 may provide a route for overcoming resistance to agents that target EGFR or HER-2. We have previously developed vaccines and peptide mimics for HER-1, HER-2 and vascular endothelial growth factor (VEGF). In this study, we extend our studies by identifying and evaluating novel HER-3 peptide epitopes encompassing residues 99-122, 140-162, 237-269 and 461-479 of the HER-3 extracellular domain as putative B-cell epitopes for active immunotherapy against HER-3 positive cancers. We show that the HER-3 vaccine antibodies and HER-3 peptide mimics induced antitumor responses: inhibition of cancer cell proliferation, inhibition of receptor phosphorylation, induction of apoptosis and antibody dependent cellular cytotoxicity (ADCC). Two of the HER-3 epitopes 237-269 (domain II) and 461-479 (domain III) significantly inhibited growth of xenografts originating from both pancreatic (BxPC3) and breast (JIMT-1) cancers. Combined therapy of HER-3 (461-471) epitope with HER-2 (266-296), HER-2 (597-626), HER-1 (418-435) and insulin-like growth factor receptor type I (IGF-1R) (56-81) vaccine antibodies and peptide mimics show enhanced antitumor effects in breast and pancreatic cancer cells. This study establishes the hypothesis that combination immunotherapy targeting different signal transduction pathways can provide effective antitumor immunity and long-term control of HER-1 and HER-2 overexpressing cancers.
Collapse
Key Words
- ADCC, antibody dependent, cellular cytotoxicity
- Antibodies
- ECD, extracellular domain
- ELISA, enzyme-linked immunosorbent assay
- FDA, Federal Drug Administration
- HER-1
- HER-1 (EGFR or ErbB1), human epidermal growth factor receptor
- HER-2
- HER-2 (ErbB2), human epidermal growth factor receptor 2
- HER-3 (ErbB3), human epidermal growth factor receptor 3
- HER-3 (erbb3)
- HER-4 (ErbB4), human epidermal growth factor receptor 4
- HPLC, high-pressure liquid chromatography
- IGF-1R
- Immunotherapy
- MALDI, matrix-assisted laser desorption/ionization
- MVF, Measles virus fusion protein
- RTK, receptor tyrosine kinase
- TKIs, Tyrosine kinase inhibitors.
- immunogenicity
- mAb, monocolonal antibody
- peptide vaccines
- peptidomimetics
- receptor tyrosine kinases
Collapse
Affiliation(s)
- Megan Jo Miller
- Department of Microbiology; The Ohio State University , Columbus, OH USA
| | - Kevin C Foy
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA
| | - Jay P Overholser
- Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA
| | - Rita Nahta
- Department of Pharmacology; Emory University , Atlanta, GA USA
| | - Pravin Tp Kaumaya
- Department of Microbiology; The Ohio State University , Columbus, OH USA ; Department of Obstetrics and Gynecology; The Ohio State University Wexner Medical Center ; Columbus, OH USA ; The James Cancer Hospital and Solove Research Institute; and the Comprehensive Cancer Center; The Ohio State University , Columbus, OH USA
| |
Collapse
|
40
|
Carter NJ. Regorafenib: a review of its use in previously treated patients with progressive metastatic colorectal cancer. Drugs Aging 2014; 31:67-78. [PMID: 24276917 DOI: 10.1007/s40266-013-0140-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regorafenib (Stivarga) is an inhibitor of multiple protein kinases, including those involved in oncogenesis, tumour angiogenesis and maintenance of the tumour microenvironment. The drug is approved as monotherapy for the treatment of metastatic colorectal cancer (mCRC) in patients who have previously received all standard systemic anticancer treatments (US, EU and Canada) or in patients with unresectable, advanced or recurrent colorectal cancer (Japan). In the randomized, controlled COloRectal cancer treated with REgorafenib or plaCebo after failure of standard Therapy (CORRECT) trial, regorafenib 160 mg once daily for the first 3 weeks of each 4-week cycle plus best supportive care (BSC) was associated with a significantly longer median overall survival than placebo plus BSC in patients with previously treated, progressive mCRC. The drug was also associated with significantly longer progression-free survival and better disease control rates than placebo, although objective response rates were similar in both treatment groups. Regorafenib did not appear to compromise health-related quality of life over the study duration and had a generally acceptable tolerability profile. The introduction of regorafenib expands the currently limited range of effective treatment options in patients with previously treated, progressive mCRC.
Collapse
Affiliation(s)
- Natalie J Carter
- Adis, 41 Centorian Drive, Private Bag 65901, Mairangi Bay, North Shore, 0754, Auckland, New Zealand,
| |
Collapse
|
41
|
Regorafenib as a single-agent in the treatment of patients with gastrointestinal tumors: an overview for pharmacists. Target Oncol 2014; 10:199-213. [PMID: 25213039 PMCID: PMC4457933 DOI: 10.1007/s11523-014-0333-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 08/29/2014] [Indexed: 01/03/2023]
Abstract
Regorafenib (BAY 73-4506, Stivarga® Bayer HealthCare Pharmaceutical Inc) is an oral multikinase inhibitor with a distinct and wide-ranging profile of tyrosine kinase inhibition, resulting in antiangiogenic and antiproliferative properties in tumors. Single-agent regorafenib administered as a 160-mg daily dose for the first 21 days of a 28-day cycle is approved for use in patients with pretreated metastatic colorectal cancer (mCRC) and gastrointestinal stromal tumor (GIST) progressing on imatinib and sunitinib, following publication of data from the phase III CORRECT and GRID studies respectively. Regorafenib is currently under phase III investigation in patients with hepatocellular carcinoma and is in several phase II studies in patients with gastrointestinal (GI) tumors. This review describes the clinical development of regorafenib in patients with GI cancers, and highlights the key issues important for the modern day clinical pharmacist who forms part of the multidisciplinary team ensuring safe and effective delivery of the drug to the patient. This information is considered of particular importance to the clinical pharmacist for the future development of regorafenib in this treatment setting.
Collapse
|
42
|
Yun KJ, Kim W, Kim EH, Kim MH, Lim DJ, Kang MI, Cha BY. Accelerated disease progression after discontinuation of sorafenib in a patient with metastatic papillary thyroid cancer. Endocrinol Metab (Seoul) 2014; 29:388-93. [PMID: 25309799 PMCID: PMC4192805 DOI: 10.3803/enm.2014.29.3.388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 11/24/2022] Open
Abstract
Distant metastases from papillary thyroid carcinoma (PTC) are rare and are associated with a poor prognosis. Here, we describe a patient with metastatic PTC who was treated with a tyrosine kinase inhibitor (TKI, sorafenib) for several months that was acutely exacerbated by discontinuation. A 43-year-old male was diagnosed with PTC in February 2004 and underwent total thyroidectomy followed by two courses of high-dose radioactive iodine (RAI) therapy. Despite two additional courses of high-dose RAI therapy, lung and muscle metastases were developed. Treatment with sorafenib was begun in September 2010. After 11 months treatment of sorafenib, newly developed metastatic lesions were found in mediastinal lymph nodes, liver, and bones. Considered as treatment failure, the administration of sorafenib was discontinued. Two weeks after sorafenib treatment was stopped, the disease progressed abruptly and caused death of the patient by respiratory failure. In our patient, PTC progressed rapidly after the cessation of sorafenib treatment. Patients with several other types of cancer have also experienced such rapid disease progression, termed "flare-ups." Physicians should be aware that flare-ups may occur in advanced PTC patients following the cessation of TKI therapy.
Collapse
Affiliation(s)
- Kyung-Jin Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Woohyeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Eun Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Min-Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Moo-Il Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Bong-Yun Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Identification of DW532 as a novel anti-tumor agent targeting both kinases and tubulin. Acta Pharmacol Sin 2014; 35:916-28. [PMID: 24858311 DOI: 10.1038/aps.2014.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023] Open
Abstract
AIM 7,8-Dihydroxy-4-(3-hydroxy-4-methoxyphenyl)-2H-chromen-2-one (DW532) is one of simplified analogues of hematoxylin that has shown broad-spectrum inhibition on tyrosine kinases and in vitro anti-cancer activities. The aim of this study was to identify DW532 as a agent targeting both kinases and tubulin, and to investigate its anti-cancer and anti-angiogenesis activities. METHODS In vitro tyrosine kinases activity was examined with ELISA, and tyrosine kinases activity in cells was evaluated with Western blot analysis. Tubulin turbidity assay, surface plasmon resonance and immunofluorescence technique were used to characterize the tubulin inhibitory activity. Cell proliferation was examined with SRB assay, and cell apoptosis and cell cycle distribution were analyzed with Annexin-V/PI staining and flow cytometry. Tube formation, aortic ring and chick chorioallantoic membrane assays were used to evaluate the anti-angiogenesis efficacy. RESULTS DW532 inhibited EGFR and VEGFR2 in vitro kinase activity (the IC50 values were 4.9 and 5.5 μmol/L, respectively), and suppressed their downstream signaling. DW532 dose-dependently inhibited tubulin polymerization via direct binding to tubulin, thus disrupting the mitotic spindle assembly and leading to abnormal cell division. In a panel of human cancer cells, DW532 (1 and 10 μmol/L) induced G2/M phase arrest and cell apoptosis, which subsequently resulted in cytotoxicity. Knockdown of BubR1 or Mps1, the two core proteins of the spindle assembly checkpoint dramatically decreased DW532-induced cell cycle arrest in MDA-MB-468 cells. Moreover, treatment with DW532 potently and dose-dependently suppressed angiogenesis in vitro and in vivo. CONCLUSION DW532 is a dual inhibitor against tubulin and tyrosine kinases, and deserves further development as a novel anti-cancer agent.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Ulcerative colitis and Crohn's disease are the two predominant types of inflammatory bowel disease (IBD), affecting over 1.4 million individuals in the United States. IBD results from complex interactions between pathogenic components, including genetic and epigenetic factors, the immune response, and the microbiome, through an unknown sequence of events. The purpose of this review is to describe a systems biology approach to IBD as a novel and exciting methodology aiming at developing novel IBD therapeutics based on the integration of molecular and cellular 'omics' data. RECENT FINDINGS Recent evidence suggested the presence of genetic, epigenetic, transcriptomic, proteomic, and metabolomic alterations in IBD patients. Furthermore, several studies have shown that different cell types including fibroblasts, epithelial, immune, and endothelial cells together with the intestinal microbiota are involved in IBD pathogenesis. Novel computational methodologies have been developed aiming to integrate high-throughput molecular data. SUMMARY A systems biology approach could potentially identify the central regulators (hubs) in the IBD interactome and improve our understanding of the molecular mechanisms involved in IBD pathogenesis. The future IBD therapeutics should be developed on the basis of targeting the central hubs in the IBD network.
Collapse
|
45
|
Danhier F, Ucakar B, Vanderhaegen ML, Brewster ME, Arien T, Préat V. Nanosuspension for the delivery of a poorly soluble anti-cancer kinase inhibitor. Eur J Pharm Biopharm 2014; 88:252-60. [PMID: 24859391 DOI: 10.1016/j.ejpb.2014.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/08/2014] [Accepted: 05/08/2014] [Indexed: 01/27/2023]
Abstract
We hypothesized that nanosuspensions could be promising for the delivery of the poorly water soluble anti-cancer multi-targeted kinase inhibitor, MTKi-327. Hence, the aims of this work were (i) to evaluate the MTKi-327 nanosuspension for parenteral and oral administrations and (ii) to compare this nanosuspension with other nanocarriers in terms of anti-cancer efficacy and pharmacokinetics. Therefore, four formulations of MTKi-327 were studied: (i) PEGylated PLGA-based nanoparticles, (ii) self-assembling PEG₇₅₀-p-(CL-co-TMC) polymeric micelles, (iii) nanosuspensions of MTKi-327; and (iv) Captisol solution (pH=3.5). All the nano-formulations presented a size below 200 nm. Injections of the highest possible dose of the three nano-formulations did not induce any side effects in mice. In contrast, the maximum tolerated dose of the control Captisol solution was 20-fold lower than its highest possible dose. The highest regrowth delay of A-431-tumor-bearing nude mice was obtained with MTKi-327 nanosuspension, administered intravenously, at a dose of 650 mg/kg. After intravenous and oral administration, the AUC₀₋∞ of MTKi-327 nanosuspension was 2.4-fold greater than that of the Captisol solution. Nanosuspension may be considered as an effective anti-cancer MTKi-327 delivery method due to (i) the higher MTKi-327 maximum tolerated dose, (ii) the possible intravenous injection of MTKi-327, (iii) its ability to enhance the administered dose and (iv) its higher efficacy.
Collapse
Affiliation(s)
- Fabienne Danhier
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium
| | - Bernard Ucakar
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium
| | - Marie-Lyse Vanderhaegen
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium
| | - Marcus E Brewster
- Johnson and Johnson, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Beerse, Belgium
| | - Tina Arien
- Johnson and Johnson, Pharmaceutical Research and Development, Division of Janssen Pharmaceutica, Beerse, Belgium
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Pharmaceutics and Drug Delivery, Brussels, Belgium.
| |
Collapse
|
46
|
Kim D, Friedman AD, Liu R. Tetraspecific ligand for tumor-targeted delivery of nanomaterials. Biomaterials 2014; 35:6026-36. [PMID: 24786763 DOI: 10.1016/j.biomaterials.2014.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/05/2014] [Indexed: 12/18/2022]
Abstract
The polygenetic nature of most cancers emphasizes the necessity of cancer therapies that target multiple essential signaling pathways. However, there is a significant paucity of targeting ligands with multi-specificities for targeted delivery of biomaterials. To address this unmet need, we generated a tetraspecific targeting ligand that recognizes four different cancer biomarkers, including VEGFR2, αvβ3 integrin, EGFR, and HER2 receptors, which have been implicated in numerous malignant tumors. The tetraspecific targeting ligand was constructed by sequentially connecting four targeting ligand subunits via flexible linkers, yielding a fusion protein that can be highly expressed in Escherichia coli and readily purified to near homogeneity. Surface Plasmon Resonance (SPR), Bio-Layer Interferometry (BLI) studies and extensive cellular binding analyses indicated that all the targeting ligand subunits in the tetraspecific fusion protein recognized their target receptors proximately to the corresponding monospecific ligands. The resulting tetraspecific targeting ligand was applied for the delivery of nanomaterials such as gold nanoparticles (AuNPs) for targeted hyperthermic killing of various cancer cell lines with biomarkers of interest expressed. We demonstrate that the tetraspecific ligand can be facilely introduced on the surface of AuNPs and efficient target-dependent killing of cancer cells can be achieved only when the AuNPs are conjugated with the tetraspecific ligand. Significantly, the tetraspecific ligand simultaneously interacts with more than one receptors, such as EGFR and HER2 receptors, when they are expressed on the surface of the same cell, as demonstrated by in vitro binding assays and cell binding analyses. Our results demonstrate that the tetraspecific ligand, through multivalency and synergistic binding, can be readily used to generate various 'smart' biomaterials with greatly broadened tumor targeting range for simultaneous targeting of multiple signaling pathways on many different cancer types.
Collapse
Affiliation(s)
- Dongwook Kim
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Adam D Friedman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-7264, USA
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC 27599-7264, USA.
| |
Collapse
|
47
|
Inhibition of both focal adhesion kinase and fibroblast growth factor receptor 2 pathways induces anti-tumor and anti-angiogenic activities. Cancer Lett 2014; 348:88-99. [PMID: 24657306 DOI: 10.1016/j.canlet.2014.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 11/21/2022]
Abstract
FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities.
Collapse
|
48
|
Alapati K, Kesanakurti D, Rao JS, Dasari VR. uPAR and cathepsin B-mediated compartmentalization of JNK regulates the migration of glioma-initiating cells. Stem Cell Res 2014; 12:716-29. [PMID: 24699410 PMCID: PMC4061617 DOI: 10.1016/j.scr.2014.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 01/27/2014] [Accepted: 02/27/2014] [Indexed: 11/17/2022] Open
Abstract
In the present study, we investigated the effect of simultaneous downregulation of uPAR and cathepsin B (pUC), alone or in combination with radiation, on JNK–MAPK signaling pathway in regulating the migration of non-GICs (glioma-initiating cells) and GICs. The increase in the expression of p-JNK with pUC treatment was mostly localized to nucleus whereas increase in the expression of p-JNK with radiation and overexpression of uPAR and cathepsin B was confined to cytoplasm of the cells. Depletion of cytosolic p-JNK with pUC treatment inhibited migration by downregulating the expression of the adapter proteins of the focal adhesion complex. We also observed that knockdown of uPAR and cathepsin B regulated the Ras–Pak-1 pathway to induce the translocation of p-JNK from cytosol to nucleus. In control cells, Pak-1 served as a functional inhibitor for MEKK-1, which inhibits the complex formation of MEKK-1 and p-JNK and thus inhibits the translocation of this complex into nucleus. Hence, we conclude that glioma cells utilize the availability of cytosolic p-JNK in driving the cells towards migration. Finally, treating the cells with pUC alone or in combination with radiation induced the translocation of the MEKK-1-p-JNK complex from cytosol to nucleus, thereby inhibiting the migration of glioma cells.
Collapse
Affiliation(s)
- Kiranmai Alapati
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Divya Kesanakurti
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Jasti S Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
| |
Collapse
|
49
|
Porta C, Sabbatini R, Procopio G, Paglino C, Galligioni E, Ortega C. Primary resistance to tyrosine kinase inhibitors in patients with advanced renal cell carcinoma: state-of-the-science. Expert Rev Anticancer Ther 2014. [DOI: 10.1586/era.12.81] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Zámečníkova A. Novel approaches to the development of tyrosine kinase inhibitors and their role in the fight against cancer. Expert Opin Drug Discov 2013; 9:77-92. [DOI: 10.1517/17460441.2014.865012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|