1
|
Li H, Cheng Z, Jiang B, Shao X, Xu M. Prognosis value and positive association of Rab1A/IL4Rα aberrant expression in gastric cancer. Sci Rep 2023; 13:6964. [PMID: 37117331 PMCID: PMC10147632 DOI: 10.1038/s41598-023-33955-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
Gastric cancer (GC) is the most common gastrointestinal cancer and the leading cause of worldwide cancer-associated mortality. Several GC patients are diagnosed at the advanced stage with an unsatisfactory 5-year survival rate. Rab1A was significantly associated with IL4Rα expression in non-small cell lung cancer. However, their potential correlation in expression and prognosis remains largely unknown in GC. In this study, Rab1A/IL-4Rα was significantly increased in GC than in para-cancerous tissues, and Rab1A/IL-4Rα overexpression caused poor prognosis among GC patients. Rab1A expression was significantly correlated with IL-4Rα expression in GC tissues, as determined by IHC analysis. In addition, the mRNA expression of Rab1A was closely linked with the IL-4Rα mRNA expression in GC tissue expressed by qPCR. Furthermore, the Kaplan-Meier analysis demonstrated that the group with negative Rab1A and IL-4Rα expression had longer 5-year survival rates than the other group. Besides, the group with positive Rab1A and IL-4Rα expression had a worse prognosis than the other group. Finally, nomograms revealed the overall 3 and 5-year survival determined crucial roles of Rab1A/IL-4Rα expression in predicting the prognosis of GC patients. Therefore, Rab1A/IL-4Rα is vital in GC, providing a novel perspective on targeted GC therapy.
Collapse
Affiliation(s)
- Haoran Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Bin Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, China
| | - Xinyu Shao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, No. 242 Guangji Road, Suzhou, 215006, Jiangsu, China.
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 2 Zheshan West Road, Jinghu District, Wuhu, 241000, Anhui, China.
| |
Collapse
|
2
|
An In Vitro Comparison of Costimulatory Domains in Chimeric Antigen Receptor T Cell for Breast Cancer Treatment. J Immunol Res 2022; 2022:2449373. [DOI: 10.1155/2022/2449373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Adoptive cellular therapy with chimeric antigen receptor (CAR) T cells has emerged as a potential novel treatment for various cancers. In this study, we have generated CAR T cells targeting mucin-1 (MUC1), which is an aberrantly glycosylated antigen overexpressed on breast cancer cells. Two different signaling domains, including CD28 and 41BB, were incorporated and directly compared the superiority of different costimulatory signals. Two different CAR MUC1 constructs were transduced into primary T cells and evaluated their characteristics and antitumor activities against MUC1+ cancer cells. CAR MUC1 T cells showed high transduction efficiency and antigen specificity toward MUC1+ cancer cell lines and primary breast cancer cells. When coculturing with target cells, the transduced cells exhibited potent antitumor activity in vitro and secrete proinflammatory cytokines. Upon antigen stimulation, incorporation of the 41BB signaling domain was able to improve T cell proliferation and reduce surface PD1 expression and the upregulation of suppressive cytokines, when compared with CAR MUC1 containing the CD28 domain. Our findings show that CAR T cell targeting MUC1 can be effective against MUC1+ breast cancer cell and support the further development of CAR MUC1 T cells containing 41BB signaling in preclinical and clinical studies of breast cancer treatment.
Collapse
|
3
|
IL4Rα and IL13Rα1 Are Involved in the Development of Human Gallbladder Cancer. J Pers Med 2022; 12:jpm12020249. [PMID: 35207737 PMCID: PMC8875933 DOI: 10.3390/jpm12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gallbladder cancer is commonly associated with inflammation, which indicates that inflammation-related cytokines and cytokine receptors are related to the progression of gallbladder cancers. Interleukin 4 (IL4) is a well-known cytokine that promotes the differentiation of naive helper T cells (Th0) to T helper type 2 cells (Th2). IL13 is a cytokine that is secreted by Th2 cells. IL4 and IL13 are closely related in immune responses. However, the role of IL4Rα and IL13Rα1 signaling pathway has not been fully understood in the development of gallbladder cancer. Methods: In human gallbladder carcinomas, the expression of IL4Rα and IL13Rα1 were evaluated with immunohistochemical staining in tissue microarray tissue sections. After knockdown of IL4Rα or IL13Rα1, cell assays to measure the proliferation and apoptosis and Western blotting analysis were conducted in SNU308 human gallbladder cancer cells. Since Janus kinases2 (JAK2) was considered as one of the down-stream kinases under IL4Rα and IL13Rα1 complex, the same kinds of experiments were performed in SNU308 cells treated with AZD1480, Janus-associated kinases2 (JAK2) inhibitor, to demonstrate the cytotoxic effect of AZD1480 in SNU308 cells. Results: Immunohistochemical expression of IL4Rα was significantly associated with the expression of IL13Rα1 in human carcinoma tissue. In univariate analysis, nuclear expression of IL4Rα, cytoplasmic expression of IL4Rα, nuclear expression of IL13Rα1, and cytoplasmic expression of IL13Rα1 were significantly associated with shorter overall survival and shorter relapse-free survival. Multivariate analysis revealed nuclear expression of IL4Rα as an independent poor prognostic indicator of overall survival and relapse-free survival. Then, we found that knockdown of IL4Rα or IL13Rα1 decreased viability and induced apoptosis in SNU308 cells via activation of FOXO3 and similarly, AZD1480 decreased viability and induced apoptosis in SNU308 cells with dose dependent manner. Conclusions: Taken together, our results suggest that IL4Rα and IL13Rα1 might be involved in the development of human gallbladder cancer cells and IL4Rα and IL13Rα1 complex/JAK2 signaling pathway could be efficient therapeutic targets for gallbladder cancer treatment.
Collapse
|
4
|
Marazioti A, Krontira AC, Behrend SJ, Giotopoulou GA, Ntaliarda G, Blanquart C, Bayram H, Iliopoulou M, Vreka M, Trassl L, Pepe MAA, Hackl CM, Klotz LV, Weiss SAI, Koch I, Lindner M, Hatz RA, Behr J, Wagner DE, Papadaki H, Antimisiaris SG, Jean D, Deshayes S, Grégoire M, Kayalar Ö, Mortazavi D, Dilege Ş, Tanju S, Erus S, Yavuz Ö, Bulutay P, Fırat P, Psallidas I, Spella M, Giopanou I, Lilis I, Lamort A, Stathopoulos GT. KRAS signaling in malignant pleural mesothelioma. EMBO Mol Med 2022; 14:e13631. [PMID: 34898002 PMCID: PMC8819314 DOI: 10.15252/emmm.202013631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) arises from mesothelial cells lining the pleural cavity of asbestos-exposed individuals and rapidly leads to death. MPM harbors loss-of-function mutations in BAP1, NF2, CDKN2A, and TP53, but isolated deletion of these genes alone in mice does not cause MPM and mouse models of the disease are sparse. Here, we show that a proportion of human MPM harbor point mutations, copy number alterations, and overexpression of KRAS with or without TP53 changes. These are likely pathogenic, since ectopic expression of mutant KRASG12D in the pleural mesothelium of conditional mice causes epithelioid MPM and cooperates with TP53 deletion to drive a more aggressive disease form with biphasic features and pleural effusions. Murine MPM cell lines derived from these tumors carry the initiating KRASG12D lesions, secondary Bap1 alterations, and human MPM-like gene expression profiles. Moreover, they are transplantable and actionable by KRAS inhibition. Our results indicate that KRAS alterations alone or in accomplice with TP53 alterations likely play an important and underestimated role in a proportion of patients with MPM, which warrants further exploration.
Collapse
|
5
|
Li CM, Chen Z. Autoimmunity as an Etiological Factor of Cancer: The Transformative Potential of Chronic Type 2 Inflammation. Front Cell Dev Biol 2021; 9:664305. [PMID: 34235145 PMCID: PMC8255631 DOI: 10.3389/fcell.2021.664305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Chris M Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Napoli F, Listì A, Zambelli V, Witel G, Bironzo P, Papotti M, Volante M, Scagliotti G, Righi L. Pathological Characterization of Tumor Immune Microenvironment (TIME) in Malignant Pleural Mesothelioma. Cancers (Basel) 2021; 13:2564. [PMID: 34073720 PMCID: PMC8197227 DOI: 10.3390/cancers13112564] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and highly aggressive disease that arises from pleural mesothelial cells, characterized by a median survival of approximately 13-15 months after diagnosis. The primary cause of this disease is asbestos exposure and the main issues associated with it are late diagnosis and lack of effective therapies. Asbestos-induced cellular damage is associated with the generation of an inflammatory microenvironment that influences and supports tumor growth, possibly in association with patients' genetic predisposition and tumor genomic profile. The chronic inflammatory response to asbestos fibers leads to a unique tumor immune microenvironment (TIME) composed of a heterogeneous mixture of stromal, endothelial, and immune cells, and relative composition and interaction among them is suggested to bear prognostic and therapeutic implications. TIME in MPM is known to be constituted by immunosuppressive cells, such as type 2 tumor-associated macrophages and T regulatory lymphocytes, plus the expression of several immunosuppressive factors, such as tumor-associated PD-L1. Several studies in recent years have contributed to achieve a greater understanding of the pathogenetic mechanisms in tumor development and pathobiology of TIME, that opens the way to new therapeutic strategies. The study of TIME is fundamental in identifying appropriate prognostic and predictive tissue biomarkers. In the present review, we summarize the current knowledge about the pathological characterization of TIME in MPM.
Collapse
Affiliation(s)
- Francesca Napoli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Angela Listì
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Vanessa Zambelli
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Gianluca Witel
- Department of Medical Sciences, University of Turin, City of Health and Science, 10126 Torino, Italy;
| | - Paolo Bironzo
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Mauro Papotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Pathology Unit, City of Health and Science, 10126 Torino, Italy
| | - Marco Volante
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
- Thoracic Oncology Unit, San Luigi Hospital, 10043 Orbassano, Italy;
| | - Luisella Righi
- Department of Oncology, University of Turin, 10043 Orbassano, Italy; (F.N.); (V.Z.); (P.B.); (M.P.); (M.V.); (G.S.)
| |
Collapse
|
7
|
Mizutani N, Abe M, Kajino K, Matsuoka S. A New CD10 Antibody Inhibits the Growth of Malignant Mesothelioma. Monoclon Antib Immunodiagn Immunother 2021; 40:21-27. [PMID: 33625287 PMCID: PMC7910416 DOI: 10.1089/mab.2020.0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Malignant mesotheliomas (MMs) are aggressive therapy-resistant tumors that generally have a poor prognosis. We previously reported the establishment of four new monoclonal antibodies (mAbs) for the diagnosis and treatment of MM. In this report, we characterized one of these antibodies, JMAM-1. The molecules whose antibodies were calibrated were picked up, transfected assuming CD10, and elucidated by fluorescence activated cell sorter. Survival experiments were performed using tumor-bearing mice model. JMAM-1 mAb was found to bind with CD10 antigen. The Kaplan–Meier survival curve showed a small but prolonged survival effect. JMAM-1 mAb-treated MSTO-211H cells showed increased cell cycle arrest involved by cyclin-dependent-kinase. JMAM-1 antibody has cytostatic effect and may be a candidate for the treatment of MM. Among mesothelioma, CD10-positive cases have been reported to have a poorer prognosis than negative cases, which can be used as a tool for diagnosis.
Collapse
Affiliation(s)
- Natsuko Mizutani
- Department of Medical Technology, Faculty Health Sciences, Kyorin University, Tokyo, Japan.,Department of Immunological Diagnosis, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masaaki Abe
- Department of Pathology, Oncology and School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazunori Kajino
- Department of Pathology, Oncology and School of Medicine, Juntendo University, Tokyo, Japan.,Department of Human Pathology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Shuji Matsuoka
- Department of Immunological Diagnosis, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Pathology, Oncology and School of Medicine, Juntendo University, Tokyo, Japan.,Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| |
Collapse
|
8
|
Kim KM, Hussein UK, Park SH, Moon YJ, Zhang Z, Ahmed AG, Ahn AR, Park HS, Kim JR, Jang KY. Expression of IL4Rα and IL13Rα1 are associated with poor prognosis of soft-tissue sarcoma of the extremities, superficial trunk, and retroperitoneum. Diagn Pathol 2021; 16:2. [PMID: 33419470 PMCID: PMC7796579 DOI: 10.1186/s13000-020-01066-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background IL4Rα and IL13Rα1 are constituents of the type II IL4 receptor. Recently, IL4Rα and IL13Rα1 were reported to have roles in cancer progression and suggested as potential prognostic markers. However, studies on IL4Rα and IL13Rα1 in soft-tissue sarcomas have been limited. Methods This study investigated the immunohistochemical expression of IL4Rα and IL13Rα1 in 89 soft-tissue sarcomas of the extremities, superficial trunk, and retroperitoneum. Immunohistochemical staining for IL4Rα and IL13Rα1 were scored according to a combination of staining intensity and staining area in tissue microarray samples. Positivity for the immunohistochemical expression of IL4Rα and IL13Rα1 were determined using receiver operating curve analysis. Statistical analysis was performed using regression analysis and a chi-square test. Results In human soft-tissue sarcomas, immunohistochemical expression of IL4Rα was significantly associated with IL13Rα1 expression. Nuclear and cytoplasmic expression of IL4Rα and IL13Rα1 were significantly associated with shorter survival of soft-tissue sarcoma patients in univariate analysis. Multivariate analysis indicated that nuclear expression of IL4Rα and IL13Rα1 were independent indicators of shorter overall survival (IL4Rα; p = 0.002, IL13Rα1; p = 0.016) and relapse-free survival (IL4Rα; p = 0.022, IL13Rα1; p < 0.001) of soft-tissue sarcoma patients. Moreover, the co-expression pattern of nuclear IL4Rα and IL13Rα1 was an independent indicator of shorter survival of soft-tissue sarcoma patients (overall survival; overall p < 0.001, relapse-free survival; overall p < 0.001). Conclusions This study suggests IL4Rα and IL13Rα1 are associated with the progression of soft-tissue sarcoma, and the expression of IL4Rα and IL13Rα1 might be novel prognostic indicators of soft-tissue sarcoma patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Young Jae Moon
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea. .,Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
9
|
Park EJ, Jung HJ, Choi HJ, Jang HJ, Park HJ, Nejsum LN, Kwon TH. Exosomes co-expressing AQP5-targeting miRNAs and IL-4 receptor-binding peptide inhibit the migration of human breast cancer cells. FASEB J 2020; 34:3379-3398. [PMID: 31922312 DOI: 10.1096/fj.201902434r] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022]
Abstract
Aquaporin-5 (AQP5) plays a role in breast cancer cell migration. This study aimed to identify AQP5-targeting miRNAs and examine their effects on breast cancer cell migration through exosome-mediated delivery. Bioinformatic analyses identified miR-1226-3p, miR-19a-3p, and miR-19b-3p as putative regulators of AQP5 mRNA. Immunoblotting revealed a decrease of AQP5 protein abundance when each of these miRNAs was transfected into human breast cancer MDA-MB-231 cells. Quantitative real-time PCR demonstrated the reduction of AQP5 mRNA expression by the transfection of miR-1226-3p and a luciferase reporter assay revealed the reduction of AQP5 translation after the transfection of miR-19b-3p in MDA-MB-231 cells. Consistently, the transfection of each miRNA impeded cell migration. Pathway enrichment analyses showed that these three miRNAs regulate target genes, which were predominantly enriched in the gap junction pathway. For the efficient delivery of AQP5-targeting miRNAs to breast cancer cells, exosomes expressing both miRNAs and a peptide targeting interleukin-4 receptor, which is highly expressed in breast cancer cells, were bioengineered and their inhibitory effects on AQP5 protein expression and cell migration were demonstrated in MDA-MB-231 cells. Taken together, AQP5-regulating miRNAs are identified, which could be exploited for the inhibition of breast cancer cell migration via the exosome-mediated delivery.
Collapse
Affiliation(s)
- Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
10
|
Mutti L, Peikert T, Robinson BWS, Scherpereel A, Tsao AS, de Perrot M, Woodard GA, Jablons DM, Wiens J, Hirsch FR, Yang H, Carbone M, Thomas A, Hassan R. Scientific Advances and New Frontiers in Mesothelioma Therapeutics. J Thorac Oncol 2019; 13:1269-1283. [PMID: 29966799 DOI: 10.1016/j.jtho.2018.06.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/07/2018] [Accepted: 06/17/2018] [Indexed: 12/20/2022]
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer that arises from the mesothelial surface of the pleural and peritoneal cavities, the pericardium, and rarely, the tunica vaginalis. The incidence of MPM is expected to increase worldwide in the next two decades. However, even with the use of multimodality treatment, MPM remains challenging to treat, with a 5-year survival rate of less than 5%. The International Association for the Study of Lung Cancer has gathered experts in different areas of mesothelioma research and management to summarize the most significant scientific advances and new frontiers related to mesothelioma therapeutics.
Collapse
Affiliation(s)
- Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, Cockcroft Building, University of Salford, Salford, United Kingdom
| | - Tobias Peikert
- Department of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Arnaud Scherpereel
- Pulmonary and Thoracic Oncology, CHU de Lille, Univ Lille, Lille, France; French National Network of Clinical Expert Centres for Malignant Pleural Mesothelioma Management
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Marc de Perrot
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Gavitt A Woodard
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - David M Jablons
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Jacinta Wiens
- International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Fred R Hirsch
- International Association for the Study of Lung Cancer, Aurora, Colorado; Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Anish Thomas
- Development Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Raffit Hassan
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
11
|
Abstract
Pancreatic cancer is a devastating disease with poor prognosis in the modern era. Inflammatory processes have emerged as key mediators of pancreatic cancer development and progression. Recently, studies have been carried out to investigate the underlying mechanisms that contribute to tumorigenesis induced by inflammation. In this review, the role of inflammation in the initiation and progression of pancreatic cancer is discussed.
Collapse
Affiliation(s)
- Kamleshsingh Shadhu
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
- School of International Education of Nanjing Medical University, Nanjing, P.R. China
| | - Chunhua Xi
- Pancreas Center of The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
- Pancreas Institute of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
12
|
Ye L, Ma S, Robinson BW, Creaney J. Immunotherapy strategies for mesothelioma - the role of tumor specific neoantigens in a new era of precision medicine. Expert Rev Respir Med 2018; 13:181-192. [PMID: 30596292 DOI: 10.1080/17476348.2019.1563488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Immunotherapy has long been considered a potential therapy for malignant mesothelioma and is currently being pursued as such. Some of the early phase clinical trials involving immunomodulators have demonstrated encouraging results and numerous clinical trials are underway to further investigate this treatment approach in various treatment settings and larger patient cohorts. Areas covered: This review summarizes the current and emerging clinical evidence for checkpoint blockade and other immunotherapeutic strategies in mesothelioma. The mesothelioma tumor immune microenvironment and mutational landscape are also discussed, including their impact on treatment strategies. We also provide an evaluation of the current evidence for neoantigen targeted personalized immunotherapy. Expert opinion: Immune checkpoint inhibitors work by unleashing the host immune response against probable neoantigens. Despite impressive activity in a small subset of patients and the potential for prolonged responses, most patients experience treatment failure. Neoantigen vaccines provide a potential complementary therapeutic strategy by increasing the immunogenic antigen load, which can lead to an increased tumor specific immune response. Further research is needed explore this treatment option in mesothelioma and technological advances are required to translate this concept into clinical practice.
Collapse
Affiliation(s)
- Linda Ye
- a Department of Medical Oncology , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Shaokang Ma
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia
| | - Bruce W Robinson
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia
| | - Jenette Creaney
- b National Centre for Asbestos Related Disease , University of Western Australia , Nedlands , Australia.,c Department of Respiratory Medicine , Sir Charles Gairdner Hospital , Nedlands , Australia.,d Institute of Respiratory Health , University of Western Australia , Nedlands , Australia
| |
Collapse
|
13
|
Minnema-Luiting J, Vroman H, Aerts J, Cornelissen R. Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma. Int J Mol Sci 2018; 19:ijms19041041. [PMID: 29601534 PMCID: PMC5979422 DOI: 10.3390/ijms19041041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive cancer with limited therapy options and dismal prognosis. In recent years, the role of immune cells within the tumor microenvironment (TME) has become a major area of interest. In this review, we discuss the current knowledge of heterogeneity in immune cell content and checkpoint expression in MPM in relation to prognosis and prediction of treatment efficacy. Generally, immune-suppressive cells such as M2 macrophages, myeloid-derived suppressor cells and regulatory T cells are present within the TME, with extensive heterogeneity in cell numbers. Infiltration of effector cells such as cytotoxic T cells, natural killer cells and T helper cells is commonly found, also with substantial patient to patient heterogeneity. PD-L1 expression also varied greatly (16-65%). The infiltration of immune cells in tumor and associated stroma holds key prognostic and predictive implications. As such, there is a strong rationale for thoroughly mapping the TME to better target therapy in mesothelioma. Researchers should be aware of the extensive possibilities that exist for a tumor to evade the cytotoxic killing from the immune system. Therefore, no "one size fits all" treatment is likely to be found and focus should lie on the heterogeneity of the tumors and TME.
Collapse
Affiliation(s)
- Jorien Minnema-Luiting
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Heleen Vroman
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Joachim Aerts
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - Robin Cornelissen
- Erasmus MC Cancer Institute, Department of Pulmonary Medicine, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
14
|
|
15
|
High expression of IL-4R enhances proliferation and invasion of hepatocellular carcinoma cells. Int J Biol Markers 2017; 32:e384-e390. [PMID: 28665449 DOI: 10.5301/ijbm.5000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the expression and function of interleukin-4 receptor (IL-4R) in hepatocellular carcinoma (HCC). METHODS We collected 40 pairs of human HCC and adjacent normal tissue specimens and examined the expression levels of IL-4R. After IL-4R knockdown in HCC cell lines, cell proliferation and invasion ability were examined. Cell cycle and apoptosis were analyzed by flow cytometry. The activity of multiple signaling pathways was examined by Western blot. RESULTS IL-4R was overexpressed in HCC tumors compared with adjacent normal control tissues and was associated with tumor differentiation status. IL-4R knockdown resulted in enhanced apoptosis, impaired proliferation and reduced invasion of HCC cells. Furthermore, IL-4R knockdown abolished IL-4-induced activation of the Janus Kinase 1 (JAK1)/signal transducer and activator of transcription 6 (STAT6) and JUN N-terminal kinase (JNK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways. CONCLUSIONS IL-4R plays an important role in regulating HCC cell survival and metastasis, and regulates the activity of the JAK1/STAT6 and JNK/ERK1/2 signaling pathways. We therefore suggest that IL-4/IL-4R may be a new therapeutic target for HCC.
Collapse
|
16
|
Park MH, Kwon HJ, Kim JR, Lee B, Lee SJ, Bae YK. Elevated Interleukin-13 Receptor Alpha 1 Expression in Tumor Cells Is Associated with Poor Prognosis in Patients with Invasive Breast Cancer. Ann Surg Oncol 2017. [PMID: 28634667 DOI: 10.1245/s10434-017-5907-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Interleukin (IL)-13 is an immunoregulatory, anti-inflammatory cytokine that is produced by numerous immune cells, and plasma membrane receptor for IL-13 (IL-13R) is known to be expressed in various human malignancies and in immune cells. METHODS The authors evaluated the expression of IL-13R alpha 1 (IL-13Rα1, an IL-13R subtype) by immunohistochemistry in tissue microarrays of 1213 invasive breast cancer (IBC) samples to determine the prognostic value of IL-13Rα1 expression. RESULTS High IL-13Rα1 expression was observed in 619 (51%) cases and was found to be associated with an older (≥50 years) age (p = 0.022), lymph node metastasis (p = 0.015), ductal and micropapillary histologic subtypes (p < 0.001), lymphovascular invasion (p = 0.012), HER2 positivity (p < 0.001), and a high (>20%) Ki-67 index (p = 0.039). No significant correlation was found between IL-13Rα1 expression and clinicopathological variables, including tumor size, histological grade, hormone receptor expressions, and tumor-infiltrating lymphocyte levels. Patients with high IL-13Rα1 expression showed poorer overall survival (p = 0.044) and disease-free survival (DFS, p = 0.001) than those with low/negative expression. Subgroup analysis revealed an association between IL-13Rα1 expression and survival for HER2-negative, but not for HER2-positive tumors. Multivariate analysis showed high IL-13Rα1 expression was an independent negative prognostic factor of DFS (p = 0.019). CONCLUSIONS The results of this study suggest the IL-13 and IL-13Rα1 interaction promotes cancer cell growth and metastasis, and IL-13Rα1 expression is a potential prognostic marker in IBC.
Collapse
Affiliation(s)
- Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Hee Jung Kwon
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Soo Jung Lee
- Department of Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea.
| |
Collapse
|
17
|
Endogenously Expressed IL-4Rα Promotes the Malignant Phenotype of Human Pancreatic Cancer In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18040716. [PMID: 28350325 PMCID: PMC5412302 DOI: 10.3390/ijms18040716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
Exogenous interleukin-4 (IL-4) has been demonstrated to affect the growth of different human malignancies including pancreatic cancer cells. The aim of our study was to determine the role of endogenously expressed IL-4-receptor-α-chain (IL-4Rα) in pancreatic cancer cells. IL-4Rα-suppression was achieved by generating Capan-1 cells stably expressing shRNA targeting IL-4Rα. The malignant phenotype was characterized by assessing growth properties, directional and non-directional cell movement in vitro and tumor growth in vivo. Signaling pathways were analyzed upon IL-4 and IL-13 stimulation of wildtype (WT) and control-transfected cells compared to IL-4Rα-knockdown cells. Silencing of IL-4Rα resulted in reduced anchorage-dependent cell growth (p < 0.05) and reduced anchorage-independent colony size (p < 0.001) in vitro. Moreover, cell movement and migration was inhibited. IL-4 and IL-13 stimulation of Capan-1-WT cells induced activation of similar pathways like stimulation with Insulin-like growth factor (IGF)-I. This activation was reduced after IL-4Rα downregulation while IGF-I signaling seemed to be enhanced in knockdown-clones. Importantly, IL-4Rα silencing also significantly suppressed tumor growth in vivo. The present study indicates that endogenously expressed IL-4 and IL-4Rα contribute to the malignant phenotype of pancreatic cancer cells by activating diverse pro-oncogenic signaling pathways. Addressing these pathways may contribute to the treatment of the disease.
Collapse
|
18
|
Klampatsa A, Achkova DY, Davies DM, Parente-Pereira AC, Woodman N, Rosekilly J, Osborne G, Thayaparan T, Bille A, Sheaf M, Spicer JF, King J, Maher J. Intracavitary 'T4 immunotherapy' of malignant mesothelioma using pan-ErbB re-targeted CAR T-cells. Cancer Lett 2017; 393:52-59. [PMID: 28223167 DOI: 10.1016/j.canlet.2017.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
Malignant mesothelioma remains an incurable cancer. We demonstrated that mesotheliomas expressed EGFR (79.2%), ErbB4 (49.0%) and HER2 (6.3%), but lacked ErbB3. At least one ErbB family member was expressed in 88% of tumors. To exploit ErbB dysregulation in this disease, patient T-cells were engineered by retroviral transduction to express a panErbB-targeted chimeric antigen receptor (CAR), co-expressed with a chimeric cytokine receptor that allows interleukin (IL)-4 mediated CAR T-cell proliferation. This combination is referred to as T4 immunotherapy. T-cells from mesothelioma patients were uniformly amenable to T4 genetic modification and expansion/enrichment thereafter using IL-4. Patient-derived T4+ T-cells were activated upon contact with a panel of four mesothelioma cell lines, leading to cytotoxicity and cytokine release in all cases. Adoptive transfer of T4 immunotherapy to SCID Beige mice with an established bioluminescent LO68 mesothelioma xenograft was followed by regression or eradication of disease in all animals. Despite the established ability of T4 immunotherapy to elicit cytokine release syndrome in SCID Beige mice, therapy was very well tolerated. These findings provide a strong rationale for the clinical evaluation of intracavitary T4 immunotherapy to treat mesothelioma.
Collapse
Affiliation(s)
- Astero Klampatsa
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Daniela Y Achkova
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - David M Davies
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Ana C Parente-Pereira
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Natalie Woodman
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - James Rosekilly
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Georgina Osborne
- Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Thivyan Thayaparan
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Andrea Bille
- Department of Thoracic Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael Sheaf
- Department of Histopathology, Barts Health NHS Trust, The Royal London Hospital, London E1 2ES, UK
| | - James F Spicer
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Juliet King
- Department of Thoracic Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK; Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex BN21 2UD, UK.
| |
Collapse
|
19
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
20
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
21
|
Abdul Rahim SN, Ho GY, Coward JIG. The role of interleukin-6 in malignant mesothelioma. Transl Lung Cancer Res 2015; 4:55-66. [PMID: 25806346 DOI: 10.3978/j.issn.2218-6751.2014.07.01] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Malignant mesothelioma (MM) still remains a dismal disease with a median overall survival between 9-12 months. During the past decade since the introduction of the multi-folate antagonist, pemetrexed, there have been no significant advances in its systemic treatment, particularly with novel therapeutics that have exhibited varying degrees of success in other solid tumours. In recent years, the pleiotropic proinflammatory cytokine, interleukin-6 (IL-6) has emerged as a mediator of pivotal processes such as cell proliferation and chemoresistance within the mesothelioma tumour microenvironment in addition to clinical symptoms commonly witnessed in this disease. This manuscript provides a brief summary on the pathophysiology and clinical management of MM, followed by the role of IL-6 in its tumourigenesis and the rationale for utilising anti-IL-6 therapeutics alongside standard chemotherapy and targeted agents in an attempt to prolong survival.
Collapse
Affiliation(s)
- Siti N Abdul Rahim
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Gwo Y Ho
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- 1 Inflammation & Cancer Therapeutics Group, Mater Research, University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD, 4102, Australia ; 2 School of Chemistry & Molecular Bioscience, 3 School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia ; 4 Mater Health Services, Raymond Terrace, South Brisbane, QLD 4101, Australia
| |
Collapse
|
22
|
Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC, Coussens LM. TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunol Res 2015; 3:518-25. [PMID: 25716473 DOI: 10.1158/2326-6066.cir-14-0232] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
Radiotherapy and chemotherapy following surgery are mainstays of treatment for breast cancer. Although multiple studies have recently revealed the significance of immune cells as mediators of chemotherapy response in breast cancer, less is known regarding roles for leukocytes as mediating outcomes following radiotherapy. To address this question, we utilized a syngeneic orthotopic murine model of mammary carcinogenesis to investigate if response to radiotherapy could be improved when select immune cells or immune-based pathways in the mammary microenvironment were inhibited. Treatment of mammary tumor-bearing mice with either a neutralizing mAb to colony-stimulating factor-1 (CSF-1) or a small-molecule inhibitor of the CSF-1 receptor kinase (i.e., PLX3397), resulting in efficient macrophage depletion, significantly delayed tumor regrowth following radiotherapy. Delayed tumor growth in this setting was associated with increased presence of CD8(+) T cells and reduced presence of CD4(+) T cells, the main source of the TH2 cytokine IL4 in mammary tumors. Selective depletion of CD4(+) T cells or neutralization of IL4 in combination with radiotherapy phenocopied results following macrophage depletion, whereas depletion of CD8(+) T cells abrogated improved response to radiotherapy following these therapies. Analogously, therapeutic neutralization of IL4 or IL13, or IL4 receptor alpha deficiency, in combination with the chemotherapy paclitaxel, resulted in slowed primary mammary tumor growth by CD8(+) T-cell-dependent mechanisms. These findings indicate that clinical responses to cytotoxic therapy in general can be improved by neutralizing dominant TH2-based programs driving protumorigenic and immune-suppressive pathways in mammary (breast) tumors to improve outcomes.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian Ruffell
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - David G DeNardo
- Department of Medicine, Department of Pathology and Immunology, and Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Bruce A Faddegon
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Catherine C Park
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
23
|
Kotova S, Wong RM, Cameron RB. New and emerging therapeutic options for malignant pleural mesothelioma: review of early clinical trials. Cancer Manag Res 2015; 7:51-63. [PMID: 25670913 PMCID: PMC4315176 DOI: 10.2147/cmar.s72814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare tumor that is challenging to control. Despite some benefit from using the multimodality-approach (surgery, combination chemotherapy and radiation), survival remains poor. However, current research produced a list of potential therapies. Here, we summarize significant new preclinical and early clinical developments in treatment of MPM, which include mesothelin specific antibody and toxin therapies, interleukin-4 (IL-4) receptor toxins, dendritic cell vaccines, immune checkpoint inhibitors, and gene-based therapies. In addition, several local modalities such as photodynamic therapy, postoperative lavage using betadine, and cryotherapy for local recurrence, have also shown to be effective for local control of disease.
Collapse
Affiliation(s)
- Svetlana Kotova
- Veterans Affairs Greater Los Angeles Healthcare System, Division of Thoracic Surgery, Los Angeles, CA, USA ; UCLA Division of Thoracic Surgery and Comprehensive Mesothelioma Program, Los Angeles, CA, USA
| | - Raymond M Wong
- Veterans Affairs Greater Los Angeles Healthcare System, Division of Thoracic Surgery, Los Angeles, CA, USA ; UCLA Division of Thoracic Surgery and Comprehensive Mesothelioma Program, Los Angeles, CA, USA ; Pacific Meso Center at the Pacific Heart, Lung and Blood Institute, Los Angeles, CA, USA
| | - Robert B Cameron
- Veterans Affairs Greater Los Angeles Healthcare System, Division of Thoracic Surgery, Los Angeles, CA, USA ; UCLA Division of Thoracic Surgery and Comprehensive Mesothelioma Program, Los Angeles, CA, USA
| |
Collapse
|
24
|
Kadota K, Villena-Vargas J, Nitadori JI, Sima CS, Jones DR, Travis WD, Adusumilli PS. Tumoral CD10 expression correlates with aggressive histology and prognosis in patients with malignant pleural mesothelioma. Ann Surg Oncol 2015; 22:3136-43. [PMID: 25608772 DOI: 10.1245/s10434-015-4374-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Currently, tumor-node-metastasis stage and histologic type are the established prognostic factors for malignant pleural mesothelioma, whereas no prognostic markers have been established for clinical practice. We investigated the prognostic value of CD10, a metalloproteinase that can promote cancer aggressiveness through enzymatic degradation and intracellular signaling crosstalk, in malignant pleural mesothelioma. METHODS CD10 immunostaining was performed for 176 cases of malignant pleural mesothelioma (epithelioid, 148; biphasic, 14; sarcomatoid, 14), and its expression was dichotomized as negative (no staining) or positive (any staining). Epithelioid tumors were classified as pleomorphic subtype when cytologic pleomorphism was ≥10 % of the tumor. Overall survival (OS) was analyzed by log-rank tests and Cox proportional hazard models. RESULTS Tumoral CD10 expression was identified in 42 % of epithelioid non-pleomorphic tumors, 57 % of epithelioid pleomorphic tumors, 79 % of biphasic tumors, and 93 % of sarcomatoid tumors (p < 0.001). Positive CD10 expression was correlated with higher mitotic count (p = 0.002). Overall survival for patients with positive CD10 expression was significantly shorter than that for patients with negative CD10 expression in all patients (p = 0.001) and in patients with epithelioid tumor (p = 0.04). On multivariate analysis, CD10 expression was an independent prognostic factor for all patients (hazard ratio 1.48; p = 0.019). CONCLUSIONS Tumoral CD10 expression correlated with aggressive histologic types and higher mitotic activity and is an independent prognostic factor for patients with malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Kyuichi Kadota
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Robinson C, Solin JN, Lee YCG, Lake RA, Lesterhuis WJ. Mouse models of mesothelioma: strengths, limitations and clinical translation. Lung Cancer Manag 2014. [DOI: 10.2217/lmt.14.27] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Mouse models of cancer are invaluable for obtaining detailed knowledge about tumor development and for screening therapeutic and preventive approaches. Mesothelioma is an unusual cancer because the same carcinogen, asbestos, causes a similar disease in both humans and animals. Unlike most other cancers, murine mesothelioma can therefore be regarded as a disease homolog, rather than a model as such. However, because asbestos-induced cancer has low penetrance and a long lag time, most translational studies have utilized more efficient models such as tumor transplantation. In consequence, many promising results have not translated into positive findings in patients. Here, we describe the widely used murine mesothelioma models and critically discuss their relative advantages and disadvantages. We emphasize the use of the appropriate model for the specific research question and the need to use multiple models in order to obtain robust and translatable data.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - YC Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
26
|
Linch M, Gennatas S, Kazikin S, Iqbal J, Gunapala R, Priest K, Severn J, Norton A, Ayite B, Bhosle J, O'Brien M, Popat S. A serum mesothelin level is a prognostic indicator for patients with malignant mesothelioma in routine clinical practice. BMC Cancer 2014; 14:674. [PMID: 25227779 PMCID: PMC4182776 DOI: 10.1186/1471-2407-14-674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 09/10/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) carries a poor prognosis and response rates to palliative chemotherapy remain low. Identifying patients with MM that are unlikely to respond to chemotherapy could prevent futile treatments and improve patient quality of life. Studies have suggested that soluble mesothelin is a potential biomarker for early diagnosis and prognosis of MM. We set out to explore the utility of serum mesothelin in routine clinical practice. METHODS We conducted a prospective exploratory study of serum mesothelin levels in 53 consecutive patients with MM at our institution between April 2009 and February 2011. Survival was assessed and analysed by mesothelin level as both continuous and categorical variables using Cox regression models. Differences in response rate between treatment groups were assessed by the Kruskal-Wallis Test. RESULTS All 53 patients, who had been given study information agreed to participate. The patients' median age was 69 (range 24-90). Median mesothelin level was 2.7 nM and this value was used to dichotomize categories: ≤2.7 nM (low) and >2.7 nM (high). The progression free survival (PFS) for low vs high mesothelin was 8.0 vs 5.1 months (HR 1.8, p-0.058). When mesothelin was accessed as a continuous variable for PFS the HR was 1.03 (95% CI: 1.01-1.06; p=0.013). The overall survival (OS) for low vs high mesothelin was 17.2 vs 11.3 months (HR 1.9, p=0.088). When mesothelin was assessed as a continuous variable for OS the HR was 1.02 (95% CI: 0.99 - 1.04; p=0.073). Thirty patients received chemotherapy of which 18 had a pre-chemotherapy serum mesothelin level. In these 18 patients, the pre-chemotherapy mesothelin level did not correlate with response. CONCLUSIONS A single random sample provides information about patient prognosis but does not predict treatment response. We suggest further prospective validation of mesothelin testing as a prognostic biomarker.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sanjay Popat
- Royal Marsden Hospital, Fulham Road, SW3 6JJ London, Surrey, UK.
| |
Collapse
|
27
|
Joshi BH, Leland P, Lababidi S, Varrichio F, Puri RK. Interleukin-4 receptor alpha overexpression in human bladder cancer correlates with the pathological grade and stage of the disease. Cancer Med 2014; 3:1615-28. [PMID: 25208941 PMCID: PMC4298388 DOI: 10.1002/cam4.330] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/01/2022] Open
Abstract
Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran–Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III–IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker.
Collapse
Affiliation(s)
- Bharat H Joshi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Office of Cellular, Tissue and Gene Therapy, Center for Biologics Evaluation and Research, NIH Building 29B, Room 2E1229 Lincoln Drive, Bethesda, 20892, Maryland
| | | | | | | | | |
Collapse
|
28
|
Hiraku Y, Sakai K, Shibata E, Kamijima M, Hisanaga N, Ma N, Kawanishi S, Murata M. Formation of the nitrative DNA lesion 8-nitroguanine is associated with asbestos contents in human lung tissues: a pilot study. J Occup Health 2014; 56:186-96. [PMID: 24598051 DOI: 10.1539/joh.13-0231-oa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Asbestos causes lung cancer and malignant mesothelioma, and chronic inflammation is considered to participate in carcinogenesis. However, biomarkers to evaluate its carcinogenic risk have not been established. Reactive oxygen/nitrogen species are generated in biological systems under inflammatory conditions and may contribute to carcinogenesis by causing DNA damage. In this study, we examined the relationship between the formation of 8-nitroguanine (8-nitroG), a mutagenic DNA lesion formed during inflammation, and asbestos contents in human lung tissues. METHODS We obtained non-tumor lung tissues from patients with (n=15) and without mesothelioma (n=21). The expression of 8-nitroG and related molecules was examined by immunohistochemistry, and their staining intensities were semiquantitatively evaluated. Asbestos contents in lung tissues were analyzed by analytical transmission electron microscopy. RESULTS In subjects without mesothelioma, staining intensities of 8-nitroG and apurinic/apyrimidinic endonuclease 1 (APE1) were significantly correlated with total asbestos and amphibole contents (p<0.05), but not with chrysotile content. In mesothelioma patients, their staining intensities were not correlated with asbestos contents. The double immunofluorescence technique revealed that APE1 was expressed in 8-nitroG-positive cells, suggesting that abasic sites were formed possibly due to the removal of 8-nitroG. The staining intensities of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative DNA lesion, and its repair enzyme 8-oxoguanine DNA-glycosylase were correlated with age (p<0.05), but not with asbestos contents in subjects without mesothelioma. CONCLUSIONS This is the first study to demonstrate that 8-nitroG formation is associated with asbestos contents in human lung tissues. This finding raises a possibility that 8-nitroG serves as a biomarker that can be used to evaluate asbestos exposure and carcinogenic risk.
Collapse
Affiliation(s)
- Yusuke Hiraku
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pass HI. Biomarkers and prognostic factors for mesothelioma. Ann Cardiothorac Surg 2013; 1:449-56. [PMID: 23977535 DOI: 10.3978/j.issn.2225-319x.2012.10.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/18/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Harvey I Pass
- Stephen E. Banner Professor of Thoracic Oncology, Vice-Chair Research, Department of Cardiothoracic Surgery, Division Chief, General Thoracic Surgery, NYU Langone Medical Center, New York, NY 10016, USA
| |
Collapse
|
30
|
Nuvoli B, Galati R. Cyclooxygenase-2, epidermal growth factor receptor, and aromatase signaling in inflammation and mesothelioma. Mol Cancer Ther 2013; 12:844-52. [PMID: 23729401 DOI: 10.1158/1535-7163.mct-12-1103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant mesothelioma or mesothelioma is a rare form of cancer that develops from transformed cells originating in the mesothelium, the protective lining that covers many of the internal organs of the body. It is directly linked to asbestos exposure, which acts as a carcinogen by initiating the carcinogenic process. Because of their shape, asbestos fibers can cross the membrane barriers inside the body and cause inflammatory and fibrotic reactions. Such reactions are believed to be the mechanism by which asbestos fibers may trigger malignant mesothelioma in the pleural membrane around the lungs. Carcinogens are known to modulate the transcription factors, antiapoptotic proteins, proapoptotic proteins, protein kinases, cell-cycle proteins, cell adhesion molecules, COX-2, and growth factor signaling pathways. This article reviews recent studies regarding some malignant mesothelioma molecular targets not only for cancer prevention but also for cancer therapy.
Collapse
Affiliation(s)
- Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | | |
Collapse
|
31
|
FAN ZHIGANG, LI KAIJIE, ZHANG LINGMIN, CHEN FAN, WU QIANG, LI NA, ZHONG SAIFENG, LIN GUIFEN, YAN GUOGANG. Bioinformatics analysis of the structure and function of NADPH-cytochrome p450 reductase of Plasmodium vivax.. Biomed Rep 2013; 1:425-427. [PMID: 24648962 PMCID: PMC3917001 DOI: 10.3892/br.2013.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/05/2013] [Indexed: 11/05/2022] Open
Abstract
The structure of NADPH-cytochrome p450 reductase (CPR) of Plasmodium falciparum (P. falciparum or Pf) has been determined using bioinformatics analysis. However, that of Plasmodium vivax (P. vivax or Pv) has not yet been determined. This study aimed to analyze the structure and function of PvCPR using bioinformatics analysis. The results demonstrated that PvCPR was an unstable and alkaline enzyme located in the cytoplasm of parasites with a signal peptide. It possessed seven types of signal sites and eight protein-protein binding sites, and had a tertiary structure resembling a forceps with a single wing, which differed from that of PfCPR. It also had nine linear B-cell epitopes and 10 antigenicity sites, which were not homologous with the amino acid sequence of Homo sapiens (H. sapiens or Hs) CPR and six fragments that were similar to fragments of immune-related protein sequences from H. sapiens. Therefore, the function of PvCPR may be different from that of PfCPR, and PvCPR may participate in the immune escape of P. vivax.
Collapse
Affiliation(s)
- ZHIGANG FAN
- School of Tropical and Laboratory Medicine, Hainan Medical College, Haikou 571199
- Hainan Provincial Key Laboratory of Tropical Medicine, Hainan Medical College, Haikou 571199
| | - KAIJIE LI
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079
| | - LINGMIN ZHANG
- Department of Parasitology, Medical College, Jinan University, Guangzhou 510623
| | - FAN CHEN
- Department of Biochemistry and Molecular Biology, Medical School, Wuhan University, Wuhan 430072
| | - QIANG WU
- School of Tropical and Laboratory Medicine, Hainan Medical College, Haikou 571199
| | - NA LI
- School of Tropical and Laboratory Medicine, Hainan Medical College, Haikou 571199
| | - SAIFENG ZHONG
- School of Tropical and Laboratory Medicine, Hainan Medical College, Haikou 571199
| | - GUIFEN LIN
- School of Tropical and Laboratory Medicine, Hainan Medical College, Haikou 571199
| | - GUOGANG YAN
- School of Nursing, Hainan Medical College, Haikou 571199,
P.R. China
| |
Collapse
|
32
|
IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett 2013; 338:239-48. [PMID: 23562473 DOI: 10.1016/j.canlet.2013.03.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/14/2013] [Accepted: 03/26/2013] [Indexed: 12/31/2022]
Abstract
Insulin receptor substrate (IRS) proteins have been shown to play an important role in breast cancer by differentially regulating cancer cell survival, proliferation, and motility. Furthermore, the IL-4-induced tyrosine phosphorylation of the transcription factor STAT6 was shown to protect breast cancer cells from apoptosis. Here, we analyzed human breast cancer tissues for the expression of IRS1, IRS2, STAT6, and tyrosine phosphorylated STAT6 (pSTAT6). We found that IRS1 and pSTAT6 were both highly expressed in ductal carcinoma in situ (DCIS). On the other hand, IRS2 expression was low in DCIS, but increased significantly in relation to tumor invasiveness. We utilized cell lines with disparate IRS1 expression, MDA-MB-231, MCF7, and MCF7 cells with depleted IRS1 due to shRNA lentiviral infection, to examine the role of IRS1 and IRS2 in the responsiveness of breast cancer cells to chemotherapy. We report that high IRS1 sensitized MCF7 cells to specific chemotherapeutic agents. These results suggest that high IRS1 with low IRS2 expression may predict the effectiveness of specific types of chemotherapy in breast cancer.
Collapse
|