1
|
Salman A, Abdel Mageed SS, Fathi D, Elrebehy MA, Abulsoud AI, Elshaer SS, Khidr EG, Al-Noshokaty TM, Khaled R, Rizk NI, Elballal MS, Sayed GA, Abd-Elmawla MA, El Tabaa MM, Mohammed OA, Ashraf A, El-Husseiny AA, Midan HM, El-Dakroury WA, Abdel-Reheim MA, Doghish AS. Deciphering signaling pathway interplay via miRNAs in malignant pleural mesothelioma. Pathol Res Pract 2023; 252:154947. [PMID: 37977032 DOI: 10.1016/j.prp.2023.154947] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly invasive form of lung cancer that adversely affects the pleural and other linings of the lungs. MPM is a very aggressive tumor that often has an advanced stage at diagnosis and a bad prognosis (between 7 and 12 months). When people who have been exposed to asbestos experience pleural effusion and pain that is not explained, MPM should be suspected. After being diagnosed, most MPM patients have a one- to four-year life expectancy. The life expectancy is approximately six months without treatment. Despite the plethora of current molecular investigations, a definitive universal molecular signature has yet to be discovered as the causative factor for the pathogenesis of MPM. MicroRNAs (miRNAs) are known to play a crucial role in the regulation of gene expression at the posttranscriptional level. The association between the expression of these short, non-coding RNAs and several neoplasms, including MPM, has been observed. Although the incidence of MPM is very low, there has been a significant increase in research focused on miRNAs in the past few years. In addition, miRNAs have been found to have a role in various regulatory signaling pathways associated with MPM, such as the Notch signaling network, Wnt/β-catenin, mutation of KRAS, JAK/STAT signaling circuit, protein kinase B (AKT), and Hedgehog signaling pathway. This study provides a comprehensive overview of the existing understanding of the roles of miRNAs in the underlying mechanisms of pathogenic symptoms in MPM, highlighting their potential as viable targets for therapeutic interventions.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
2
|
Abd-Elmawla MA, Abdel Mageed SS, Al-Noshokaty TM, Elballal MS, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Midan HM, Rizk NI, Elrebehy MA, Sayed GA, Tabaa MME, Salman A, Mohammed OA, Ashraf A, Khidr EG, Khaled R, El-Dakroury WA, Helal GK, Moustafa YM, Doghish AS. Melodic maestros: Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of malignant pleural mesothelioma. Pathol Res Pract 2023; 250:154817. [PMID: 37713736 DOI: 10.1016/j.prp.2023.154817] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly lethal form of pleural cancer characterized by a scarcity of effective therapeutic interventions, resulting in unfavorable prognoses for afflicted individuals. Besides, many patients experience substantial consequences from being diagnosed in advanced stages. The available diagnostic, prognostic, and therapeutic options for MPM are restricted in scope. MicroRNAs (miRNAs) are a subset of small, noncoding RNA molecules that exert significant regulatory influence over several cellular processes within cell biology. A wide range of miRNAs have atypical expression patterns in cancer, serving specific functions as either tumor suppressors or oncomiRs. This review aims to collate, epitomize, and analyze the latest scholarly investigations on miRNAs that are believed to be implicated in the dysregulation leading to MPM. miRNAs are also discussed concerning their potential clinical usefulness as diagnostic and prognostic biomarkers for MPM. The future holds promising prospects for enhancing diagnostic, prognostic, and therapeutic modalities for MPM, with miRNAs emerging as a potential trigger for such advancements.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Reem Khaled
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
3
|
Zhang X, Jin M, Liu F, Qu H, Chen C. Identification of Key MicroRNAs and Genes between Colorectal Adenoma and Colorectal Cancer via Deep Learning on GEO Databases and Bioinformatics. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:6457152. [PMID: 36793496 PMCID: PMC9922557 DOI: 10.1155/2023/6457152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 02/08/2023]
Abstract
Background Deep learning techniques are gaining momentum in medical research. Colorectal adenoma (CRA) is a precancerous lesion that may develop into colorectal cancer (CRC) and its etiology and pathogenesis are unclear. This study aims to identify transcriptome differences between CRA and CRC via deep learning on Gene Expression Omnibus (GEO) databases and bioinformatics in the Chinese population. Methods In this study, three microarray datasets from the GEO database were used to identify the differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) in CRA and CRC. The FunRich software was performed to predict the targeted mRNAs of DEMs. The targeted mRNAs were overlapped with DEGs to determine the key DEGs. Molecular mechanisms of CRA and CRC were evaluated using enrichment analysis. Cytoscape was used to construct protein-protein interaction (PPI) and miRNA-mRNA regulatory networks. We analyzed the expression of key DEMs and DEGs, their prognosis, and correlation with immune infiltration based on the Kaplan-Meier plotter, UALCAN, and TIMER databases. Results A total of 38 DEGs are obtained after the intersection, including 11 upregulated genes and 27 downregulated genes. The DEGs were involved in the pathways, including epithelial-to-mesenchymal transition, sphingolipid metabolism, and intrinsic pathway for apoptosis. The expression of has-miR-34c (P = 0.036), hsa-miR-320a (P = 0.045), and has-miR-338 (P = 0.0063) was correlated with the prognosis of CRC patients. The expression levels of BCL2, PPM1L, ARHGAP44, and PRKACB in CRC tissues were significantly lower than normal tissues (P < 0.001), while the expression levels of TPD52L2 and WNK4 in CRC tissues were significantly higher than normal tissues (P < 0.01). These key genes are significantly associated with the immune infiltration of CRC. Conclusion This preliminary study will help identify patients with CRA and early CRC and establish prevention and monitoring strategies to reduce the incidence of CRC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Mingxin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan 250012, Shandong, China
| |
Collapse
|
4
|
Arosh JA, Sivakumar KK, Lee J, Banu SK. Effects of selective inhibition of prostaglandin E2 receptors EP2 and EP4 on the miRNA profile in endometriosis. Mol Cell Endocrinol 2022; 558:111728. [PMID: 35944745 DOI: 10.1016/j.mce.2022.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022]
Abstract
Endometriosis is an estrogen-dependent, progesterone-resistant, chronic inflammatory gynecological disease of reproductive-age women. Two major clinical symptoms of endometriosis are chronic pelvic pain and infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent disease recurrence. Prostaglandin E2 (PGE2) plays an important role in the survival and growth of endometriotic lesions. MicroRNAs (miRNAs) are small, noncoding RNAs that control gene expressions through multiple mechanisms and have important roles in the pathogenesis of endometriosis. The objective of the present study is to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on miRNA profile in endometriosis. The novel results collectively indicate that inhibition of PGE2-EP2/EP4 signaling regulated several miRNA clusters associated with cell adhesion, migration, invasion, survival and growth in cell-specific and the chromosome-specific manner and reverses the epigenetic silencing of proapoptotic miRNAs 15a and 34c in the human endometriotic epithelial and stromal cells and experimental endometriotic lesions. Thus, selective inhibition of EP2/EP4 receptors could emerge as a potential nonsteroidal therapy for endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA.
| | - Kirthiram K Sivakumar
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, 77843, College Station, USA
| |
Collapse
|
5
|
Setlai BP, Mkhize-Kwitshana ZL, Mehrotra R, Mulaudzi TV, Dlamini Z. Microbiomes, Epigenomics, Immune Response, and Splicing Signatures Interplay: Potential Use of Combination of Regulatory Pathways as Targets for Malignant Mesothelioma. Int J Mol Sci 2022; 23:8991. [PMID: 36012262 PMCID: PMC9409175 DOI: 10.3390/ijms23168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant mesotheliomas (MM) are hard to treat malignancies with poor prognosis and high mortality rates. This cancer is highly misdiagnosed in Sub-Saharan African countries. According to literature, the incidence of MM is likely to increase particularly in low-middle-income countries (LMICs). The burden of asbestos-induced diseases was estimated to be about 231,000 per annum. Lack of awareness and implementation of regulatory frameworks to control exposure to asbestos fibers contributes to the expected increase. Exposure to asbestos fibers can lead to cancer initiation by several mechanisms. Asbestos-induced epigenetic modifications of gene expression machinery and non-coding RNAs promote cancer initiation and progression. Furthermore, microbiome-epigenetic interactions control the innate and adaptive immunity causing exacerbation of cancer progression and therapeutic resistance. This review discusses epigenetic mechanisms with more focus on miRNAs and their interaction with the microbiome. The potential use of epigenetic alterations and microbiota as specific biomarkers to aid in the early detection and/or development of therapeutic targets is explored. The advancement of combinatorial therapies to prolong overall patient survival or possible eradication of MM especially if it is detected early is discussed.
Collapse
Affiliation(s)
- Botle Precious Setlai
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Ravi Mehrotra
- India Cancer Research Consortium (ICMR-DHR), Department of Health Research, Red Cross Road, New Delhi 110001, India
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Level 7, Bridge E, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Pretoria 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
6
|
Anobile DP, Montenovo G, Pecoraro C, Franczak M, Ait Iddouch W, Peters GJ, Riganti C, Giovannetti E. Splicing deregulation, microRNA and Notch aberrations: fighting the three-headed dog to overcome drug resistance in malignant mesothelioma. Expert Rev Clin Pharmacol 2022; 15:305-322. [PMID: 35533249 DOI: 10.1080/17512433.2022.2074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Malignant mesothelioma (MMe) is an aggressive rare cancer of the mesothelium, associated with asbestos exposure. MMe is currently an incurable disease at all stages mainly due to resistance to treatments. It is therefore necessary to elucidate key mechanisms underlying chemoresistance, in an effort to exploit them as novel therapeutic targets. AREAS COVERED Chemoresistance is frequently elicited by microRNA (miRNA) alterations and splicing deregulations. Indeed, several miRNAs, such as miR-29c, have been shown to exert oncogenic or oncosuppressive activity. Alterations in the splicing machinery might also be involved in chemoresistance. Moreover, the Notch signaling pathway, often deregulated in MMe, plays a key role in cancer stem cells formation and self-renewal, leading to drug resistance and relapses. EXPERT OPINION The prognosis of MMe in patients varies among different tumors and patient characteristics, and novel biomarkers and therapies are warranted. This work aims at giving an overview of MMe, with a special focus on state-of-the-art treatments and new therapeutic strategies against vulnerabilities emerging from studies on epigenetics factors. Besides, this review is also the first to discuss the interplay between miRNAs and alternative splicing as well as the role of Notch as new promising frontiers to overcome drug resistance in MMe.
Collapse
Affiliation(s)
- Dario P Anobile
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Giulia Montenovo
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Pecoraro
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Marika Franczak
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Widad Ait Iddouch
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Fondazione Pisana per la Scienza Pisa, 56100 Pisa, Italy
| |
Collapse
|
7
|
Kaller M, Hünten S, Siemens H, Hermeking H. Analysis of the p53/microRNA Network in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1385:187-228. [DOI: 10.1007/978-3-031-08356-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Obacz J, Yung H, Shamseddin M, Linnane E, Liu X, Azad AA, Rassl DM, Fairen-Jimenez D, Rintoul RC, Nikolić MZ, Marciniak SJ. Biological basis for novel mesothelioma therapies. Br J Cancer 2021; 125:1039-1055. [PMID: 34226685 PMCID: PMC8505556 DOI: 10.1038/s41416-021-01462-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Mesothelioma is an aggressive cancer that is associated with exposure to asbestos. Although asbestos is banned in several countries, including the UK, an epidemic of mesothelioma is predicted to affect middle-income countries during this century owing to their heavy consumption of asbestos. The prognosis for patients with mesothelioma is poor, reflecting a failure of conventional chemotherapy that has ultimately resulted from an inadequate understanding of its biology. However, recent work has revolutionised the study of mesothelioma, identifying genetic and pathophysiological vulnerabilities, including the loss of tumour suppressors, epigenetic dysregulation and susceptibility to nutrient stress. We discuss how this knowledge, combined with advances in immunotherapy, is enabling the development of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Obacz
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Henry Yung
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Marie Shamseddin
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Saffron Walden, UK
| | - Emily Linnane
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiewen Liu
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Arsalan A Azad
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Doris M Rassl
- Department of Histopathology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Robert C Rintoul
- Department of Oncology, University of Cambridge, Cambridge, UK
- Department of Thoracic Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Marko Z Nikolić
- UCL Respiratory, Division of Medicine Rayne Institute, University College London, London, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
9
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
10
|
Hiltbrunner S, Mannarino L, Kirschner MB, Opitz I, Rigutto A, Laure A, Lia M, Nozza P, Maconi A, Marchini S, D’Incalci M, Curioni-Fontecedro A, Grosso F. Tumor Immune Microenvironment and Genetic Alterations in Mesothelioma. Front Oncol 2021; 11:660039. [PMID: 34249695 PMCID: PMC8261295 DOI: 10.3389/fonc.2021.660039] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and fatal disease of the pleural lining. Up to 80% of the MPM cases are linked to asbestos exposure. Even though its use has been banned in the industrialized countries, the cases continue to increase. MPM is a lethal cancer, with very little survival improvements in the last years, mirroring very limited therapeutic advances. Platinum-based chemotherapy in combination with pemetrexed and surgery are the standard of care, but prognosis is still unacceptably poor with median overall survival of approximately 12 months. The genomic landscape of MPM has been widely characterized showing a low mutational burden and the impairment of tumor suppressor genes. Among them, BAP1 and BLM are present as a germline inactivation in a small subset of patients and increases predisposition to tumorigenesis. Other studies have demonstrated a high frequency of mutations in DNA repair genes. Many therapy approaches targeting these alterations have emerged and are under evaluation in the clinic. High-throughput technologies have allowed the detection of more complex molecular events, like chromotripsis and revealed different transcriptional programs for each histological subtype. Transcriptional analysis has also paved the way to the study of tumor-infiltrating cells, thus shedding lights on the crosstalk between tumor cells and the microenvironment. The tumor microenvironment of MPM is indeed crucial for the pathogenesis and outcome of this disease; it is characterized by an inflammatory response to asbestos exposure, involving a variety of chemokines and suppressive immune cells such as M2-like macrophages and regulatory T cells. Another important feature of MPM is the dysregulation of microRNA expression, being frequently linked to cancer development and drug resistance. This review will give a detailed overview of all the above mentioned features of MPM in order to improve the understanding of this disease and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Stefanie Hiltbrunner
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | | | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Angelica Rigutto
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Alexander Laure
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Michela Lia
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Paolo Nozza
- Department of Pathology, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Antonio Maconi
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Alessandra Curioni-Fontecedro
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
11
|
Vandenhoeck J, van Meerbeeck JP, Fransen E, Raskin J, Van Camp G, Op de Beeck K, Lamote K. DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and Meta-Analysis. J Thorac Oncol 2021; 16:1461-1478. [PMID: 34082107 DOI: 10.1016/j.jtho.2021.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023]
Abstract
Malignant mesothelioma is an aggressive cancer type linked to asbestos exposure. Because of several intrinsic challenges, mesothelioma is often diagnosed in an advanced disease stage. Therefore, there is a need for diagnostic biomarkers that may contribute to early detection. Recently, the epigenome of tumors is being extensively investigated to identify biomarkers. This manuscript is a systematic review summarizing the state-of-the-art research investigating DNA methylation in mesothelioma. Four literature databases (PubMed, Scopus, Web of Science, MEDLINE) were systematically searched for studies investigating DNA methylation in mesothelioma up to October 16, 2020. A meta-analysis was performed per gene investigated in at least two independent studies. A total of 53 studies investigated DNA methylation of 97 genes in mesothelioma and are described in a qualitative overview. Furthermore, ten studies investigating 13 genes (APC, CDH1, CDKN2A, DAPK, ESR1, MGMT, miR-34b/c, PGR, RARβ, RASSF1, SFRP1, SFRP4, WIF1) were included in the quantitative meta-analysis. In this meta-analysis, the APC gene is significantly hypomethylated in mesothelioma, whereas CDH1, ESR1, miR-34b/c, PGR, RARβ, SFRP1, and WIF1 are significantly hypermethylated in mesothelioma. The three genes that are the most appropriate candidate biomarkers from this meta-analysis are APC, miR-34b/c, and WIF1. Nevertheless, both study number and study objects comprised in this meta-analysis are too low to draw final conclusions on their clinical applications. The elucidation of the genome-wide DNA methylation profile of mesothelioma is desirable in the future, using a standardized genome-wide methylation analysis approach. The most informative CpG sites from this signature could then form the basis of a panel of highly sensitive and specific biomarkers that can be used for the diagnosis of mesothelioma and even for the screening of an at high-risk population of asbestos-exposed individuals.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Jan P van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; StatUa Centre for Statistics, University of Antwerp, Antwerp, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium; Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Wilrijk, Belgium; Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium; Department of Pulmonology, Antwerp University Hospital, Edegem, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Li S, Wei X, He J, Cao Q, Du D, Zhan X, Zeng Y, Yuan S, Sun L. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev 2021; 40:925-948. [PMID: 33959850 DOI: 10.1007/s10555-021-09973-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.
Collapse
Affiliation(s)
- Sijing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinyong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
- China Cell-Gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanquan Cao
- MARBEC, Université Montpellier, UM-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Danyu Du
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
14
|
Gandhi M, Nair S. New vistas in malignant mesothelioma: MicroRNA architecture and NRF2/MAPK signal transduction. Life Sci 2020; 257:118123. [PMID: 32710945 DOI: 10.1016/j.lfs.2020.118123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Malignant mesothelioma (MM) is a cancer of the mesothelial lining of the pleura, peritoneum, pericardium and testes. The most common form is asbestos-linked MM that is etiologically linked to repeated asbestos exposure with a long latency period, although non-asbestos MM has also been reported. Late diagnosis, poor survival rates, lack of diagnostic and prognostic markers act as major impediments in the clinical management of MM. Despite advances in immune checkpoint inhibition and CAR T-cell-based therapies, MM which is of different histologic subtypes remains challenging to treat. We review microRNAs (miRNAs) and the miRNA interactome implicated in MM which can be useful as circulating miRNA biomarkers for early diagnosis of MM and as biomarkers for prognostication in MM. Further, we underscore the relevance of the NRF2/MAPK signal transduction pathway that has been implicated in MM which may be useful as druggable targets or as biomarkers of predictive response. In addition, since MM is driven partly by inflammation, we elucidate chemopreventive phytochemicals that are beneficial in MM, either via crosstalk with the NRF2/MAPK pathway or via concerted anticancer mechanisms, and may be of benefit as adjuvants in chemotherapy. Taken together, a multifactorial approach comprising identification of miRNA target hubs and NRF2/MAPK biomarkers along with appropriately designed clinical trials may enable early detection and faster intervention in MM translating into better patient outcomes for this aggressive cancer.
Collapse
Affiliation(s)
- Manav Gandhi
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, VL Mehta Road, Vile Parle (West), Mumbai 400 056, India
| | - Sujit Nair
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, VL Mehta Road, Vile Parle (West), Mumbai 400 056, India.
| |
Collapse
|
15
|
Lin X, Li F, Xu F, Cui RR, Xiong D, Zhong JY, Zhu T, Shan SK, Wu F, Xie XB, Liao XB, Yuan LQ. Aberration methylation of miR-34b was involved in regulating vascular calcification by targeting Notch1. Aging (Albany NY) 2020; 11:3182-3197. [PMID: 31129659 PMCID: PMC6555467 DOI: 10.18632/aging.101973] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022]
Abstract
Vascular calcification is one of the most important factors for cardiovascular and all-cause mortality in patients with end-stage renal diseases (ESRD). The current study was aimed to investigate the function and mechanisms of miR-34b on the calcification of vascular smooth muscle cells (VSMCs) both in vitro and in vivo. We found that the expression of miR-34b was significantly suppressed in VSMCs with high inorganic phosphate (Pi) treatment, as well as mouse arteries derived from 5/6 nephrectomy with a high-phosphate diet (0.9% Pi, 5/6 NTP) and human renal arteries from uraemia patients. Overexpression of miR-34b alleviated calcification of VSMCs, while VSMCs calcification was enhanced by inhibiting the expression of miR-34b. Bisulphite sequencing PCR (BSP) uncovered that CpG sites upstream of miR-34b DNA were hypermethylated in calcified VSMCs and calcified arteries due to 5/6 NTP, as well as calcified renal arterial tissues from uraemia patients. Meantime, increased DNA methyltransferase 3a (DNMT3a) resulted in the hypermethylation of miR-34b in VSMCs, while 5-aza-2′-deoxycytidine (5-aza) reduced the methylation rate of miR-34b and restored the expression of miR-34b in VSMCs. When DNMT3a was knocked down using DNMT3a siRNA, the effect of 3.5 mM of Pi on calcification of VSMCs was abrogated. In addition, Notch1 was validated as the functional target of miR-34b and involved in the process of calcification of VSMCs. Taken together, our data showed a specific role for miR-34b in regulating calcification of VSMCs both in vitro and in vivo, which was regulated by upstream DNA methylation of miR-34b and modulated by the downstream target gene expression, Notch1. These results suggested that modulation of miR-34b may offer new insight into a novel therapeutic approach for vascular calcification.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fuxingzi Li
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Feng Xu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rong-Rong Cui
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dan Xiong
- Department of Endocrinology, Central Hospital of Yiyang, Yiyang, Hunan, People's Republic of China
| | - Jia-Yu Zhong
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ting Zhu
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Endocrinology, Central Hospital of Yiyang, Yiyang, Hunan, People's Republic of China
| | - Su-Kang Shan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Feng Wu
- Department of Pathology, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xu-Biao Xie
- Center of Organ Transplantation, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao-Bo Liao
- Department of Cardiovascular Surgery, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ling-Qing Yuan
- Department of Endocrinology and Metabolism, National Clinical Research Center for Metabolic Diseases, The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
16
|
Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin Cancer Biol 2020; 72:46-64. [PMID: 32497683 DOI: 10.1016/j.semcancer.2020.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/17/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of biological processes in animals and plants. These small non coding RNAs form a complex networks that regulate cellular function and development. MiRNAs prevent translation by either inactivation or inducing degradation of mRNA, a major concern in post-transcriptional gene regulation. Aberrant regulation of gene expression by miRNAs is frequently observed in cancer. Overexpression of various 'oncomiRs' and silencing of tumor suppressor miRNAs are associated with various types of human cancers, although overall downregulation of miRNA expression is reported as a hallmark of cancer. Modulations of the total pool of cellular miRNA by alteration in genetic and epigenetic factors associated with the biogenesis of miRNA machinery. It also depends on the availability of cellular miRNAs from its store in the organelles which affect tumor development and cancer progression. Here, we have dissected the roles and pathways of various miRNAs during normal cellular and molecular functions as well as during breast cancer progression. Recent research works and prevailing views implicate that there are two major types of miRNAs; (i) intracellular miRNAs and (ii) extracellular miRNAs. Concept, that the functions of intracellular miRNAs are driven by cellular organelles in mammalian cells. Extracellular miRNAs function in cell-cell communication in extracellular spaces and distance cells through circulation. A detailed understanding of organelle driven miRNA function and the precise role of extracellular miRNAs, pre- and post-therapeutic implications of miRNAs in this scenario would open several avenues for further understanding of miRNA function and can be better exploited for the treatment of breast cancers.
Collapse
|
17
|
Reid G, Johnson TG, van Zandwijk N. Manipulating microRNAs for the Treatment of Malignant Pleural Mesothelioma: Past, Present and Future. Front Oncol 2020; 10:105. [PMID: 32117755 PMCID: PMC7020748 DOI: 10.3389/fonc.2020.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are an important class of non-coding RNA that post-transcriptionally regulate the expression of most protein-coding genes. Their aberrant expression in tumors contributes to each of the hallmarks of cancer. In malignant pleural mesothelioma (MPM), in common with other tumor types, changes in miRNA expression are characterized by a global downregulation, although elevated levels of some miRNAs are also found. While an increasing number of miRNAs exhibit altered expression in MPM, relatively few have been functionally characterized. Of a growing number with tumor suppressor activity in vitro, miR-16, miR-193a, and miR-215 were also shown to have tumor suppressor activity in vivo. In the case of miR-16, the significant inhibitory effects on tumor growth following targeted delivery of miR-16-based mimics in a xenograft model was the basis for a successful phase I clinical trial. More recently overexpressed miRNAs with oncogenic activity have been described. Many of these changes in miRNA expression are related to the characteristic loss of tumor suppressor pathways in MPM tumors. In this review we will highlight the studies providing evidence for therapeutic effects of modulating microRNA levels in MPM, and discuss these results in the context of emerging approaches to miRNA-based therapy.
Collapse
Affiliation(s)
- Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Thomas G. Johnson
- The Asbestos Diseases Research Institute, Sydney, NSW, Australia
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nico van Zandwijk
- School of Medicine, The University of Sydney, Sydney, NSW, Australia
- Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
18
|
Williams M, Cheng YY, Phimmachanh M, Winata P, van Zandwijk N, Reid G. Tumour suppressor microRNAs contribute to drug resistance in malignant pleural mesothelioma by targeting anti-apoptotic pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1193-1206. [PMID: 35582270 PMCID: PMC9019216 DOI: 10.20517/cdr.2019.41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/17/2019] [Accepted: 09/28/2019] [Indexed: 11/28/2022]
Abstract
Aim: Aberrant microRNA expression is a common event in cancer drug resistance, however its involvement in malignant pleural mesothelioma (MPM) drug resistance is largely unexplored. We aimed to investigate the contribution of microRNAs to the resistance to drugs commonly used in the treatment of MPM. Methods: Drug resistant MPM cell lines were generated by treatment with cisplatin, gemcitabine or vinorelbine. Expression of microRNAs was quantified using RT-qPCR. Apoptosis and drug sensitivity assays were carried out following transfection with microRNA mimics or BCL2 siRNAs combined with drugs. Results: Expression of miR-15a, miR-16 and miR-34a was downregulated in MPM cells with acquired drug resistance. Transfection with miR-15a or miR-16 mimics reversed the resistance to cisplatin, gemcitabine or vinorelbine, whereas miR-34a reversed cisplatin and vinorelbine resistance only. Similarly, in parental cell lines, miR-15a or miR-16 mimics sensitised cells to all drugs, whereas miR-34a increased response to cisplatin and vinorelbine. Increased microRNA expression increased drug-induced apoptosis and caused BCL2 mRNA and protein reduction. RNAi-mediated knockdown of BCL2 partly recapitulated the increase in drug sensitivity in cisplatin and vinorelbine treated cells. Conclusion: Drug-resistant MPM cell lines exhibited reduced expression of tumour suppressor microRNAs. Increasing tumour suppressor of microRNA expression sensitised both drug resistant and parental cell lines to chemotherapeutic agents, in part through targeting of BCL2. Taken together, these data suggest that miR-15a, miR-16 and miR-34a are involved in the acquired and intrinsic drug resistance phenotype of MPM cells.
Collapse
Affiliation(s)
- Marissa Williams
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
| | - Monica Phimmachanh
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
- Current address: Garvan Institute of Medical Research, Darlinghurst, Sydney NSW2010, Australia
| | - Patrick Winata
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
- Current address: Sydney Local Health District, Concord, Sydney NSW2194, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney NSW2139, Australia
- Sydney Medical School, The University of Sydney, Sydney NSW2050, Australia
- Current address: Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
19
|
Tomasetti M, Gaetani S, Monaco F, Neuzil J, Santarelli L. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front Oncol 2019; 9:1293. [PMID: 31850200 PMCID: PMC6897284 DOI: 10.3389/fonc.2019.01293] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Asbestos exposure leads to epigenetic and epigenomic modifications that, in association with ROS-induced DNA damage, contribute to cancer onset. Few miRNAs epigenetically regulated in MM have been described in literature; miR-126, however, is one of them, and its expression is regulated by epigenetic mechanisms. Asbestos exposure induces early changes in the miRNAs, which are reversibly expressed as protective species, and their inability to reverse reflects the inability of the cells to restore the physiological miRNA levels despite the cessation of carcinogen exposure. Changes in miRNA expression, which results from genetic/epigenetic changes during tumor formation and evolution, can be detected in fluids and used as cancer biomarkers. This article has reviewed the epigenetic mechanisms involved in miRNA expression in MM, focusing on their role as biomarkers of early diagnosis and therapeutic effects.
Collapse
Affiliation(s)
- Marco Tomasetti
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Gaetani
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lory Santarelli
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
20
|
Williams M, Cheng YY, Kirschner MB, Sarun KH, Schelch K, Winata P, McCaughan B, Kao S, Van Zandwijk N, Reid G. Transcriptional suppression of the miR-15/16 family by c-Myc in malignant pleural mesothelioma. Oncotarget 2019; 10:4125-4138. [PMID: 31289611 PMCID: PMC6609241 DOI: 10.18632/oncotarget.27010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNA downregulation is frequent in malignant pleural mesothelioma (MPM), but the mechanisms responsible for loss of miR-15/16 and miR-193a are yet to be elucidated and were investigated in this study. Copy Number Variation (CNV) of microRNA-coding genes was analyzed in MPM cells by digital droplet PCR (ddPCR) and revealed heterozygous loss of miR-193a and miR-15a/16-1, but no change in miR-15b/16-2. Epigenetic control of microRNA expression was inferred following decitabine and Trichostatin A (TSA) treatment which did not substantially affect microRNA expression. Knockdown of c-Myc expression led to upregulation of SMC4, miR-15b and 16, and to a lesser extent DLEU2 and miR-15a, whereas c-Myc overexpression repressed microRNA expression. Chromatin immunoprecipitation (ChIP) assays confirmed the interaction of c-Myc with the DLEU2 and SMC4 promoters. Tumor microRNA expression was determined in samples from MPM patients, with samples of pleura from cardiac surgery patients used as controls. In tumor samples, a strong correlation was observed between the expression of miR-15b and 16 (R2=0.793), but not miR-15a and 16. Our data suggest that in MPM, the downregulation of miR-15/16 is due to transcriptional repression by c-Myc, primarily via control of the miR-15b/16-2 locus, while miR-193a-3p loss is due to genomic deletion.
Collapse
Affiliation(s)
- Marissa Williams
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Michaela B Kirschner
- Asbestos Diseases Research Institute, Sydney, Australia.,Current address: Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Kadir H Sarun
- Asbestos Diseases Research Institute, Sydney, Australia
| | - Karin Schelch
- Asbestos Diseases Research Institute, Sydney, Australia.,Current address: Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Patrick Winata
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Chris O'Brien Lifehouse, Sydney, Australia
| | - Nico Van Zandwijk
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Current address: Sydney Local Health District, Concord, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Current address: Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Sato H, Soh J, Aoe K, Fujimoto N, Tanaka S, Namba K, Torigoe H, Shien K, Yamamoto H, Tomida S, Tao H, Okabe K, Kishimoto T, Toyooka S. Droplet digital PCR as a novel system for the detection of microRNA‑34b/c methylation in circulating DNA in malignant pleural mesothelioma. Int J Oncol 2019; 54:2139-2148. [PMID: 30942424 DOI: 10.3892/ijo.2019.4768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy arising from the pleura that is difficult to diagnose, contributing to its dismal prognosis. Previously, we reported that the degree of microRNA (miR)‑34b/c methylation in circulating DNA is associated with the development of MPM. Herein, we present a newly developed droplet digital PCR (ddPCR)‑based assay for the detection of miR‑34b/c methylation in circulating DNA in patients with MPM. We originally prepared two probes within a short amplicon of 60 bp, designing one from the positive strand and the other from the complementary strand. The two probes functioned cooperatively, and our established assay detected DNA methylation accurately in the preliminary validation. We subsequently verified this assay using clinical samples. Serum samples from 35 cases of MPM, 29 cases of pleural plaque and 10 healthy volunteers were collected from 3 different institutions and used in this study. We divided the samples into 2 groups (group A, n=33; group B, n=41). A receiver‑operating characteristic curve analysis using the samples in group A determined the optimal cut‑off value for the diagnosis of MPM, with a sensitivity of 76.9% and a specificity of 90%. On the other hand, the use of the same criterion yielded a sensitivity of 59.1% and a specificity of 100% in group B, and corresponding values of 65.7 and 94.9% for the entire cohort, indicating a moderate sensitivity and a high specificity. In addition, when the analysis was focused on stage II or more advanced MPM, the sensitivity improved to 81.8%, suggesting the possibility that the methylated allele frequency in MPM may be associated with the stage of disease progression. On the whole, the findings of this study indicate that miR‑34b/c methylation in circulating DNA is a promising biomarker for the prediction of disease progression in patients with MPM.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Junichi Soh
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Keisuke Aoe
- Department of Medical Oncology, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Nobukazu Fujimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kei Namba
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hidejiro Torigoe
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| | - Hiroyuki Tao
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Kazunori Okabe
- Department of Clinical Research, National Hospital Organization, Yamaguchi‑Ube Medical Center, Ube, Yamaguchi 755‑0241, Japan
| | - Takumi Kishimoto
- Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama 702‑8055, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700‑8558, Japan
| |
Collapse
|
22
|
Yu G, Zhou H, Yao W, Meng L, Lang B. lncRNA TUG1 Promotes Cisplatin Resistance by Regulating CCND2 via Epigenetically Silencing miR-194-5p in Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:257-271. [PMID: 30925453 PMCID: PMC6439231 DOI: 10.1016/j.omtn.2019.02.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/17/2022]
Abstract
Taurine-upregulated gene 1 (TUG1) has been involved in tumorigenesis of several human cancers, but its precise biological role in bladder cancer remains largely elusive. In this study, we found that TUG1 was upregulated in bladder cancer and the expression of TUG1 was positively and negatively correlated with CCND2 and miR-194-5p, respectively. MiR-194-5p expression was frequently decreased through promoter hypermethylation, while it was epigenetically increased following cisplatin and 5-aza-2′-deoxycytidine (5-Aza-DC) treatment. Furthermore, knockdown of TUG1 attenuated the expression of epigenetic regulator Enhancer of zeste homolog 2 (EZH2), and it alleviated the promoter hypermethylation of miR-194-5p and induced its expression. Increased miR-194-5p expression or decreased TUG1 expression significantly sensitized bladder cancer cells to cisplatin, inhibited the proliferation, and induced apoptosis. Besides, CCND2 was a direct target of miR-194-5p, while miR-194-5p was regulated by TUG1. CCND2 could partially restore the tumor-suppressive effects on cell proliferation and cisplatin resistance following TUG1 silencing. Additionally, TUG1 expression was correlated with clinical stage, lymphatic metastasis, and patient prognosis. In conclusion, TUG1 promotes bladder cancer cell growth and chemoresistance by regulating CCND2 via EZH2-associated silencing of miR-194-5p. Our study may be conducive to elucidating the molecular mechanism of and providing novel therapeutic target and biomarker for bladder cancer.
Collapse
Affiliation(s)
- Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lirong Meng
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, China.
| |
Collapse
|
23
|
Lo Russo G, Tessari A, Capece M, Galli G, de Braud F, Garassino MC, Palmieri D. MicroRNAs for the Diagnosis and Management of Malignant Pleural Mesothelioma: A Literature Review. Front Oncol 2018; 8:650. [PMID: 30622932 PMCID: PMC6308141 DOI: 10.3389/fonc.2018.00650] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor with a variable incidence among different countries. Occupational asbestos exposure is the most important etiological factor and a very long latency period is widely reported. In the early phase of the disease, clinical signs are absent or not specific. For this reason, the diagnosis is frequently achieved only in the advanced stages. The histopathological diagnosis per se is also very complex, and no known factor can predict the prognosis with certainty. Nonetheless, current survival rates remain very low, despite the use of standard treatments, which include surgery, chemotherapy and radiotherapy. The identification of new prognostic and/or diagnostic biomarkers, and the discovery of therapeutic targets is a priority and could lead to a real significant impact on the management of malignant pleural mesothelioma. In this scenario, the role of microRNAs is becoming increasingly relevant, with the promise of a quick translation in the current clinical practice. Despite the relative novelty of this field, the number of works and candidate microRNAs that are present in literature is striking. Unfortunately, to date the microRNAs with the most clinical relevance for MPM are still matter of debate, probably due to the variety of approaches, techniques, and collected samples. Although specific microRNAs (e.g., let-7, miR-15 and miR-16, miR-21, miR-34a, and the miR-200 family) have been reported several times from different groups, the heterogeneity of published data reinforces the need of more comprehensive and unified studies on this topic. In this review we collect and discuss the studies focused on the involvement of microRNAs in different aspects of MPM, from their biological role in tumorigenesis and progression, to their possible application as diagnostic, prognostic and predictive biomarkers. Lastly, we examine their potential value as for the design of therapeutic approaches that could benefit MPM patients.
Collapse
Affiliation(s)
- Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Tessari
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| | - Marina Capece
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| | - Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, the Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Biersack B. Relations between approved platinum drugs and non-coding RNAs in mesothelioma. Noncoding RNA Res 2018; 3:161-173. [PMID: 30809599 PMCID: PMC6260483 DOI: 10.1016/j.ncrna.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Malignant mesothelioma diseases feature an increasing risk due to their severe forms and their association with asbestos exposure. Platinum(II) complexes such as cisplatin and carboplatin are clinically approved for the therapy of mesothelioma often in combination with antimetabolites such as pemetrexed or gemcitabine. It was observed that pathogenic properties of mesothelioma cells and the response of mesothelioma tumors towards platinum-based drugs are strongly influenced by non-coding RNAs, in particular, by small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These non-coding RNAs controlled drug sensitivity and the development of tumor resistance towards platinum drugs. An overview of the interactions between platinum drugs and non-coding RNAs is given and the influence of non-coding RNAs on platinum drug efficacy in mesothelioma is discussed. Suitable non-coding RNA-modulating agents with potentially beneficial effects on cisplatin treatment of mesothelioma diseases are mentioned. The understanding of mesothelioma diseases concerning the interactions of non-coding RNAs and platinum drugs will optimize existing therapy schemes and pave the way to new treatment options in future.
Collapse
Key Words
- ABC, ATP-binding cassette
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- AKI, acute kidney injury
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- CAF, cancer-associated fibroblast
- CBDCA, cyclobutane-1,1-dicarboxylate
- Carboplatin
- Cisplatin
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3′-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- MRP1, multidrug resistance protein 1
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TNBC, triple-negative breast cancer
- TSA, trichostatin A
Collapse
|
25
|
Biersack B. Interplay of non-coding RNAs and approved antimetabolites such as gemcitabine and pemetrexed in mesothelioma. Noncoding RNA Res 2018; 3:213-225. [PMID: 30809600 PMCID: PMC6257890 DOI: 10.1016/j.ncrna.2018.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Gemcitabine and pemetrexed are clinically approved antimetabolites for the therapy of mesothelioma diseases. These drugs are often applied in combination with platinum complexes and other drugs. The activity of antimetabolites depended on the expression levels of certain non-coding RNAs, in particular, of small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The development of tumor resistance towards antimetabolites was regulated by non-coding RNAs. An overview of the interplay between gemcitabine/pemetrexed antimetabolites and non-coding RNAs in mesothelioma is provided. Further to this, various non-coding RNA-modulating agents are discussed which displayed positive effects on gemcitabine or pemetrexed treatment of mesothelioma diseases. A detailed knowledge of the connections of non-coding RNAs with antimetabolites will be constructive for the design of improved therapies in future.
Collapse
Key Words
- AKBA, 3-acetyl-11-keto-β-boswellic acid
- Anticancer drugs
- Bcl-2, B-cell lymphoma 2
- DADS, diallyl sulfide
- DHA, docosahexaenoic acid
- DIM, 3,3‘-diindolylmethane
- DMPM, diffuse malignant peritoneal mesothelioma
- EGCG, epigallocatechin-3-gallate
- EMT, epithelial-mesenchymal transition
- Gemcitabine
- HOTAIR, HOX transcript antisense RNA
- I3C, indole-3-carbinol
- Long non-coding RNA
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MPM, malignant pleural mesothelioma
- Mesothelioma
- MicroRNA
- NSCLC, non-small cell lung cancer
- NaB, sodium butyrate
- PDCD4, programmed cell death 4
- PEG, polyethylene glycole
- PEITC, phenethylisothiocyanate
- PTEN, phosphatase and tensin homolog
- Pemetrexed
- RA, retinoic acid
- SAHA, suberoylanilide hydroxamic acid
- SFN, sulforaphane
- TSA, trichostatin A
Collapse
|
26
|
Sun Y, Duan F, Liu W, Peng Z, Dai L, Feng Y, Yang Z, Shang J, Wang K. Comprehensive Assessment of the Relationship Between MicroRNA-124 and the Prognostic Significance of Cancer. Front Oncol 2018; 8:252. [PMID: 30062087 PMCID: PMC6055006 DOI: 10.3389/fonc.2018.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the presence of microRNA-124 abnormalities involving gene expression, methylation, and single nucleotide polymorphism (SNP) in multiple and diverse cancers, but the prognostic value of these abnormalities in cancer remains inconclusive. OBJECTIVE The aim of this study is to determine the prognostic value of miR-124 in cancer. METHODS We scrutinized the electronic databases and estimate the association between miR-124 expression, methylation and single nucleotide polymorphisms (SNPs), and prognosis in cancers. The pooled hazard ratios with 95% confidence intervals (CIs) for overall survival (OS), and disease-free survival/recurrence-free survival (RFS)/progression-free survival (PFS) were calculated to estimate the effects of miR-124 expression, methylation, and SNPs on cancer prognosis. The Quality in Prognosis Studies and Newcastle-Ottawa Scale were utilized to assess the quality of included studies. RESULTS A total of 20 studies involving 3,574 participants were analyzed in evidence synthesis. Our findings showed that the low expression of miR-124 was significantly associated with poor OS (HR = 2.37, 95% CI: 1.91-2.94, P = 0.00; HR = 3.10, 95% CI: 2.04-4.70, P = 0.00) and PFS/RFS (HR = 2.21, 95% CI: 1.50-3.26, P = 0.00; HR = 2.12, 95% CI: 1.20-3.74, P = 0.00). The hyper-methylation of miR-124 was associated with poor OS (HR = 2.09, 95% CI: 1.48-2.95, P = 0.00) and PFS (HR = 3.70, 95% CI: 1.72-7.97, P = 0.00) (Table 3). The patients carrying with Allele C of miR-124 rs5315649 had a worse OS (HR = 1.50, 95% CI: 1.09-2.07, P = 0.00) and PFS (HR = 1.67, 95% CI: 1.20-2.33, P = 0.00) than the carriers with Allele G. CONCLUSION The low expression and hyper-methylation of miR-124 was strongly associated with poor prognosis, and genetic variations of miR-124 rs531564 affected prognosis in cancer patients.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fujiao Duan
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zhen Peng
- Department of Infectious Disease, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Liping Dai
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenxing Yang
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Shang
- Department of Infectious Disease, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Ventura C, Sousa-Uva A, Lavinha J, Silva MJ. Conventional and novel “omics”-based approaches to the study of carbon nanotubes pulmonary toxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:334-362. [PMID: 29481700 DOI: 10.1002/em.22177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Célia Ventura
- Departamento de Genética Humana; Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA); Lisboa Portugal
- Departamento de Saúde Ocupacional e Ambiental; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa (UNL); Lisboa Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL; Lisboa Portugal
| | - António Sousa-Uva
- Departamento de Saúde Ocupacional e Ambiental; Escola Nacional de Saúde Pública, Universidade NOVA de Lisboa (UNL); Lisboa Portugal
- CISP - Public Health Research Center; Lisboa Portugal
| | - João Lavinha
- Departamento de Genética Humana; Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA); Lisboa Portugal
| | - Maria João Silva
- Departamento de Genética Humana; Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA); Lisboa Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL; Lisboa Portugal
| |
Collapse
|
28
|
Micolucci L, Akhtar MM, Olivieri F, Rippo MR, Procopio AD. Diagnostic value of microRNAs in asbestos exposure and malignant mesothelioma: systematic review and qualitative meta-analysis. Oncotarget 2018; 7:58606-58637. [PMID: 27259231 PMCID: PMC5295457 DOI: 10.18632/oncotarget.9686] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Background Asbestos is a harmful and exceptionally persistent natural material. Malignant mesothelioma (MM), an asbestos-related disease, is an insidious, lethal cancer that is poorly responsive to current treatments. Minimally invasive, specific, and sensitive biomarkers providing early and effective diagnosis in high-risk patients are urgently needed. MicroRNAs (miRNAs, miRs) are endogenous, non-coding, small RNAs with established diagnostic value in cancer and pollution exposure. A systematic review and a qualitative meta-analysis were conducted to identify high-confidence miRNAs that can serve as biomarkers of asbestos exposure and MM. Methods The major biomedical databases were systematically searched for miRNA expression signatures related to asbestos exposure and MM. The qualitative meta-analysis applied a novel vote-counting method that takes into account multiple parameters. The most significant miRNAs thus identified were then subjected to functional and bioinformatic analysis to assess their biomarker potential. Results A pool of deregulated circulating and tissue miRNAs with biomarker potential for MM was identified and designated as “mesomiRs” (MM-associated miRNAs). Comparison of data from asbestos-exposed and MM subjects found that the most promising candidates for a multimarker signature were circulating miR-126-3p, miR-103a-3p, and miR-625-3p in combination with mesothelin. The most consistently described tissue miRNAs, miR-16-5p, miR-126-3p, miR-143-3p, miR-145-5p, miR-192-5p, miR-193a-3p, miR-200b-3p, miR-203a-3p, and miR-652-3p, were also found to provide a diagnostic signature and should be further investigated as possible therapeutic targets. Conclusion The qualitative meta-analysis and functional investigation confirmed the early diagnostic value of two miRNA signatures for MM. Large-scale, standardized validation studies are needed to assess their clinical relevance, so as to move from the workbench to the clinic.
Collapse
Affiliation(s)
- Luigina Micolucci
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Most Mauluda Akhtar
- Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Maria Rita Rippo
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| |
Collapse
|
29
|
Johnson TG, Schelch K, Cheng YY, Williams M, Sarun KH, Kirschner MB, Kao S, Linton A, Klebe S, McCaughan BC, Lin RCY, Pirker C, Berger W, Lasham A, van Zandwijk N, Reid G. Dysregulated Expression of the MicroRNA miR-137 and Its Target YBX1 Contribute to the Invasive Characteristics of Malignant Pleural Mesothelioma. J Thorac Oncol 2018; 13:258-272. [PMID: 29113949 DOI: 10.1016/j.jtho.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure. On a genomic level, MPM is characterized by frequent chromosomal deletions of tumor suppressors, including microRNAs. MiR-137 plays a tumor suppressor role in other cancers, so the aim of this study was to characterize it and its target Y-box binding protein 1 (YBX1) in MPM. METHODS Expression, methylation, and copy number status of miR-137 and its host gene MIR137HG were assessed by polymerase chain reaction. Luciferase reporter assays confirmed a direct interaction between miR-137 and Y-box binding protein 1 gene (YBX1). Cells were transfected with a miR-137 inhibitor, miR-137 mimic, and/or YBX1 small interfering RNA, and growth, colony formation, migration and invasion assays were conducted. RESULTS MiR-137 expression varied among MPM cell lines and tissue specimens, which was associated with copy number variation and promoter hypermethylation. High miR-137 expression was linked to poor patient survival. The miR-137 inhibitor did not affect target levels or growth, but interestingly, it increased miR-137 levels by means of mimic transfection suppressed growth, migration, and invasion, which was linked to direct YBX1 downregulation. YBX1 was overexpressed in MPM cell lines and inversely correlated with miR-137. RNA interference-mediated YBX1 knockdown significantly reduced cell growth, migration, and invasion. CONCLUSIONS MiR-137 can exhibit a tumor-suppressive function in MPM by targeting YBX1. YBX1 knockdown significantly reduces tumor growth, migration, and invasion of MPM cells. Therefore, YBX1 represents a potential target for novel MPM treatment strategies.
Collapse
Affiliation(s)
| | - Karin Schelch
- Asbestos Diseases Research Institute, Sydney, Australia
| | - Yuen Y Cheng
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Marissa Williams
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Kadir H Sarun
- Asbestos Diseases Research Institute, Sydney, Australia
| | | | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Anthony Linton
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia; Concord Cancer Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University; Department of Anatomical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia
| | - Brian C McCaughan
- Department of Anatomical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia; Sydney Cardiothoracic Surgeons, RPAH Medical Centre, Sydney, Australia
| | - Ruby C Y Lin
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
30
|
SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. DISEASE MARKERS 2017; 2017:2536187. [PMID: 29386699 PMCID: PMC5745727 DOI: 10.1155/2017/2536187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56%) and SFRP5 (70%) in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A) via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.
Collapse
|
31
|
Tumor Suppressor microRNAs Contribute to the Regulation of PD-L1 Expression in Malignant Pleural Mesothelioma. J Thorac Oncol 2017. [DOI: 10.1016/j.jtho.2017.05.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Birnie KA, Prêle CM, Thompson PJ, Badrian B, Mutsaers SE. Targeting microRNA to improve diagnostic and therapeutic approaches for malignant mesothelioma. Oncotarget 2017; 8:78193-78207. [PMID: 29100460 PMCID: PMC5652849 DOI: 10.18632/oncotarget.20409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma is an aggressive and often fatal cancer associated with asbestos exposure. The disease originates in the mesothelial lining of the serosal cavities, most commonly affecting the pleura. Survival rates are low as diagnosis often occurs at an advanced stage and current treatments are limited. Identifying new diagnostic and therapeutic targets for mesothelioma remains a priority, particularly for the new wave of victims exposed to asbestos through do-it-yourself renovations and in countries where asbestos is still mined and used. Recent advances have demonstrated a biological role for the small but powerful gene regulators microRNA (miRNA) in mesothelioma. A number of potential therapeutic targets have been identified. MiRNA have also become popular as potential biomarkers for mesothelioma due to their stable expression in bodily fluid and tissues. In this review, we highlight the current challenges associated with the diagnosis and treatment of mesothelioma and discuss how targeting miRNA may improve diagnostic, prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Kimberly A Birnie
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Philip J Thompson
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Bahareh Badrian
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Centre for Respiratory Health, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Sayeed MA, Bracci M, Lucarini G, Lazzarini R, Di Primio R, Santarelli L. Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma. Biomed Pharmacother 2017; 94:1197-1224. [PMID: 28841784 DOI: 10.1016/j.biopha.2017.07.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant mesothelioma (MM) is a very aggressive, lethal cancer, and its incidence is increasing worldwide. Development of multi-drug resistance, therapy related side-effects, and disease recurrence after therapy are the major problems for the successful treatment of MM. Emerging evidence indicates that dietary phytochemicals can exert anti-cancer activities by regulating microRNA expression. Until now, only one dietary phytochemical (ursolic acid) has been reported to have MM microRNA regulatory ability. A large number of dietary phytochemicals still remain to be tested. In this paper, we have introduced some dietary phytochemicals (curcumin, epigallocatechin gallate, quercetin, genistein, pterostilbene, resveratrol, capsaicin, ellagic acid, benzyl isothiocyanate, phenethyl isothiocyanate, sulforaphane, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid) which have shown microRNA regulatory activities in various cancers and could regulate MM microRNAs. In addition to microRNA regulatory activities, curcumin, epigallocatechin gallate, quercetin, genistein, resveratrol, phenethyl isothiocyanate, and sulforaphane have anti-mesothelioma potentials, and pterostilbene, capsaicin, ellagic acid, benzyl isothiocyanate, indole-3-carbinol, 3,3'-diindolylmethane, diallyl disulphide, betulinic acid, and oleanolic acid have potentials to inhibit cancer by regulating the expression of various genes which are also known to be aberrant in MM.
Collapse
Affiliation(s)
- Md Abu Sayeed
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy.
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Raffaella Lazzarini
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Roberto Di Primio
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona 60126, Italy
| |
Collapse
|
34
|
Salemi R, Marconi A, Di Salvatore V, Franco S, Rapisarda V, Libra M. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development. Mol Med Rep 2017; 15:3366-3371. [DOI: 10.3892/mmr.2017.6383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/16/2017] [Indexed: 11/05/2022] Open
|
35
|
Walter RFH, Vollbrecht C, Werner R, Wohlschlaeger J, Christoph DC, Schmid KW, Mairinger FD. microRNAs are differentially regulated between MDM2-positive and negative malignant pleural mesothelioma. Oncotarget 2017; 7:18713-21. [PMID: 26918730 PMCID: PMC4951323 DOI: 10.18632/oncotarget.7666] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/02/2016] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a highly aggressive tumour first-line treated with a combination of cisplatin and pemetrexed. MDM2 and P14/ARF (CDKN2A) are upstream regulators of TP53 and may contribute to its inactivation. In the present study, we now aimed to define the impact of miRNA expression on this mechanism. Material and Methods 24 formalin-fixed paraffin-embedded (FFPE) tumour specimens were used for miRNA expression analysis of the 800 most important miRNAs using the nCounter technique (NanoString). Significantly deregulated miRNAs were identified before a KEGG-pathway analysis was performed. Results 17 miRNAs regulating TP53, 18 miRNAs regulating MDM2, and 11 miRNAs directly regulating CDKN2A are significantly downregulated in MDM2-expressing mesotheliomas. TP53 is downregulated in MDM2-negative tumours through miRNAs with a miSVR prediction score of 11.67, RB1 with a prediction score of 8.02, MDM2 with a prediction score of 4.50 and CDKN2A with a prediction score of 1.27. Conclusion MDM2 expression seems to impact miRNA expression levels in MPM. Especially, miRNAs involved in TP53-signaling are strongly decreased in MDM2-positive mesotheliomas. A better understanding of its tumour biology may open the chance for new therapeutic approaches and thereby augment patients' outcome.
Collapse
Affiliation(s)
- Robert Fred Henry Walter
- Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Claudia Vollbrecht
- Institute of Pathology, University Hospital Cologne, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| | - Robert Werner
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Christian Christoph
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Fabian Dominik Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Pathology, Division of Molecular Pathology, Charité, Berlin, Germany
| |
Collapse
|
36
|
Mossman BT. Cell Signaling and Epigenetic Mechanisms in Mesothelioma. ASBESTOS AND MESOTHELIOMA 2017. [DOI: 10.1007/978-3-319-53560-9_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression mainly at the posttranscriptional level. Similar to protein-coding genes, their expression is also controlled by genetic and epigenetic mechanisms. Disruption of these control processes leads to abnormal expression of miRNAs in cancer. In this chapter, we discuss the supportive links between miRNAs and epigenetics in the context of carcinogenesis. miRNAs can be epigenetically regulated by DNA methylation and/or specific histone modifications. However, they can themselves (epi-miRNAs) repress key enzymes that drive epigenetic remodeling and also bind to complementary sequences in gene promoters, recruiting specific protein complexes that modulate chromatin structure and gene expression. All these issues affect the transcriptional landscape of cells. Most important, in the cancer clinical scenario, knowledge about miRNAs epigenetic dysregulation can not only be beneficial as a prognostic biomarker, but can also help in the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain.
| |
Collapse
|
38
|
miR-193a-3p is a potential tumor suppressor in malignant pleural mesothelioma. Oncotarget 2016; 6:23480-95. [PMID: 26125439 PMCID: PMC4695131 DOI: 10.18632/oncotarget.4346] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/12/2015] [Indexed: 01/17/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an asbestos-induced cancer with poor prognosis that displays characteristic alterations in microRNA expression. Recently it was reported that the expression of a subset of microRNAs can distinguish between MPM and adenocarcinoma of the lung. However, the functional importance of these changes has yet to be investigated. We compared expression of miR-192, miR-193a-3p and the miR-200 family in normal pleura and MPM tumor specimens and found a statistically significant reduction in the levels of miR-193a-3p (3.1-fold) and miR-192 (2.8-fold) in MPM. Transfection of MPM cells with a miR-193a-3p mimic resulted in inhibition of growth and an induction of apoptosis and necrosis in vitro. The growth inhibitory effects of miR-193a-3p were associated with a decrease in MCL1 expression and were recapitulated by RNAi-mediated MCL1 silencing. Targeted delivery of miR-193a-3p mimic using EDV minicells inhibited MPM xenograft tumour growth, and was associated with increased apoptosis. In conclusion, miR-193a-3p appears to have importance in the biology of MPM and may represent a target for therapeutic intervention.
Collapse
|
39
|
NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget 2016; 6:10073-85. [PMID: 25823924 PMCID: PMC4496341 DOI: 10.18632/oncotarget.3543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM.
Collapse
|
40
|
Rao M, Atay SM, Shukla V, Hong Y, Upham T, Ripley RT, Hong JA, Zhang M, Reardon E, Fetsch P, Miettinen M, Li X, Peer CJ, Sissung T, Figg WD, De Rienzo A, Bueno R, Schrump DS. Mithramycin Depletes Specificity Protein 1 and Activates p53 to Mediate Senescence and Apoptosis of Malignant Pleural Mesothelioma Cells. Clin Cancer Res 2016; 22:1197-210. [PMID: 26459178 PMCID: PMC4775437 DOI: 10.1158/1078-0432.ccr-14-3379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 09/27/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Specificity protein 1 (SP1) is an oncogenic transcription factor overexpressed in various human malignancies. This study sought to examine SP1 expression in malignant pleural mesotheliomas (MPM) and ascertain the potential efficacy of targeting SP1 in these neoplasms. EXPERIMENTAL DESIGN qRT-PCR, immunoblotting, and immunohistochemical techniques were used to evaluate SP1 expression in cultured MPM cells and MPM specimens and normal mesothelial cells/pleura. MTS, chemotaxis, soft agar, β-galactosidase, and Apo-BrdUrd techniques were used to assess proliferation, migration, clonogenicity, senescence, and apoptosis in MPM cells following SP1 knockdown, p53 overexpression, or mithramycin treatment. Murine subcutaneous and intraperitoneal xenograft models were used to examine effects of mithramycin on MPM growth in vivo. Microarray, qRT-PCR, immunoblotting, and chromatin immunoprecipitation techniques were used to examine gene expression profiles mediated by mithramycin and combined SP1 knockdown/p53 overexpression and correlate these changes with SP1 and p53 levels within target gene promoters. RESULTS MPM cells and tumors exhibited higher SP1 mRNA and protein levels relative to control cells/tissues. SP1 knockdown significantly inhibited proliferation, migration, and clonogenicity of MPM cells. Mithramycin depleted SP1 and activated p53, dramatically inhibiting proliferation and clonogenicity of MPM cells. Intraperitoneal mithramycin significantly inhibited growth of subcutaneous MPM xenografts and completely eradicated mesothelioma carcinomatosis in 75% of mice. Mithramycin modulated genes mediating oncogene signaling, cell-cycle regulation, senescence, and apoptosis in vitro and in vivo. The growth-inhibitory effects of mithramycin in MPM cells were recapitulated by combined SP1 knockdown/p53 overexpression. CONCLUSIONS These findings provide preclinical rationale for phase II evaluation of mithramycin in patients with mesothelioma.
Collapse
Affiliation(s)
- Mahadev Rao
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Scott M Atay
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Young Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Trevor Upham
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - R Taylor Ripley
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Julie A Hong
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Mary Zhang
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Emily Reardon
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Patricia Fetsch
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Xinmin Li
- Clinical Micro-array Core, University of California, Los Angeles, California
| | - Cody J Peer
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tristan Sissung
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Assunta De Rienzo
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raphael Bueno
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic and GI Oncology Branch, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
41
|
Cheng S, Xu Y, Shi Z, Lin Y, Hoang CD, Zhang X. Overexpression of micro ribonucleic acid-591 inhibits cell proliferation and invasion of malignant pleural mesothelioma cells. Thorac Cancer 2016; 7:340-7. [PMID: 27148420 PMCID: PMC4846623 DOI: 10.1111/1759-7714.12336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is an aggressive cancer refractory to current therapies. Reduced expression of micro ribonucleic acid (miR)‐591 in a range of cancer types has suggested it is a potent tumor suppressor, and overexpression has been shown to inhibit tumor cell growth. The role of miR‐591 in MPM is largely unknown. Methods miR‐591 was over‐expressed in vitro using micro RNA mimics in three MPM cell lines (H513, H2052, H2373), and effects on tumor cell growth, proliferation, invasion, and target gene expression were assessed. Results miR‐591 mimic was introduced into MPM cell lines to overexpress this microRNA. The cellular growth, proliferation, and invasive capability was significantly inhibited after overexpression of miR‐591. Growth inhibition caused by miR‐591 correlated with upregulation of p21 and Bax. Reduced invasive capability correlated with downregulation of matrix metalloproteinase‐2 and transforming growth factor‐β1. Conclusion miR‐591 is a potent tumor suppressor in MPM. Overexpression of miR‐591 may represent a novel therapeutic approach for MPM.
Collapse
Affiliation(s)
- Shizhao Cheng
- Tianjin Medical University Tianjin China; Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| | - Yue Xu
- Division of Thoracic Surgery Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford California USA
| | - Zhenliang Shi
- Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| | - Yongbin Lin
- State Key Laboratory of Oncology in Southern China Department of Thoracic Surgery Sun Yat-Sen University Cancer Center Guangzhou China
| | - Chuong D Hoang
- Division of Thoracic Surgery Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford California USA
| | - Xun Zhang
- Department of Thoracic Surgery Tianjin Chest Hospital Tianjin China
| |
Collapse
|
42
|
AMATYA VISHWAJEET, MAWAS AMANYSAYED, KUSHITANI KEI, MOHI EL-DIN MOUCHIRAM, TAKESHIMA YUKIO. Differential microRNA expression profiling of mesothelioma and expression analysis of miR-1 and miR-214 in mesothelioma. Int J Oncol 2016; 48:1599-607. [DOI: 10.3892/ijo.2016.3358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
|
43
|
Suzuki H, Maruyama R, Yamamoto E, Niinuma T, Kai M. Relationship Between Noncoding RNA Dysregulation and Epigenetic Mechanisms in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 927:109-35. [DOI: 10.1007/978-981-10-1498-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases. Genes Chromosomes Cancer 2015; 55:193-214. [PMID: 26651018 DOI: 10.1002/gcc.22332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andreia S Machado
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
45
|
Suzawa K, Yamamoto H, Murakami T, Katayama H, Furukawa M, Shien K, Hashida S, Okabe K, Aoe K, Soh J, Asano H, Tsukuda K, Mimura Y, Toyooka S, Miyoshi S. Establishment and molecular characterization of cell lines from Japanese patients with malignant pleural mesothelioma. Oncol Lett 2015; 11:705-712. [PMID: 26870271 DOI: 10.3892/ol.2015.3955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease that is resistant to conventional therapies. Cell lines are useful models for studying the biological characteristics of tumors; therefore, the establishment of MPM cell lines is valuable for exploring novel therapeutic strategies for MPM. In the present study, 4 MPM cell lines (YUMC8, YUMC44, YUMC63, and YUMC64) were established, which consisted of 2 epithelioid and 2 sarcomatoid mesothelioma histological subtypes, from Japanese patients with MPM. The DNA methylation status, mutations, copy number gains, protein expression of representative genes, and the sensitivity to several drugs were examined in these 4 cell lines. Methylation of P16 was demonstrated in 3/4 cell lines, in which the protein expression of p16 was lost. Methylation of RASSF1A was observed in 3/4 cell lines. Copy number gains of EGFR, HER2 or MET were not detected in the 4 cell lines. Mutations in various genes, including EGFR, KRAS, HER2, BRAF, and PIK3CA, which are frequently detected in non-small cell lung cancer, were not detected in the 4 cell lines. microRNA-34b/c is a direct transcriptional target of p53 and is often silenced in MPM by promoter methylation. In the present study, miR-34b/c was heavily methylated in 2/4 established MPM cell lines. For cell adhesion molecules, E-cadherin expression was detected in the 2 epithelioid MPM cell lines, whereas N-cadherin expression was detected in all 4 established cell lines by western blotting. Vimentin was strongly expressed in the 2 sarcomatoid MPM cell lines. None of the established MPM cell lines demonstrated significant responses to the drugs tested, including NVP-AUY922, 17-DMAG, Trichostatin A, and Vorinostat. Although novel molecular findings were not observed in the current characterization of these MPM cell lines, these lines will be useful for future extensive analyses of the biological behavior of MPM and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ken Suzawa
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Thoracic Surgery, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan; Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Tomoyuki Murakami
- Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Hideki Katayama
- Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan; Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Masashi Furukawa
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinsuke Hashida
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazunori Okabe
- Department of Thoracic Surgery, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan; Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Keisuke Aoe
- Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan; Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Junichi Soh
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroaki Asano
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kazunori Tsukuda
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Yamaguchi 755-0241, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shinichiro Miyoshi
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
46
|
Quinn L, Finn SP, Cuffe S, Gray SG. Non-coding RNA repertoires in malignant pleural mesothelioma. Lung Cancer 2015; 90:417-26. [PMID: 26791801 DOI: 10.1016/j.lungcan.2015.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy, with extremely poor survival rates. There are limited treatment options, with no second line standard of care for those who fail first line chemotherapy. Recent advances have been made to characterise the underlying molecular mechanisms of mesothelioma, in the hope of providing new targets for therapy. With the discovery that non-coding regions of our DNA are more than mere junk, the field of research into non-coding RNAs (ncRNAs) has exploded in recent years. Non-coding RNAs have diverse and important roles in a variety of cellular processes, but are also implicated in malignancy. In the following review, we discuss two types of non-coding RNAs, long non-coding RNAs and microRNAs, in terms of their role in the pathogenesis of MPM and their potential as both biomarkers and as therapeutic targets in this disease.
Collapse
Affiliation(s)
- Leah Quinn
- Dept. of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Dept. of Surgery, Trinity College Dublin, Ireland; MSc in Translational Oncology Program, Trinity College Dublin, Ireland
| | - Stephen P Finn
- Dept. of Histopathology and Morbid Anatomy, Trinity College Dublin, Ireland
| | - Sinead Cuffe
- HOPE Directorate, St James's Hospital, Dublin, Ireland
| | - Steven G Gray
- Dept. of Clinical Medicine, Trinity College Dublin, Dublin, Ireland; Thoracic Oncology Research Group, Institute of Molecular Medicine, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
47
|
Reid G. MicroRNAs in mesothelioma: from tumour suppressors and biomarkers to therapeutic targets. J Thorac Dis 2015; 7:1031-40. [PMID: 26150916 DOI: 10.3978/j.issn.2072-1439.2015.04.56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
Malignant mesothelioma remains a difficult proposition in the clinic, with few accurate molecular markers available to guide diagnosis and patient management, and a dearth of effective treatments. Recent evidence implicates microRNAs-short non-coding RNAs involved in post-transcriptional regulation of gene expression-in mesothelioma biology. Emerging evidence suggests that exploring aberrant microRNA expression will not only improve our understanding of the disease, but will also lead to the identification of new molecular biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Glen Reid
- 1 Asbestos Diseases Research Institute (ADRI); 2 Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Li F, Chen H, Huang Y, Zhang Q, Xue J, Liu Z, Zheng F. miR-34c plays a role of tumor suppressor in HEC‑1-B cells by targeting E2F3 protein. Oncol Rep 2015; 33:3069-74. [PMID: 25846116 DOI: 10.3892/or.2015.3894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma (EC) is a common malignancy of the female genital tract with a poor prognosis. It has been reported that miR-34c is significantly reduced in EC, but research concerning its function in EC is rare. In the present study, the expression of miR-34c was upregulated in the EC cell line, HEC-1-B, by transfecting the cells with hsa-miR-34c-5p mimics. Then, after determining the transfection efficiency by RT-qPCR, we analyzed the effects of miR-34c on the HEC-1-B cells. We found that overexpression of miR-34c significantly inhibited cell proliferation, colony formation, migration and invasion and induced cell cycle arrest and apoptosis. Finally, western blot analysis demonstrated that the expression of E2F3 was reduced after upregulation of the expression of miR-34c in the HEC-1-B cells, and the effects of miR-34c are likely associated with the reduction in E2F3 protein. In conclusion, our study demonstrated that miR-34c plays a role of tumor suppressor in HEC-1-B cells, and E2F3 protein may be a target of miR-34c.
Collapse
Affiliation(s)
- Fuyao Li
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Huijun Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yibo Huang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jisen Xue
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zan Liu
- Department of General Surgery, Zhuzhou Kind Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Feiyun Zheng
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
49
|
Birnie KA, Yip YY, Ng DCH, Kirschner MB, Reid G, Prêle CM, Musk AWB, Lee YCG, Thompson PJ, Mutsaers SE, Badrian B. Loss of miR-223 and JNK Signaling Contribute to Elevated Stathmin in Malignant Pleural Mesothelioma. Mol Cancer Res 2015; 13:1106-18. [PMID: 25824152 DOI: 10.1158/1541-7786.mcr-14-0442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/15/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Malignant pleural mesothelioma (MPM) is often fatal, and studies have revealed that aberrant miRNAs contribute to MPM development and aggressiveness. Here, a screen of miRNAs identified reduced levels of miR-223 in MPM patient specimens. Interestingly, miR-223 targets Stathmin (STMN1), a microtubule regulator that has been associated with MPM. However, whether miR-223 regulates STMN1 in MPM and the functions of miR-223 and STMN1 in this disease are yet to be determined. STMN1 is also regulated by c-Jun N-terminal kinase (JNK) signaling, but whether this occurs in MPM and whether miR-223 plays a role are unknown. The relationship between STMN1, miR-223, and JNK was assessed using MPM cell lines, cells from pleural effusions, and MPM tissue. Evidence indicates that miR-223 is decreased in all MPM tissue compared with normal/healthy tissue. Conversely, STMN1 expression was higher in MPM cell lines when compared with primary mesothelial cell controls. Following overexpression of miR-223 in MPM cell lines, STMN1 levels were reduced, cell motility was inhibited, and tubulin acetylation induced. Knockdown of STMN1 using siRNAs led to inhibition of MPM cell proliferation and motility. Finally, miR-223 levels increased while STMN1 was reduced following the re-expression of the JNK isoforms in JNK-null murine embryonic fibroblasts, and STMN1 was reduced in MPM cell lines following the activation of JNK signaling. IMPLICATIONS miR-223 regulates STMN1 in MPM, and both are in turn regulated by the JNK signaling pathway. As such, miR-223 and STMN1 play an important role in regulating MPM cell motility and may be therapeutic targets.
Collapse
Affiliation(s)
- Kimberly A Birnie
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.
| | - Yan Y Yip
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia. School of Biomedical Science, Faculty of Medicine and Biomedical Science, University of Queensland, Brisbane, Queensland, Australia
| | - Michaela B Kirschner
- Asbestos Diseases Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Arthur W Bill Musk
- Occupational Respiratory Epidemiology, School of Population Health, University of Western Australia, Crawley, Western Australia, Australia. Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Y C Gary Lee
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Philip J Thompson
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia. Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Bahareh Badrian
- Institute for Respiratory Health and Centre for Asthma, Allergy and Respiratory Research, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| |
Collapse
|
50
|
Kirschner MB, Cheng YY, Armstrong NJ, Lin RCY, Kao SC, Linton A, Klebe S, McCaughan BC, van Zandwijk N, Reid G. MiR-score: a novel 6-microRNA signature that predicts survival outcomes in patients with malignant pleural mesothelioma. Mol Oncol 2015; 9:715-26. [PMID: 25497279 PMCID: PMC5528709 DOI: 10.1016/j.molonc.2014.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prognosis of malignant pleural mesothelioma (MPM) is poor, and predicting the outcomes of treatment is difficult. Here we investigate the potential of microRNA expression to estimate prognosis of MPM patients. METHODS Candidate microRNAs from microarray profiling of tumor samples from 8 long (median: 53.7 months) and 8 short (median: 6.4 months) survivors following extrapleural pneumonectomy (EPP) were validated by RT-qPCR in 48 additional EPP samples. Kaplan-Meier log ranking was used to further explore the association between microRNA expression and overall survival (OS). Binary logistic regression was used to construct a microRNA signature (miR-Score) that was able to predict an OS of ≥20 months. Performance of the miR-Score was evaluated by receiver operating characteristic (ROC) curve analysis and validated in a series of 43 tumor samples from patients who underwent palliative surgery [pleurectomy/decortication (P/D)]. RESULTS The miR-Score, using expression data of six microRNAs (miR-21-5p, -23a-3p, -30e-5p, -221-3p, -222-3p, and -31-5p), enabled prediction of long survival with an accuracy of 92.3% for EPP and 71.9% for palliative P/D. Hazard ratios for score-negative patients were 4.12 (95% CI: 2.03-8.37) for EPP and 1.93 (95% CI: 1.01-3.69) for P/D. Importantly, adding the miR-Score to a set of clinical selection criteria (histology, age, gender) increased predictive accuracy in the independent validation set from 76.3% for clinical factors only to 87.3%. CONCLUSIONS This study has identified a novel 6-microRNA signature (miR-Score) that can accurately predict prognosis of MPM patients.
Collapse
Affiliation(s)
- Michaela B Kirschner
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia.
| | - Nicola J Armstrong
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.
| | - Ruby C Y Lin
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, NSW, Australia.
| | - Steven C Kao
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia.
| | - Anthony Linton
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia; Department of Medical Oncology, Concord Repatriation General Hospital, Sydney, NSW, Australia.
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre, Adelaide, SA, Australia.
| | - Brian C McCaughan
- Sydney Cardiothoracic Surgeons, RPA Medical Centre, Sydney, NSW, Australia.
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Glen Reid
- Asbestos Diseases Research Institute (ADRI), Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|