1
|
Liu JP, Yao XC, Wu Y, Xu ZY, Li M, Shi M, Ren J, Du XR. Analysis of the efficacy of separation surgery for severe neurological compression in multiple myeloma: a retrospective analysis of 35 cases. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4292-4301. [PMID: 38647604 DOI: 10.1007/s00586-024-08269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To investigate the effectiveness and safety of separation surgery for Epidural Spinal Cord Compression (ESCC) graded ≥ 2 in patients with Multiple Myeloma (MM), analyze factors influencing surgical outcomes, and develop a preliminary treatment decision framework for these patients. METHODS A retrospective analysis was conducted on clinical data from 35 MM patients who underwent separation surgery for ESCC graded ≥ 2 between 2013 and 2018. Patient data, including baseline information, surgical details, complications, and pre-operative as well as one-month post-operative efficacy evaluation indicators were recorded. Statistical analysis was performed on pre-operative and post-operative efficacy indicators to determine if there were significant improvements (p < 0.05). Ordered logistic regression was utilized to assess factors associated with an unfavorable post-operative quality of life outcome. RESULTS Compared to pre-operative values, at one-month post-surgery, patients showed significant improvements in Frankel Score Classification (4 vs 5, p < 0.05), Karnofsky Performance Score (30 vs 70, p < 0.05), and Visual Analogue Scale (8 vs 3, p < 0.05). Complications occurred in 7 cases (20%). The number of segments with ESCC (OR = 0.171, p < 0.05) and pre-operative chemotherapy (OR = 5.202, p = 0.05) were identified as independent factors influencing patient outcomes. Patients with more than two vertebral segments with ESCC exhibited significantly worse post-operative conditions. CONCLUSIONS Separation surgery effectively alleviates pain, improves neurological function, and enhances the quality of life in patients with ESCC graded ≥ 2 due to MM.
Collapse
Affiliation(s)
- Jun-Peng Liu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xing-Chen Yao
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yue Wu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zi-Yu Xu
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Meng Li
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ming Shi
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jie Ren
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Ru Du
- Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
2
|
Jabłonowska-Babij P, Jędrzejuk D, Majcherek M, Szeremet A, Karasek M, Kuszczak B, Kujawa K, Sitkiewicz M, Landwójtowicz M, Wróbel T, Tomasiewicz M, Czyż A. Pre-Transplant Dual-Energy X-ray Absorptiometry (DXA)-Derived Body Composition Measures as Predictors of Treatment Outcomes and Early Post-Transplant Complications in Patients with Multiple Myeloma (MM) Treated with Autologous Hematopoietic Stem Cell Transplantation (AutoHSCT). J Clin Med 2024; 13:5987. [PMID: 39408047 PMCID: PMC11478116 DOI: 10.3390/jcm13195987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Changes in muscle mass and bone density are common in multiple myeloma (MM) patients. Dual-energy X-ray absorptiometry (DXA) offers precise, non-invasive insights into a patient's physical condition before autologous stem cell transplantation (autoHSCT). This study examines how pre-transplant body composition impacts treatment outcomes and early complications in MM patients undergoing autoHSCT. Methods: This study is a single-center, retrospective analysis of patients with MM who were treated with first or second autoHSCT and underwent DXA pre-transplant between 11 August 2019 and 12 June 2024. Results: We conducted a study of pre-transplant body composition in 127 patients with MM. Among them, 108 (85%) qualified for first autoHSCT, while 19 (15%) qualified for a second. The median age of the patients was 64 years (range 50-73). In the Cox proportional hazards regression conducted in the group of women, Total Body %Fat was a statistically significant predictor for progression-free survival (PFS) (HR = 0.07, 95% CI = 0.01,0.6, p = 0.0157). In the Mann-Whitney U test conducted on males, Lean Mass/Height2 and Appen. Lean Height2 were statistically significant predictors of early infections after autoHSCT (Z = 1.98, p = 0.0473 and Z = 2.32, p = 0.0204, respectively). In males, Fat Mass/Height2 was a significant predictor of non-infectious toxicity related to treatment (Z = -1.98, p = 0.0476). Conclusions: In women, higher levels of adipose tissue initially appear to exert a protective effect; however, this benefit diminishes over time, with greater fat mass eventually correlating with an increased risk of disease progression. In men, muscle mass has been identified as a significant predictor of early infection risk post-autoHSCT. Furthermore, our findings indicate that an increased amount of adipose tissue in men is statistically associated with a higher risk of non-infectious treatment-related toxicity. These conclusions highlight the critical need for further investigation into the role of body composition.
Collapse
Affiliation(s)
- Paula Jabłonowska-Babij
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Diana Jędrzejuk
- Department and Clinic of Endocrinology, Diabetology, and Isotope Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.J.); (M.L.)
| | - Maciej Majcherek
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Agnieszka Szeremet
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Magdalena Karasek
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Bartłomiej Kuszczak
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Milena Sitkiewicz
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Marcin Landwójtowicz
- Department and Clinic of Endocrinology, Diabetology, and Isotope Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland; (D.J.); (M.L.)
| | - Tomasz Wróbel
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Maciej Tomasiewicz
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| | - Anna Czyż
- Department and Clinic of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.M.); (A.S.); (M.K.); (B.K.); (M.S.); (T.W.); (M.T.); (A.C.)
| |
Collapse
|
3
|
Hillengass J, Hillengass M, Joseph JM, Attwood K, Cannioto R, Jacobson H, Miller C, Wittmeyer B, Moysich K. Effects on the Physical Functioning of Two Exercise Interventions in Patients with Multiple Myeloma: A Pilot Feasibility Study. Cancers (Basel) 2024; 16:1774. [PMID: 38730726 PMCID: PMC11083081 DOI: 10.3390/cancers16091774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Because of the high prevalence of bone destruction in patients with multiple myeloma (MM), physical exercise is oftentimes discouraged by healthcare providers. The goal of this prospective trial was to investigate the feasibility of two six-month exercise interventions in patients with MM (N = 42): a remotely prompted home-based walking intervention or a supervised strength training intervention. Physical function and pain were assessed with the Activity Measure for Post-Acute Care (AM-PAC) Basic Mobility Short Form raw score, a six-minute walk test (6 MWT), a 30-second sit-to-stand test (30 SST), a timed up-and-go (TUG) test, a visual analog scale (VAS) for pain, handheld dynamometer tests, heart rate at rest, blood oxygen saturation at rest, and body mass index. No intervention-related serious adverse events were observed. Adverse events mostly affected the musculoskeletal system. In the resistance training group (n = 24), patients showed significant improvements in AM-PAC, TUG, 6 MWT, and 30 SST, with all effects but the 6 MWT sustained six months after the intervention. The walking group (n = 18) saw improvements in the AM-PAC, TUG, 6 MWT, and 30 SST, with a sustained change in the AM-PAC and TUG. This trial shows the feasibility of both exercise interventions with a sustained beneficial effect on the physical functioning of a six-month strength training intervention and, to a lesser extent, a six-month unsupervised walking intervention. A larger study building on these findings is currently underway.
Collapse
Affiliation(s)
- Jens Hillengass
- Department of Medicine—Myeloma, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Michaela Hillengass
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Janine M. Joseph
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Rikki Cannioto
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Hillary Jacobson
- Department of Physical Therapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Carolyn Miller
- Department of Physical Therapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Bryan Wittmeyer
- Department of Physical Therapy, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kirsten Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Ferreira SS, do Amaral JB, Pacheco JJ, Salazar F, Monteiro L. Osteonecrosis of the Jaw Associated with Bisphosphonates Infusion for Treatment of Plasma Cell Myeloma-A Retrospective Observational Study of Northern Portuguese Population. J Clin Med 2024; 13:2679. [PMID: 38731207 PMCID: PMC11084472 DOI: 10.3390/jcm13092679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Objectives: To verify medication-related osteonecrosis of the jaw (MRONJ) frequency among patients with plasma cell myeloma (PCM) that had been treated with bisphosphonates, to identify predisposing factors that could influence the development of osteonecrosis. Methods: This observational retrospective study was performed at the Department of Hematology of Hospital Center of Porto (CHUP), Portugal. Results: The study population (n = 112) had a 15.2% (n = 17) prevalence of osteonecrosis. Clinically, bone exposure was the most frequently observed sign, present in 100% (n = 17) of the patients, followed by inflammation in 82.4% (n = 14), orofacial pain in 70.6% (n = 12), suppuration in 47.1% (n = 8), and intra or extra-oral fistula in 17.6% (n = 3) of the cases. The most frequent triggering local factor was dental extraction (82.4%). There was a dependence between the presence of extractions and the development of MRONJ (p < 0.001) but not with the time elapsed from the initiation of infusions with BPs and dental extractions (p = 0.499). In the sample of patients with multiple myeloma (MM), 13.8% were found to be more likely to develop MRONJ after an extraction. Conclusions: The most common local predisposing factor was dental extraction. No dependence was observed between the development of osteonecrosis and the time elapsed from the beginning of treatment with bisphosphonates infusions to surgical procedures.
Collapse
Affiliation(s)
- Sara Sousa Ferreira
- UNIPRO, Unidade de Investigação de Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde do Norte (IUCS-CESPU), 4585-116 Gandra, Portugal; (J.J.P.); (F.S.); (L.M.)
- Oral Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde do Norte (IUCS-N), 4585-116 Gandra, Portugal;
| | - José Barbas do Amaral
- Oral Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde do Norte (IUCS-N), 4585-116 Gandra, Portugal;
| | - José Júlio Pacheco
- UNIPRO, Unidade de Investigação de Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde do Norte (IUCS-CESPU), 4585-116 Gandra, Portugal; (J.J.P.); (F.S.); (L.M.)
- Oral Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde do Norte (IUCS-N), 4585-116 Gandra, Portugal;
| | - Filomena Salazar
- UNIPRO, Unidade de Investigação de Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde do Norte (IUCS-CESPU), 4585-116 Gandra, Portugal; (J.J.P.); (F.S.); (L.M.)
- Oral Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde do Norte (IUCS-N), 4585-116 Gandra, Portugal;
| | - Luís Monteiro
- UNIPRO, Unidade de Investigação de Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde do Norte (IUCS-CESPU), 4585-116 Gandra, Portugal; (J.J.P.); (F.S.); (L.M.)
- Oral Medicine and Oral Surgery Department, Instituto Universitário de Ciências da Saúde do Norte (IUCS-N), 4585-116 Gandra, Portugal;
| |
Collapse
|
5
|
Yang M, Chen Y, Zhu L, You L, Tong H, Meng H, Sheng J, Jin J. Harnessing Nanotechnology: Emerging Strategies for Multiple Myeloma Therapy. Biomolecules 2024; 14:83. [PMID: 38254683 PMCID: PMC10813273 DOI: 10.3390/biom14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Advances in nanotechnology have provided novel avenues for the diagnosis and treatment of multiple myeloma (MM), a hematological malignancy characterized by the clonal proliferation of plasma cells in the bone marrow. This review elucidates the potential of nanotechnology to revolutionize myeloma therapy, focusing on nanoparticle-based drug delivery systems, nanoscale imaging techniques, and nano-immunotherapy. Nanoparticle-based drug delivery systems offer enhanced drug targeting, reduced systemic toxicity, and improved therapeutic efficacy. We discuss the latest developments in nanocarriers, such as liposomes, polymeric nanoparticles, and inorganic nanoparticles, used for the delivery of chemotherapeutic agents, siRNA, and miRNA in MM treatment. We delve into nanoscale imaging techniques which provide spatial multi-omic data, offering a holistic view of the tumor microenvironment. This spatial resolution can help decipher the complex interplay between cancer cells and their surrounding environment, facilitating the development of highly targeted therapies. Lastly, we explore the burgeoning field of nano-immunotherapy, which employs nanoparticles to modulate the immune system for myeloma treatment. Specifically, we consider how nanoparticles can be used to deliver tumor antigens to antigen-presenting cells, thus enhancing the body's immune response against myeloma cells. In conclusion, nanotechnology holds great promise for improving the prognosis and quality of life of MM patients. However, several challenges remain, including the need for further preclinical and clinical trials to assess the safety and efficacy of these emerging strategies. Future research should also focus on developing personalized nanomedicine approaches, which could tailor treatments to individual patients based on their genetic and molecular profiles.
Collapse
Affiliation(s)
- Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Yu Chen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Li Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Liangshun You
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jianpeng Sheng
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (M.Y.); (Y.C.); (L.Z.); (L.Y.); (H.T.); (H.M.)
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou 310027, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou 310003, China
- Zhejiang University Cancer Center, Hangzhou 310029, China;
| |
Collapse
|
6
|
Isoda A, Miyazawa Y, Ishikawa T, Kanaya S, Nakayama K, Mihara M, Iriuchishima H, Saito A, Matsumoto M, Sawamura M. Prevalence and clinical outcomes of vitamin D deficiency among Japanese multiple myeloma patients: a single-center observational study. Support Care Cancer 2023; 31:547. [PMID: 37656213 DOI: 10.1007/s00520-023-08021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Vitamin D plays a crucial role in skeletal metabolism and holds significant importance in the pathophysiology of multiple myeloma (MM). This study aimed to determine the prevalence of vitamin D deficiency among Japanese MM patients and its correlation with clinical outcomes. METHODS Serum 25-hydroxyvitamin D (25(OH)D) levels were assessed in 68 MM patients at a single institution in Japan, analyzing their association with clinical status, laboratory parameters including procollagen type 1 N-propeptide (P1NP) and tartrate-resistant acid phosphatase 5b (TRACP-5b), health-related quality of life (HR-QOL) scores, and overall survival. Additionally, patients with suboptimal 25(OH)D levels received cholecalciferol supplementation (1000 IU/day), and changes in laboratory parameters were monitored. RESULTS The median 25(OH)D level was 22 ng/ml, with 32% and 51% of patients exhibiting vitamin D deficiency (< 20 ng/ml) and insufficiency (20-29 ng/ml), respectively. The 25(OH)D levels were unrelated to sex, age, MM stage, or bone lesions, but the vitamin D-deficient group showed a tendency towards lower HR-QOL scores. Among patients achieving complete remission, vitamin D supplementation increased P1NP, while TRACP-5b remained unchanged. Overall survivals from vitamin D measurement and from MM diagnosis were significantly worse in the vitamin D-deficient group compared to the vitamin D-insufficient/-sufficient group. CONCLUSION The study identified a considerable number of Japanese MM patients with insufficient serum vitamin D levels, with one-third being deficient. Additionally, vitamin D deficiency predicted poor overall survival in Japanese MM patients. Further investigation is required to determine whether vitamin D supplementation can improve the frailty and survival of vitamin D-deficient MM patients.
Collapse
Affiliation(s)
- Atsushi Isoda
- Department of Hematology, Iryohojin Hoshiiin, 204-1 Nishizen-Machi, Maebashi, Gunma, 379-2131, Japan.
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan.
| | - Yuri Miyazawa
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tetsuya Ishikawa
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuhei Kanaya
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
- Department of Hematology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Keita Nakayama
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Masahiro Mihara
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Hirono Iriuchishima
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Akio Saito
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| | - Morio Sawamura
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Gunma, Japan
| |
Collapse
|
7
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
8
|
Nakaue E, Teramachi J, Tenshin H, Hiasa M, Harada T, Oda A, Inoue Y, Shimizu S, Higa Y, Sogabe K, Oura M, Hara T, Sumitani R, Maruhashi T, Yamagami H, Endo I, Tanaka E, Abe M. Mechanisms of preferential bone formation in myeloma bone lesions by proteasome inhibitors. Int J Hematol 2023:10.1007/s12185-023-03601-2. [PMID: 37039914 DOI: 10.1007/s12185-023-03601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Proteasome inhibitors (PIs) can preferentially restore bone in bone-defective lesions of patients with multiple myeloma (MM) who respond favorably to these drugs. Most prior in vitro studies on PIs used continuous exposure to low PI concentrations, although pharmacokinetic analysis in patients has shown that serum concentrations of PIs change in a pulsatile manner. In the present study, we explored the effects of pulsatile treatment with PIs on bone metabolism to simulate in vivo PI pharmacokinetics. Pulsatile treatment with bortezomib, carfilzomib, or ixazomib induced MM cell death but only marginally affected the viability of osteoclasts (OCs) with F-actin ring formation. Pulsatile PI treatment suppressed osteoclastogenesis in OC precursors and bone resorption by mature OCs. OCs robustly enhanced osteoblastogenesis in cocultures with OCs and MC3T3-E1 pre-osteoblastic cells, indicating OC-mediated coupling to osteoblastogenesis. Importantly, pulsatile PI treatment did not impair robust OC-mediated osteoblastogenesis. These results suggest that PIs might sufficiently reduce MM cell-derived osteoblastogenesis inhibitors to permit OC-driven bone formation coupling while suppressing OC differentiation and activity in good responders to PIs. OC-mediated coupling to osteoblastogenesis appears to be a predominant mechanism for preferential occurrence of bone regeneration at sites of osteoclastic bone destruction in good responders.
Collapse
Affiliation(s)
- Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Graduate School, 2-5-1 Shikata, Okayama, 700-8525, Japan.
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yusuke Inoue
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
9
|
Bernstein ZS, Kim EB, Raje N. Bone Disease in Multiple Myeloma: Biologic and Clinical Implications. Cells 2022; 11:cells11152308. [PMID: 35954151 PMCID: PMC9367243 DOI: 10.3390/cells11152308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple Myeloma (MM) is a hematologic malignancy characterized by the proliferation of monoclonal plasma cells localized within the bone marrow. Bone disease with associated osteolytic lesions is a hallmark of MM and develops in the majority of MM patients. Approximately half of patients with bone disease will experience skeletal-related events (SREs), such as spinal cord compression and pathologic fractures, which increase the risk of mortality by 20–40%. At the cellular level, bone disease results from a tumor-cell-driven imbalance between osteoclast bone resorption and osteoblast bone formation, thereby creating a favorable cellular environment for bone resorption. The use of osteoclast inhibitory therapies with bisphosphonates, such as zoledronic acid and the RANKL inhibitor denosumab, have been shown to delay and lower the risk of SREs, as well as the need for surgery or radiation therapy to treat severe bone complications. This review outlines our current understanding of the molecular underpinnings of bone disease, available therapeutic options, and highlights recent advances in the management of MM-related bone disease.
Collapse
Affiliation(s)
- Zachary S. Bernstein
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA;
| | - E. Bridget Kim
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA;
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
10
|
Pandian SRK, Vijayakumar KK, Kunjiappan S, Babkiewicz E, Maszczyk P. Emerging role of exosomes in hematological malignancies. Clin Exp Med 2022:10.1007/s10238-022-00850-z. [PMID: 35798882 DOI: 10.1007/s10238-022-00850-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 02/08/2023]
Abstract
Hematological malignancies are a heterogeneous group of neoplasms in the blood characterized by dysregulated hematopoiesis and classified as leukemia, lymphoma, and myeloma. The occurrence and progression of hematological malignancies depend on transformed hematopoietic stem cells, which refract to chemotherapy and often cause relapse. In recent years, monoclonal antibody therapies are preferred for hematopoietic cancers, owing to their inherent mechanisms of action and improved outcomes. However, efficient drug delivery methods and the establishment of novel biomarkers are currently being investigated and warranted to improve the outcome of patients with hematological malignancies. For instance, non-viral-mediated, natural carriers have been suggested for latent intracellular drug delivery. In this purview, repurposing small vesicles (e.g., exosomes) is considered a latent approach for myeloma therapy. Exosomes (nano-vesicles) have many advantages in that they are secreted by various animals and plants and become sought after for therapeutic and diagnostic purposes. The size of the cellular membrane of exosomes (30-150 nm) facilitates ligand binding and targeted delivery of the loaded molecules. Furthermore, exosomes can be modified to express specific target moiety on their cell membrane and can also be featured with desired biological activity, thereby potentially employed for various convoluted diseases, including hematological malignancies. To advance the current knowledge, this review is focused on the source, composition, function and surface engineering of exosomes pertaining to hematological malignancies.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India.
| | - Kevin Kumar Vijayakumar
- School of Biotechnology, Department of Molecular Microbiology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, 626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| | - Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-089, Warsaw, Poland
| |
Collapse
|
11
|
Qiu L, Cai J, Zhang N, Ma L, Fan FY, Li XM. Effect of miR-381-3p/FGF7 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells through MEK/ERK signaling pathway. Tissue Cell 2022; 76:101791. [PMID: 35427886 DOI: 10.1016/j.tice.2022.101791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023]
Abstract
Although microRNAs (miRNAs) exert an important role in the osteogenesis of mesenchymal stem cells (MSCs), the effect of miR-381-3p on the osteogenic differentiation in MBD‑MSCs is still unclear. The BMMSCs from patients with MBD (MBD‑MSC) or normal participants (Normal‑MSC) were isolated and induced to differentiation with dexamethasone. BMMSCs were transfected with miR-381-3p mimic, miR-381-3p inhibitor, and FGF7 siRNA to regulate the expression of miR-381-3p or FGF7. The direct binding between miR-381-3p and FGF7 was predicted and confirmed by bioinformatics prediction and luciferase reporter assay. The effect of miR-381-3p on the osteogenic differentiation of BMMSCs was assessed by RT‑qPCR, alizarin Red S staining and western blot assays. Isolated BMMSCs showed the regular morphology, and were positive for CD44, CD90 and CD105 but negative for CD34 and CD45 markers. The calcium deposition and the relative mRNA expression levels of ALP, OC and OPN after induction were markedly enhanced. MiR-381-3p was upregulated in BMMSCs. Also, inhibition of miR-381-3p notably promoted osteogenic differentiation, vice versa. Besides, miR-381-3p could directly target FGF7 and negatively modulate the expression of FGF7. Moreover, inhibition of FGF7 attenuated the increase of the calcium deposition, and the relative mRNA expression of ALP, OC and OPN caused by the downregulation of miR-381-3p. In addition, the miR-381-3p inhibitor-induced the enhancement of the relative protein expressions of FGFR2, p-MEK and p-ERK1/2 were significantly reduced by the co-transfection of si-FGF7. Furthermore, the application of LY3214996, the inhibitor of ERK also verified these outcomes. MiR-381-3p directly targeting FGF7 modulated the osteogenic differentiation via MEK/ERK signaling pathway in BMMSCs.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Hematology, Southwest Medical University, Luzhou, China; Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Jiao Cai
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Nan Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Lei Ma
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, General Hospital of the Chinese People's Liberation Army Western Theater, Chengdu, China.
| | - Xiao-Ming Li
- Department of Hematology, Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Baksh M, Jiang L, Bhatia U, Alegria V, Sher T, Roy V, Chanan‐Khan A, Ailawadhi S, Parrondo RD. Management of lytic bone disease in lymphoplasmacytic lymphoma: A case report and review of the literature. Clin Case Rep 2021; 9:e05181. [PMID: 34934497 PMCID: PMC8650751 DOI: 10.1002/ccr3.5181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022] Open
Abstract
Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is often differentiated from myeloma based on the presence of lytic bone lesions (LBL). However, WM/LPL can present with LBL, and management is poorly understood. We describe a case of an 81-year-old woman with LPL who presented with LBL and was successfully treated with chemoimmunotherapy.
Collapse
Affiliation(s)
- Mizba Baksh
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Liuyan Jiang
- Department of PathologyMayo ClinicJacksonvilleFloridaUSA
| | - Unnati Bhatia
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Victoria Alegria
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Taimur Sher
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Vivek Roy
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
| | - Asher Chanan‐Khan
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
- Hematology‐OncologySt. Vincent's RiversideJacksonvilleFloridaUSA
| | - Sikander Ailawadhi
- Division of Hematology‐OncologyMayo ClinicJacksonvilleFloridaUSA
- Department of Cancer BiologyMayo ClinicJacksonvilleFloridaUSA
| | | |
Collapse
|
13
|
Heider M, Nickel K, Högner M, Bassermann F. Multiple Myeloma: Molecular Pathogenesis and Disease Evolution. Oncol Res Treat 2021; 44:672-681. [PMID: 34749378 DOI: 10.1159/000520312] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple myeloma is the second most common hematologic malignancy, which to date remains incurable despite advances in treatment strategies including the use of novel substances such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. SUMMARY The bone marrow-based disease is preceded by the 2 sequential premalignant conditions: monoclonal gammo-pathy of undetermined significance and smoldering myeloma. Plasma cell leukemia and extramedullary disease occur, when malignant clones lose their dependency on the bone marrow. Key genetic features of these plasma cell dyscrasias include chromosomal aberrations such as translocations and hyperdiploidy, which occur during error-prone physiologic processes in B-cell development. Next-generation sequencing studies have identified mutations in major oncogenic pathways and tumor suppressors, which contribute to the pathogenesis of multiple myeloma and have revealed insights into the clonal evolution of the disease, particularly along different lines of therapy. More recently, the importance of epigenetic alterations and the role of the bone marrow microenvironment, including immune and osteogenic cells, have become evident. Key Messages: We herein review the current knowledge of the pathogenesis of multiple myeloma, which is crucial for the development of novel targeted therapeutic strategies. These can contribute to the endeavor to make multiple myeloma a curable disease.
Collapse
Affiliation(s)
- Michael Heider
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katharina Nickel
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marion Högner
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
Yu N, Zhang Y, Li J, Gu W, Yue S, Li B, Meng F, Sun H, Haag R, Yuan J, Zhong Z. Daratumumab Immunopolymersome-Enabled Safe and CD38-Targeted Chemotherapy and Depletion of Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007787. [PMID: 34369013 DOI: 10.1002/adma.202007787] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a second ranking hematological malignancy. Despite the fast advancement of new treatments such as bortezormib and daratumumab, MM patients remain incurable and tend to eventually become relapsed and drug-resistant. Development of novel therapies capable of depleting MM cells is strongly needed. Here, daratumumab immunopolymersomes carrying vincristine sulfate (Dar-IPs-VCR) are reported for safe and high-efficacy CD38-targeted chemotherapy and depletion of orthotopic MM in vivo. Dar-IPs-VCR made by postmodification via strain-promoted click reaction holds tailored antibody density (2.2, 4.4 to 8.7 Dar per IPs), superb stability, small size (43-49 nm), efficacious VCR loading, and glutathione-responsive VCR release. Dar4.4 -IPs-VCR induces exceptional anti-MM activity with an IC50 of 76 × 10-12 m to CD38-positive LP-1 MM cells, 12- and 20-fold enhancement over nontargeted Ps-VCR and free VCR controls, respectively. Intriguingly, mice bearing orthotopic LP-1-Luc MM following four cycles of i.v. administration of Dar4.4 -IPs-VCR at 0.25 mg VCR equiv. kg-1 reveal complete depletion of LP-1-Luc cells, superior survival rate to all controls, and no body weight loss. The bone and histological analyses indicate bare bone and organ damage. Dar-IPs-VCR appears as a safe and targeted treatment for CD38-overexpressed hematological malignancies.
Collapse
Affiliation(s)
- Na Yu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Rainer Haag
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co, Ltd, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and, Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
15
|
Myeloma-Bone Interaction: A Vicious Cycle via TAK1-PIM2 Signaling. Cancers (Basel) 2021; 13:cancers13174441. [PMID: 34503251 PMCID: PMC8431187 DOI: 10.3390/cancers13174441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Myeloma cells interact with their ambient cells in the bone, such as bone marrow stromal cells, osteoclasts, and osteocytes, resulting in enhancement of osteoclastogenesis and inhibition of osteoblastogenesis while enhancing their growth and drug resistance. The activation of the TAK1–PIM2 signaling axis appears to be vital for this mutual interaction, posing it as an important therapeutic target to suppress tumor expansion and ameliorate bone destruction in multiple myeloma. Abstract Multiple myeloma (MM) has a propensity to develop preferentially in bone and form bone-destructive lesions. MM cells enhance osteoclastogenesis and bone resorption through activation of the RANKL–NF-κB signaling pathway while suppressing bone formation by inhibiting osteoblastogenesis from bone marrow stromal cells (BMSCs) by factors elaborated in the bone marrow and bone in MM, including the soluble Wnt inhibitors DKK-1 and sclerostin, activin A, and TGF-β, resulting in systemic bone destruction with loss of bone. Osteocytes have been drawn attention as multifunctional regulators in bone metabolism. MM cells induce apoptosis in osteocytes to trigger the production of factors, including RANKL, sclerostin, and DKK-1, to further exacerbate bone destruction. Bone lesions developed in MM, in turn, provide microenvironments suited for MM cell growth/survival, including niches to foster MM cells and their precursors. Thus, MM cells alter the microenvironments through bone destruction in the bone where they reside, which in turn potentiates tumor growth and survival, thereby generating a vicious loop between tumor progression and bone destruction. The serine/threonine kinases PIM2 and TAK1, an upstream mediator of PIM2, are overexpressed in bone marrow stromal cells and osteoclasts as well in MM cells in bone lesions. Upregulation of the TAK1–PIM2 pathway plays a critical role in tumor expansion and bone destruction, posing the TAK1–PIM2 pathway as a pivotal therapeutic target in MM.
Collapse
|
16
|
Mukkamalla SKR, Malipeddi D. Myeloma Bone Disease: A Comprehensive Review. Int J Mol Sci 2021; 22:6208. [PMID: 34201396 PMCID: PMC8227693 DOI: 10.3390/ijms22126208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic clonal proliferation of plasma cells in the bone marrow microenvironment, characterized by overproduction of heavy- and light-chain monoclonal proteins (M-protein). These proteins are mainly found in the serum and/or urine. Reduction in normal gammaglobulins (immunoparesis) leads to an increased risk of infection. The primary site of origin is the bone marrow for nearly all patients affected by MM with disseminated marrow involvement in most cases. MM is known to involve bones and result in myeloma bone disease. Osteolytic lesions are seen in 80% of patients with MM which are complicated frequently by skeletal-related events (SRE) such as hypercalcemia, bone pain, pathological fractures, vertebral collapse, and spinal cord compression. These deteriorate the patient's quality of life and affect the overall survival of the patient. The underlying pathogenesis of myeloma bone disease involves uncoupling of the bone remodeling processes. Interaction of myeloma cells with the bone marrow microenvironment promotes the release of many biochemical markers including osteoclast activating factors and osteoblast inhibitory factors. Elevated levels of osteoclast activating factors such as RANK/RANKL/OPG, MIP-1-α., TNF-α, IL-3, IL-6, and IL-11 increase bone resorption by osteoclast stimulation, differentiation, and maturation, whereas osteoblast inhibitory factors such as the Wnt/DKK1 pathway, secreted frizzle related protein-2, and runt-related transcription factor 2 inhibit osteoblast differentiation and formation leading to decreased bone formation. These biochemical factors also help in development and utilization of appropriate anti-myeloma treatments in myeloma patients. This review article summarizes the pathophysiology and the recent developments of abnormal bone remodeling in MM, while reviewing various approved and potential treatments for myeloma bone disease.
Collapse
Affiliation(s)
| | - Dhatri Malipeddi
- Internal Medicine, Canton Medical Education Foundation/NEOMED, Canton, OH 44710, USA;
| |
Collapse
|
17
|
Teramachi J, Tenshin H, Hiasa M, Oda A, Bat-Erdene A, Harada T, Nakamura S, Ashtar M, Shimizu S, Iwasa M, Sogabe K, Oura M, Fujii S, Kagawa K, Miki H, Endo I, Haneji T, Matsumoto T, Abe M. TAK1 is a pivotal therapeutic target for tumor progression and bone destruction in myeloma. Haematologica 2021; 106:1401-1413. [PMID: 32273474 PMCID: PMC8094086 DOI: 10.3324/haematol.2019.234476] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
Along with tumor progression, the bone marrow microenvironment is skewed in multiple myeloma (MM), which underlies the unique pathophysiology of MM and confers aggressiveness and drug resistance in MM cells. TGF-b-activated kinase-1 (TAK1) mediates a wide range of intracellular signaling pathways. We demonstrate here that TAK1 is constitutively overexpressed and phosphorylated in MM cells, and that TAK1 inhibition suppresses the activation of NF-κB, p38MAPK, ERK and STAT3 in order to decrease the expression of critical mediators for MM growth and survival, including PIM2, MYC, Mcl- 1, IRF4, and Sp1, along with a substantial reduction in the angiogenic factor VEGF in MM cells. Intriguingly, TAK1 phosphorylation was also induced along with upregulation of vascular cell adhesion molecule-1 (VCAM-1) in bone marrow stromal cells (BMSC) in cocultures with MM cells, which facilitated MM cell-BMSC adhesion while inducing IL-6 production and receptor activator of nuclear factor κ-B ligand (RANKL) expression by BMSC. TAK1 inhibition effectively impaired MM cell adhesion to BMSC to disrupt the support of MM cell growth and survival by BMSC. Furthermore, TAK1 inhibition suppressed osteoclastogenesis enhanced by RANKL in cocultures of bone marrow cells with MM cells, and restored osteoblastic differentiation suppressed by MM cells or inhibitory factors for osteoblastogenesis overproduced in MM. Finally, treatment with the TAK1 inhibitor LLZ1640-2 markedly suppressed MM tumor growth and prevented bone destruction and loss in mouse MM models. Therefore, TAK1 inhibition may be a promising therapeutic option targeting not only MM cells but also the skewed bone marrow microenvironment in MM.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Dept. of Histology-Oral Histology and Dept. of Hematology, Tokushima University,Tokushima, Japan
| | - Hirofumi Tenshin
- Dept. of Hematology and Orthodontics and Dentofacial Orthopedics,Tokushima University, Japan
| | - Masahiro Hiasa
- Dept. of Hematology and Orthodontics and Dentofacial Orthopedics,Tokushima University, Japan
| | - Asuka Oda
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Ariunzaya Bat-Erdene
- Dept of Hematology, Tokushima University and University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Takeshi Harada
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Mohannad Ashtar
- Dept. of Hematology and Orthodontics and Dentofacial Orthopedics,Tokushima University, Japan
| | - So Shimizu
- Dept. of Hematology and Orthodontics and Dentofacial Orthopedics,Tokushima University, Japan
| | - Masami Iwasa
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Kimiko Sogabe
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Tokushima University, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Itsuro Endo
- Department of Chronomedicine, Tokushima University, Tokushima, Japan
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Tokushima University, Tokushima, Japan
| | - Toshio Matsumoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Tokushima University, Tokushima, Japan
| |
Collapse
|
18
|
Sabol HM, Delgado-Calle J. The multifunctional role of Notch signaling in multiple myeloma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7:20. [PMID: 34778567 PMCID: PMC8589324 DOI: 10.20517/2394-4722.2021.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by uncontrolled growth of malignant plasma cells in the bone marrow and currently is incurable. The bone marrow microenvironment plays a critical role in MM. MM cells reside in specialized niches where they interact with multiple marrow cell types, transforming the bone/bone marrow compartment into an ideal microenvironment for the migration, proliferation, and survival of MM cells. In addition, MM cells interact with bone cells to stimulate bone destruction and promote the development of bone lesions that rarely heal. In this review, we discuss how Notch signals facilitate the communication between adjacent MM cells and between MM cells and bone/bone marrow cells and shape the microenvironment to favor MM progression and bone disease. We also address the potential and therapeutic approaches used to target Notch signaling in MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
19
|
Wu Z, Zhang Y, Yang Z, Zhu Y, Xie Y, Zhou F, Cai L. Elevation of miR-302b prevents multiple myeloma cell growth and bone destruction by blocking DKK1 secretion. Cancer Cell Int 2021; 21:187. [PMID: 33789678 PMCID: PMC8011228 DOI: 10.1186/s12935-021-01887-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myeloma bone disease (MBD) is a severe complication of multiple myeloma (MM) mainly due to an imbalance between enhanced osteoclast activity and reduced osteoblast function. Previous studies have demonstrated that miRNAs play a vital role in the osteogenic differentiation of mesenchymal stromal cells (MSCs) in MM. However, the value of miR‑302b in MBD remains to be further elucidated. The aim of this study is to explore the role of miR‑302b in the regulation of MBD osteogenic differentiation and evaluate the potential of a new therapeutic strategy for the clinical treatment of MBD. METHOD Our previous research demonstrated that MiR-302b belongs to the miR-302 cluster and is able to inhibit tumor growth and osteolysis in an orthotopic osteosarcoma xenograft tumor mouse model. In this study, we first transfected miR-302b mimics, miR-302b inhibitor, and miR-302b NC into MM1.S and RPMI8226 MM cells to detect the correlation between miR-302b expression in the pathological specimens and the clinicopathological features by qPCR, the target correlation between miR-302b and DKK1 by immunohistochemistry, qPCR and Western blot, and the correlation between miR-302b and the Wnt/β-catenin signaling pathway by Western blot. The effect of miR-302b on osteoblastogenesis was also studied in a subperiosteal tumorigenesis model of NOD/SCID nude mice. RESULTS We found that increased miR-302b suppressed cell proliferation and induced cell apoptosis in RPMI 8226 and MM1.S cells. TargetScan online bioinformatic analysis predicted that miR-302b is able to bind to 3'UTR of DKK1 mRNA. Target binding of miR-302b to DKK1 was demonstrated by dual-luciferase reporter assay, qPCR, Western blot and immunohistochemistry, indicating that miR-302b is able to degrade DKK1 in RPMI 8226 and MM1.S cells. The model of co-culturing MM cells with preosteoblast MC3T3-E1 cells showed that miR-302b inhibits MM-induced suppression of osteoblast differentiation. Western blotting showed that miR-302b promotes the Wnt/β-catenin signaling pathway in MM cells. Micro-CT and immunohistochemistry results showed that miR-302b suppresses myeloma bone destruction in vivo. CONCLUSION miR-302b is able to target DKK1 and promote the Wnt/β-catenin signaling pathway in MM.
Collapse
Affiliation(s)
- Zheyu Wu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yufeng Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yufan Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yuanlong Xie
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
20
|
Du JS, Yen CH, Hsu CM, Hsiao HH. Management of Myeloma Bone Lesions. Int J Mol Sci 2021; 22:3389. [PMID: 33806209 PMCID: PMC8036461 DOI: 10.3390/ijms22073389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple myeloma (MM) is a B-cell neoplasm characterized by clonal plasma-cell proliferation. The survival and prognosis of this condition have been significantly improved by treatment with active anti-MM drugs such as bortezomib or lenalidomide. Further, the discovery of novel agents has recently paved the way for new areas of investigation. However, MM, including myeloma-related bone diseases, remains fatal. Bone disease or bone destruction in MM is a consequence of skeletal involvement with bone pain, spinal cord compression, and bone fracture resulting from osteolytic lesions. These consequences affect disease outcomes, including patients' quality of life and survival. Several studies have sought to better understand MM bone disease (MBD) through the classification of its molecular mechanisms, including osteoclast activation and osteoblast inhibition. Bisphosphonates and the receptor activator of the nuclear factor-kappa B (NF-κB) ligand (RANKL) inhibitor, denosumab, prevent skeletal-related events in MM. In addition, several other bone-targeting agents, including bone-anabolic drugs, are currently used in preclinical and early clinical evaluations. This review summarizes the current knowledge of the pathogenesis of MBD and discusses novel agents that appear very promising and will soon enter clinical development.
Collapse
Affiliation(s)
- Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (J.-S.D.); (C.-M.H.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Garcia-Gomez A, Li T, de la Calle-Fabregat C, Rodríguez-Ubreva J, Ciudad L, Català-Moll F, Godoy-Tena G, Martín-Sánchez M, San-Segundo L, Muntión S, Morales X, Ortiz-de-Solórzano C, Oyarzabal J, San José-Enériz E, Esteller M, Agirre X, Prosper F, Garayoa M, Ballestar E. Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nat Commun 2021; 12:421. [PMID: 33462210 PMCID: PMC7813865 DOI: 10.1038/s41467-020-20715-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD. Mesenchymal stromal cells (MSCs) have been shown to support multiple myeloma (MM) development. Here, MSCs isolated from the bone marrow of MM patients are shown to have altered DNA methylation patterns and a methyltransferase inhibitor reverts MM-associated bone loss and reduces tumour burden in MM murine models.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Català-Moll
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain
| | - Montserrat Martín-Sánchez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Sandra Muntión
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Xabier Morales
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Edurne San José-Enériz
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
22
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
23
|
Kou CTJ, Romain J, Broadwater DR, Barnett T. Colorectal Cancer in a Patient With Multiple Myeloma: A Treatment Dilemma. Cureus 2020; 12:e12112. [PMID: 33489527 PMCID: PMC7808961 DOI: 10.7759/cureus.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells characterized by the clonal proliferation of plasma cells that produce monoclonal immunoglobulins. While typically considered to be incurable, advances in treatment options have led to remarkable improvements in survival for these patients. Accumulating evidence suggests an increased risk for the development of a secondary primary malignancy (SPM) in these patients, perhaps as a result of myeloma directed therapy or as an effect of their underlying disease process. Here we present a case of a patient who was diagnosed with an SPM while undergoing palliative treatment for multiple myeloma and a treatment approach.
Collapse
Affiliation(s)
- Chung-Ting J Kou
- Internal Medicine, Brooke Army Medical Center, Fort Sam Houston, USA
| | - Joshua Romain
- Hematology and Oncology, Brooke Army Medical Center, Fort Sam Houston, USA
| | | | - Taylor Barnett
- Hematology and Oncology, Brooke Army Medical Center, Fort Sam Houston, USA
| |
Collapse
|
24
|
Myeloma Cells Deplete Bone Marrow Glutamine and Inhibit Osteoblast Differentiation Limiting Asparagine Availability. Cancers (Basel) 2020; 12:cancers12113267. [PMID: 33167336 PMCID: PMC7694402 DOI: 10.3390/cancers12113267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Osteolytic bone lesions represent an important clinical feature of multiple myeloma (MM). MM cells metabolize very high amounts of glutamine (Gln) and significantly lower Gln in the bone marrow. In this contribution we demonstrate that MM-dependent Gln depletion impairs the differentiation of bone marrow mesenchymal stromal cells into osteoblasts, the cells that form new bone tissue. We also found that osteoblast differentiation is associated with increased expression of glutaminase, the main enzyme that metabolizes Gln, SNAT2, a transporter able to accumulate Gln into the cells, and asparagine synthetase, the enzyme that uses Gln to obtain asparagine (Asn). Asn rescued osteoblast differentiation of Gln-starved mesenchymal stromal cells. These results demonstrate that MM cells impair osteoblast differentiation, hindering mesenchymal Asn synthesis through Gln depletion. Besides providing a metabolic mechanism underlying osteolytic lesions in MM, these results suggest that Asn supplementation may prevent bone disease in MM patients. Abstract Multiple myeloma (MM) cells consume huge amounts of glutamine and, as a consequence, the amino acid concentration is lower-than-normal in the bone marrow (BM) of MM patients. Here we show that MM-dependent glutamine depletion induces glutamine synthetase in stromal cells, as demonstrated in BM biopsies of MM patients, and reproduced in vitro by co-culturing human mesenchymal stromal cells (MSCs) with MM cells. Moreover, glutamine depletion hinders osteoblast differentiation of MSCs, which is also severely blunted by the spent, low-glutamine medium of MM cells, and rescued by glutamine restitution. Glutaminase and the concentrative glutamine transporter SNAT2 are induced during osteoblastogenesis in vivo and in vitro, and both needed for MSCs differentiation, pointing to enhanced the requirement for the amino acid. Osteoblastogenesis also triggers the induction of glutamine-dependent asparagine synthetase (ASNS), and, among non-essential amino acids, asparagine rescues differentiation of glutamine-starved MSCs, by restoring the transcriptional profiles of differentiating MSCs altered by glutamine starvation. Thus, reduced asparagine availability provides a mechanistic link between MM-dependent Gln depletion in BM and impairment of osteoblast differentiation. Inhibition of Gln metabolism in MM cells and supplementation of asparagine to stromal cells may, therefore, constitute novel approaches to prevent osteolytic lesions in MM.
Collapse
|
25
|
Milavec H, Ravikumar N, Syn NL, Yentia Soekojo C, Chng WJ, Kumar N. Surgical Management of Multiple Myeloma With Symptomatic Involvement of the Spine. Int J Spine Surg 2020; 14:785-794. [PMID: 33097585 DOI: 10.14444/7112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is the most frequent primary malignancy of the spine. We aimed to investigate the clinical presentation, surgical indications and outcomes, complications, survival, and its influencing factors in surgically treated MM patients with symptomatic involvement of the spine (SIS). METHODS Retrospective analysis of prospectively collected data. Out of 350 MM patients treated at our institution over a period of 12 years (2006-2018), we identified 24 patients who were surgically treated for SIS. We collected data on demographics, clinical presentation, comorbidities, surgical indications, and outcomes and investigated the factors predisposing to postoperative complications and survival. RESULTS The median follow-up duration was 85 months; median overall survival (OS) was 50 months. Clinical presentation at admission included pain (88%), sensory and/or motor deficit (67%), and bowel/bladder dysfunction (25%). Symptomatic pathological fractures were seen in 33%. Predominant surgical indications were rapid neurological deterioration with or without spinal cord compression (SCC), followed by mechanical instability. The majority of our patients benefited from surgery in terms of pain reduction in the short term as well as in the long term. There were 21% patients with surgical-related complications (<3 months). Surgical site infections occurred in 17%, without any obvious factors predisposing to infective complications. Neurological deterioration during hospital stay, especially in the presence of motor deficit and/or bowel/bladder dysfunction, significantly reduced OS. CONCLUSIONS Sudden-onset neurological deterioration was the predominant factor leading to surgery. We achieved good short- and long-term pain reduction. Surgery is a valuable option for MM patients with SIS who present with rapid neurological deterioration with or without SCC and/or mechanical instability.
Collapse
Affiliation(s)
- Helena Milavec
- Department of Orthopaedic Surgery, National University Health System, Singapore.,Department of Orthopaedic Surgery and Traumatology, Spine Unit, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nivetha Ravikumar
- Department of Orthopaedic Surgery, National University Health System, Singapore
| | - Nicholas L Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Wee Joo Chng
- Department of Haematology-Oncology, National University Health System, Singapore
| | - Naresh Kumar
- Department of Orthopaedic Surgery, National University Health System, Singapore
| |
Collapse
|
26
|
Raimondi L, De Luca A, Giavaresi G, Raimondo S, Gallo A, Taiana E, Alessandro R, Rossi M, Neri A, Viglietto G, Amodio N. Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Noncoding RNA 2020; 6:ncrna6030037. [PMID: 32916806 PMCID: PMC7549375 DOI: 10.3390/ncrna6030037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved in MMBD pathophysiology, and report emerging evidence of their regulation by different classes of ncRNAs.
Collapse
Affiliation(s)
- Lavinia Raimondi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| | - Angela De Luca
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCSS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche–SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
| | - Alessia Gallo
- IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Research Department, 90127 Palermo, Italy;
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (S.R.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy; (E.T.); (A.N.)
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (M.R.); (G.V.)
- Correspondence: (L.R.); (N.A.); Tel.: +39-091-6236011 (L.R.); +39-0961-3694159 (N.A.)
| |
Collapse
|
27
|
Notarfranchi L, Marchica V, Dalla Palma B, Pelagatti L, Burroughs-Garcia J, Pedrazzoni M, Ruffini L, Cetani F, Marcocci C, Giuliani N. Concomitant Primary Hyperparathyroidism in Patients with Multiple Myeloma: A Possible Link? Acta Haematol 2020; 144:302-307. [PMID: 32906140 DOI: 10.1159/000509768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/27/2020] [Indexed: 01/23/2023]
Abstract
Hypercalcemia is a significant feature of patients with active multiple myeloma (MM) with extensive bone disease. Among the causes of non-neoplastic hypercalcemia, primary hyperparathyroidism (PHPT) is one of the most common, leading to osteoporosis and bone fractures. Interestingly, some preclinical data indicate that high secretion of parathyroid hormone (PTH) may have a negative impact on bone disease and MM progression. However, concomitant diagnosis of MM and PHPT has rarely been described. Here, we present 4 cases of patients with active MM and hypercalcemia with high or inappropriately normal PTH levels. Interestingly, CD138+ cells from these 4 MM patients lack PTH receptor 1 and PTH-related peptide expressions, indicating that PTH could have a paracrine rather than a direct pro-tumoral effect. Moreover, these cases suggest that the concomitant diagnosis of MM and PHTP may not be so rare and should be considered for the clinical management of MM patients with hypercalcemia.
Collapse
Affiliation(s)
- Laura Notarfranchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma,", Parma, Italy
| | | | - Benedetta Dalla Palma
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, "Azienda Ospedaliero-Universitaria di Parma,", Parma, Italy
| | - Laura Pelagatti
- Hematology, "Azienda Ospedaliero-Universitaria di Parma,", Parma, Italy
| | | | - Mario Pedrazzoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Livia Ruffini
- Nuclear Medicine Unit, University Hospital of Parma, Parma, Italy
| | - Filomena Cetani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudio Marcocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy,
- Hematology, "Azienda Ospedaliero-Universitaria di Parma,", Parma, Italy,
| |
Collapse
|
28
|
Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Noncoding RNA 2020; 6:ncrna6030030. [PMID: 32764460 PMCID: PMC7549345 DOI: 10.3390/ncrna6030030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that extracellular vesicles (EVs) released from both tumor cells and the cells of the bone marrow microenvironment contribute to the pathobiology of multiple myeloma (MM). Recent studies on the mechanisms by which EVs exert their biological activity have indicated that the non-coding RNA (ncRNA) cargo is key in mediating their effect on MM development and progression. In this review, we will first discuss the role of EV-associated ncRNAs in different aspects of MM pathobiology, including proliferation, angiogenesis, bone disease development, and drug resistance. Finally, since ncRNAs carried by MM vesicles have also emerged as a promising tool for early diagnosis and therapy response prediction, we will report evidence of their potential use as clinical biomarkers.
Collapse
|
29
|
Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis. Cancers (Basel) 2020; 12:cancers12082167. [PMID: 32759820 PMCID: PMC7465175 DOI: 10.3390/cancers12082167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression; therefore, targeting of UPR-related molecules may open novel therapeutic avenues. Endoplasmic reticulum (ER) stress and UPR pathways are constitutively activated in MM cells, which are characterized by an increased protein turnover as a consequence of high production of immunoglobulins and high rates of protein synthesis. A great deal of scientific data also evidenced that a mild activation of UPR pathway can regulate cellular differentiation. Our previous studies revealed that MM cell-derived small extracellular vesicle (MM-EV) modulated osteoclasts (OCs) function and induced OCs differentiation. Here, we investigated the role of the UPR pathway, and in particular of the IRE1α/XBP1 axis, in osteoclastogenesis induced by MM-EVs. By proteomic analysis, we identified UPR signaling molecules as novel MM-EV cargo, prompting us to evaluate the effects of the MM-EVs on osteoclastogenesis through UPR pathway. MM-EVs administration in a murine macrophage cell line rapidly induced activation of IRE1α by phosphorylation in S724; accordingly, Xbp1 mRNA splicing was increased and the transcription of NFATc1, a master transcription factor for OCs differentiation, was activated. Some of these results were also validated using both human primary OC cultures and MM-EVs from MM patients. Notably, a chemical inhibitor of IRE1α (GSK2850163) counteracted MM-EV-triggered OC differentiation, hampering the terminal stages of OCs differentiation and reducing bone resorption.
Collapse
|
30
|
Galán-Olleros M, Marco J, Oteo D, Cristóbal-Bilbao R, Manrique E, García-Maroto R, Marco F, Cebrián-Parra JL. Orthopedic Surgical Treatment and Perioperative Complications in Multiple Myeloma Bone Disease: Analysis of a Series (2009-2018). Ann Surg Oncol 2020; 28:1158-1166. [PMID: 32661847 DOI: 10.1245/s10434-020-08819-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND More than 90% of patients with multiple myeloma (MM) develop lytic bone lesions that can be surgically treated for symptomatic relief and functional improvement. METHODS This was a retrospective observational analytic study conducted between 2009 and 2018, including 58 patients with MM bone disease who underwent 77 orthopedic surgical procedures and were co-managed by internal medicine. Analysis of data related to MM bone disease, different modalities of surgical treatment, perioperative complications, and survival was performed. RESULTS Median age was 72 years (66.5-77 years) and 56.9% of patients were males; 54.43% of injuries were located in the spine, 27.85% in the pelvis or lower limbs, 15.19% in the upper limbs, and 75.32% of patients had pathologic fractures. In 29.31% of the cases, the bone lesion was the debut of MM. Surgical procedures performed were mainly kyphoplasty (48.05%) and intramedullary nailing (29.87%). The overall complication rate following surgery was 74.03%. Only 20.78% of cases had a surgical complication. Among medical complications, we registered 28.57% transfusion requirements, 25.97% acute renal failures, 24.68% developed an infection, and 10.39% developed hypercalcemia. Patients were followed-up for a mean of 6.13 years and 37.93% suffered a new fracture. The median overall survival time for patients after surgery was 32.9 months (11.6-49). The estimated overall survival at 1, 3, and 5 years after surgery was 81.17%, 57%, and 34.11%, respectively. CONCLUSIONS The orthopedic surgical treatment of MM bone disease aims to improve symptomatology and patient quality of life; however, these patients have a high risk of perioperative complications and considerable early mortality, making multidisciplinary management with medical specialties essential.
Collapse
Affiliation(s)
- María Galán-Olleros
- Oncological Traumatology Unit, Department of Traumatology and Orthopedic Surgery, Hospital Clínico San Carlos, Madrid, Spain.
| | - Javier Marco
- Department of Internal Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - David Oteo
- Department of Internal Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - Rafael Cristóbal-Bilbao
- Department of Internal Medicine, Hospital Universitario de Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - Elena Manrique
- Oncological Traumatology Unit, Department of Traumatology and Orthopedic Surgery, Hospital Clínico San Carlos, Madrid, Spain
| | - Roberto García-Maroto
- Oncological Traumatology Unit, Department of Traumatology and Orthopedic Surgery, Hospital Clínico San Carlos, Madrid, Spain
| | - Fernando Marco
- Oncological Traumatology Unit, Department of Traumatology and Orthopedic Surgery, Hospital Clínico San Carlos, Madrid, Spain.,Surgery Department, Complutense University, Madrid, Spain
| | - Juan Luis Cebrián-Parra
- Oncological Traumatology Unit, Department of Traumatology and Orthopedic Surgery, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
31
|
Exosomal miRNAs in osteoarthritis. Mol Biol Rep 2020; 47:4737-4748. [DOI: 10.1007/s11033-020-05443-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|
32
|
Functional Comparison between Healthy and Multiple Myeloma Adipose Stromal Cells. Stem Cells Int 2020; 2020:4173578. [PMID: 32215016 PMCID: PMC7077052 DOI: 10.1155/2020/4173578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 01/28/2023] Open
Abstract
Multiple myeloma (MM) is an incurable B cell neoplasia characterized by the accumulation of tumor plasma cells within the bone marrow (BM). As a consequence, bone osteolytic lesions develop in 80% of patients and remain even after complete disease remission. We and others had demonstrated that BM-derived mesenchymal stromal cells (MSCs) are abnormal in MM and thus cannot be used for autologous treatment to repair bone damage. Adipose stromal cells (ASCs) represent an interesting alternative to MSCs for cellular therapy. Thus, in this study, we wondered whether they could be a good candidate in repairing MM bone lesions. For the first time, we present a transcriptomic, phenotypic, and functional comparison of ASCs from MM patients and healthy donors (HDs) relying on their autologous MSC counterparts. In contrast to MM MSCs, MM ASCs did not exhibit major abnormalities. However, the changes observed in MM ASCs and the supportive property of ASCs on MM cells question their putative and safety uses at an autologous or allogenic level.
Collapse
|
33
|
Ixazomib Improves Bone Remodeling and Counteracts sonic Hedgehog signaling Inhibition Mediated by Myeloma Cells. Cancers (Basel) 2020; 12:cancers12020323. [PMID: 32019102 PMCID: PMC7073172 DOI: 10.3390/cancers12020323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of plasma cells (PC) in the bone marrow (BM), leading to bone loss and BM failure. Osteolytic bone disease is a common manifestation observed in MM patients and represents the most severe cause of morbidity, leading to progressive skeletal damage and disabilities. Pathogenetic mechanisms of MM bone disease are closely linked to PCs and osteoclast (OCs) hyperactivity, coupled with defective osteoblasts (OBs) function that is unable to counteract bone resorption. The aim of the present study was to investigate the effects of Ixazomib, a third-generation proteasome inhibitor, on osteoclastogenesis and osteogenic differentiation. We found that Ixazomib was able to reduce differentiation of human monocytes into OCs and to inhibit the expression of OC markers when added to the OC medium. Concurrently, Ixazomib was able to stimulate osteogenic differentiation of human mesenchymal stromal cells (MSCs), increasing osteogenic markers, either alone or in combination with the osteogenic medium. Given the key role of Sonic Hedgehog (SHH) signaling in bone homeostasis, we further investigated Ixazomib-induced SHH pathway activation. This set of experiments showed that Ixazomib, but not Bortezomib, was able to bind the Smoothened (SMO) receptor leading to nuclear translocation of GLI1 in human MSCs. Moreover, we demonstrated that PCs act as GLI1 suppressors on MSCs, thus reducing the potential of MSCs to differentiate in OBs. In conclusion, our data demonstrated that Ixazomib regulates bone remodeling by decreasing osteoclastogenesis and prompting osteoblast differentiation via the canonical SHH signaling pathway activation, thus, representing a promising therapeutic option to improve the complex pathological condition of MM patients.
Collapse
|
34
|
Gu W, An J, Meng H, Yu N, Zhong Y, Meng F, Xu Y, Cornelissen JJLM, Zhong Z. CD44-Specific A6 Short Peptide Boosts Targetability and Anticancer Efficacy of Polymersomal Epirubicin to Orthotopic Human Multiple Myeloma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904742. [PMID: 31560141 DOI: 10.1002/adma.201904742] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Chemotherapy is widely used in the clinic though its benefits are controversial owing to low cancer specificity. Nanovehicles capable of selectively transporting drugs to cancer cells have been energetically pursued to remodel cancer treatment. However, no active targeting nanomedicines have succeeded in clinical translation to date, partly due to either modest targetability or complex fabrication. CD44-specific A6 short peptide (KPSSPPEE) functionalized polymersomal epirubicin (A6-PS-EPI), which boosts targetability and anticancer efficacy toward human multiple myeloma (MM) in vivo, is described. A6-PS-EPI encapsulating 11 wt% EPI is small (≈55 nm), robust, reduction-responsive, and easy to fabricate. Of note, A6 decoration markedly augments the uptake and anticancer activity of PS-EPI in CD44-overexpressing LP-1 MM cells. A6-PS-EPI displays remarkable targeting ability to orthotopic LP-1 MM, causing depleted bone damage and striking survival benefits compared to nontargeted PS-EPI. Overall, A6-PS-EPI, as a simple and intelligent nanotherapeutic, demonstrates high potential for clinical translation.
Collapse
Affiliation(s)
- Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Jingnan An
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Na Yu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yinan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Jeroen J L M Cornelissen
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
35
|
Fan FY, Deng R, Lai SH, Wen Q, Zeng Y, Gao L, Liu Y, Kong P, Zhong J, Su Y, Zhang X. Inhibition of microRNA-221-5p induces osteogenic differentiation by directly targeting smad3 in myeloma bone disease mesenchymal stem cells. Oncol Lett 2019; 18:6536-6544. [PMID: 31788114 PMCID: PMC6865756 DOI: 10.3892/ol.2019.10992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/14/2019] [Indexed: 01/08/2023] Open
Abstract
Myeloma bone disease (MBD) is one of the clinical features of multiple myeloma, which contributes to the attenuation of osteoblast function. Bone marrow mesenchymal stem cells exhibit a high potential for differentiation into osteoblasts. A number of studies have reported that microRNAs (miRs) serve a vital role in mesenchymal stem cell (MSC) osteogenesis; however, the role of miR-221-5p in the osteogenic differentiation of MBD-MSCs remains unclear. The present study revealed that the osteogenic differentiation capacity of MBD-MSCs was reduced compared with that of normal (N)-MSCs. Further experiments demonstrated that miR-221-5p expression was downregulated in N-MSCs following osteoblast induction while no obvious alterations in expression levels were observed in MBD-MSCs. The inhibition of miR-221-5p promoted the osteogenic differentiation of MBD-MSCs. Bioinformatics, luciferase reporter assays, reverse transcription-quantitative PCR and western blotting assays indicated that smad family member 3 (smad3) was a direct target of miR-221-5p in MBD-MSCs. A negative association was identified between the expression levels of smad3 and miR-221-5p. Investigations of the molecular mechanism indicated that suppressed miR-221-5p could regulate the osteogenic differentiation of MBD-MSCs by upregulating smad3 expression. It was also identified that the PI3K/AKT/mTOR signaling pathway was activated following miR-221-5p inhibition, and this increased the osteogenic differentiation capacity of MBD-MSCs. The present study may improve the understanding regarding the role of miR-221-5p in the regulation of osteogenic differentiation, and may contribute to the development of a novel therapy for MBD.
Collapse
Affiliation(s)
- Fang-Yi Fan
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China.,Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Si-Han Lai
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yunjing Zeng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yao Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Peiyan Kong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Jiangfan Zhong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| | - Yi Su
- Department of Hematology and Hematopoetic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, Sichuan 400037, P.R. China
| |
Collapse
|
36
|
Fan FY, Deng R, Qiu L, Wen Q, Zeng Y, Gao L, Zhang C, Kong P, Zhong J, Zeng N, Li Z, Su Y, Zhang X. miR-203a-3p.1 is involved in the regulation of osteogenic differentiation by directly targeting Smad9 in MM-MSCs. Oncol Lett 2019; 18:6339-6346. [PMID: 31788111 PMCID: PMC6865574 DOI: 10.3892/ol.2019.10994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of bone development and regeneration. The aim of the present study was to determine whether miR-203a-3p.1 is involved in osteogenic differentiation of multiple myeloma (MM)-mesenchymal stem cells (MSCs) and the potential underlying mechanism. MSCs were isolated from patients with MM and normal subjects and confirmed by flow cytometry using specific surface markers. The osteogenic differentiation capacity of MM-MSCs was identified by Alizarin Red S calcium deposition staining and reverse transcription-quantitative PCR (RT-qPCR) of typical osteoblast differentiation markers. The role of miR-203a-3p.1 in the osteoblast differentiation of MM-MSCs was determined by gain or loss of function experiments. The target of miR-203a-3p.1 was identified using bioinformatics (including the miRNA target prediction database TargetScan, miRDB, DIANA TOOLS and venny 2.1.0), luciferase reporter assay, RT-qPCR and western blotting. The expression levels of proteins involved in the Wnt3a/β-catenin signaling pathway were detected by western blot analysis. The results revealed that the osteogenic differentiation capacity of MM-MSCs was reduced when compared with normal (N)-MSCs, as demonstrated by a decrease in calcium deposition and mRNA expression of typical osteoblast differentiation markers, including ALP, OPN and OC. In addition, miR-203a-3p.1 was downregulated in N-MSCs following osteoblast induction, whereas no changes were observed in MM-MSCs. The downregulation of miR-203a-3p.1 resulted in increased osteogenic potential, as indicated by the increase in the mRNA expression levels of the typical osteoblast differentiation markers, including alkaline phosphatase (ALP), osteopontin (OPN) and osteocalcin (OC). Bioinformatics and luciferase reporter assay analysis indicated that mothers against decapentaplegic homolog 9 (Smad9) may be a direct target of miR-203a-3p.1 in N-MSCs. The RT-qPCR and western blot assays revealed that overexpression of smad9 significantly enhanced the effect of miR-203a-3p.1 inhibitors on osteoblast markers, which indicated that miR-203a-3p.1 inhibitors may regulate the osteogenic differentiation of MM-MSCs by upregulating Smad9. In addition, the Wnt3a/β-catenin signaling pathway was activated following miR-203a-3p.1 inhibition. These results suggest that miR-203a-3p.1 may serve an important role in the osteogenic differentiation of MM-MSCs by regulating Smad9 expression.
Collapse
Affiliation(s)
- Fang-Yi Fan
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China.,Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Rui Deng
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yunjing Zeng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chen Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Peiyan Kong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Jiangfan Zhong
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Ningyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, P.R. China
| | - Zhengyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou 221002, P.R. China
| | - Yi Su
- Department of Hematology and Hematopoietic Stem Cell Transplantation Centre, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
37
|
Buege MJ, Do B, Lee HC, Weber DM, Horowitz SB, Feng L, Qing Y, Shank BR. Corrected calcium versus ionized calcium measurements for identifying hypercalcemia in patients with multiple myeloma. Cancer Treat Res Commun 2019; 21:100159. [PMID: 31521048 PMCID: PMC7494047 DOI: 10.1016/j.ctarc.2019.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dysregulated bone turnover is an important clinical manifestation of multiple myeloma (MM), and 30% of patients present with hypercalcemia. Serum calcium levels are routinely monitored using total calcium measurements corrected for albumin. However, myeloma-related paraproteins may bind calcium, confounding these measurements. PATIENTS AND METHODS We retrospectively analyzed correlation between corrected calcium and ionized calcium in a sample of patients with MM and a control sample of patients with breast or non-small cell lung cancers (n = 200). Multiple linear regression was used to identify variables affecting corrected calcium measurements. RESULTS Correlation between corrected calcium and ionized calcium was stronger in the control group compared to the MM group (Spearman correlation coefficient 0.85 versus 0.76, respectively). Sensitivity of corrected calcium in identifying hypercalcemia defined by elevated ionized calcium was 36% in patients with MM and 76% in the control group. Multiple linear regression did not reveal variables significantly influencing corrected calcium in the MM group, although serum paraprotein trended toward significance (p = 0.09). CONCLUSION Ionized calcium may be better than corrected calcium for detecting hypercalcemia in patients with MM. Additional analyses are needed to better quantify the clinical impact of paraprotein calcium-binding.
Collapse
Affiliation(s)
- Michael J Buege
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, 1275 York Ave, S710, New York, NY, United States.
| | - Bryan Do
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hans C Lee
- Departments of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Donna M Weber
- Departments of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sandra B Horowitz
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Feng
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yun Qing
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brandon R Shank
- Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
38
|
Wang M, Zhou L, Yu F, Zhang Y, Li P, Wang K. The functional roles of exosomal long non-coding RNAs in cancer. Cell Mol Life Sci 2019; 76:2059-2076. [PMID: 30683984 PMCID: PMC11105177 DOI: 10.1007/s00018-019-03018-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Exosomes are extracellular membranous vesicles that are secreted by various cell types. Exosomes have become indispensable facilitators in the exchange of information between cells. More importantly, exosomes perform a crucial role in a variety of diseases including cancers. Long non-coding RNAs (lncRNAs) are over 200 nucleotides long transcripts that exhibit no or limited protein-coding potentials. LncRNAs are an emerging group of regulatory RNAs and can be selectively packaged into exosomes. Exosomal lncRNAs play a central role in carcinogenesis and cancer progression by modulating tumor growth, metastasis, angiogenesis and chemoresistance. Moreover, exosomal lncRNAs function as messengers in cell-to-cell communication, and thus remodel the tumor microenvironment. Their function relevance in cancer biology hints at the possibility of employing exosomal lncRNAs as promising, non-invasive biomarkers for further cancer therapy. In this review, we provide an overview of current research on the functional roles of exosomal lncRNAs in cancer and discuss their potential clinical applications as diagnostic biomarkers and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao, 266021, China.
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao, 266021, China
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao, 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao, 266021, China.
| |
Collapse
|
39
|
Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. J Hematol Oncol 2019; 12:2. [PMID: 30621731 PMCID: PMC6325886 DOI: 10.1186/s13045-018-0689-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/25/2018] [Indexed: 12/18/2022] Open
Abstract
Background Multiple myeloma (MM) is a clonal plasma cell malignancy associated with osteolytic bone disease. Recently, the role of MM-derived exosomes in the osteoclastogenesis has been demonstrated although the underlying mechanism is still unknown. Since exosomes-derived epidermal growth factor receptor ligands (EGFR) are involved in tumor-associated osteolysis, we hypothesize that the EGFR ligand amphiregulin (AREG) can be delivered by MM-derived exosomes and participate in MM-induced osteoclastogenesis. Methods Exosomes were isolated from the conditioned medium of MM1.S cell line and from bone marrow (BM) plasma samples of MM patients. The murine cell line RAW264.7 and primary human CD14+ cells were used as osteoclast (OC) sources. Results We found that AREG was specifically enriched in exosomes from MM samples and that exosomes-derived AREG led to the activation of EGFR in pre-OC, as showed by the increase of mRNA expression of its downstream SNAIL in both RAW264.7 and CD14+ cells. The presence of neutralizing anti-AREG monoclonal antibody (mAb) reverted this effect. Consequently, we showed that the effect of MM-derived exosomes on osteoclast differentiation was inhibited by the pre-treatment of exosomes with anti-AREG mAb. In addition, we demonstrated the ability of MM-derived AREG-enriched exosomes to be internalized into human mesenchymal stromal cells (MSCs) blocking osteoblast (OB) differentiation, increasing MM cell adhesion and the release of the pro-osteoclastogenic cytokine interleukin-8 (IL8). Accordingly, anti-AREG mAb inhibited the release of IL8 by MSCs suggesting that both direct and indirect effects are responsible for AREG-enriched exosomes involvement on MM-induced osteoclastogenesis. Conclusions In conclusion, our data indicate that AREG is packed into MM-derived exosomes and implicated in OC differentiation through an indirect mechanism mediated by OBs. Electronic supplementary material The online version of this article (10.1186/s13045-018-0689-y) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Zhang L, Lei Q, Wang H, Xu C, Liu T, Kong F, Yang C, Yan G, Sun L, Zhao A, Chen W, Hu Y, Xie H, Cao Y, Fu F, Yuan G, Chen Z, Guo AY, Li Q. Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease. Am J Cancer Res 2019; 9:196-209. [PMID: 30662562 PMCID: PMC6332790 DOI: 10.7150/thno.27550] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background: As a hallmark driver of multiple myeloma (MM), MM bone disease (MBD) is unique in that it is characterized by severely impaired osteoblast activity resulting from blocked osteogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs). The mechanisms underlying this preferential blockade are incompletely understood. Methods: miRNA expression of MM cell-derived extracellular vesicles (MM-EVs) was detected by RNA sequencing. MM-EVs impaired osteogenesis and exacerbated MBD were in vitro and in vivo validated by histochemical staining, qPCR and micro-CT. We additionally examined the correlation between CD138+ circulating EVs (cirEVs) count and bone lesion in de novo MM patients. Results: Here, by sequencing and bioinformatics analysis, we found that MM-EVs were enriched in various molecules negatively regulating osteogenesis. We experimentally verified that MM-EVs inhibited BM-MSC osteogenesis, induced elevated expression of miR-103a-3p inhibiting osteogenesis in BM-MSCs, and increased cell viability and interleukin-6 secretion in MM cells. In a mouse model, MM-EVs that were injected into the marrow space of the left tibia led to impaired osteogenesis and exacerbated MBD and MM progression. Furthermore, the levels of CD138+ cirEVs in the peripheral blood were positively correlated with the number of MM bone lesions in MM patients. Conclusions: These findings suggest that MM-EVs play a pivotal role in the development of severely impaired osteoblast activity, which represents a novel biomarker for the precise diagnosis of MBD and a compelling rationale for exploring MM-EVs as a therapeutic target.
Collapse
|
41
|
Li B, Han H, Song S, Fan G, Xu H, Zhou W, Qiu Y, Qian C, Wang Y, Yuan Z, Gao Y, Zhang Y, Zhuang W. HOXC10 Regulates Osteogenesis of Mesenchymal Stromal Cells Through Interaction with Its Natural Antisense Transcript lncHOXC-AS3. Stem Cells 2018; 37:247-256. [PMID: 30353595 DOI: 10.1002/stem.2925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/27/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
The characteristics of mesenchymal stromal cells (MSCs) which derived from multiple myeloma (MM) patients are typically impaired in osteogenic differentiation. However, the underlying molecular mechanisms need to be further investigated. lncRNAs are emerging as critical regulation molecules in oncogenic pathways. In this study, we identified that bioactive lncRNA HOXC-AS3, which is transcribed in opposite to HOXC10, was presented in MSCs derived from bone marrow (BM) of MM patients (MM-MSCs). HOXC-AS3 was able to interact with HOXC10 at the overlapping parts and this interaction increased HOXC10 stability, then promoted its expression, conferring osteogenesis repression to MM-MSCs. In mouse models, intravenously administered siHOXC-AS3 was proven to be effective in prevention of bone loss, sustained by both anticatabolic activities and bone-forming. These data showed that lncHOXC-AS3 was required for osteogenesis in BM-MSCs by enhancing HOXC10 expression. Our finding thus unveils a novel insight for the potential clinical significance of lncRNA HOXC-AS3 as a therapeutic target for bone disease in MM. Stem Cells 2019;37:247-256.
Collapse
Affiliation(s)
- Bingzong Li
- Department of Haematology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huiying Han
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Gao Fan
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Hongxia Xu
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Wenqi Zhou
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yingchun Qiu
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Chen'ao Qian
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yijing Wang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Zihan Yuan
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yuan Gao
- Department of Biochemistry, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Yongsheng Zhang
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
42
|
Zamagni E, Cavo M, Fakhri B, Vij R, Roodman D. Bones in Multiple Myeloma: Imaging and Therapy. Am Soc Clin Oncol Educ Book 2018; 38:638-646. [PMID: 30231385 DOI: 10.1200/edbk_205583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
F-fluorodeoxyglucose (FDG)-PET/CT, MRI, and other novel imaging modalities in the management of disease in patients with plasma cell dyscrasias. We also review the state of the art in treatment of MM bone disease (MMBD) and the role of bisphosphonates and denosumab, a monoclonal antibody that binds and blocks the activity of receptor activator of nuclear factor-kappa B ligand (RANKL), which was recently approved by the U.S. Food and Drug Administration for MMBD.
Collapse
Affiliation(s)
- Elena Zamagni
- From the "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; Washington University School of Medicine, St. Louis, MO; Indiana University Simon Cancer Center, Indianapolis, IN
| | - Michele Cavo
- From the "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; Washington University School of Medicine, St. Louis, MO; Indiana University Simon Cancer Center, Indianapolis, IN
| | - Bita Fakhri
- From the "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; Washington University School of Medicine, St. Louis, MO; Indiana University Simon Cancer Center, Indianapolis, IN
| | - Ravi Vij
- From the "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; Washington University School of Medicine, St. Louis, MO; Indiana University Simon Cancer Center, Indianapolis, IN
| | - David Roodman
- From the "Seràgnoli" Institute of Hematology, Bologna University School of Medicine, Bologna, Italy; Washington University School of Medicine, St. Louis, MO; Indiana University Simon Cancer Center, Indianapolis, IN
| |
Collapse
|
43
|
Bai H, Zhu H, Yan Q, Shen X, Lu X, Wang J, Li J, Chen L. TRPV2-induced Ca 2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun Signal 2018; 16:68. [PMID: 30326911 PMCID: PMC6191893 DOI: 10.1186/s12964-018-0280-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Myeloma bone disease (MBD) can cause bone destruction and increase the level of Ca2+ concentration in the bone marrow microenvironment by stimulating osteoclastic differentiation. Nevertheless, the relationships between MBD and highly efficient stimuli of Ca2+ in multiple myeloma (MM) progression, and possible regulatory mechanisms are poorly defined. Here, we reported that the nonselective cation channel transient receptor potential vanilloid 2 (TRPV2) plays a functional role in Ca2+ oscillations and osteoclastogenesis. METHODS To investigate the expression of TRPV2 in MM, we analyzed publicly available MM data sets and performed immunohistochemistry in MM patients. The correlations between TRPV2 expression levels and osteoclast-related cytokines were analyzed. Fluo-4 staining and ELISA assays were used to assess the regulated function of TRPV2 in intracellular Ca2+ and cytokines. Western blotting and Chromatin immunoprecipitation (ChIP) assays were performed to explore the signaling pathway of TRPV2-induced osteoclastic differentiation. Real-time PCR, Western blotting, ELISA and tartrate-resistant acid phosphatase (TRAP) staining were performed to detect the biological effects of TRPV2 inhibitor on osteoclastogenesis. RESULTS The functional expression of TRPV2, involved in the osteolysis through gating the calcium influx, was changed in the MM cells cultured in a high Ca2+ environment. Mechanistically, TRPV2 modulates nuclear factor-κB ligand (RANKL)-dependent osteoclastic differentiation through the Ca2+-calcineurin-NFAT signaling pathway. Of clinical relevance, systemic administration with SKF96365 could attenuate the MM-induced osteoclast formation in vitro. CONCLUSIONS Our study uncovers the possible roles of TRPV2, which enhances MBD, suggesting that targeting osteocyte-MM cells interactions through blockade of TRPV2 channel may provide a promising treatment strategy in MM.
Collapse
Affiliation(s)
- Hua Bai
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Huayuan Zhu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Qing Yan
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xuxing Shen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xiupan Lu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Jianyong Li
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Lijuan Chen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
44
|
Tai YT, Cho SF, Anderson KC. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Front Immunol 2018; 9:1822. [PMID: 30147691 PMCID: PMC6095980 DOI: 10.3389/fimmu.2018.01822] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Immunomodulatory drugs and monoclonal antibody-based immunotherapies have significantly improved the prognosis of the patients with multiple myeloma (MM) in the recent years. These new classes of reagents target malignant plasma cells (PCs) and further modulate the immune microenvironment, which prolongs anti-MM responses and may prevent tumor occurrence. Since MM remains an incurable cancer for most patients, there continues to be a need to identify new tumor target molecules and investigate alternative cellular approaches using gene therapeutic strategies and novel treatment mechanisms. Osteoclasts (OCs), as critical multi-nucleated large cells responsible for bone destruction in >80% MM patients, have become an attractive cellular target for the development of novel MM immunotherapies. In MM, OCs are induced and activated by malignant PCs in a reciprocal manner, leading to osteolytic bone disease commonly associated with this malignancy. Significantly, bidirectional interactions between OCs and MM cells create a positive feedback loop to promote MM cell progression, increase angiogenesis, and inhibit immune surveillance via both cell-cell contact and abnormal production of multiple cytokines/chemokines. Most recently, hyper-activated OCs have been associated with activation of programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway, which impairs T cell proliferation and cytotoxicity against MM cells. Importantly, therapeutic anti-CD38 monoclonal antibodies and checkpoint inhibitors can alleviate OC-induced immune suppression. Furthermore, a proliferation-inducing ligand, abundantly secreted by OCs and OC precursors, significantly upregulates PD-L1 expression on MM cells, in addition to directly promoting MM cell proliferation and survival. Coupled with increased PD-L1 expression in other immune-suppressive cells, i.e., myeloid-derived suppressor cells and tumor-associated macrophages, these results strongly suggest that OCs contribute to the immunosuppressive MM BM microenvironment. Based on these findings and ongoing osteoimmunology studies, therapeutic interventions targeting OC number and function are under development to diminish both MM bone disease and related immune suppression. In this review, we discuss the classical and novel roles of OCs in the patho-immunology of MM. We also describe novel therapeutic strategies simultaneously targeting OCs and MM interactions, including PD-1/PD-L1 axis, to overcome the immune-suppressive microenvironment and improve patient outcome.
Collapse
Affiliation(s)
- Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
45
|
Shi J, Song S, Han H, Xu H, Huang M, Qian C, Zhang X, Ouyang L, Hong Y, Zhuang W, Li B. Potent Activity of the Bromodomain Inhibitor OTX015 in Multiple Myeloma. Mol Pharm 2018; 15:4139-4147. [PMID: 30048594 DOI: 10.1021/acs.molpharmaceut.8b00554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several studies demonstrate that the bromodomain inhibitor OTX015 has an antitumor activity in cancers. However, translation of these data to molecules suitable for clinical development has yet to be accomplished in multiple myeloma (MM). Here, we identified genes and biologic processes that substantiated the antimyeloma activity of OTX015 with global transcriptomics. OTX015 exerted a strong antiproliferative effect and induced cell cycle arrest in vitro. Gene expression profiling uncovered that OTX015 targeted NF-κB, EGFR, cell cycle regulation, and the cancer proliferation signaling pathway. Gene expression signatures displaying various levels of sensitivity to OTX015 were also identified. The data also showed that oral administration of OTX015 displayed significant antitumor activity in the mice model of disseminated human myeloma. In addition, our study provided the first evidence and rationale that OTX015 could promote osteoblast differentiation of mesenchymal stem cells (MSCs) and inhibited osteoclast formation and resorption in vivo experiments. Herein our results expanded the understanding of the mechanism for BET inhibitors OTX015 in MM. Our study provided an impressive basis for the clinical application of the novel antimyeloma agent OTX015 and uncovered signaling pathways that may play key roles in myeloma cell proliferation.
Collapse
Affiliation(s)
- Jixiang Shi
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China.,Department of Haematology , The Central Hospital of Zibo , Zibo 255000 , China
| | | | | | | | | | | | | | | | - Yating Hong
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China
| | | | - Bingzong Li
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou 215006 , China
| |
Collapse
|
46
|
Li B, Xu H, Han H, Song S, Zhang X, Ouyang L, Qian C, Hong Y, Qiu Y, Zhou W, Huang M, Zhuang W. Exosome-mediated transfer of lncRUNX2-AS1 from multiple myeloma cells to MSCs contributes to osteogenesis. Oncogene 2018; 37:5508-5519. [PMID: 29895968 DOI: 10.1038/s41388-018-0359-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 01/13/2023]
Abstract
Multiple myeloma (MM) is characterized by the decreased osteogenic potential of mesenchymal stem cells (MSCs). Communication between cancer cells and cancer stromal cells is a driving factor in tumor progression. Understanding the myeloma-stroma interactions is critical to the development of effective strategies that can reverse bone diseases. Here we identified that bioactive lncRNA RUNX2-AS1 in myeloma cells could be packed into exosomes and transmitted to MSCs, thus repressing the osteogenesis of MSCs. RUNX2-AS1, which arises from the antisense strand of RUNX2, was enriched in MSCs derived from MM patients (MM-MSCs). RUNX2-AS1 was capable of forming an RNA duplex with RUNX2 pre-mRNA at overlapping regions and this duplex transcriptionally repressed RUNX2 expression by reducing the splicing efficiency, resulting in decreased osteogenic potential of MSCs. In vivo mouse models, administered an inhibitor of exosome secretion, GW4869, was found to be effective in preventing bone loss, sustained by both bone formation and anticatabolic activities. Therefore, exosomal lncRNA RUNX2-AS1 may serve as a potential therapeutic target for bone lesions in MM. In summary, our results indicated a key role of exosomal lncRUNX2-AS1 in transferring from MM cells to MSCs in osteogenic differentiation, through a unique exosomal lncRUNX2-AS1/RUNX2 pathway.
Collapse
Affiliation(s)
- Bingzong Li
- Department of Haematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongxia Xu
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Huiying Han
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaojuan Zhang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Lu Ouyang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chen'ao Qian
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yating Hong
- Department of Haematology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingchun Qiu
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wenqi Zhou
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
47
|
Shen J, Du X, Zhao L, Luo H, Xu Z. Comparative analysis of the surgical treatment results for multiple myeloma bone disease of the spine and the long bone/soft tissue. Oncol Lett 2018; 15:10017-10025. [PMID: 29928372 DOI: 10.3892/ol.2018.8559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The present retrospective study was designed to compare the pain relief, surgery duration, life quality, survival time and relative prognostic factors in multiple myeloma (MM) bone disease patients with different surgical sites. A total of 65 cases were enrolled and divided into two groups. Group A included patients with lesions located in the spine, while Group B included patients with lesions located in the long bone or soft tissue. Pain relief was measured by the visual analogue scale (VAS), neurological impairment was determined according to Frankel classification, and survival was assessed by the Kaplan-Meier method. Cox regression analysis was also used to estimate the effect of factors on the prediction of survival. The hospitalization time, preoperative duration of symptoms, method of surgery, complications, recurrence and survival time were evaluated and compared retrospectively. Pain relief and improvement of life quality were observed in all the patients in groups A and B. No significant differences were detected for the majority of parameters compared between groups A and B, with the exception of the surgery duration, as well as the postoperative VAS score at 1 and 6 months after surgery. The multivariate Cox regression analysis revealed several risk factors significantly associated with survival, including the preoperative VAS score, postoperative chemotherapy, prothrombin time activity (PTA), albumin, lactate dehydrogenase and urine protein level. In conclusion, surgical treatment was an effective therapeutic method in patients with MM. Postoperative analgesic use should be individualized according to the different surgical sites and postoperative periods. Furthermore, preoperative pain, PTA, albumin, urine protein level and postoperative chemotherapy are associated with prognosis.
Collapse
Affiliation(s)
- Jiangtao Shen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Xinru Du
- Department of Orthopedics, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lingxiu Zhao
- Department of Medical Information Center, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hui Luo
- Department of Orthopedics, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Ziyu Xu
- Department of Orthopedics, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
48
|
Zangari M, Yoo H, Shin I, Kim B, Edmondson R, Morgan GJ, Suva LJ, Yoon D. Thymic PTH Increases After Thyroparathyroidectomy in C57BL/KaLwRij Mice. Endocrinology 2018; 159:1561-1569. [PMID: 29381784 PMCID: PMC5839736 DOI: 10.1210/en.2017-03083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022]
Abstract
We previously reported a substantial correlation between serum parathyroid hormone (PTH) levels and the myeloma response to proteasome inhibition that suggests a crucial role for the PTH receptor 1 system in the control of myeloma tumor growth. While investigating the role of PTH in the antimyeloma effect, we observed the recovery of serum PTH levels after thyroparathyroidectomy (TPTX). Although the presence of thymus-derived PTH has been reported previously, the existence or role of thymic PTH in the serum remains controversial. Here, TPTX was performed in 8- to 12-week-old C57BL/KaLwRij mice to delineate the potential source(s) for the recovery of serum PTH. Immediately after TPTX, the expected loss of measurable serum PTH was observed. Serum PTH levels recovered 3 to 4 weeks after TPTX. Thirteen endocrine organs from mice with recovered serum PTH were examined. The thymus from control mice expressed measurable and detectable Pth transcripts; however, the Pth transcript level was substantially elevated in tissue from TPTX mice. Western blot analysis of the thymus demonstrated a reproducible and distinct PTH band in thymus tissue that was significantly increased after TPTX. To directly confirm the identity of the distinct PTH band, immunoprecipitated proteins were isolated and subjected to tandem mass spectrometry. After fragmentation and direct peptide sequencing, PTH peptides PTH(1-13) and PTH(54-70), diagnostic for PTH, were identified. These data demonstrate that the murine thymus produces PTH and that after TPTX the thymus becomes the major source of serum PTH, compensating for the loss of the parathyroid glands and returning circulating PTH levels to normal.
Collapse
Affiliation(s)
- Maurizio Zangari
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Correspondence: Maurizio Zangari, MD, or Donghoon Yoon, PhD, Myeloma Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205. E-mail: or
| | - Hanna Yoo
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ikjae Shin
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Bumjun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Ricky Edmondson
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gareth J. Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Larry J. Suva
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas 77843
| | - Donghoon Yoon
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Correspondence: Maurizio Zangari, MD, or Donghoon Yoon, PhD, Myeloma Institute, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, Arkansas 72205. E-mail: or
| |
Collapse
|
49
|
Nishida H. Bone-targeted agents in multiple myeloma. Hematol Rep 2018; 10:7401. [PMID: 29721251 PMCID: PMC5907643 DOI: 10.4081/hr.2018.7401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Osteolytic bone disease, characterized by bone pain, increased risk of pathologic fractures, tumor-induced hypercalcemia known as skeletal-related events (SREs), is a frequent complication of patients with multiple myeloma (MM) and persists even in the absence of active disease, resulting in a major cause of morbidity and mortality. The interaction between myeloma cells and their surrounding cells in the bone marrow (BM) microenvironment promotes both myeloma cell growth and bone destruction and forms the vicious cycle of MM bone disease. Therefore, therapeutic strategies targeting the interaction between myeloma cells and cellular components including osteoclasts (OCs), stromal cells and osteoblasts (OBs) in the BM is crucial not only to attain tumor regression but also to prevent or delay the incidence of SREs, which leads to improve survival and quality of life in affected patients. Recently, several novel targets which act on components of the cycle for treating MM-associated bone disease have been identified in addition to current treatments including nitrogen-containing bisphosphonates. This review focuses on the overview of pathophysiology in MM-associated bone disease and summarizes its current clinical management. Several novel bone-targeted agents in preclinical setting will be also discussed.
Collapse
Affiliation(s)
- Hiroko Nishida
- Department of Pathology, Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
50
|
Amachi R, Hiasa M, Teramachi J, Harada T, Oda A, Nakamura S, Hanson D, Watanabe K, Fujii S, Miki H, Kagawa K, Iwasa M, Endo I, Kondo T, Yoshida S, Aihara KI, Kurahashi K, Kuroda Y, Horikawa H, Tanaka E, Matsumoto T, Abe M. A vicious cycle between acid sensing and survival signaling in myeloma cells: acid-induced epigenetic alteration. Oncotarget 2018; 7:70447-70461. [PMID: 27626482 PMCID: PMC5342564 DOI: 10.18632/oncotarget.11927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023] Open
Abstract
Myeloma (MM) cells and osteoclasts are mutually interacted to enhance MM growth while creating acidic bone lesions. Here, we explored acid sensing of MM cells and its role in MM cell response to acidic conditions. Acidic conditions activated the PI3K-Akt signaling in MM cells while upregulating the pH sensor transient receptor potential cation channel subfamily V member 1 (TRPV1) in a manner inhibitable by PI3K inhibition. The acid-activated PI3K-Akt signaling facilitated the nuclear localization of the transcription factor Sp1 to trigger the expression of its target genes, including TRPV1 and HDAC1. Consistently, histone deacetylation was enhanced in MM cells in acidic conditions, while repressing a wide variety of genes, including DR4. Indeed, acidic conditions deacetylated histone H3K9 in a DR4 gene promoter and curtailed DR4 expression in MM cells. However, inhibition of HDAC as well as either Sp1 or PI3K was able to restore DR4 expression in MM cells suppressed in acidic conditions. These results collectively demonstrate that acid activates the TRPV1-PI3K-Akt-Sp1 signaling in MM cells while inducing HDAC-mediated gene repression, and suggest that a positive feedback loop between acid sensing and the PI3K-Akt signaling is formed in MM cells, leading to MM cell response to acidic bone lesions.
Collapse
Affiliation(s)
- Ryota Amachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan.,Department of Biomaterials and Bioengineerings, Tokushima University Graduate School, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Histology and Oral Histology, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Shingen Nakamura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Derek Hanson
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Keiichiro Watanabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Hirokazu Miki
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Division of Transfusion medicine and cell therapy, Tokushima University hospital, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Iwasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Itsuro Endo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Takeshi Kondo
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Sumiko Yoshida
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshiaki Kuroda
- Department of Hematology and Oncology, RIRBM, Hiroshima University, Hiroshima, Japan
| | - Hideaki Horikawa
- Support Center for Advanced Medical Sciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School, Tokushima, Japan
| | - Toshio Matsumoto
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan.,Fujii Memorial Institute for Medical Research Tokushima University Graduate School, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|