1
|
Cui Q, Huang C, Liu JY, Zhang JT. Small Molecule Inhibitors Targeting the "Undruggable" Survivin: The Past, Present, and Future from a Medicinal Chemist's Perspective. J Med Chem 2023; 66:16515-16545. [PMID: 38092421 PMCID: PMC11588358 DOI: 10.1021/acs.jmedchem.3c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Survivin, a homodimeric protein and a member of the IAP family, plays a vital function in cell survival and cycle progression by interacting with various proteins and complexes. Its expression is upregulated in cancers but not detectable in normal tissues. Thus, it has been regarded and validated as an ideal cancer target. However, survivin is "undruggable" due to its lack of enzymatic activities or active sites for small molecules to bind/inhibit. Academic and industrial laboratories have explored different strategies to overcome this hurdle over the past two decades, with some compounds advanced into clinical testing. These strategies include inhibiting survivin expression, its interaction with binding partners and homodimerization. Here, we provide comprehensive analyses of these strategies and perspective on different small molecule survivin inhibitors to help drug discovery targeting "undruggable" proteins in general and survivin specifically with a true survivin inhibitor that will prevail in the foreseeable future.
Collapse
Affiliation(s)
- Qingbin Cui
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Caoqinglong Huang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio 43614, United States
| |
Collapse
|
2
|
Dong Z, Gao D, Li Y, An K, Ni J, Meng L, Wu H. Self-assembled DNA nanoparticles enable cascade circuits for mRNA detection and imaging in living cells. Anal Chim Acta 2023; 1249:340934. [PMID: 36868769 DOI: 10.1016/j.aca.2023.340934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Fluorescence molecular probes have been regarded as a valuable tool for RNA detection and imaging. However, the pivotal challenge is how to develop an efficient fluorescence imaging platform for accurate identification of RNA molecules with low expression in complicated physiological environments. Herein, we construct the DNA nanoparticles to glutathione (GSH)-responsive controllable release of hairpin reactants for catalytic hairpin assembly (CHA)-hybridization chain reaction (HCR) cascade circuits, which enables the analysis and imaging of low-abundance target mRNA in living cells. The aptamer-tethered DNA nanoparticles are constructed via the self-assembly of single-stranded DNAs (ssDNAs), exhibiting sufficient stability, cell-specific penetration, and precise controllability. Moreover, the in-depth integration of different DNA cascade circuits shows the improved sensing performance of DNA nanoparticles in live cell analysis. Therefore, through the combination of multi-amplifiers and programmable DNA nanostructure, the developed strategy enables accurately triggered release of hairpin reactants and further achieves sensitive imaging and quantitative evaluation of survivin mRNA in carcinoma cells, which provides a potential platform to facilitate RNA fluorescence imaging applications in early clinical cancer theranostics.
Collapse
Affiliation(s)
- Zhe Dong
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Debo Gao
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Yuancheng Li
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Kang An
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Jing Ni
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Ling Meng
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China
| | - Han Wu
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, PR China.
| |
Collapse
|
3
|
Survivin Small Molecules Inhibitors: Recent Advances and Challenges. Molecules 2023; 28:molecules28031376. [PMID: 36771042 PMCID: PMC9919791 DOI: 10.3390/molecules28031376] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Survivin, as a member of the inhibitor of apoptosis proteins (IAPs) family, acts as a suppressor of apoptosis and plays a central role in cell division. Survivin has been considered as an important cancer drug target because it is highly expressed in many types of human cancers, while it is effectively absent from terminally differentiated normal tissues. Moreover, survivin is involved in tumor cell resistance to chemotherapy and radiation. Preclinically, downregulation of survivin expression or function reduced tumor growth induced apoptosis and sensitized tumor cells to radiation and chemotherapy in different human tumor models. This review highlights the role of survivin in promoting cellular proliferation and inhibiting apoptosis and summarizes the recent advances in and challenges of developing small-molecule survivin inhibitors.
Collapse
|
4
|
Li J, Zhang Y, Sun J, Ouyang J, Na N. SiRNA-templated 3D framework nucleic acids for chemotactic recognition, and programmable and visualized precise delivery for synergistic cancer therapy. Chem Sci 2021; 12:15353-15361. [PMID: 34976356 PMCID: PMC8635176 DOI: 10.1039/d1sc04249a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022] Open
Abstract
Developments in framework nucleic acids (FNAs) are limited by complicated synthesis, by-product interference, and low framework utilization. Herein, simple core-shell spherical 3D FNAs (ST-SFNAs) preparation is presented based on siRNA-templated linear polymerization followed by hybridization chain reaction branched polymerization. Without by-products, all components exhibited their special functions to obtain high space utilization of ST-SFNAs. ST-SFNAs were covered by catalase and folic acid-functionalized liposome membranes. The catalase endowed ST-SFNAs with chemotactic activities in the H2O2 reaction catalyzed by catalase. Furthermore, combined with functionalized folic acids' targeting folate receptors, the synergistic chemotactic recognition of cancer cells was obtained. This dramatically promoted targeted cellular uptakes compared with traditional active or passive targeting pathways. Subsequently, the cascaded-logical programmable release of drugs was precisely controlled by targeting glutathione and ATP (via S-S bond and ATP aptamer on the inner g-DNA cover). This was visualized by "turn on" fluorescent signals generated by special hybridization of released hairpin DNAs with survivin mRNA biomarkers. Simultaneously, biocompatible synergistic therapy was achieved by simultaneously releasing doxorubicin and siRNA. With its high utilization for synergistic chemotactic recognition, programmable and visualized delivery, as well as synergistic therapy, an efficient platform for maximizing the therapeutic efficacy has been developed. This would initiate further FNA-based material development for a variety of biological applications.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Ying Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
5
|
Xu H, Yu J, Cui J, Chen Z, Zhang X, Zou Y, Du Y, Li Y, Le S, Jiang L, Xia J, Wu J. Ablation of Survivin in T Cells Attenuates Acute Allograft Rejection after Murine Heterotopic Heart Transplantation by Inducing Apoptosis. Front Immunol 2021; 12:710904. [PMID: 34421916 PMCID: PMC8377163 DOI: 10.3389/fimmu.2021.710904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022] Open
Abstract
Although studies in oncology have well explored the pharmacological effects of Birc5, little is known about its role in allogeneic T-cell responses. Therefore, the present study used a mouse model of acute heart allograft rejection to investigate the protective effect and mechanism of conditional knockout of Birc5 in T cells. Survivin (encoded by Birc5) was up-regulated in T cells activated in vivo and in vitro. Deletion of Birc5 in T cells attenuated acute heart allograft rejection by reducing the ratio of effector to naive T cells and Th1 to Tregs. In addition, deletion of Birc5 had no noticeable effect on proliferation but on apoptosis and the secretion of IFN-γ. The results revealed a significant increase in the percentage of Annexin V positive CD4+ T cells in the Birc5-/- group, compared to the WT. Moreover, there was significant increase in early apoptotic alloreactive T cells in Birc5-/- mice and this was partly mediated by caspase-3. Furthermore, treatment with YM155 inhibited acute heart allograft rejection in vivo and increased T-cell apoptosis in healthy human PBMCs in vitro. The results highlight a potential therapeutic target for the prevention and treatment of acute transplant rejection.
Collapse
Affiliation(s)
- Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Zhang E, Chen Y, Bao S, Hou X, Hu J, Mu OYN, Song Y, Shan L. Identification of subgroups along the glycolysis-cholesterol synthesis axis and the development of an associated prognostic risk model. Hum Genomics 2021; 15:53. [PMID: 34384498 PMCID: PMC8359075 DOI: 10.1186/s40246-021-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is one of the most highly prevalent and complicated malignancies. Glycolysis and cholesterogenesis pathways both play important roles in cancer metabolic adaptations. The main aims of this study are to subtype SKCM based on glycolytic and cholesterogenic genes and to build a clinical outcome predictive algorithm based on the subtypes. METHODS A dataset with 471 SKCM specimens was downloaded from The Cancer Genome Atlas (TCGA) database. We extracted and clustered genes from the Molecular Signatures Database v7.2 and acquired co-expressed glycolytic and cholesterogenic genes. We then subtyped the SKCM samples and validated the efficacy of subtypes with respect to simple nucleotide variations (SNVs), copy number variation (CNV), patients' survival statuses, tumor microenvironment, and proliferation scores. We also constructed a risk score model based on metabolic subclassification and verified the model using validating datasets. Finally, we explored potential drugs for high-risk SKCM patients. RESULTS SKCM patients were divided into four subtype groups: glycolytic, cholesterogenic, mixed, and quiescent subgroups. The glycolytic subtype had the worst prognosis and MGAM SNV extent. Compared with the cholesterogenic subgroup, the glycolytic subgroup had higher rates of DDR2 and TPR CNV and higher proliferation scores and MK167 expression levels, but a lower tumor purity proportion. We constructed a forty-four-gene predictive signature and identified MST-321, SB-743921, Neuronal Differentiation Inducer III, romidepsin, vindesine, and YM-155 as high-sensitive drugs for high-risk SKCM patients. CONCLUSIONS Subtyping SKCM patients via glycolytic and cholesterogenic genes was effective, and patients in the glycolytic-gene enriched group were found to have the worst outcome. A robust prognostic algorithm was developed to enhance clinical decisions in relation to drug administration.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yijing Chen
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | - Shurui Bao
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueying Hou
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | - Jing Hu
- School of Postgraduate, China Medical University, Shenyang, Liaoning, China
| | | | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Liping Shan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
7
|
Xu R, Zeng M, Wu Y, Wang S, Zhang B, Zhang J, Kan Y, Li B, Cao B, Zheng X, Feng W. Acetone Extract of Cornus officinalis Leaves Exerts Anti-Melanoma Effects via Inhibiting STAT3 Signaling. Onco Targets Ther 2021; 14:3487-3501. [PMID: 34093025 PMCID: PMC8169088 DOI: 10.2147/ott.s308371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This research aims to investigate the intervention and mechanism of 50% acetone extract of C. officinalis leaves (SZYY) on melanoma xenografts. Patients and Methods Tumor size and cardiac function were measured via ultrasound. The accumulation of 2-deoxy-D-glucose (2-DG) in tumor tissue was examined with near-infrared in vivo imaging. Flow cytometry was performed to assess apoptosis and reactive oxygen species (ROS) levels in tumor and immune cells in spleen. The levels of inflammatory cytokines in serum were detected by cytometric bead array. The expression of proliferation-, apoptosis-, and angiogenesis-related proteins in tumor cells was measured to evaluate the underlying mechanisms. Subsequently, the effects of four compounds separated from SZYY on the proliferation and migration of A375 cells and STAT3 signaling were examined. The peak identification and contents of the four components were performed via high-performance liquid chromatography (HPLC). Finally, we evaluated the inhibitory effects of STAT3 overexpression on the cytotoxic activity of four constituents in A375 cells. Results SZYY inhibited the growth and glycolysis of melanoma xenograft in mice, improved cardiac function, increased the percentages of macrophages, neutrophils, and lymphocytes in spleen, reduced the levels of IL-6, IL-17A, TNF-α, and IFN-γ in serum, promoted apoptosis and oxidative stress in tumor tissues, and inhibited STAT3 phosphorylation and expression of angiogenic factors. Chemical analysis showed that SZYY is rich in loganin, rutin, triohimas C, and triohimas D, which all could restrain the proliferation and migration of A375 cells and inhibit the phosphorylation and nuclear translocation of STAT3. Moreover, STAT3 overexpression could diminish the cytotoxic activity of four compounds on A375 cells. Conclusion SZYY could exert anti-melanoma effects via inhibiting STAT3 signaling to induce apoptosis and inhibit tumor angiogenesis. Its active ingredients might be loganin, rutin, triohimas C, and triohimas D.
Collapse
Affiliation(s)
- Ruiqi Xu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Mengnan Zeng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yuanyuan Wu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Shengchao Wang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Beibei Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Jingke Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Yuxuan Kan
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Benke Li
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Bing Cao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, People's Republic of China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
8
|
Wu H, Zhou WJ, Liu L, Fan Z, Tang H, Yu RQ, Jiang JH. In vivo mRNA imaging based on tripartite DNA probe mediated catalyzed hairpin assembly. Chem Commun (Camb) 2021; 56:8782-8785. [PMID: 32618290 DOI: 10.1039/d0cc03596c] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we develop a novel tripartite DNA probe to transport phosphorothioated substrate hairpins and an aptamer for the intramolecular CHA circuit, which achieves detection of a low amount of specific mRNA in living cells and mice. Our study provides an improved strategy to promote in vivo fluorescence imaging applications in early-stage clinical diagnosis.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Wen-Jing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Lan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ze Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Hao Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
9
|
Abstract
BACKGROUND The evasion from apoptosis is a common strategy adopted by most tumors, and inhibitors of apoptosis proteins (IAPs) are among the most studied molecular and therapeutic targets. BIRC3 (cellular IAP2) and BIRC5 (survivin) are two of the eight members of the human IAPs family. This family is characterized by the presence of the baculoviral IAP repeat (BIR) domains, involved in protein-protein interactions. In addition to the BIR domains, IAPs also contain other important domains like the C-terminal ubiquitin-conjugating (UBC) domain, the caspase recruitment (CARD) domain and the C-terminal Ring zinc-finger (RING) domain. MAIN BODY BIRC3 and BIRC5 have been characterized in some solid and hematological tumors and are therapeutic targets for the family of drugs called "Smac mimetics". Many evidences point to the pro-survival and antiapoptotic role of BIRC3 in cancer cells, however, not all the data are consistent and the resulting picture is heterogeneous. For instance, BIRC3 genetic inactivation due to deletions or point mutations is consistently associated to shorter progression free survival and poor prognosis in chronic lymphocytic leukemia patients. BIRC3 inactivation has also been associated to chemoimmunotherapy resistance. On the contrary, the progression from low grade gliomas to high grade gliomas is accompanied by BIRC3 expression increase, which bears relevant prognostic consequences. Due to the relationship between BIRC3, MAP3K14 and the non-canonical NF-kB pathway, BIRC3 inactivation bears consequences also on the tumor cells relying on NF-kB pathway to survive. BIRC5, on the contrary, is commonly considered an anti-apoptotic molecule, promoting cell division and tumor progression and it is widely regarded as potential therapeutic target. CONCLUSIONS The present manuscript collects and reviews the most recent literature concerning the role played by BIRC3 and BIRC5 in cancer cells, providing useful information for the choice of the best therapeutic targets.
Collapse
Affiliation(s)
- Raffaele Frazzi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy.
| |
Collapse
|
10
|
Chandrasekaran AP, Poondla N, Ko NR, Oh SJ, Ramakrishna S. YM155 sensitizes HeLa cells to TRAIL-mediated apoptosis via cFLIP and survivin downregulation. Oncol Lett 2020; 20:72. [PMID: 32863905 PMCID: PMC7436932 DOI: 10.3892/ol.2020.11933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis is a safe method for the treatment of various types of cancer. However, TRAIL therapy is less effective in certain types of cancer, including cervical cancer. To address this problem, a combinatorial approach was employed to sensitize cervical cancer at low dosages. YM155, a survivin inhibitor, was used at low dosages along with TRAIL to induce apoptosis in HeLa cells. The effects of the individual treatment with TRAIL and YM155 on apoptosis were assessed by propidium iodide assay. In addition, to validate the DNA damage exhibited by the combination treatment, the phosphorylation status of γH2A histone family member X was investigated by immunofluorescence and western blot analysis. TRAIL or YM155 alone had no significant effect on DNA damage and apoptosis. However, the TRAIL/YM155 combination triggered a synergistic pro-apoptotic stimulus in HeLa cells. The mRNA and protein levels of CASP8- and FADD-like apoptosis regulator (cFLIP), death receptor 5 (DR5) and survivin were monitored using RT-PCR and western blot analysis, respectively. This combinatorial approach downregulated both mRNA and protein expression levels of cFLIP and survivin. Further experimental results suggested that the combination treatment significantly reduced cell viability, invasion and migration of HeLa cells. Overall, the present findings indicated that the low dosage of YM155 sensitized HeLa cells to TRAIL-induced apoptosis via a mechanism involving downregulation of cFLIP and survivin. The results indicated the importance of combination drug treatment and reveal an effective therapeutic alternative for TRAIL therapy in human cervical cancer.
Collapse
Affiliation(s)
- Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Na Re Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, Republic of Korea.,Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Republic of Korea.,College of Medicine, Department of Genetics, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
11
|
Aydin AM, Chahoud J, Adashek JJ, Azizi M, Magliocco A, Ross JS, Necchi A, Spiess PE. Understanding genomics and the immune environment of penile cancer to improve therapy. Nat Rev Urol 2020; 17:555-570. [DOI: 10.1038/s41585-020-0359-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
12
|
Abstract
Survivin is one of the most cancer-specific proteins overexpressed in almost all malignancies, but is nearly undetectable in most normal tissues in adults. Functionally, as a member of the inhibitor of apoptosis family, survivin has been shown to inhibit apoptosis and increase proliferation. The antiapoptotic function of survivin seems to be related to its ability to inhibit caspases directly or indirectly. Furthermore, the role of survivin in cell cycle division control is related to its role in the chromosomal passenger complex. Consistent with its determining role in these processes, survivin plays a crucial role in cancer progression and cancer cell resistance to anticancer drugs and ionizing radiation. On the basis of these findings, recently survivin has been investigated intensively as an ideal tumor biomarker. Thus, multiple molecular approaches such as use of the RNA interfering technique, antisense oligonucleotides, ribozyme, and small molecule inhibitors have been used to downregulate survivin regulation and inhibit its biological function consequently. In this review, all these approaches are explained and other compounds that induced apoptosis in different cell lines through survivin inhibition are also reported.
Collapse
|
13
|
Emon MA, Domingo-Fernández D, Hoyt CT, Hofmann-Apitius M. PS4DR: a multimodal workflow for identification and prioritization of drugs based on pathway signatures. BMC Bioinformatics 2020; 21:231. [PMID: 32503412 PMCID: PMC7275349 DOI: 10.1186/s12859-020-03568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background During the last decade, there has been a surge towards computational drug repositioning owing to constantly increasing -omics data in the biomedical research field. While numerous existing methods focus on the integration of heterogeneous data to propose candidate drugs, it is still challenging to substantiate their results with mechanistic insights of these candidate drugs. Therefore, there is a need for more innovative and efficient methods which can enable better integration of data and knowledge for drug repositioning. Results Here, we present a customizable workflow (PS4DR) which not only integrates high-throughput data such as genome-wide association study (GWAS) data and gene expression signatures from disease and drug perturbations but also takes pathway knowledge into consideration to predict drug candidates for repositioning. We have collected and integrated publicly available GWAS data and gene expression signatures for several diseases and hundreds of FDA-approved drugs or those under clinical trial in this study. Additionally, different pathway databases were used for mechanistic knowledge integration in the workflow. Using this systematic consolidation of data and knowledge, the workflow computes pathway signatures that assist in the prediction of new indications for approved and investigational drugs. Conclusion We showcase PS4DR with applications demonstrating how this tool can be used for repositioning and identifying new drugs as well as proposing drugs that can simulate disease dysregulations. We were able to validate our workflow by demonstrating its capability to predict FDA-approved drugs for their known indications for several diseases. Further, PS4DR returned many potential drug candidates for repositioning that were backed up by epidemiological evidence extracted from scientific literature. Source code is freely available at https://github.com/ps4dr/ps4dr.
Collapse
Affiliation(s)
- Mohammad Asif Emon
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany. .,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany.
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), 53757, Sankt Augustin, Germany.,Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53117, Bonn, Germany
| |
Collapse
|
14
|
Xiang MH, Li N, Liu JW, Yu RQ, Jiang JH. A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy. NANOSCALE 2020; 12:8727-8731. [PMID: 32296802 DOI: 10.1039/d0nr00941e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A multifunctional theranostic nanoplatform, which integrates diagnostic and therapeutic functions in a single nanosystem, holds great promise for guiding disease treatment and improving the corresponding therapy efficacy. We report the development of a novel g-C3N4 nanosheet-based theranostic nanoassembly for both enhanced imaging of cancer-relevant mRNA in living cells and imaging-guided on-demand photodynamic therapy (PDT) for tumors. The nanoassembly was constructed by using highly fluorescent and water-dispersible g-C3N4 nanosheets which act as nanocarriers, enabling efficient and self-tracking transfection of the DNA hairpin probes. The presence of intracellular mRNA will initiate the DNA hairpin probes, ultimately resulting in an amplified fluorescence signal via hybridization and displacement with mRNA. Moreover, enhanced fluorescence imaging-guided precise PDT for tumors in living cells was also demonstrated, allowing the selective ablation of tumors without any obvious side effects. Therefore, the developed theranostic approach can provide a promising platform for low-abundance biomarker discovery and early treatment of related diseases.
Collapse
Affiliation(s)
- Mei-Hao Xiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
| | | | | | | | | |
Collapse
|
15
|
Li GL, Xia YH, Li Q. Biodegradable MnO2 nanosheet-mediated catalytic hairpin assembly for two-color imaging of mRNAs in living cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Neophytou CM, Mesaritis A, Gregoriou G, Constantinou AI. d-a-Tocopheryl Polyethylene Glycol 1000 Succinate and a small-molecule Survivin suppressant synergistically induce apoptosis in SKBR3 breast cancer cells. Sci Rep 2019; 9:14375. [PMID: 31591437 PMCID: PMC6779903 DOI: 10.1038/s41598-019-50884-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/10/2019] [Indexed: 01/18/2023] Open
Abstract
Breast cancer is the second in mortality rate malignancy among women. Despite the many advances in breast cancer treatment, there is still a need to improve drug efficacy and reduce non-specific effects. D-alpha-tocopheryl polyethylene glycol succinate (TPGS) is frequently used in the development of drug delivery systems to improve the pharmacokinetics of anti-cancer drugs and reduce multi-drug resistance. We have previously shown that TPGS not only acts as a carrier molecule but also exerts anti-cancer effects. As part of this study, we investigated the effect of TPGS with YM155, a small molecule suppressant of Survivin, in various breast cancer cell lines representing different subtypes of the disease. We aimed to evaluate the presumed synergistic effect of the TPGS-YM155 combination and reveal its mechanism of action. Our results show that the TPGS-YM155 combination acts synergistically to reduce specifically the viability of SKBR3 cells. The combination of these agents reduced activation of the AKT pathway, decreased Survivin and Bcl-2 levels, and induced caspase-dependent and independent apoptosis via the mitochondrial pathway. Importantly, the TPGS-YM155 combination did not significantly affect the viability of MCF-10A normal immortalized cells. In conclusion, the combination of YM155 and TPGS could be a promising approach against SKBR3-type breast cancer.
Collapse
Affiliation(s)
- Christiana M Neophytou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
- European University Research Center, Nicosia, Cyprus
| | - Avgoustinos Mesaritis
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Gregoria Gregoriou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus
| | - Andreas I Constantinou
- Department of Biological Sciences, Faculty of Pure and Applied Sciences, University of Cyprus, 1678, Nicosia, Cyprus.
- University of Nicosia Medical School, Nicosia, Cyprus.
| |
Collapse
|
17
|
Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study? JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:368. [PMID: 31439015 PMCID: PMC6704566 DOI: 10.1186/s13046-019-1362-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Survivin (also named BIRC5) is a well-known cancer therapeutic target. Since its discovery more than two decades ago, the use of survivin as a target for cancer therapeutics has remained a central goal of survivin studies in the cancer field. Many studies have provided intriguing insight into survivin's functional role in cancers, thus providing promise for survivin as a cancer therapeutic target. Despite this, moving survivin-targeting agents into and through the clinic remains a challenge. In order to address this challenge, we may need to rethink current strategies in order to develop a new mindset for targeting survivin. In this Review, we will first summarize the current survivin mechanistic studies, and then review the status of survivin cancer therapeutics, which is classified into five categories: (i) survivin-partner protein interaction inhibitors, (ii) survivin homodimerization inhibitors, (iii) survivin gene transcription inhibitors, (iv) survivin mRNA inhibitors and (v) survivin immunotherapy. We will then provide our opinions on cancer therapeutics using survivin as a target, with the goal of stimulating discussion that might facilitate translational research for discovering improved strategies and/or more effective anticancer agents that target survivin for cancer therapy.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA. .,Developmental Therapeutics Program, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.
| | - Ieman Aljahdali
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Department of Cellular & Molecular Biology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, New York, 14263, USA.,Canget BioTekpharma LLC, Buffalo, New York, USA
| |
Collapse
|
18
|
Ong SM, Saeki K, Kok MK, Nakagawa T, Nishimura R. YM155 enhances the cytotoxic activity of etoposide against canine osteosarcoma cells. J Vet Med Sci 2019; 81:1182-1190. [PMID: 31308291 PMCID: PMC6715925 DOI: 10.1292/jvms.19-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Canine osteosarcoma (OSA) is an aggressive and highly malignant primary bone tumor. Its
poor survival outcome remains problematic despite recent advances in anti-cancer therapy,
therefore highlighting the need for alternative treatment options or drug repositioning.
The aim of this study was to determine if YM155, a small-molecule survivin inhibitor,
potentiates the chemotherapeutic efficacy of etoposide against canine OSA in
vitro and in vivo. In cell culture, YM155 enhanced the
cytotoxic effect of etoposide against canine OSA cell lines; however, the molecular
mechanism behind this effect was heterogeneous, as only one cell line had an elevated
apoptotic level. In addition, this effect was not associated with survivin suppression in
two of the cell lines. These results suggest that the molecular target of YM155 is not
restricted to survivin alone. When tested on a murine xenograft model, the average tumor
volume of the combination treatment group (YM155, 5 mg/kg, intraperitoneally, 5
consecutive days/week; and etoposide, 20 mg/kg, intraperitoneally, every 5 days) was 66%
smaller than the control group, although this difference was not statistically significant
(P=0.17). Further studies to improve the treatment protocol are
necessary to confirm the findings of this study.
Collapse
Affiliation(s)
- Siew Mei Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mun Keong Kok
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
19
|
Ying ZM, Yuan YY, Tu B, Tang LJ, Yu RQ, Jiang JH. A single promoter system co-expressing RNA sensor with fluorescent proteins for quantitative mRNA imaging in living tumor cells. Chem Sci 2019; 10:4828-4833. [PMID: 31160957 PMCID: PMC6509996 DOI: 10.1039/c9sc00458k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
Genetically encoded light-up RNA aptamers afford a valuable platform for developing RNA sensors toward live cell imaging. However, quantitative imaging of intracellular RNAs remains a grand challenge. Here we reported a novel genetically encoded RNA sensor strategy using a plasmid that expresses a splittable fusion of the RNA sensor and the GFP mRNA in an individual transcript using a single promoter system. This splittable fusion design enables synchronous co-expression of the RNA sensor with GFP mRNA while alleviates the interference with correct folding of RNA aptamers due to intramolecular hybridization. This single-promoter system is applied to ratiometric imaging of survivin mRNA in tumor cells. The results reveal that the ratiometric images dynamically correlated with survivin mRNA concentrations and allow quantitative imaging of survivin mRNA in different tumor cells. The RNA sensor strategy may provide a new paradigm for developing a robust imaging platform for quantitative mRNA studies in living cells.
Collapse
Affiliation(s)
- Zhan-Ming Ying
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| | - Yue-Yan Yuan
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| | - Bin Tu
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| | - Li-Juan Tang
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| | - Ru-Qin Yu
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| | - Jian-Hui Jiang
- Institute of Chemical Biology & Nanomedicine , State Key Laboratory of Chemo/Biosensing & Chemometrics , College of Chemistry & Chemical Engineering , Hunan University , Changsha 410082 , China . ;
| |
Collapse
|
20
|
Mishra H, Mishra PK, Iqbal Z, Jaggi M, Madaan A, Bhuyan K, Gupta N, Gupta N, Vats K, Verma R, Talegaonkar S. Co-Delivery of Eugenol and Dacarbazine by Hyaluronic Acid-Coated Liposomes for Targeted Inhibition of Survivin in Treatment of Resistant Metastatic Melanoma. Pharmaceutics 2019; 11:E163. [PMID: 30987266 PMCID: PMC6523131 DOI: 10.3390/pharmaceutics11040163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
While melanoma remains a challenge for oncologists, possibilities are being continuously explored to fight resistant metastatic melanoma more effectively. Eugenol is reported to inhibit survivin protein in breast cancer cells. Survivin is also overexpressed by melanoma cells, and is known to impart resistance to them against chemotherapy-induced apoptosis. To be able to fight resistant melanoma, we formulated hyaluronic acid (HA)-coated liposomes loaded with an effective combination of anti-melanoma agents (Dacarbazine and Eugenol), using a solvent injection method. Quality-by-Design (QbD) was applied to optimize and obtain a final formulation with the desired quality attributes, and within an acceptable size range. The optimized formulation was then subjected to performance analysis in cell lines. Coated-Dacarbazine Eugenol Liposomes were found to possess 95.08% cytotoxicity at a dacarbazine concentration of 0.5 µg/mL, while Dacarbazine Solution showed only 10.20% cytotoxicity at the same concentration. The number of late apoptotic cells was also found to be much higher (45.16% vs. 8.43%). Furthermore, migration assay and proliferation study also revealed significantly higher inhibition of cell migration and proliferation by Coated-Dacarbazine Eugenol Liposomes, signifying its potential against metastasis. Thus, surface-functionalized dacarbazine- and eugenol-loaded liposomes hold great promise against resistant and aggressive metastatic melanoma, with much less unwanted cytotoxicity and reduced doses of the chemotherapeutic agent.
Collapse
Affiliation(s)
- Harshita Mishra
- Departmant of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Pawan Kumar Mishra
- Department of Wood Processing, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Zeenat Iqbal
- Departmant of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Manu Jaggi
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Alka Madaan
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Kimi Bhuyan
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Namita Gupta
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Neha Gupta
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Karnika Vats
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Ritu Verma
- Dabur Research Foundation, Ghaziabad 201010, India.
| | - Sushama Talegaonkar
- Departmant of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
21
|
Magnetic/Superparamagnetic Hyperthermia as an Effective Noninvasive Alternative Method for Therapy of Malignant Tumors. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Huang DJ, Cao T, Huang ZM, Wu Z, Tang LJ, Jiang JH. Crosslinking catalytic hairpin assembly for high-contrast imaging of multiple mRNAs in living cells. Chem Commun (Camb) 2019; 55:3899-3902. [DOI: 10.1039/c9cc01033e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DNA nanotetrad mediated crosslinking catalytic hairpin assembly has been developed for high-contrast imaging of multiple mRNAs in living cells.
Collapse
Affiliation(s)
- Du-Juan Huang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Ting Cao
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Zhi-Mei Huang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Zhenkun Wu
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Li-Juan Tang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
| |
Collapse
|
23
|
Mitsuoka K, Kita A, Murakami Y, Shirasuna K, Noda A, Yamanaka K, Kaneko N, Miyoshi S. Predicting response to sepantronium bromide (YM155), a survivin suppressant, by PET imaging with [ 11C]YM155. Nucl Med Biol 2018; 64-65:41-46. [PMID: 30041149 DOI: 10.1016/j.nucmedbio.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sepantronium bromide (YM155) is a survivin suppressant that induces apoptosis in tumor cells. Although YM155 induces tumor regression in various tumor types in vivo, phase I and II studies demonstrated responding and non-responding patient populations. We investigated 11C-labeled YM155 ([11C]YM155) used as a positron emission tomography (PET) tracer to assess whether tumor uptake of [11C]YM155 correlated with its anti-tumor effect, thereby allowing identification of patients who would respond to YM155 treatment. METHODS (1) Uptake of YM155 was measured in 39 human cancer cell lines in vitro using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). (2) In vivo tumor uptake was assessed in xenografted mice and total body distribution was evaluated in a cynomolgus monkey using [11C]YM155 with PET/computed tomography (CT) (mice) and PET (monkey) imaging. RESULTS Intracellular uptake of YM155 in human cancer cell lines correlated well with its in vitro efficacy measured by GI50 (Pearson's r = -0.5709). Similarly, in vivo studies using tumor xenografted mice showed that tumors sensitive to YM155 demonstrated robust uptake of [11C]YM155, whereas insensitive tumors demonstrated low uptake. In the monkey, the biodistribution of [11C]YM155 indicated low accumulation in lung, breast, head, and neck and was only significant in organs involved with drug clearance: i.e. liver, kidneys, and bladder. CONCLUSIONS Robust uptake of [11C]YM155 by a tumor appears to be a positive predictive marker for a good response to YM155. The findings suggest the potential utility of PET/CT imaging with [11C]YM155 for selection of patients whose tumors are likely to respond to YM155. ADVANCES IN KNOWLEDGE YM155 efficacy correlated closely with its in vitro intracellular uptake and uptake on [11C]YM155 PET imaging. [11C]YM155 PET may predict tumor sensitivity to YM155. IMPLICATIONS FOR PATIENT CARE The concept that tumor response can be accurately predicted prior to chemotherapy should be exploited to improve cancer treatment outcomes through judicious patient selection. The small molecule sepantronium bromide (YM155), a survivin suppressant, has been developed for the treatment of several cancers, including non-Hodgkin lymphoma, lung cancer, and breast cancer. The preferentially high in vitro uptake of YM155 by YM155-sensitive cancer cells and the high in vivo uptake of [11C]YM155 in YM155-sensitive tumors demonstrated by PET imaging suggest the potential utility of performing [11C]YM155 PET to allow the identification of patients with YM155-sensitive tumors.
Collapse
Affiliation(s)
| | - Aya Kita
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Kenna Shirasuna
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Akihiro Noda
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | | | - Naoki Kaneko
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan.
| |
Collapse
|
24
|
Mishra H, Mishra PK, Ekielski A, Iqbal Z, Jaggi M, Talegaonkar S. Functionalized nanoliposomes loaded with anti survivin and anti angiogenic agents to enhance the activity of chemotherapy against melanoma by 4-pronged action. Med Hypotheses 2018; 116:141-146. [DOI: 10.1016/j.mehy.2018.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
|
25
|
Liu X, Zhao Y, Zhang W, Gao Y, Huo M, Liu M, Xiao Z, Liang S, Xu N, Zhu H. Inhibition of survivin enhances radiosensitivity of esophageal cancer cells by switching radiation-induced senescence to apoptosis. Onco Targets Ther 2018; 11:3087-3100. [PMID: 29872320 PMCID: PMC5975611 DOI: 10.2147/ott.s166798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Strategies to increase radiosensitivity are urgently needed. Combining radiosensitizing reagents with radiotherapy could improve the outcome of cancer treatment. Some preclinical studies showed that sepantronium bromide (YM155) could sensitize cancer cells to radiation by inhibiting the survivin protein. In this study, we try to investigate the function of YM155 on radiosensitivity of esophageal squamous cell carcinoma (ESCC) cells. Materials and methods ESCC cell lines were treated with radiation and YM155, and the radiation efficacy was evaluated by cell counting kit-8 assay and clonogenic survival assay. Cell senescence was measured by senescence-associated β-galactosidase staining. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, fluorescein isothiocyanate-labeled Annexin V/propidium iodide assay, and poly ADP-ribose polymerase cleavage were used to detect apoptosis. KYSE150 xenografts model was used to test the efficacy of radiation combined with YM155. Results YM155 could inhibit the upregulation of survivin induced by radiation in all ESCC cell lines, but the efficacy of radiosensitization varied in different cell lines. Radiation-induced senescence in KYSE150 and KYSE410 cells, and the combination with YM155 inhibited senescence and promoted apoptosis of ESCC cells, thereby enhancing radiosensitivity. Combination with YM155 and radiation delayed the growth of KYSE150 xenografts in nude mice by switching radiation-induced senescence to apoptosis. When p21 was inhibited in KYSE150 cells, radiation did not induce senescence, and the radiosensitization of YM155 was also attenuated. In KYSE510 and KYSE180 cells, radiation did not induce senescence, and YM155 could not enhance the radiosensitivity. Conclusion Our results suggest a new mechanism that YM155 might sensitize ESCC cells to radiation by switching radiation-induced senescence to apoptosis. The major determinant of radiosensitization by YM155 might be the induction of senescence by radiation.
Collapse
Affiliation(s)
- Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weina Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zefen Xiao
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Harashima N, Takenaga K, Akimoto M, Harada M. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression. Oncotarget 2018; 8:42887-42900. [PMID: 28476028 PMCID: PMC5522113 DOI: 10.18632/oncotarget.17157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy.
Collapse
Affiliation(s)
- Nanae Harashima
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| |
Collapse
|
27
|
Ghosh SK, Ganta A, Spanjaard RA. Discovery and cellular stress pathway analysis of 1,4-naphthoquinone derivatives with novel, highly potent broad-spectrum anticancer activity. J Biomed Sci 2018; 25:12. [PMID: 29422060 PMCID: PMC5804083 DOI: 10.1186/s12929-018-0408-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemotherapy and targeted therapies have made important strides in cancer treatment yet they often fail and new therapies are still needed. Here, we employed a phenotypic screen to identify and analyze the mechanism of action of novel small molecules that interfere with critical pathways involved in tumor cell growth, using chemoresistant A375 melanoma cells as a model. METHODS Cell culture studies were performed in ATCC-recommended media. Compounds, and compound libraries were obtained from Boston University or purchased commercially. Effects on A375 cell viability, proliferation and morphology were determined by Celigo Image Cytometer and viability staining. Anticancer activity of the lead compound was tested in a xenograft nude mouse model. Signaling and cell death pathways were analyzed by SDS-PAGE and immunoblotting, and/or fluorescence microscopy. RESULTS After evaluating 4477 compounds, one hit compound CB533 was identified that caused significant reduction of A375 cell growth. CB533 is an unexplored 1,4-naphthoquinone (NQ) derivative which unlike 1,4-NQ, induced rapid cell death without generating reactive oxygen species (ROS). Structure-activity relationship analysis showed that a pyrrolidine in the 1,4-NQ nucleus in lead compound Pyr-1 yielded optimal activity. CB533 and Pyr-1 had growth-suppressing effects on a large variety of chemotherapy-resistant cancer cell lines in the nano to picomolar range. Pyr-1 also significantly reduced growth of MDA-MB-231 breast cancer cells in nude mice. Pyr-1 rapidly induced activation of major stress pathways and autophagy, which was efficiently blocked by ERK, and somewhat by PI3K inhibitors. CONCLUSION CB533 and lead Pyr-1 represent novel broad-spectrum, anticancer compounds that are up to 1000-fold more potent than plumbagin, a natural 1,4-NQ with known anticancer activity. Since the growth suppression activities of CB533 and Pyr-1 are unaffected by the chemotherapy resistance of cancer cells, these compounds have promising therapeutic potential. The pyrrolidine in the 3 position of the 1,4-NQ nucleus of Pyr-1 is a critical component of the pharmacophore. Pyr-1-induced cellular stress was mediated by an ERK, and to a lesser extent by an AKT-dependent pathway without involving apoptosis. Our data suggest that Pyr-1 derives its greatly enhanced antitumor activity via mimicking ROS-induced stress signaling without generating ROS, and likely committing cells to autophagy.
Collapse
Affiliation(s)
- Sajal K Ghosh
- Cancer Center, Departments of Otolaryngology, Dermatology and Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, MA, 02118, USA
| | - Abhishek Ganta
- Cancer Center, Departments of Otolaryngology, Dermatology and Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, MA, 02118, USA
| | - Remco A Spanjaard
- Cancer Center, Departments of Otolaryngology, Dermatology and Biochemistry, Boston University School of Medicine, 80 East Concord Street, Boston, MA, 02118, USA. .,Q-Ring, Inc, Brookline, MA, 02446, USA.
| |
Collapse
|
28
|
Ren K, Xu Y, Liu Y, Yang M, Ju H. A Responsive "Nano String Light" for Highly Efficient mRNA Imaging in Living Cells via Accelerated DNA Cascade Reaction. ACS NANO 2018; 12:263-271. [PMID: 29253327 DOI: 10.1021/acsnano.7b06200] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonenzymatic DNA catalytic amplification strategies have greatly benefited bioanalysis. However, long period incubation is usually required due to its relatively low reaction rate and efficiency, which limits its in vivo application. Here we design a responsive DNA nano string light (DNSL) by interval hybridization of modified hairpin DNA probe pairs to a DNA nanowire generated by rolling circle amplification and realize accelerated DNA cascade reaction (DCR) for fast and highly efficient mRNA imaging in living cells. Target mRNA initiates interval hybridization of two paired hairpin probes sequentially along the DNA nanowire and results in instant lighting up of the whole DNA nanowire with high signal gain due to the fast opening of all the self-quenched hairpins. The reaction time is about 6.7 times shorter compared with a regular DNA cascade reaction due to the acceleration based on domino effect. The cell delivery is achieved by modifying one of the hairpin probes with folic acid, and this intracellular imaging strategy is verified using human HeLa cells and intracellular survivin mRNA with a series of suppressed expressions as model, which provides a useful platform for fast and highly efficient detection of low-abundance nucleic acids in living cells.
Collapse
Affiliation(s)
- Kewei Ren
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Yifan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| | - Min Yang
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London , London WC1N 1AX, United Kingdom
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China
| |
Collapse
|
29
|
Liu L, Liu JW, Wu H, Wang XN, Yu RQ, Jiang JH. Branched Hybridization Chain Reaction Circuit for Ultrasensitive Localizable Imaging of mRNA in Living Cells. Anal Chem 2018; 90:1502-1505. [DOI: 10.1021/acs.analchem.7b04848] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lan Liu
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jin-Wen Liu
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Han Wu
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiang-Nan Wang
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ru-Qin Yu
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine,
State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College
of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
30
|
Kalin JH, Wu M, Gomez AV, Song Y, Das J, Hayward D, Adejola N, Wu M, Panova I, Chung HJ, Kim E, Roberts HJ, Roberts JM, Prusevich P, Jeliazkov JR, Roy Burman SS, Fairall L, Milano C, Eroglu A, Proby CM, Dinkova-Kostova AT, Hancock WW, Gray JJ, Bradner JE, Valente S, Mai A, Anders NM, Rudek MA, Hu Y, Ryu B, Schwabe JWR, Mattevi A, Alani RM, Cole PA. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat Commun 2018; 9:53. [PMID: 29302039 PMCID: PMC5754352 DOI: 10.1038/s41467-017-02242-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/08/2023] Open
Abstract
Here we report corin, a synthetic hybrid agent derived from the class I HDAC inhibitor (entinostat) and an LSD1 inhibitor (tranylcypromine analog). Enzymologic analysis reveals that corin potently targets the CoREST complex and shows more sustained inhibition of CoREST complex HDAC activity compared with entinostat. Cell-based experiments demonstrate that corin exhibits a superior anti-proliferative profile against several melanoma lines and cutaneous squamous cell carcinoma lines compared to its parent monofunctional inhibitors but is less toxic to melanocytes and keratinocytes. CoREST knockdown, gene expression, and ChIP studies suggest that corin's favorable pharmacologic effects may rely on an intact CoREST complex. Corin was also effective in slowing tumor growth in a melanoma mouse xenograft model. These studies highlight the promise of a new class of two-pronged hybrid agents that may show preferential targeting of particular epigenetic regulatory complexes and offer unique therapeutic opportunities.
Collapse
Affiliation(s)
- Jay H Kalin
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Muzhou Wu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Andrea V Gomez
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Yun Song
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Jayanta Das
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dawn Hayward
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nkosi Adejola
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mingxuan Wu
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Izabela Panova
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Hye Jin Chung
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Kim
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Holly J Roberts
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Justin M Roberts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Polina Prusevich
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jeliazko R Jeliazkov
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shourya S Roy Burman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Louise Fairall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Charles Milano
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK
| | - Abdulkerim Eroglu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Division of Cancer Research, Jacqui Wood Cancer Centre, University of Dundee, Dundee, DD1 9SY, UK
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Jeffrey J Gray
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Sergio Valente
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonello Mai
- Pasteur Institute, Cenci-Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185, Rome, Italy
| | - Nicole M Anders
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Hu
- Department of Oncology, BioDuro LLC, Shanghai, 200131, China
| | - Byungwoo Ryu
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - John W R Schwabe
- Department of Molecular and Cell Biology, University of Leicester, Leicester, LE1 9HN, UK.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy.
| | - Rhoda M Alani
- Department of Dermatology, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
31
|
YM155 induces apoptosis in p53-deficient T-acute lymphoblastic leukemia cells independent of survivin inhibition. Anticancer Drugs 2017; 28:298-306. [PMID: 27930382 DOI: 10.1097/cad.0000000000000462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
T-acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from the malignant transformation of T-cell progenitors. Despite the significant progress in current treatment, challenges remain the lifelong morbidity after current chemotherapy regimens and postrelapse survival. In addition, patients with T-ALL have inferior outcomes compared with those with B-cell precursor; consequently, novel therapeutic approaches are still necessary to improve the outcome in this cohort. YM155 is an imidazolium derivative originally discovered as a suppressant of survivin expression. It has been reported that YM155 has potent antiproliferative activity on a variety of human cancer cell lines; however, its effects in T-ALL cells have been underexplored. The aim of the present study was to examine the effects of YM155 on p53-deficient T-ALL cell lines, JURKAT and CCRF-CEM. Resazurin dye was used to evaluate cell viability. Colony formation was observed in MethoCult methylcellulose medium. Apoptotic cells were detected by flow cytometry (annexin V labeling and TUNEL assay). Cell cycle analysis was carried out by DNA quantification in flow cytometry. DNA damage was assessed using a comet assay and the survivin expression profile was evaluated by real-time PCR and immunoblotting. YM155 treatment decreased cell viability and clonogenicity capacity of T-ALL cells, increased the apoptosis index and DNA damage, and altered the cell cycle dynamic, independent of survivin inhibition. Taken together, the data reinforce that YM155 may be useful as a therapeutic possibility to combat leukemia.
Collapse
|
32
|
Ong SM, Saeki K, Kok MK, Tanaka Y, Choisunirachon N, Yoshitake R, Nishimura R, Nakagawa T. Anti-tumour efficacy of etoposide alone and in combination with piroxicam against canine osteosarcoma in a xenograft model. Res Vet Sci 2017; 113:130-135. [PMID: 28957780 DOI: 10.1016/j.rvsc.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OSA) in dogs is locally invasive and highly malignant. Distant metastasis is the most common cause of death. To date, the survival rate in dogs with OSA remains poor. The cytotoxic effects of etoposide against canine OSA cell lines, either alone or in combination with piroxicam, have been previously demonstrated in vitro. The aim of this study was to evaluate the anti-tumour effect of etoposide alone and in combination with piroxicam on canine OSA using murine models. Etoposide single agent treatment significantly delayed tumour progression with a marked reduction in Ki-67 immunoreactivity in tumour tissue. Concomitant treatment with piroxicam did not enhance the anti-tumour efficacy of etoposide. Etoposide single agent treatment and combination treatment with piroxicam down-regulated survivin expression, but was not followed by increased apoptotic activity. These findings indicate that etoposide might be a promising novel therapeutic for canine OSA. Further investigations into its potential for clinical application in veterinary oncology are warranted.
Collapse
Affiliation(s)
- S M Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - M K Kok
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - N Choisunirachon
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - R Yoshitake
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - R Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - T Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
33
|
Yuan P, Mao X, Chong KC, Fu J, Pan S, Wu S, Yu C, Yao SQ. Simultaneous Imaging of Endogenous Survivin mRNA and On-Demand Drug Release in Live Cells by Using a Mesoporous Silica Nanoquencher. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700569. [PMID: 28544466 DOI: 10.1002/smll.201700569] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The design of multifunctional drug delivery systems capable of simultaneous target detection, imaging, and therapeutics in live mammalian cells is critical for biomedical research. In this study, by using mesoporous silica nanoparticles (MSNs) chemically modified with a small-molecule dark quencher, followed by sequential drug encapsulation, MSN capping with a dye-labeled antisense oligonucleotide, and bioorthogonal surface modification with cell-penetrating poly(disulfide)s, the authors have successfully developed the first mesoporous silica nanoquencher (qMSN), characterized by high drug-loading and endocytosis-independent cell uptake, which is able to quantitatively image endogenous survivin mRNA and release the loaded drug in a manner that depends on the survivin expression level in tumor cells. The authors further show that this novel drug delivery system may be used to minimize potential cytotoxicity encountered by many existing small-molecule drugs in cancer therapy.
Collapse
Affiliation(s)
- Peiyan Yuan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Xin Mao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Kok Chan Chong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jiaqi Fu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shuizhu Wu
- College of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Changmin Yu
- College of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
34
|
Jeong HC, Cho SJ, Lee MO, Cha HJ. Technical approaches to induce selective cell death of pluripotent stem cells. Cell Mol Life Sci 2017; 74:2601-2611. [PMID: 28246701 PMCID: PMC11107638 DOI: 10.1007/s00018-017-2486-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 01/24/2023]
Abstract
Despite the recent promising results of clinical trials using human pluripotent stem cell (hPSC)-based cell therapies for age-related macular degeneration (AMD), the risk of teratoma formation resulting from residual undifferentiated hPSCs remains a serious and critical hurdle for broader clinical implementation. To mitigate the tumorigenic risk of hPSC-based cell therapy, a variety of approaches have been examined to ablate the undifferentiated hPSCs based on the unique molecular properties of hPSCs. In the present review, we offer a brief overview of recent attempts at selective elimination of undifferentiated hPSCs to decrease the risk of teratoma formation in hPSC-based cell therapy.
Collapse
Affiliation(s)
- Ho-Chang Jeong
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Seung-Ju Cho
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea
| | - Mi-Ok Lee
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon,, 305-806, Republic of Korea
| | - Hyuk-Jin Cha
- Dept. of Life Sciences, College of Natural Sciences, Sogang University, #1 Sinsu-dong, Mapo-gu, Seoul,, 121-742, Republic of Korea.
| |
Collapse
|
35
|
Sim MY, Huynh H, Go ML, Yuen JSP. Action of YM155 on clear cell renal cell carcinoma does not depend on survivin expression levels. PLoS One 2017; 12:e0178168. [PMID: 28582447 PMCID: PMC5459331 DOI: 10.1371/journal.pone.0178168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The dioxonapthoimidazolium YM155 is a survivin suppressant which has been investigated as an anticancer agent in clinical trials. Here, we investigated its growth inhibitory properties on a panel of immortalized and patient derived renal cell carcinoma (RCC) cell lines which were either deficient in the tumour suppressor von Hippel-Lindau (VHL) protein or possessed a functional copy. Neither the VHL status nor the survivin expression levels of these cell lines influenced their susceptibility to growth inhibition by YM155. Of the various RCC lines, the papillary subtype was more resistant to YM155, suggesting that the therapeutic efficacy of YM155 may be restricted to clear cell subtypes. YM155 was equally potent in cells (RCC786.0) in which survivin expression had been stably silenced or overexpressed, implicating a limited reliance on survivin in the mode of action of YM155. A follow-up in-vitro high throughput RNA microarray identified possible targets of YM155 apart from survivin. Selected genes (ID1, FOXO1, CYLD) that were differentially expressed in YM155-sensitive RCC cells and relevant to RCC pathology were validated with real-time PCR and western immunoblotting analyses. Thus, there is corroboratory evidence that the growth inhibitory activity of YM155 in RCC cell lines is not exclusively mediated by its suppression of survivin. In view of the growing importance of combination therapy in oncology, we showed that a combination of YM155 and sorafenib at ½ x IC50 concentrations was synergistic on RCC786.0 cells. However, when tested intraperitoneally on a murine xenograft model derived from a nephrectomised patient with clear cell RCC, a combination of suboptimal doses of both drugs failed to arrest tumour progression. The absence of synergy in vivo highlighted the need to further optimize the dosing schedules of YM155 and sorafenib, as well as their routes of administration. It also implied that the expression of other oncogenic proteins which YM155 may target is either low or absent in this clear cell RCC.
Collapse
Affiliation(s)
- Mei Yi Sim
- Department of Urology, Singapore General Hospital, Republic of Singapore
- * E-mail:
| | - Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Republic of Singapore
| | - Mei Lin Go
- Department of Pharmacy, National University of Singapore, Republic of Singapore
| | | |
Collapse
|
36
|
Avram S, Coricovac DE, Pavel IZ, Pinzaru I, Ghiulai R, Baderca F, Soica C, Muntean D, Branisteanu DE, Spandidos DA, Tsatsakis AM, Dehelean CA. Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice. Oncol Rep 2017; 38:89-99. [PMID: 28535001 PMCID: PMC5492638 DOI: 10.3892/or.2017.5658] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma is a metastatic disease characterized by high resistance to treatment, the incidence of which has alarmingly increased worldwide over the past years. A thorough characterization of tumor onset, progression and metastasis is compulsory to overcome the gaps existent in melanoma biology. The present study suggests a well-established protocol and a detailed histological description of human melanoma models in ovo and in vivo obtained by the inoculation of A375 cells to chick embryo chorioallantoic membrane (CAM) and Balb/c nude mice. The inoculation of A375 cells on CAM led to the formation of compact primary and secondary tumors on day 4 post-inoculation, with mean surface area values of 2.2±0.4 mm2 and 1.5±0.3 mm2, respectively. Moreover, the vessels around the tumors presented a spike wheel pattern, indicating a strong angiogenic reaction. All the injected mice, apart from one, developed solid polypoid primary tumors with lobulated surfaces and intense vascularization, and achromic epithelioid malignant melanocytes with vesiculous nuclei and necrosis area were detected. Metastasis was histologically confirmed in only 30% of the mice with the tumor xenografts. These data indicate that the standardization protocols proposed are complex and reproducible, and can be further employed for the therapeutic surveillance of antiangiogenic and anticancer agents.
Collapse
Affiliation(s)
- Stefana Avram
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Dorina-Elena Coricovac
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Flavia Baderca
- Department of Microscopic Morphology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| | - Danina Muntean
- Department of Pathophysiology, Faculty of Medicine, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 300041, Romania
| | - Daciana E Branisteanu
- Department of Dermatology and Venereology, 'Grigore T. Popa' University of Medicine and Pharmacy Iasi, Iasi 7000115, Romania
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71003, Greece
| | - Aristides M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Cristina Adriana Dehelean
- Department of Toxicology, Faculty of Pharmacy, 'Victor Babeș' University of Medicine and Pharmacy Timisoara, Timisoara 30004, Romania
| |
Collapse
|
37
|
He D, He X, Yang X, Li HW. A smart ZnO@polydopamine-nucleic acid nanosystem for ultrasensitive live cell mRNA imaging by the target-triggered intracellular self-assembly of active DNAzyme nanostructures. Chem Sci 2017; 8:2832-2840. [PMID: 28553521 PMCID: PMC5427684 DOI: 10.1039/c6sc04633a] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Efficient strategies for the ultrasensitive imaging of gene expression in living cells are essential in chemistry and cell biology. Here, we report a novel and efficient enzyme-free dual signal amplification strategy for live cell mRNA imaging by using a smart nucleic acid hairpin-based nanosystem. This nanosystem consists of a ZnO nanoparticle core, an interlayer of polydopamine and an outer layer of four hairpin DNA (hpDNA) probes. Such a core-shell nanosystem facilitates the cellular uptake of molecular hairpin payloads, protects them from nuclease digestion, and delivers them into the cytoplasm by the acid-triggered dissolution of the ZnO core. In the presence of target mRNA, the released hpDNA probes self-assemble via HCR into wire-shaped active DNAzymes that catalyze the generation of a fluorescence signal. The target-initiated HCR events and DNAzyme cascades offer efficient dual amplification and enable the ultrasensitive detection of mRNA with a femtomolar detection limit. Live cell assays show an intense fluorescence response from a tumor-related biomarker survivin mRNA only in tumor cells untreated with a survivin expression repressor YM155, but not in normal cells. The developed nanosystem provides a potential platform for the amplified imaging of low-abundance disease-related biomarkers in live cells.
Collapse
Affiliation(s)
- Dinggeng He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Xing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Xue Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics , College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
| | - Hung-Wing Li
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| |
Collapse
|
38
|
Cheng XJ, Lin JC, Ding YF, Zhu L, Ye J, Tu SP. Survivin inhibitor YM155 suppresses gastric cancer xenograft growth in mice without affecting normal tissues. Oncotarget 2016; 7:7096-109. [PMID: 26771139 PMCID: PMC4872771 DOI: 10.18632/oncotarget.6898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/31/2015] [Indexed: 01/06/2023] Open
Abstract
Survivin overexpression is associated with poor prognosis of human gastric cancer, and is a target for gastric cancer therapy. YM155 is originally identified as a specific inhibitor of survivin. In this study, we investigated the antitumor effect of YM155 on human gastric cancer. Our results showed that YM155 treatment significantly inhibited cell proliferation, reduced colony formation and induced apoptosis of gastric cancer cells in a dose-dependent manner. Accordingly, YM155 treatment significantly decreased survivin expression without affecting XIAP expression and increased the cleavage of apoptosis-associated proteins caspase 3, 7, 8, 9. YM155 significantly inhibited sphere formation of gastric cancer cells, suppressed expansion and growth of the formed spheres (cancer stem cell-like cells, CSCs) and downregulated the protein levels of β-catenin, c-Myc, Cyclin D1 and CD44 in gastric cancer cells. YM155 infusion at 5 mg/kg/day for 7 days markedly inhibited growth of gastric cancer xenograft in a nude mouse model. Immunohistochemistry staining and Western Blot showed that YM155 treatment inhibited expression of survivin and CD44, induced apoptosis and reduced CD44+ CSCs in xenograft tumor tissues in vivo. No obvious pathological changes were observed in organs (e.g. heart, liver, lung and kidney) in YM155-treated mice. Our results demonstrated that YM155 inhibits cell proliferation, induces cell apoptosis, reduces cancer stem cell expansion, and inhibits xenograft tumor growth in gastric cancer cells. Our results elucidate a new mechanism by which YM155 inhibits gastric cancer growth by inhibition of CSCs. YM155 may be a promising agent for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiao Jiao Cheng
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jia Cheng Lin
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Fei Ding
- Department of Gastroenterology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liming Zhu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Ye
- Pôle Sino-Français de Recherches en Sciences du Vivant et Génomique, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shui Ping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
39
|
Ong SM, Saeki K, Tanaka Y, Nishimura R, Nakagawa T. Effects of etoposide alone and in combination with piroxicam on canine osteosarcoma cell lines. Vet J 2016; 218:51-59. [PMID: 27938709 DOI: 10.1016/j.tvjl.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OSA) is the most common primary bone tumour in dogs. The poor survival rate in dogs with OSA highlights the need for new therapeutic approaches. This study evaluated the cytotoxic effects of etoposide, alone and in combination with piroxicam, on canine OSA cell cultures. Etoposide alone significantly suppressed cell growth and viability, whereas etoposide in combination with piroxicam exhibited concentration dependent cytotoxicity. The anti-proliferative effect was a result of inactivity of the Cdc2-cyclin B1 complex, which correlated with an increase in the G2/M fraction. This subsequently activated the apoptosis cascade, as indicated by elevated apoptosis levels and up-regulation of poly (ADP-ribose) polymerase proteolytic cleavage. Down-regulation of survivin expression induced by the combination treatment may have contributed to the enhanced cytotoxicity. The results of this study suggest that further investigation of etoposide and piroxicam as a therapeutic combination for canine OSA is warranted.
Collapse
Affiliation(s)
- S M Ong
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - K Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - R Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - T Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
40
|
Voges Y, Michaelis M, Rothweiler F, Schaller T, Schneider C, Politt K, Mernberger M, Nist A, Stiewe T, Wass MN, Rödel F, Cinatl J. Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance. Cell Death Dis 2016; 7:e2410. [PMID: 27735941 PMCID: PMC5133961 DOI: 10.1038/cddis.2016.257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022]
Abstract
Resistance formation after initial therapy response (acquired resistance) is common in high-risk neuroblastoma patients. YM155 is a drug candidate that was introduced as a survivin suppressant. This mechanism was later challenged, and DNA damage induction and Mcl-1 depletion were suggested instead. Here we investigated the efficacy and mechanism of action of YM155 in neuroblastoma cells with acquired drug resistance. The efficacy of YM155 was determined in neuroblastoma cell lines and their sublines with acquired resistance to clinically relevant drugs. Survivin levels, Mcl-1 levels, and DNA damage formation were determined in response to YM155. RNAi-mediated depletion of survivin, Mcl-1, and p53 was performed to investigate their roles during YM155 treatment. Clinical YM155 concentrations affected the viability of drug-resistant neuroblastoma cells through survivin depletion and p53 activation. MDM2 inhibitor-induced p53 activation further enhanced YM155 activity. Loss of p53 function generally affected anti-neuroblastoma approaches targeting survivin. Upregulation of ABCB1 (causes YM155 efflux) and downregulation of SLC35F2 (causes YM155 uptake) mediated YM155-specific resistance. YM155-adapted cells displayed increased ABCB1 levels, decreased SLC35F2 levels, and a p53 mutation. YM155-adapted neuroblastoma cells were also characterized by decreased sensitivity to RNAi-mediated survivin depletion, further confirming survivin as a critical YM155 target in neuroblastoma. In conclusion, YM155 targets survivin in neuroblastoma. Furthermore, survivin is a promising therapeutic target for p53 wild-type neuroblastomas after resistance acquisition (neuroblastomas are rarely p53-mutated), potentially in combination with p53 activators. In addition, we show that the adaptation of cancer cells to molecular-targeted anticancer drugs is an effective strategy to elucidate a drug's mechanism of action.
Collapse
Affiliation(s)
- Yvonne Voges
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, Frankfurt am Main 60596, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Florian Rothweiler
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, Frankfurt am Main 60596, Germany
| | - Torsten Schaller
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, Frankfurt am Main 60596, Germany
| | - Constanze Schneider
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, Frankfurt am Main 60596, Germany
| | - Katharina Politt
- Institute of Molecular Oncology, Philipps-University, Marburg 35037, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg 35037, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg 35037, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg 35037, Germany.,Genomics Core Facility, Philipps-University, Marburg 35037, Germany
| | - Mark N Wass
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Franz Rödel
- Klinik für Strahlentherapie und Onkologie, Klinikum der Goethe-Universität, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Jindrich Cinatl
- Institut für Medizinische Virologie, Klinikum der Goethe-Universität, Paul Ehrlich-Str. 40, Frankfurt am Main 60596, Germany
| |
Collapse
|
41
|
Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope 2016; 126:E387-E395. [PMID: 27576611 DOI: 10.1002/lary.26215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Evaluate if vascular normalization with an antiangiogenic monoclonal antibody improves detection of melanoma using fluorescently labeled antibody-based imaging. STUDY DESIGN Preclinical. METHODS Panitumumab and control IgG were covalently linked to a near-infrared fluorescent probe (IRDye800CW). Immunodeficient mice with ear xenografts of melanoma cell lines (A375 and SKMEL5) were systemically injected (200 μg, tail vein) with either IgG-IRDye800CW, panitumumab-IRDye800CW, or a combination (bevacizumab [5mg/kg], administered 72 hours prepanitumumab-IRDye800CW) (n = 5). Primary tumors were imaged with open-field (LUNA, Novadaq, Toronto, Ontario, Canada) and closed-field (Pearl, LI-COR Biosciences, Lincoln, NB) imaging devices. Postresection, the concentration of labeled antibody within the tumor (μg/g) was calculated using normalized standards. RESULTS The mean fluorescence within the melanoma tumors was greater for the combination group compared to panitumumab alone for both cell lines (P < 0.001). The tumor-to-background ratio (TBR) for the A375 tumors was greater for the combination (3.4-7.1) compared to the panitumumab alone (3.2-5.0) (P = 0.04). The TBR for SKMEL5 tumors was greater for the combination (2.4-6.0) compared to the panitumumab alone (2.2-3.9) (P = 0.02). Within A375 tumors, the concentration was lower for panitumumab (0.51 μg/g) compared to combination group (0.68 μg/g) (P = 0.036). Within SKMEL5 tumors, the concentration was lower for panitumumab (0.0.17 μg/g) compared to combination group (0.35 μg/g) (P = 0.048). Residual tumor (1.0-0.2 mg) could be differentiated from background in both panitumumab and combination groups. For both cell lines, panitumumab and combination groups had greater mean fluorescence of the tumor compared to control IgG. CONCLUSION The addition of antiangiogenic therapy improves uptake of fluorescently labeled monoclonal antibodies within melanoma tumors. Clinical translation could improve detection of melanoma intraoperatively, reducing positive margins and sparing normal tissue. LEVEL OF EVIDENCE NA Laryngoscope, 126:E387-E395, 2016.
Collapse
Affiliation(s)
- Larissa Sweeny
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Andrew Prince
- the University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, U.S.A
| | - Neel Patel
- the Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Lindsay S Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California, U.S.A
| | - Brian B Hughley
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Jason M Warram
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
42
|
Zhao N, Mao Y, Han G, Ju Q, Zhou L, Liu F, Xu Y, Zhao X. YM155, a survivin suppressant, triggers PARP-dependent cell death (parthanatos) and inhibits esophageal squamous-cell carcinoma xenografts in mice. Oncotarget 2016; 6:18445-59. [PMID: 26090615 PMCID: PMC4621902 DOI: 10.18632/oncotarget.4315] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/02/2015] [Indexed: 01/09/2023] Open
Abstract
Here we demonstrated that sepantronium bromide (YM155), a survivin suppressant, inhibited esophageal squamous-cell carcinoma (ESCC) growth in mice bearing human ESCC xenografts without affecting body weight. In cell culture, YM155 decreased survivin levels and caused PARP-1 activation, poly-ADP polymer formation, and AIF translocation from the cytosol to the nucleus. Genetic knockdown of PARP-1 or AIF abrogated YM155-induced parthanatos cell death. Furthermore, FOS, JUN and c-MYC gene transcription, which is stimulated by activated PARP-1, was increased following YM155 treatment. Our data demonstrate that YM155 did not trigger apoptosis, but induced parthanatos, a cell death dependent on PARP-1 hyper-activation, and support clinical development of YM155 in ESCC.
Collapse
Affiliation(s)
- Nan Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yousheng Mao
- Department of Thoracic Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaijing Han
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiang Ju
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yang Xu
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Véquaud E, Séveno C, Loussouarn D, Engelhart L, Campone M, Juin P, Barillé-Nion S. YM155 potently triggers cell death in breast cancer cells through an autophagy-NF-kB network. Oncotarget 2016; 6:13476-86. [PMID: 25974963 PMCID: PMC4537028 DOI: 10.18632/oncotarget.3638] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
Specific overexpression in cancer cells and evidence of oncogenic functions make Survivin an attractive target in cancer tharapy. The small molecule compound YM155 has been described as the first “Survivin suppressant” but molecular mechanisms involved in its biological activity and its clinical potential remain obscure. We herein show that YM155 exerts single agent toxicity on primary breast cancer cells grown in an ex vivo assay preserving tumor microenvironment. In vitro assays indicate that YM155 more efficiently triggers cell death in breast cancer cells (including these with stem-cell like properties) than in non tumorigenic mammary cells. YM155-induced cell death is critically dependent on autophagy and NF-kB but independent of p53 and it coïncides with DNA damage an a DNA damage response in p53-proficient cells. Our results point out a crosstalk between NF-KB and autophagy controlling YM155-induced death in breast cancer cells and argue for the potential use of YM155 as a genotoxic agent in breast cancer therapy.
Collapse
Affiliation(s)
- Eloïse Véquaud
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - Céline Séveno
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - Delphine Loussouarn
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Service d'Anatomie Pathologique, HGRL, CHU, Nantes University, Nantes, France
| | - Lucie Engelhart
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| | - Mario Campone
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de Nantes, Centre de lutte contre le Cancer René Gauducheau, Boulevard Jacques Monod, Nantes, France
| | - Philippe Juin
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France.,Institut de Cancérologie de Nantes, Centre de lutte contre le Cancer René Gauducheau, Boulevard Jacques Monod, Nantes, France
| | - Sophie Barillé-Nion
- CRCNA, UMR INSERM U892, CNRS 6299, Université de Nantes, Team 8 « Cell Survival and Tumor Escape in Breast Cancers », Institut de Recherche en Santé de l'Université de Nantes, Nantes, France
| |
Collapse
|
44
|
Ferrario A, Luna M, Rucker N, Wong S, Lederman A, Kim J, Gomer C. Targeting Survivin Enhances Chemosensitivity in Retinoblastoma Cells and Orthotopic Tumors. PLoS One 2016; 11:e0153011. [PMID: 27050416 PMCID: PMC4822873 DOI: 10.1371/journal.pone.0153011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
Treatments for retinoblastoma (Rb) vary depending on the size and location of the intraocular lesions and include chemotherapy and radiation therapy. We examined whether agents used to treat Rb induce a pro-survival phenotype associated with increased expression of survivin, a member of the inhibitor of apoptosis family of proteins. We document that exposure to carboplatin, topotecan or radiation resulted in elevated expression of survivin in two human Rb cell lines but not in normal retinal pigmented epithelial (RPE) cells. Cellular levels of survivin were attenuated in Rb cells exposed to an imidazolium-based survivin suppressant, Sepantronium bromide (YM155). Protein expression patterns of survivin in RPE cells were not altered following treatment protocols involving exposure to YM155. Including YM155 with chemotherapy or radiation increased levels of apoptosis in Rb cells but not in RPE cells. Intraocular luciferase expressing Rb tumors were generated from the Rb cell lines and used to evaluate the effects of carboplatin and YM155 on in-vivo survivin expression and tumor growth. Carboplatin induced expression of survivin while carboplatin combined with YM155 reduced survivin expression in tumor bearing eyes. The combination protocol was also most effective in reducing the rate of tumor regrowth. These results indicate that targeted inhibition of the anti-apoptotic protein survivin provides a therapeutic advantage for Rb cells and tumors treated with chemotherapy.
Collapse
Affiliation(s)
- Angela Ferrario
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America
| | - Marian Luna
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America
| | - Natalie Rucker
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America
| | - Sam Wong
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America
| | - Ariel Lederman
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America
| | - Jonathan Kim
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America.,Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California, 90027, United States of America
| | - Charles Gomer
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, 90027, United States of America.,Departments of Pediatrics and Radiation Oncology, Keck School of Medicine, University of Southern California, Los Angeles, California, 90027, United States of America
| |
Collapse
|
45
|
Jenkins R, Bandera YP, Daniele MA, Ledford LL, Tietje A, Kelso AA, Sehorn MG, Wei Y, Chakrabarti M, Ray SK, Foulger SH. Sequestering survivin to functionalized nanoparticles: a strategy to enhance apoptosis in cancer cells. Biomater Sci 2016; 4:614-26. [PMID: 26845086 PMCID: PMC4803599 DOI: 10.1039/c5bm00580a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Survivin belongs to the family of inhibitor of apoptosis proteins (IAP) and is present in most cancers while being below detection limits in most terminally differentiated adult tissues, making it an attractive protein to target for diagnostic and, potentially, therapeutic roles. Sub-100 nm poly(propargyl acrylate) (PA) particles were surface modified through the copper-catalyzed azide/alkyne cycloaddition of an azide-terminated survivin ligand derivative (azTM) originally proposed by Abbott Laboratories and speculated to bind directly to survivin (protein) at its dimer interface. Using affinity pull-down studies, it was determined that the PA/azTM nanoparticles selectively bind survivin and the particles can enhance apoptotic cell death in glioblastoma cell lines and other survivin over-expressing cell lines such as A549 and MCF7 relative to cells incubated with the original Abbott-derived small molecule inhibitor.
Collapse
Affiliation(s)
- Ragini Jenkins
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science & Engineering, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS. Disruption of protein–protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target – survivin. RSC Adv 2016. [DOI: 10.1039/c5ra22927h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hot spot detection at the protein–protein interaction interface using computational tools helped to identify indinavir as survivin inhibitor.
Collapse
Affiliation(s)
- Sailu Sarvagalla
- Centre for Bioinformatics
- School of Life Sciences
- Pondicherry University
- Puducherry 605014
- India
| | - Chun Hei Antonio Cheung
- Department of Pharmacology
- College of Medicine
- National Cheng Kung University
- Tainan
- Republic of China
| | - Ju-Ya Tsai
- Department of Pharmacology
- College of Medicine
- National Cheng Kung University
- Tainan
- Republic of China
| | - Hsing Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research
- National Health Research Institutes
- Miaoli County 350
- Republic of China
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics
- School of Life Sciences
- Pondicherry University
- Puducherry 605014
- India
| |
Collapse
|
47
|
Influence of a survivin suppressor YM155 on the chemoresistance of canine histiocytic sarcoma cells. Vet J 2015; 205:375-80. [PMID: 26048444 DOI: 10.1016/j.tvjl.2015.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 02/05/2023]
Abstract
Histiocytic sarcoma (HS) in dogs exhibits aggressive biological behaviors and currently few effective treatments are available. Survivin could serve as a potential therapeutic target in several cancers. Sepantronium bromide (YM155) is a potential novel survivin-targeting agent and in this study the influence of survivin expression on clinical outcomes and the effects of YM155 on biological activities in HS cells were investigated. Specimens of HS dogs (n = 30) and four canine HS cell lines were used. The correlation between survivin expression and clinical outcome in the HS dogs was retrospectively assessed using quantitative PCR. Following YM155 treatment of cell lines, apoptosis, cell viability, and drug transporter activities were evaluated using annexin V staining, methylthiazole tetrazolium assays, and Hoechst-33342 staining, respectively. Elevated survivin expression in the HS dogs corresponded with reduced disease-free intervals and survival time, and increased chemoresistance, which led to poor clinical outcomes. Furthermore, YM155 treatment suppressed cell-growth and resistance to lomustine in HS cells by inhibiting the activity of ATP-binding cassette transporters. The evidence presented here supports favorable preclinical evaluation and indicates that survivin-targeted therapies might be effective against HS dogs.
Collapse
|
48
|
Absorption improvement of sepantronium bromide (YM155) by aminoalkyl methacrylate copolymers in in situ intestinal tracts of mice. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma. Cell Death Dis 2015; 6:e1771. [PMID: 26018732 PMCID: PMC4669714 DOI: 10.1038/cddis.2015.139] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 02/06/2023]
Abstract
Survivin is ubiquitously expressed in patients with head neck squamous cell carcinoma (HNSCC) and is associated with poor survival and chemotherapy resistance. Sepantronium bromide (YM155) is a selective survivin suppressant that exhibits potent antitumor activities by inducing apoptosis and autophagy in various types of cancer. However, the curative effects and underlying mechanisms of YM155 in HNSCC remain unclear. This study showed that survivin overexpression positively correlated with p-S6, p-Rb and LAMP2 but negatively correlated with the autophagic marker LC3 in human HNSCC tissues. In vitro studies revealed that YM155 triggered apoptosis of HNSCC cells in mitochondria and death receptor-dependent manner. The treatment also significantly enhanced autophagy by upregulating Beclin1, which led to cell death. YM155 not only downregulated the expression of survivin but also remarkably suppressed the activation of the mTOR signaling pathway in vitro and in vivo. YM155 displayed potent antitumor activities in both CAL27 xenograft and transgenic HNSCC mice models by delaying tumor onset and suppressing tumor growth. Furthermore, YM155 combined with docetaxel promoted tumor regression better than either treatment alone without causing considerable body weight loss in the HNSCC xenograft models. Overall, targeting survivin by YM155 can benefit HNSCC therapy by increasing apoptotic and autophagic cell death, and suppressing prosurvival pathways.
Collapse
|
50
|
Wu Z, Liu GQ, Yang XL, Jiang JH. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 2015; 137:6829-36. [PMID: 25969953 DOI: 10.1021/jacs.5b01778] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Efficient approaches for intracellular delivery of nucleic acid reagents to achieve sensitive detection and regulation of gene and protein expressions are essential for chemistry and biology. We develop a novel electrostatic DNA nanoassembly that, for the first time, realizes hybridization chain reaction (HCR), a target-initiated alternating hybridization reaction between two hairpin probes, for signal amplification in living cells. The DNA nanoassembly has a designed structure with a core gold nanoparticle, a cationic peptide interlayer, and an electrostatically assembled outer layer of fluorophore-labeled hairpin DNA probes. It is shown to have high efficiency for cellular delivery of DNA probes via a unique endocytosis-independent mechanism that confers a significant advantage of overcoming endosomal entrapment. Moreover, electrostatic assembly of DNA probes enables target-initialized release of the probes from the nanoassembly via HCR. This intracellular HCR offers efficient signal amplification and enables ultrasensitive fluorescence activation imaging of mRNA expression with a picomolar detection limit. The results imply that the developed nanoassembly may provide an invaluable platform in low-abundance biomarker discovery and regulation for cell biology and theranostics.
Collapse
Affiliation(s)
- Zhan Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gao-Qin Liu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Li Yang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|