1
|
Yu S, Long L, Zhang X, Qiu Y, Huang Y, Huang X, Li X, Xu R, Fan C, Huang H. The current status and future trends of BET research in oncology. Heliyon 2024; 10:e36888. [PMID: 39281429 PMCID: PMC11399683 DOI: 10.1016/j.heliyon.2024.e36888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background BET family proteins are important epigenetic and transcriptional regulators involved in the control of tumorigenesis and development and have become important targets for cancer therapy. However, there is no systematic bibliometric analysis in this field. A visual analysis of the research hotspots and trends of BET is helpful to understand the future development direction. Method We used CiteSpace, VOSviewer, and Excel to visualize and analyze the trends regarding authors, journals, countries or regions, highly cited papers, and keywords in the field. Result The results included a total of 946 publications. There are many more papers on BET proteins published since 2013. The papers are mainly from 44 countries, led by the U.S. and China. A total of 7381 authors were identified, among which Bradner, J.E. had the greatest number of articles and the greatest influence. Cancer Discovery was the journal with the most citations per article. Our analysis identified the most influential papers in the field, including highly cited papers and citation burst references. The most frequent keywords included 'expression', 'c-Myc', 'cancer', 'BRD4', 'BET inhibition', 'resistance', 'differentiation', and 'JQ1', which represent the focus of current and developing research fields. Conclusion Research on BET is thriving. Collaboration and exchanges between countries and institutions must be strengthened in the future, and the mechanisms of BET-related pathways, the relationship between BET and various diseases, and the development of new BET inhibitors have become the major focus of current research and the trend of future research.
Collapse
Affiliation(s)
- Siying Yu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Linna Long
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiaorui Zhang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Qiu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yabo Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xueying Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Li
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Rong Xu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chunmei Fan
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
- Department of gynaecology, Xinjiang Cancer Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Paterson LC, Humphreys PG, Kelly HA, Kerr WJ. Collaborative GSK-University of Strathclyde doctoral research and training programmes: Transforming approaches to industry-academia engagement. Drug Discov Today 2024; 29:104162. [PMID: 39245346 DOI: 10.1016/j.drudis.2024.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
A global biopharma company, GSK, and the University of Strathclyde have developed an expansive and transformative research and training partnership originating in chemistry-aligned disciplines, with subsequent extensive expansion across further areas of the company. This has opened unique approaches for the delivery of collaborative research innovations while also enhancing the professional development and learning of GSK personnel, in addition to other embedded researchers and collaborating scientists, on a pathway towards more rapid and efficient discovery of new medicines.
Collapse
Affiliation(s)
- Laura C Paterson
- University of Strathclyde, Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK
| | | | - Henry A Kelly
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK.
| | - William J Kerr
- University of Strathclyde, Pure and Applied Chemistry, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
3
|
Gancheva MR, Kremer K, Breen J, Arthur A, Hamilton-Bruce A, Thomas P, Gronthos S, Koblar S. Effect of Octamer-Binding Transcription Factor 4 Overexpression on the Neural Induction of Human Dental Pulp Stem Cells. Stem Cell Rev Rep 2024; 20:797-815. [PMID: 38316679 PMCID: PMC10984899 DOI: 10.1007/s12015-024-10678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Stem cell-based therapy is a potential alternative strategy for brain repair, with neural stem cells (NSC) presenting as the most promising candidates. Obtaining sufficient quantities of NSC for clinical applications is challenging, therefore alternative cell types, such as neural crest-derived dental pulp stem cells (DPSC), may be considered. Human DPSC possess neurogenic potential, exerting positive effects in the damaged brain through paracrine effects. However, a method for conversion of DPSC into NSC has yet to be developed. Here, overexpression of octamer-binding transcription factor 4 (OCT4) in combination with neural inductive conditions was used to reprogram human DPSC along the neural lineage. The reprogrammed DPSC demonstrated a neuronal-like phenotype, with increased expression levels of neural markers, limited capacity for sphere formation, and enhanced neuronal but not glial differentiation. Transcriptomic analysis further highlighted the expression of genes associated with neural and neuronal functions. In vivo analysis using a developmental avian model showed that implanted DPSC survived in the developing central nervous system and respond to endogenous signals, displaying neuronal phenotypes. Therefore, OCT4 enhances the neural potential of DPSC, which exhibited characteristics aligning with neuronal progenitors. This method can be used to standardise DPSC neural induction and provide an alternative source of neural cell types.
Collapse
Affiliation(s)
- Maria R Gancheva
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- School of Biological Sciences, Faculty of Science, Engineering and Technology, The University of Adelaide, Adelaide, 5005, Australia.
| | - Karlea Kremer
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - James Breen
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Agnes Arthur
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Anne Hamilton-Bruce
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, 5011, Australia
| | - Paul Thomas
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Stan Gronthos
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, 5000, Australia
| | - Simon Koblar
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
4
|
Li P, Ding H, Han S, Ding S, Yang Y. Long noncoding RNA LINC00858 aggravates the progression of esophageal squamous cell carcinoma via regulating the miR-425-5p/ABL2 axis. Heliyon 2024; 10:e27337. [PMID: 38496838 PMCID: PMC10944188 DOI: 10.1016/j.heliyon.2024.e27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most fatal cancers with high morbidity and mortality, which severely affects people's lives. Long intergenic non-protein coding RNA 858 (LINC00858) was confirmed to promote the progression of colorectal cancer and lung cancer. However, the role of lncRNA LINC00858 is still unknown in ESCC. Herein, the main purpose of research was to explore LINC00858 function and its impact on ESCC cell biological behaviors. RT-qPCR was used to test the expression of LINC00858, miR-425-5p and ABL proto-oncogene 2 (ABL2) in ESCC cells. Functional experiments such as EdU assay, CCK-8 assay, transwell assay and Western blot assay were conducted to investigate the biological behaviors of ESCC cells. Luciferase reporter assay and RIP assay were implemented to determine the binding situation among RNAs. LINC00858 expression was abnormally high in ESCC cells and down-regulation of LINC00858 could restrain the proliferation, invasion, migration and EMT process of ESCC cells. Furthermore, miR-425-5p was proved to be sponged by LINC00858 and was down-regulated in ESCC cells. Besides, we discovered that miR-425-5p could target ABL2. Moreover, knockdown of ABL2 reversed the promoting function of miR-425-5p inhibitor on ESCC progression. LINC00858 aggravated ESCC progression via regulating the miR-425-5p/ABL2 axis.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Hui Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Songze Ding
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Yuxiu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
5
|
Ren G, Chen J, Pu Y, Yang EJ, Tao S, Mou PK, Chen LJ, Zhu W, Chan KL, Luo G, Deng C, Shim JS. BET inhibition induces synthetic lethality in PTEN deficient colorectal cancers via dual action on p21 CIP1/WAF1. Int J Biol Sci 2024; 20:1978-1991. [PMID: 38617536 PMCID: PMC11008266 DOI: 10.7150/ijbs.91867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024] Open
Abstract
Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.
Collapse
Affiliation(s)
- Guowen Ren
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jinghong Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Central laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Pu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Pui Kei Mou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Li-Jie Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | | | | | | | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
6
|
Li G, Ma L, Feng C, Yin H, Bao J, Wu D, Zhang Z, Li X, Li Z, Yang C, Wang H, Fang F, Hu X, Li M, Xu L, Xu Y, Liang H, Yang T, Wang J, Pan J. MZ1, a BRD4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma. BMC Cancer 2024; 24:220. [PMID: 38365636 PMCID: PMC10870565 DOI: 10.1186/s12885-024-11966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Liya Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, P.R. China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Jianping Bao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| |
Collapse
|
7
|
Das D, Leung JY, Balamurugan S, Tergaonkar V, Loh AHP, Chiang CM, Taneja R. BRD4 isoforms have distinct roles in tumour progression and metastasis in rhabdomyosarcoma. EMBO Rep 2024; 25:832-852. [PMID: 38191874 PMCID: PMC10897194 DOI: 10.1038/s44319-023-00033-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analysed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in fusion negative embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumour progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumour growth, but strikingly promotes metastasis in vivo. Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. In fusion positive alveolar rhabdomyosarcoma, BRD4-L is unrestricted in its oncogenic role, with no evident involvement of BRD4-S. Our work unveils isoform-specific functions of BRD4 in rhabdomyosarcoma.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Jia Yu Leung
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Shivaranjani Balamurugan
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Amos Hong Pheng Loh
- VIVA-KKH Paediatric Brain and Solid Tumour Programme, KK Women's and Children's Hospital, Singapore, 229899, Singapore
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Center for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
8
|
Ho PJ, Kweon J, Blumensaadt LA, Neely AE, Kalika E, Leon DB, Oh S, Stringer CWP, Lloyd SM, Ren Z, Bao X. Multi-omics integration identifies cell-state-specific repression by PBRM1-PIAS1 cooperation. CELL GENOMICS 2024; 4:100471. [PMID: 38190100 PMCID: PMC10794847 DOI: 10.1016/j.xgen.2023.100471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024]
Abstract
PBRM1 is frequently mutated in cancers of epithelial origin. How PBRM1 regulates normal epithelial homeostasis, prior to cancer initiation, remains unclear. Here, we show that PBRM1's gene regulatory roles differ drastically between cell states, leveraging human skin epithelium (epidermis) as a research platform. In progenitors, PBRM1 predominantly functions to repress terminal differentiation to sustain progenitors' regenerative potential; in the differentiation state, however, PBRM1 switches toward an activator. Between these two cell states, PBRM1 retains its genomic binding but associates with differential interacting proteins. Our targeted screen identified the E3 SUMO ligase PIAS1 as a key interactor. PIAS1 co-localizes with PBRM1 on chromatin to directly repress differentiation genes in progenitors, and PIAS1's chromatin binding drastically diminishes in differentiation. Furthermore, SUMOylation contributes to PBRM1's repressive function in progenitor maintenance. Thus, our findings highlight PBRM1's cell-state-specific regulatory roles influenced by its protein interactome despite its stable chromatin binding.
Collapse
Affiliation(s)
- Patric J Ho
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Junghun Kweon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Laura A Blumensaadt
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Amy E Neely
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Elizabeth Kalika
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Daniel B Leon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sanghyon Oh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Cooper W P Stringer
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sarah M Lloyd
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ziyou Ren
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Dermatology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
9
|
Mukhopadhyay D, Goel HL, Xiong C, Goel S, Kumar A, Li R, Zhu LJ, Clark JL, Brehm MA, Mercurio AM. The calcium channel TRPC6 promotes chemotherapy-induced persistence by regulating integrin α6 mRNA splicing. Cell Rep 2023; 42:113347. [PMID: 37910503 PMCID: PMC10872598 DOI: 10.1016/j.celrep.2023.113347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Understanding the cell biological mechanisms that enable tumor cells to persist after therapy is necessary to improve the treatment of recurrent disease. Here, we demonstrate that transient receptor potential channel 6 (TRPC6), a channel that mediates calcium entry, contributes to the properties of breast cancer stem cells, including resistance to chemotherapy, and that tumor cells that persist after therapy are dependent on TRPC6. The mechanism involves the ability of TRPC6 to regulate integrin α6 mRNA splicing. Specifically, TRPC6-mediated calcium entry represses the epithelial splicing factor ESRP1 (epithelial splicing regulatory protein 1), which enables expression of the integrin α6B splice variant. TRPC6 and α6B function in tandem to facilitate stemness and persistence by activating TAZ and, consequently, repressing Myc. Therapeutic inhibition of TRPC6 sensitizes triple-negative breast cancer (TNBC) cells and tumors to chemotherapy by targeting the splicing of α6 integrin mRNA and inducing Myc. These data reveal a Ca2+-dependent mechanism of chemotherapy-induced persistence, which is amenable to therapy, that involves integrin mRNA splicing.
Collapse
Affiliation(s)
- Dimpi Mukhopadhyay
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hira Lal Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Choua Xiong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shivam Goel
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ayush Kumar
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer L Clark
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael A Brehm
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Dewdney B, Jenkins MR, Best SA, Freytag S, Prasad K, Holst J, Endersby R, Johns TG. From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress. Signal Transduct Target Ther 2023; 8:400. [PMID: 37857607 PMCID: PMC10587102 DOI: 10.1038/s41392-023-01637-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.
Collapse
Affiliation(s)
- Brittany Dewdney
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia.
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia.
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Sarah A Best
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
| | - Krishneel Prasad
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3010, Australia
| | - Jeff Holst
- School of Biomedical Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Raelene Endersby
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| | - Terrance G Johns
- Cancer Centre, Telethon Kids Institute, Nedlands, WA, 6009, Australia
- Centre For Child Health Research, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
11
|
Lv X, Lu X, Cao J, Luo Q, Ding Y, Peng F, Pataer A, Lu D, Han D, Malmberg E, Chan DW, Wang X, Savage SR, Mao S, Yu J, Peng F, Yan L, Meng H, Maneix L, Han Y, Chen Y, Yao W, Chang EC, Catic A, Lin X, Miles G, Huang P, Sun Z, Burt B, Wang H, Wang J, Yao QC, Zhang B, Roth JA, O’Malley BW, Ellis MJ, Rimawi MF, Ying H, Chen X. Modulation of the proteostasis network promotes tumor resistance to oncogenic KRAS inhibitors. Science 2023; 381:eabn4180. [PMID: 37676964 PMCID: PMC10720158 DOI: 10.1126/science.abn4180] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.
Collapse
Affiliation(s)
- Xiangdong Lv
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xuan Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jin Cao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qin Luo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Dong Lu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Eric Malmberg
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Doug W. Chan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xiaoran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sara R. Savage
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Sufeng Mao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jingjing Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fei Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Laure Maneix
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Yumin Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, USA
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, USA
| | - Eric C. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, USA
| | - Xia Lin
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - George Miles
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Pengxiang Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zheng Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, USA
| | - Bryan Burt
- Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, USA
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, USA
- Center for Drug Discovery, Baylor College of Medicine, USA
| | - Qizhi Cathy Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery
| | - Bing Zhang
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, USA
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew J. Ellis
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Early Oncology, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Mothaffar F. Rimawi
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Chen X, Wang C, Lu D, Luo H, Li S, Yin F, Luo Z, Cui N, Kong L, Wang X. Design, synthesis and mechanism studies of dual EZH2/BRD4 inhibitors for cancer therapy. Bioorg Med Chem 2023; 91:117386. [PMID: 37379621 DOI: 10.1016/j.bmc.2023.117386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Aberrant expression of EZH2 is frequently observed in cancers, and the EZH2 inhibitors are only effective in hematological malignancies and almost noneffective against solid tumors. It has been reported that the combination of EZH2 and BRD4 inhibitors may be a promising strategy to treat solid tumors being insensitive to EZH2 inhibitors. Thus, a series of EZH2/BRD4 dual inhibitors were designed and synthesized. The optimized compound 28, encoded as KWCX-28, was the most potential compound by the SAR studies. Further mechanism studies showed that KWCX-28 inhibited HCT-116 cells proliferation (IC50 = 1.86 µM), induced HCT-116 cells apoptosis, arrested cell cycle arrest at G0/G1 phase and resisted the histone 3 lysine 27 acetylation (H3K27ac) upregulation. Therefore, KWCX-28 was a potential dual EZH2/BRD4 inhibitors for treating solid tumors.
Collapse
Affiliation(s)
- Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
13
|
Rana M, Kansal RG, Bisunke B, Fang J, Shibata D, Bajwa A, Yang J, Glazer ES. Bromo- and Extra-Terminal Domain Inhibitors Induce Mitochondrial Stress in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2023; 22:936-946. [PMID: 37294884 PMCID: PMC10527726 DOI: 10.1158/1535-7163.mct-23-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
Identifying novel, unique, and personalized molecular targets for patients with pancreatic ductal adenocarcinoma (PDAC) remains the greatest challenge in altering the biology of fatal tumors. Bromo- and extra-terminal domain (BET) proteins are activated in a noncanonical fashion by TGFβ, a ubiquitous cytokine in the PDAC tumor microenvironment (TME). We hypothesized that BET inhibitors (BETi) represent a new class of drugs that attack PDAC tumors via a novel mechanism. Using a combination of patient and syngeneic murine models, we investigated the effects of the BETi drug BMS-986158 on cellular proliferation, organoid growth, cell-cycle progression, and mitochondrial metabolic disruption. These were investigated independently and in combination with standard cytotoxic chemotherapy (gemcitabine + paclitaxel [GemPTX]). BMS-986158 reduced cell viability and proliferation across multiple PDAC cell lines in a dose-dependent manner, even more so in combination with cytotoxic chemotherapy (P < 0.0001). We found that BMS-986158 reduced both human and murine PDAC organoid growth (P < 0.001), with associated perturbations in the cell cycle leading to cell-cycle arrest. BMS-986158 disrupts normal cancer-dependent mitochondrial function, leading to aberrant mitochondrial metabolism and stress via dysfunctional cellular respiration, proton leakage, and ATP production. We demonstrated mechanistic and functional data that BETi induces metabolic mitochondrial dysfunction, abrogating PDAC progression and proliferation, alone and in combination with systemic cytotoxic chemotherapies. This novel approach improves the therapeutic window in patients with PDAC and offers another treatment approach distinct from cytotoxic chemotherapy that targets cancer cell bioenergetics.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Rita G. Kansal
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Bijay Bisunke
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jie Fang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
| | - David Shibata
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Jun Yang
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN
- Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Department of Genetics, Genomics, and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, St. Jude Children’s Research Hospital, Memphis, TN
| | - Evan S. Glazer
- Department of Surgery, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
- Center for Cancer Research, College of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
14
|
Ibrahim MAA, Abdelhamid MMH, Abdeljawaad KAA, Abdelrahman AHM, Mekhemer GAH, Sidhom PA, Sayed SRM, Paré PW, Hegazy MEF, Shoeib T. Pyronaridine as a Bromodomain-Containing Protein 4- N-Terminal Bromodomain (BRD4-BD1) Inhibitor: In Silico Database Mining, Molecular Docking, and Molecular Dynamics Simulation. Molecules 2023; 28:5713. [PMID: 37570684 PMCID: PMC10420099 DOI: 10.3390/molecules28155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BRD4 (bromodomain-containing protein 4) is an epigenetic reader that realizes histone proteins and promotes the transcription of genes linked to cancer progression and non-cancer diseases such as acute heart failure and severe inflammation. The highly conserved N-terminal bromodomain (BD1) recognizes acylated lysine residues to organize the expression of genes. As such, BD1 is essential for disrupting BRD4 interactions and is a promising target for cancer treatment. To identify new BD1 inhibitors, a SuperDRUG2 database that contains more than 4600 pharmaceutical compounds was screened using in silico techniques. The efficiency of the AutoDock Vina1.1.2 software to anticipate inhibitor-BRD4-BD1 binding poses was first evaluated based on the co-crystallized R6S ligand in complex with BRD4-BD1. From database screening, the most promising BRD4-BD1 inhibitors were subsequently submitted to molecular dynamics (MD) simulations integrated with an MM-GBSA approach. MM-GBSA computations indicated promising BD1 binding with a benzonaphthyridine derivative, pyronaridine (SD003509), with an energy prediction (ΔGbinding) of -42.7 kcal/mol in comparison with -41.5 kcal/mol for a positive control inhibitor (R6S). Pharmacokinetic properties predicted oral bioavailability for both ligands, while post-dynamic analyses of the BRD4-BD1 binding pocket demonstrated greater stability for pyronaridine. These results confirm that in silico studies can provide insight into novel protein-ligand regulators, specifically that pyronaridine is a potential cancer drug candidate.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Mahmoud M. H. Abdelhamid
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Khlood A. A. Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Gamal A. H. Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Shaban R. M. Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
15
|
Das D, Leung JY, Tergaonkar V, Loh AHP, Chiang CM, Taneja R. BRD4 isoforms have distinct roles in tumor progression and metastasis in embryonal rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550665. [PMID: 37546805 PMCID: PMC10402065 DOI: 10.1101/2023.07.26.550665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BRD4, a bromodomain and extraterminal (BET) protein, is deregulated in multiple cancers and has emerged as a promising drug target. However, the function of the two main BRD4 isoforms (BRD4-L and BRD4-S) has not been analyzed in parallel in most cancers. This complicates determining therapeutic efficacy of pan-BET inhibitors. In this study, using functional and transcriptomic analysis, we show that BRD-L and BRD4-S isoforms play distinct roles in embryonal rhabdomyosarcoma. BRD4-L has an oncogenic role and inhibits myogenic differentiation, at least in part, by activating myostatin expression. Depletion of BRD4-L in vivo impairs tumor progression but does not impact metastasis. On the other hand, depletion of BRD4-S has no significant impact on tumor growth, but strikingly promotes metastasis in vivo . Interestingly, BRD4-S loss results in the enrichment of BRD4-L and RNA Polymerase II at integrin gene promoters resulting in their activation. Our work unveils isoform-specific functions of BRD4 and demonstrates that BRD4-S functions as a gatekeeper to constrain the full oncogenic potential of BRD4-L.
Collapse
|
16
|
Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, Li W, Xue J, Zhou K, Sun M, Tan B, Chen Z, Shen C, Gao L, Small A, Wang K, Leung K, Zhang Z, Qin X, Deng X, Xia Q, Su R, Chen J. QKI shuttles internal m 7G-modified transcripts into stress granules and modulates mRNA metabolism. Cell 2023; 186:3208-3226.e27. [PMID: 37379838 PMCID: PMC10527483 DOI: 10.1016/j.cell.2023.05.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/28/2022] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
N7-methylguanosine (m7G) modification, routinely occurring at mRNA 5' cap or within tRNAs/rRNAs, also exists internally in messenger RNAs (mRNAs). Although m7G-cap is essential for pre-mRNA processing and protein synthesis, the exact role of mRNA internal m7G modification remains elusive. Here, we report that mRNA internal m7G is selectively recognized by Quaking proteins (QKIs). By transcriptome-wide profiling/mapping of internal m7G methylome and QKI-binding sites, we identified more than 1,000 high-confidence m7G-modified and QKI-bound mRNA targets with a conserved "GANGAN (N = A/C/U/G)" motif. Strikingly, QKI7 interacts (via C terminus) with the stress granule (SG) core protein G3BP1 and shuttles internal m7G-modified transcripts into SGs to regulate mRNA stability and translation under stress conditions. Specifically, QKI7 attenuates the translation efficiency of essential genes in Hippo signaling pathways to sensitize cancer cells to chemotherapy. Collectively, we characterized QKIs as mRNA internal m7G-binding proteins that modulate target mRNA metabolism and cellular drug resistance.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; School of Pharmacy, China Medical University, Shenyang, Liaoning 110001, China
| | - Dong Wu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital affiliated to Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Keren Zhou
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Miao Sun
- Keck School of Medicine, University of Southern California, and Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Andrew Small
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zheng Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
17
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Satta T, Li L, Chalasani SL, Hu X, Nkwocha J, Sharma K, Kmieciak M, Rahmani M, Zhou L, Grant S. Dual mTORC1/2 Inhibition Synergistically Enhances AML Cell Death in Combination with the BCL2 Antagonist Venetoclax. Clin Cancer Res 2023; 29:1332-1343. [PMID: 36652560 PMCID: PMC10073266 DOI: 10.1158/1078-0432.ccr-22-2729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Acute myelogenous leukemia (AML) is an aggressive disease with a poor outcome. We investigated mechanisms by which the anti-AML activity of ABT-199 (venetoclax) could be potentiated by dual mTORC1/TORC2 inhibition. EXPERIMENTAL DESIGN Venetoclax/INK128 synergism was assessed in various AML cell lines and primary patient AML samples in vitro. AML cells overexpressing MCL-1, constitutively active AKT, BAK, and/or BAX knockout, and acquired venetoclax resistance were investigated to define mechanisms underlying interactions. The antileukemic efficacy of this regimen was also examined in xenograft and patient-derived xenograft (PDX) models. RESULTS Combination treatment with venetoclax and INK128 (but not the mTORC1 inhibitor rapamycin) dramatically enhanced cell death in AML cell lines. Synergism was associated with p-AKT and p-4EBP1 downregulation and dependent upon MCL-1 downregulation and BAK/BAX upregulation as MCL-1 overexpression and BAX/BAK knockout abrogated cell death. Constitutive AKT activation opposed synergism between venetoclax and PI3K or AKT inhibitors, but not INK128. Combination treatment also synergistically induced cell death in venetoclax-resistant AML cells. Similar events occurred in primary patient-derived leukemia samples but not normal CD34+ cells. Finally, venetoclax and INK128 co-treatment displayed increased antileukemia effects in in vivo xenograft and PDX models. CONCLUSIONS The venetoclax/INK128 regimen exerts significant antileukemic activity in various preclinical models through mechanisms involving MCL-1 downregulation and BAK/BAX activation, and offers potential advantages over PI3K or AKT inhibitors in cells with constitutive AKT activation. This regimen is active against primary and venetoclax-resistant AML cells, and in in vivo AML models. Further investigation of this strategy appears warranted.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Laboratory Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Sri Lakshmi Chalasani
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamed Rahmani
- Department of Molecular Biology and Genetics, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, Richmond, VA. USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
19
|
Singh B, Sarli VN, Milligan RD, Kinne HE, Shamsnia A, Washburn LJ, Addanki S, Lucci A. Sensitization of Resistant Cells with a BET Bromodomain Inhibitor in a Cell Culture Model of Deep Intrinsic Resistance in Breast Cancer. Cancers (Basel) 2023; 15:cancers15072036. [PMID: 37046697 PMCID: PMC10093448 DOI: 10.3390/cancers15072036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
We treated highly metabolically adaptable (SUM149-MA) triple-negative inflammatory breast cancer cells and their control parental SUM149-Luc cell line with JQ1 for long periods to determine its efficacy at inhibiting therapy-resistant cells. After 20 days of treatment with 1-2 µM of JQ1, which killed majority of cells in the parental cell line, a large number of SUM149-MA cells survived, consistent with their pan-resistant nature. Interestingly, though, the JQ1 treatment sensitized resistant cancer cells in both the SUM149-MA and SUM149-Luc cell lines to subsequent treatment with doxorubicin and paclitaxel. To measure JQ1-mediated sensitization of resistant cancer cells, we first eradicated approximately 99% of relatively chemotherapy-sensitive cancer cells in culture dishes by long treatments with doxorubicin or paclitaxel, and then analyzed the remaining resistant cells for survival and growth into colonies. In addition, combination, rather than sequential, treatment with JQ1 and doxorubicin was also effective in overcoming resistance. Notably, Western blotting showed that JQ1-treated cancer cells had significantly lower levels of PD-L1 protein than did untreated cells, indicating that JQ1 treatment may reduce tumor-mediated immune suppression and improve the response to immunotherapy targeting PD-L1. Finally, JQ1 treatment with a low 62.5 nM dose sensitized another resistant cell line, FC-IBC02-MA, to treatment with doxorubicin and paclitaxel.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ryan D Milligan
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hannah E Kinne
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Shamsnia
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura J Washburn
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sridevi Addanki
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Krohl PJ, Fine J, Yang H, VanDyke D, Ang Z, Kim KB, Thomas-Tikhonenko A, Spangler JB. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. CELL REPORTS METHODS 2023; 3:100429. [PMID: 37056366 PMCID: PMC10088246 DOI: 10.1016/j.crmeth.2023.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/06/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023]
Abstract
Due to their critical functions in cell sensing and signal processing, membrane proteins are highly preferred as pharmacological targets, and antibody drugs constitute the fastest growing category of therapeutic agents on the pharmaceutical market. However, major limitations exist in developing antibodies that recognize complex, multipass transmembrane proteins, such as G-protein-coupled receptors (GPCRs). These challenges, largely due to difficulties with recombinant expression of multipass transmembrane proteins, can be overcome using whole-cell screening techniques, which enable presentation of the functional antigen in its native conformation. Here, we developed suspension cell-based whole-cell panning methodologies to screen for specific binders against GPCRs within a naive yeast-displayed antibody library. We implemented our strategy to discover high-affinity antibodies against four distinct GPCR target proteins, demonstrating the potential for our cell-based screening workflow to advance the discovery of antibody therapeutics targeting membrane proteins.
Collapse
Affiliation(s)
- Patrick J. Krohl
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Justyn Fine
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Derek VanDyke
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Zhiwei Ang
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kook Bum Kim
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie B. Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21208, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21208, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
21
|
Yuan T, Ni P, Zhang Z, Wu D, Sun G, Zhang H, Chen B, Wang X, Cheng Z. Targeting BET proteins inhibited the growth of non-small cell lung carcinoma through downregulation of Met expression. Cell Biol Int 2023; 47:622-633. [PMID: 36448366 DOI: 10.1002/cbin.11962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 12/02/2022]
Abstract
Hepatocyte growth factor receptor (HGFR or Met) upregulation has been proven to play important roles in non-small cell lung carcinoma (NSCLC). Interestingly, chemoresistance against epidermal growth factor receptor (EGFR) inhibitors including erlotinib and gefitinib was also related to Met. Targeting bromodomain and extra terminal domain (BET) proteins, especially BRD4, has shown inhibitory effects on lung cancer, but the mechanism is unclear. Herein, we found that JQ1 (BET inhibitor) suppressed NSCLC cell growth, reduced the Met expression, and contributed to inactivation of PI3K/Akt and MAPK/ERK pathways. Moreover, another BET protein inhibitor I-BET151, or BRD4 depletion, also inhibited NSCLC cell growth and downregulated Met. JQ1 inhibited HGF-induced cell growth and Met/PI3K/Akt activation, also inhibited A549 tumor growth in xenograft mouse models, in parallel with Met downregulation. Moreover, JQ1 inhibited the growth of paired erlotinib-sensitive and resistant HCC827 cells in parallel with Met downregulation and PI3K/Akt signaling inactivation. JQ1 also exerted inhibitory influences on the growth of erlotinib-sensitive and resistant HCC827 tumors in xenograft mouse models. These results suggested that targeting BET proteins inhibited NSCLC via downregulating Met and inactivating PI3K/AKT pathway. Our findings reveal a novel mechanism of BET proteins implicated in NSCLC progression with Met taken into consideration.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurology, Affiliated Nanjing Jiangbei Hospital of Nantong University, Nanjing, Jiangsu, China
| | - Ping Ni
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zuhao Zhang
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Geng Sun
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haijun Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhixiang Cheng
- Department of Oncology Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Chen C, Lu T, Chen P, Li Z, Yang Y, Fan S, Zhang Y, Chen K, Fu W, Wang Y, Luo C, Zhou B. Cyclization strategy leads to highly potent Bromodomain and extra-terminal (BET) Bromodomain inhibitors for the treatment of acute liver injury. Eur J Med Chem 2023; 247:115023. [PMID: 36566713 DOI: 10.1016/j.ejmech.2022.115023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Acute liver injury (ALI) is characteristic of abrupt hepatic dysfunction and inflammatory response, and currently the main treatment for ALI is merely supportive rather than curative. Therefore, the development of novel and effective therapeutic strategies for ALI therapy is highly desirable. The emerging biological understanding of the role of BET Bromodomains has opened up an exciting opportunity to develop potent BET Bromodomain inhibitors as an effective therapeutic strategy for the treatment of acute liver injury. Herein, we synthesized a series of potent BET Bromodomain inhibitors with a tetracyclic scaffold, exemplified by compound 28 which showed good in vitro anti-inflammatory activity and good therapeutic effects in the LPS-induced acute liver injury model without obvious cytotoxicity, suggesting that compound 28 is a highly promising candidate worthy for further development.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China; Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tian Lu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, China; Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Panyu Chen
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Zizhou Li
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yaxi Yang
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shijie Fan
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Zhang
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kaixian Chen
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China.
| | - Cheng Luo
- Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China; Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Engineering of Chinese hamster ovary cells for co-overexpressing MYC and XBP1s increased cell proliferation and recombinant EPO production. Sci Rep 2023; 13:1482. [PMID: 36707606 PMCID: PMC9883479 DOI: 10.1038/s41598-023-28622-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.
Collapse
|
24
|
EGFR Pathway Expression Persists in Recurrent Glioblastoma Independent of Amplification Status. Cancers (Basel) 2023; 15:cancers15030670. [PMID: 36765632 PMCID: PMC9913094 DOI: 10.3390/cancers15030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Glioblastoma mortality is driven by tumour progression or recurrence despite administering a therapeutic arsenal consisting of surgical resection, radiation, and alkylating chemotherapy. The genetic changes underlying tumour progression and chemotherapy resistance are poorly understood. METHODS In this study, we sought to define the relationship between EGFR amplification status, EGFR mRNA expression, and EGFR pathway activity. We compared RNA-sequencing data from matched primary and recurrent tumour samples (n = 40 patients, 20 with EGFR amplification). RESULTS In the setting of glioblastoma recurrence, the EGFR pathway was overexpressed regardless of EGFR-amplification status, suggesting a common genomic endpoint in recurrent glioblastoma, although EGFR amplification did associate with higher EGFR mRNA expression. Three of forty patients in the study cohort had EGFR-amplified tumours and received targeted EGFR therapy. Their molecular subtypes and clinical outcomes did not significantly differ from patients who received conventional chemotherapy. CONCLUSION Our findings suggest that while the EGFR amplification may confer a unique molecular profile in primary glioblastoma, pathway analysis reveals upregulation of the EGFR pathway in recurrence, regardless of amplification status. As such, the EGFR pathway may be a key mediator of glioblastoma progression.
Collapse
|
25
|
BET protein inhibition sensitizes glioblastoma cells to temozolomide treatment by attenuating MGMT expression. Cell Death Dis 2022; 13:1037. [PMID: 36513631 PMCID: PMC9747918 DOI: 10.1038/s41419-022-05497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of γ-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylguanine-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50% of patients whose glioblastoma exert an unmethylated MGMT promoter.
Collapse
|
26
|
Gonzalez MA, Olivas IM, Bencomo‐Alvarez AE, Rubio AJ, Barreto‐Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV, Schenkel K, Reffell K, Perkins M, Nguyen N, Apaflo JN, Alvidrez E, Young JE, Lara JJ, Yan D, Senina A, Ahmann J, Varley KE, Mason CC, Eide CA, Druker BJ, Nurunnabi M, Padilla O, Bajpeyi S, Eiring AM. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med 2022; 12:e1146. [PMID: 36536477 PMCID: PMC9763536 DOI: 10.1002/ctm2.1146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.
Collapse
Affiliation(s)
- Mayra A. Gonzalez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Idaly M. Olivas
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Alfonso E. Bencomo‐Alvarez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Andres J. Rubio
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | | | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sara K. Dang
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Emily McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Gonzalo Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Katherine Schenkel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Kelaiah Reffell
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Mariah Perkins
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Nhu Nguyen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jehu N. Apaflo
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Efren Alvidrez
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Joshua J. Lara
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Dongqing Yan
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anna Senina
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jonathan Ahmann
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | | | - Clinton C. Mason
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Christopher A. Eide
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Brian J. Druker
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Osvaldo Padilla
- Department of PathologyTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sudip Bajpeyi
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Anna M. Eiring
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| |
Collapse
|
27
|
Pharmacophore-Model-Based Virtual-Screening Approaches Identified Novel Natural Molecular Candidates for Treating Human Neuroblastoma. Curr Issues Mol Biol 2022; 44:4838-4858. [PMID: 36286044 PMCID: PMC9600652 DOI: 10.3390/cimb44100329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.
Collapse
|
28
|
BH3 mimetic drugs cooperate with Temozolomide, JQ1 and inducers of ferroptosis in killing glioblastoma multiforme cells. Cell Death Differ 2022; 29:1335-1348. [PMID: 35332309 DOI: 10.1038/s41418-022-00977-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.
Collapse
|
29
|
Guo Z, Sun Y, Liang L, Lu W, Luo B, Wu Z, Huo B, Hu Y, Huang P, Wu Q, Wen S. Design and Synthesis of Dual EZH2/BRD4 Inhibitors to Target Solid Tumors. J Med Chem 2022; 65:6573-6592. [PMID: 35500243 DOI: 10.1021/acs.jmedchem.1c01876] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
EZH2 inhibitors that prevent trimethylation of histone lysine 27 (H3K27) are often limited to the treatment of a subset of hematological malignancies. In most solid tumors, EZH2 inhibitors induce reciprocal H3K27 acetylation that subsequently results in acquired drug resistance. The combination of EZH2 and BRD4 inhibitors to resensitize solid cancer cells to EZH2 inhibitors has proven to be effective, underlying the significance of developing dual inhibitors. Herein, we present the design, synthesis, and biological evaluation of first-in-class dual EZH2/BRD4 inhibitors. Our most promising compound, YM458, displays potent inhibitory activity against EZH2 and BRD4 and remarkable antiproliferative capacity against 11 solid cancer cell lines. Its in vivo therapeutic potential is validated in both lung cancer and pancreatic cancer xenograft tumor mice models, highlighting the potential of EZH2/BRD4 dual inhibitors to target a broad scope of EZH2 inhibitor-resistant solid tumors.
Collapse
Affiliation(s)
- Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Qiang Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau 999078
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| |
Collapse
|
30
|
R132H IDH1 sensitizes glioma to the antiproliferative and cytotoxic effects of BET inhibition. J Cancer Res Clin Oncol 2022; 148:2275-2285. [PMID: 35467128 PMCID: PMC9349147 DOI: 10.1007/s00432-022-04018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
Introduction Mutations in isocitrate dehydrogenase 1/2 (IDHmut) identify a subset of gliomas that exhibit epigenetic dysregulation via aberrant DNA methylation. These tumors are ultimately fatal and lack effective therapeutic strategies. Considering the epigenetic dysregulation of IDHmut gliomas, we hypothesized that epigenetic-targeting drugs may yield therapeutic benefits in gliomas bearing IDHmut. One set of targets includes the bromodomain and extraterminal (BET) family of transcriptional coactivators. Methods We used TCGA data from glioma patients to determine whether BET proteins affect patient survival differently based on IDH status. Follow-up experiments using a set of IDH wildtype/mutant glioma cultures, as well as an IDH wildtype glioblastoma cell line expressing exogenous R132H IDH1, focused on cell health assays to investigate whether IDHmut was associated with increased sensitivity to the BET inhibitor JQ1. Immunoblots were used to evaluate the molecular response to JQ1 in these cultures. Results We identified that high BRD4 expression associated with decreased survival only in IDHmut glioma patients. Cell viability analysis showed that IDHmut sensitized glioma cells to delayed cytotoxicity (10 days) in response to JQ1. Early effects of JQ1 (3 days) were primarily antiproliferative, with IDHmut glioma exhibiting a modest increase in sensitivity. Finally, exogenous R132H IDH1 expression in a resistant IDH wildtype cell line recapitulated the JQ1-mediated delayed cytotoxicity seen in our endogenous IDHmut glioma cells. Conclusion Overall, these data suggest that BRD4 enhances malignancy primarily in gliomas bearing IDHmut and is associated with greater sensitivity to BET inhibition. The finding that BET inhibition primarily exhibits delayed cytotoxicity may be overlooked in conventional short endpoint dose–response assays. Follow-up mechanistic and animal studies will help address the translational potential of these findings. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04018-w.
Collapse
|
31
|
Lemelle L, Moya-Plana A, Dumont B, Fresneau B, Laprie A, Claude L, Deneuve S, Cordero C, Pierron G, Couloigner V, Bernard S, Cardoen L, Brisse HJ, Jehanno N, Metayer L, Fréneaux P, Helfre S, Kolb F, Thariat J, Réguerre Y, Orbach D. NUT carcinoma in children, adolescents and young adults. Bull Cancer 2022; 109:491-504. [DOI: 10.1016/j.bulcan.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/22/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022]
|
32
|
Mathias TJ, Ju JA, Lee RM, Thompson KN, Mull ML, Annis DA, Chang KT, Ory EC, Stemberger MB, Hotta T, Ohi R, Vitolo MI, Moutin MJ, Martin SS. Tubulin Carboxypeptidase Activity Promotes Focal Gelatin Degradation in Breast Tumor Cells and Induces Apoptosis in Breast Epithelial Cells That Is Overcome by Oncogenic Signaling. Cancers (Basel) 2022; 14:1707. [PMID: 35406479 PMCID: PMC8996877 DOI: 10.3390/cancers14071707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Post-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin (VASH1/2) coupled with a small vasohibin-binding protein (SVBP) allows for the functional effect of this tubulin PTM to be directly tested for the first time. Our studies revealed the immortalized breast epithelial cell line MCF10A undergoes apoptosis following transfection with TCP constructs, but the addition of oncogenic KRas or Bcl-2/Bcl-xL overexpression prevents subsequent apoptotic induction in the MCF10A background. Functionally, an increase in deTyr-Tub via TCP transfection in MDA-MB-231 and Hs578t breast cancer cells leads to enhanced focal gelatin degradation. Given the elevated deTyr-Tub at invasive tumor fronts and the correlation with poor breast cancer survival, these new discoveries help clarify how the TCP synergizes with oncogene activation, increases focal gelatin degradation, and may correspond to increased tumor cell invasion. These connections could inform more specific microtubule-directed therapies to target deTyr-tubulin.
Collapse
Affiliation(s)
- Trevor J. Mathias
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
- Medical Scientist Training Program (MSTP), University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Rachel M. Lee
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Epidemiology and Human Genetics, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, 800 W. Baltimore St., Baltimore, MD 21201, USA
| | - Eleanor C. Ory
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Graduate Program in Biochemistry & Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; (T.H.); (R.O.)
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France;
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA; (T.J.M.); (J.A.J.); (R.M.L.); (K.N.T.); (M.L.M.); (D.A.A.); (K.T.C.); (E.C.O.); (M.B.S.); (M.I.V.)
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Li J, Zhang C, Xu H, Wang C, Dong R, Shen H, Zhuang X, Chen X, Li Q, Lu J, Zhang M, Wu X, Loomes KM, Zhou Y, Zhang Y, Liu J, Xu Y. Structure-Based Discovery and Optimization of Furo[3,2- c]pyridin-4(5 H)-one Derivatives as Potent and Second Bromodomain (BD2)-Selective Bromo and Extra Terminal Domain (BET) Inhibitors. J Med Chem 2022; 65:5760-5799. [PMID: 35333526 DOI: 10.1021/acs.jmedchem.2c00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Hongrui Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chao Wang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Ruibo Dong
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Hui Shen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaoshan Chen
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Jibu Lu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Maofeng Zhang
- College of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Kerry M Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Yulai Zhou
- School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jinsong Liu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.,Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
34
|
Zhou J, Duan M, Jiao Q, Chen C, Xing A, Su P, Tang J, Zhang H, Liu Z. Primary Thyroid NUT Carcinoma With High PD-L1 Expression and Novel Massive IGKV Gene Fusions: A Case Report With Treatment Implications and Literature Review. Front Oncol 2022; 11:778296. [PMID: 35127482 PMCID: PMC8807656 DOI: 10.3389/fonc.2021.778296] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background Nuclear protein in testis (NUT) carcinoma (NC) is a rare and aggressive undifferentiated carcinoma that typically arises from midline supradiaphragmatic structures. It is uniquely driven by a NUT gene rearrangement on chromosome 15q14. Few thyroid NCs have been reported and there are no established treatment guidelines for NUT carcinoma. Method Ultrasound-guided fine needle aspiration smear was performed for the preoperative diagnosis of thyroid lesions. Cytopathology, histology, and immunochemical staining all indicated NC. Fluorescence in situ hybridization (FISH), qRT-PCR, and next-generation sequencing (NGS) were used to analyze the genetic characteristics of NC. Results We describe a rare case of thyrogenic NC in a 38-year-old male with cytological, histological, immunohistochemical, and genetic features. Cytological smears and histopathological specimens showed typical features of NC. Immunohistochemistry confirmed strong immunoreactivity with NUT, EMA, P63, TTF-1, and c-myc. CK19 was positive exclusively in sudden keratosis. No immunoreactivity was found for neuroendocrine markers. FISH was applied to isolate the NUT gene on chromosome 15q14. The NGS results revealed a BRD4-NUT gene fusion, which was further confirmed by RT-qPCR. Structural variation (SV) of NUTM1 occurred in the exon region, and the mutation site was 15q14. Moreover, BRD4 single-nucleotide variation (SNV) occurs in the 3′ UTR at mutation site 19p13.12. The PD-L1 combined predictive score was over 30%. The patient received chemotherapy, followed by programmed cell death 1 (PD-1) inhibition with camrelizumab, and died 10 months after surgery. Conclusion Thyroid NC is an extremely rare and fatal malignant tumor. It is necessary to consider NC when squamous differentiation is observed cytologically or histologically. NGS is an effective tool for obtaining the final diagnosis and obtaining a better understanding of tumor pathogenesis. A large number of IGKV gene fusions in addition to the BRD4-NUT fusion may play a role in the pathogenesis and immunotherapy response of NC. Immunotherapy for NC remains to be explored due to the rarity of this aggressive malignancy.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Miao Duan
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chunyan Chen
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Aiyan Xing
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Tang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Hui Zhang, ; Zhiyan Liu,
| | - Zhiyan Liu
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Hui Zhang, ; Zhiyan Liu,
| |
Collapse
|
35
|
Fourniols T, Maggio V, Rafael D, Colaco A, García Vidal E, Lopes A, Schwartz S, Martínez-Barriocanal Á, Preat V, Arango D. Colorectal cancer inhibition by BET inhibitor JQ1 is MYC-independent and not improved by nanoencapsulation. Eur J Pharm Biopharm 2022; 171:39-49. [PMID: 34998911 DOI: 10.1016/j.ejpb.2021.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Bromodomain and extraterminal domain protein inhibitors (BETi) for cancer treatment did not convince during their first clinical trials. Their epigenetic mechanism of action is still not well understood, even if MYC is generally considered as its main downstream target. In this context, we intended to assess two new nanoformulations of the BETi JQ1 for the treatment of colorectal cancer (CRC). JQ1 was encapsulated at 10 mg/mL in lipid nanocapsules (LNC) or polymeric micelles (PM), both compatible for an intravenous administration. Their effect was compared with free JQ1 on several CRC cell lines in vitro and with daily intraperitoneal cyclodextrin (CD)-loaded JQ1 on the CT26 CRC tumor model in vivo. We showed that LNC preferentially accumulated in tumor, liver, and lymph nodes. LNC-JQ1 and CD-JQ1 similarly delayed tumor growth and increased median survival from 15 to 23 or 20.5 days. JQ1 altered MYC in only two among four CRC cell lines. This MYC-independence found in CT26 was confirmed in vivo by PCR and immunohistochemistry. The main explanation of the JQ1 anticancer effect was an increase in apoptosis. The investigation of its impact on the tumor microenvironment did not show significant effects. Finally, JQ1 association with irinotecan did not synergize in vivo with JQ1 nanoformulations. In conclusion, we demonstrated that the JQ1 anticancer effect was not improved by nanoencapsulation even if their tumor delivery was probably higher. MYC inhibition was not associated to JQ1 efficacy in the case of the CT26 CRC murine model.
Collapse
Affiliation(s)
- Thibaut Fourniols
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Valentina Maggio
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Diana Rafael
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ariana Colaco
- UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria
| | - Elia García Vidal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Alessandra Lopes
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium
| | - Simo Schwartz
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria
| | - Veronique Preat
- University of Louvain, Louvain drug research Institute, Advanced drug delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200 Brussels, Belgium.
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, 08035 Barcelona, Spain; UCLouvain, LDRI (as T Fourniols, V.Preat) Centro hospitalar universitario lisboa norte, hospital de Santa Maria.
| |
Collapse
|
36
|
Vieito M, Simonelli M, de Vos F, Moreno V, Geurts M, Lorenzi E, Macchini M, van den Bent MJ, Del Conte G, de Jonge M, Martín-Soberón MC, Amoroso B, Sanchez-Perez T, Zuraek M, Hanna B, Aronchik I, Filvaroff E, Chang H, Mendez C, Arias Parro M, Wei X, Nikolova Z, Sepulveda JM. Trotabresib (CC-90010) in combination with adjuvant temozolomide or concomitant temozolomide plus radiotherapy in patients with newly diagnosed glioblastoma. Neurooncol Adv 2022; 4:vdac146. [PMID: 36382109 PMCID: PMC9653173 DOI: 10.1093/noajnl/vdac146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background Standard-of-care treatment for newly diagnosed glioblastoma (ndGBM), consisting of surgery followed by radiotherapy (RT) and temozolomide (TMZ), has improved outcomes compared with RT alone; however, prognosis remains poor. Trotabresib, a novel bromodomain and extraterminal inhibitor, has demonstrated antitumor activity in patients with high-grade gliomas. Methods In this phase Ib, dose-escalation study (NCT04324840), we investigated trotabresib 15, 30, and 45 mg combined with TMZ in the adjuvant setting and trotabresib 15 and 30 mg combined with TMZ+RT in the concomitant setting in patients with ndGBM. Primary endpoints were to determine safety, tolerability, maximum tolerated dose, and/or recommended phase II dose (RP2D) of trotabresib. Secondary endpoints were assessment of preliminary efficacy and pharmacokinetics. Pharmacodynamics were investigated as an exploratory endpoint. Results The adjuvant and concomitant cohorts enrolled 18 and 14 patients, respectively. Trotabresib in combination with TMZ or TMZ+RT was well tolerated; most treatment-related adverse events were mild or moderate. Trotabresib pharmacokinetics and pharmacodynamics in both settings were consistent with previous data for trotabresib monotherapy. The RP2D of trotabresib was selected as 30 mg 4 days on/24 days off in both settings. At last follow-up, 5 (28%) and 6 (43%) patients remain on treatment in the adjuvant and concomitant settings, respectively, with 1 patient in the adjuvant cohort achieving complete response. Conclusions Trotabresib combined with TMZ in the adjuvant setting and with TMZ+RT in the concomitant setting was safe and well tolerated in patients with ndGBM, with encouraging treatment durations. Trotabresib 30 mg was established as the RP2D in both settings.
Collapse
Affiliation(s)
- Maria Vieito
- Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Matteo Simonelli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Filip de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Marina Macchini
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Gianluca Del Conte
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maja de Jonge
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Maria Cruz Martín-Soberón
- Neuro-Oncology Unit, Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Barbara Amoroso
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Tania Sanchez-Perez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | | | | | | | - Henry Chang
- Bristol Myers Squibb, San Francisco, CA, USA
| | - Cristina Mendez
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | | - Xin Wei
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Zariana Nikolova
- Centre for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | | |
Collapse
|
37
|
Rashkovan M, Albero R, Gianni F, Perez-Duran P, Miller HI, Mackey AL, Paietta EM, Tallman MS, Rowe JM, Litzow MR, Wiernik PH, Luger S, Sulis ML, Soni RK, Ferrando AA. Intracellular cholesterol pools regulate oncogenic signaling and epigenetic circuitries in Early T-cell Precursor Acute Lymphoblastic Leukemia. Cancer Discov 2021; 12:856-871. [PMID: 34711640 DOI: 10.1158/2159-8290.cd-21-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Early T-cell acute lymphoblastic leukemia (ETP-ALL) is an aggressive hematologic malignancy associated with early relapse and poor prognosis that is genetically, immunophenotypically and transcriptionally distinct from more mature T-cell acute lymphoblastic (T-ALL) tumors. Here, we leveraged global metabolomic and transcriptomic profiling of primary ETP and T-ALL leukemia samples to identify specific metabolic circuitries differentially active in this high-risk leukemia group. ETP-ALLs showed increased biosynthesis of phospholipids and sphingolipids, and were specifically sensitive to inhibition of 3-hydroxy-3-methylglutaryl-CoA Reductase (HMGCR), the rate-limiting enzyme in the mevalonate pathway. Mechanistically, inhibition of cholesterol synthesis inhibited oncogenic AKT1 signaling and suppressed MYC expression via loss of chromatin accessibility at a leukemia stem cell-specific long range MYC enhancer. In all, these results identify the mevalonate pathway as a druggable novel vulnerability in high-risk ETP-ALL cells and uncover an unanticipated critical role for cholesterol biosynthesis in signal transduction and epigenetic circuitries driving leukemia cell growth and survival.
Collapse
Affiliation(s)
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center
| | | | - Hannah I Miller
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Adam L Mackey
- Institute for Cancer Genetics, Columbia University Medical Center
| | - Elisabeth M Paietta
- Montefiore Medical Center-North Division, Albert Einstein College of Medicine
| | - Martin S Tallman
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center
| | - Jacob M Rowe
- Department of Hematology and Bone Marrow Transplantation, Rambam Medical Center and Technion
| | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic
| | | | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania
| | | | - Rajesh K Soni
- Proteomics Core Facility, Columbia University Medical Center
| | | |
Collapse
|
38
|
Gavai AV, Norris D, Delucca G, Tortolani D, Tokarski JS, Dodd D, O'Malley D, Zhao Y, Quesnelle C, Gill P, Vaccaro W, Huynh T, Ahuja V, Han WC, Mussari C, Harikrishnan L, Kamau M, Poss M, Sheriff S, Yan C, Marsilio F, Menard K, Wen ML, Rampulla R, Wu DR, Li J, Zhang H, Li P, Sun D, Yip H, Traeger SC, Zhang Y, Mathur A, Zhang H, Huang C, Yang Z, Ranasinghe A, Everlof G, Raghavan N, Tye CK, Wee S, Hunt JT, Vite G, Westhouse R, Lee FY. Discovery and Preclinical Pharmacology of an Oral Bromodomain and Extra-Terminal (BET) Inhibitor Using Scaffold-Hopping and Structure-Guided Drug Design. J Med Chem 2021; 64:14247-14265. [PMID: 34543572 DOI: 10.1021/acs.jmedchem.1c00625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of the bromodomain and extra-terminal (BET) family of adaptor proteins is an attractive strategy for targeting transcriptional regulation of key oncogenes, such as c-MYC. Starting with the screening hit 1, a combination of structure-activity relationship and protein structure-guided drug design led to the discovery of a differently oriented carbazole 9 with favorable binding to the tryptophan, proline, and phenylalanine (WPF) shelf conserved in the BET family. Identification of an additional lipophilic pocket and functional group optimization to optimize pharmacokinetic (PK) properties culminated in the discovery of 18 (BMS-986158) with excellent potency in binding and functional assays. On the basis of its favorable PK profile and robust in vivo activity in a panel of hematologic and solid tumor models, BMS-986158 was selected as a candidate for clinical evaluation.
Collapse
Affiliation(s)
- Ashvinikumar V Gavai
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Derek Norris
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - George Delucca
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - David Tortolani
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John S Tokarski
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dharmpal Dodd
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Daniel O'Malley
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yufen Zhao
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Claude Quesnelle
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Patrice Gill
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Wayne Vaccaro
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Tram Huynh
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Vijay Ahuja
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Wen-Ching Han
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Christopher Mussari
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Lalgudi Harikrishnan
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Muthoni Kamau
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Michael Poss
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Steven Sheriff
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Chunhong Yan
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Frank Marsilio
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Krista Menard
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Mei-Li Wen
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Rampulla
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dauh-Rurng Wu
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Jianqing Li
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Huiping Zhang
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Peng Li
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Dawn Sun
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Henry Yip
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Sarah C Traeger
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Yingru Zhang
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Haiying Zhang
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Christine Huang
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zheng Yang
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Asoka Ranasinghe
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Gerry Everlof
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Nirmala Raghavan
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Ching Kim Tye
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Susan Wee
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - John T Hunt
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Gregory Vite
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard Westhouse
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Francis Y Lee
- Research and Development, Bristol Myers Squibb Company, P. O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
39
|
Lucas SCC, Atkinson SJ, Chung CW, Davis R, Gordon L, Grandi P, Gray JJR, Grimes T, Phillipou A, Preston AG, Prinjha RK, Rioja I, Taylor S, Tomkinson NCO, Wall I, Watson RJ, Woolven J, Demont EH. Optimization of a Series of 2,3-Dihydrobenzofurans as Highly Potent, Second Bromodomain (BD2)-Selective, Bromo and Extra-Terminal Domain (BET) Inhibitors. J Med Chem 2021; 64:10711-10741. [PMID: 34260229 DOI: 10.1021/acs.jmedchem.1c00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Herein, a series of 2,3-dihydrobenzofurans have been developed as highly potent bromo and extra-terminal domain (BET) inhibitors with 1000-fold selectivity for the second bromodomain (BD2) over the first bromodomain (BD1). Investment in the development of two orthogonal synthetic routes delivered inhibitors that were potent and selective but had raised in vitro clearance and suboptimal solubility. Insertion of a quaternary center into the 2,3-dihydrobenzofuran core blocked a key site of metabolism and improved the solubility. This led to the development of inhibitor 71 (GSK852): a potent, 1000-fold-selective, highly soluble compound with good in vivo rat and dog pharmacokinetics.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 259 Cathedral Street, Glasgow G1 1XL, U.K
| | | | | | | | | |
Collapse
|
40
|
Rianjongdee F, Atkinson SJ, Chung CW, Grandi P, Gray JRJ, Kaushansky LJ, Medeiros P, Messenger C, Phillipou A, Preston A, Prinjha RK, Rioja I, Satz AL, Taylor S, Wall ID, Watson RJ, Yao G, Demont EH. Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. J Med Chem 2021; 64:10806-10833. [PMID: 34251219 DOI: 10.1021/acs.jmedchem.1c00412] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744. Following a structure-based hypothesis for the selectivity and optimization of the physicochemical properties of the series, we identified 60 (GSK040), an in vitro ready and in vivo capable BET BD2-inhibitor of unprecedented selectivity (5000-fold) against BET BD1, excellent selectivity against other bromodomains, and good physicochemical properties. This novel chemical probe can be added to the toolbox used in the advancement of epigenetics research.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | - Laura J Kaushansky
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | - Patricia Medeiros
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | | | | | | | | | | | | | | | | | | - Gang Yao
- Encoded Library Technologies, R&D Medicinal Science and Technology, GSK, 200 Cambridge Park Drive, Cambridge 02140, Massachusetts, United States
| | | |
Collapse
|
41
|
Harrison LA, Atkinson SJ, Bassil A, Chung CW, Grandi P, Gray JRJ, Levernier E, Lewis A, Lugo D, Messenger C, Michon AM, Mitchell DJ, Preston A, Prinjha RK, Rioja I, Seal JT, Taylor S, Wall ID, Watson RJ, Woolven JM, Demont EH. Identification of a Series of N-Methylpyridine-2-carboxamides as Potent and Selective Inhibitors of the Second Bromodomain (BD2) of the Bromo and Extra Terminal Domain (BET) Proteins. J Med Chem 2021; 64:10742-10771. [PMID: 34232650 DOI: 10.1021/acs.jmedchem.0c02155] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype. Focusing on achieving >1000-fold selectivity for BD2 over BD1 ,while retaining favorable physical chemical properties, compound 36 was identified as being 2000-fold selective for BD2 over BD1 (Brd4 data) with >1 mg/mL solubility in FaSSIF media. 36 represents a valuable new in vivo ready molecule for the exploration of the BD2 phenotype.
Collapse
Affiliation(s)
- Lee A Harrison
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Stephen J Atkinson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anna Bassil
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Chun-Wa Chung
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Paola Grandi
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - James R J Gray
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Etienne Levernier
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Antonia Lewis
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - David Lugo
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Cassie Messenger
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Anne-Marie Michon
- IVIVT Cellzome, Platform Technology and Science, GlaxoSmithKline, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Darren J Mitchell
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Alex Preston
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Rab K Prinjha
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Inmaculada Rioja
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Jonathan T Seal
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Simon Taylor
- Quantitative Pharmacology, Immunoinflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Robert J Watson
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - James M Woolven
- Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Emmanuel H Demont
- Epigenetics Discovery Performance Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
42
|
Wang X, Kutschat AP, Yamada M, Prokakis E, Böttcher P, Tanaka K, Doki Y, Hamdan FH, Johnsen SA. Bromodomain protein BRDT directs ΔNp63 function and super-enhancer activity in a subset of esophageal squamous cell carcinomas. Cell Death Differ 2021; 28:2207-2220. [PMID: 33658703 PMCID: PMC8257622 DOI: 10.1038/s41418-021-00751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer with a particularly high prevalence in certain geographical regions and a poor prognosis with a 5-year survival rate of 15-25%. Despite numerous studies characterizing the genetic and transcriptomic landscape of ESCC, there are currently no effective targeted therapies. In this study, we used an unbiased screening approach to uncover novel molecular precision oncology targets for ESCC and identified the bromodomain and extraterminal (BET) family member bromodomain testis-specific protein (BRDT) to be uniquely expressed in a subgroup of ESCC. Experimental studies revealed that BRDT expression promotes migration but is dispensable for cell proliferation. Further mechanistic insight was gained through transcriptome analyses, which revealed that BRDT controls the expression of a subset of ΔNp63 target genes. Epigenome and genome-wide occupancy studies, combined with genome-wide chromatin interaction studies, revealed that BRDT colocalizes and interacts with ΔNp63 to drive a unique transcriptional program and modulate cell phenotype. Our data demonstrate that these genomic regions are enriched for super-enhancers that loop to critical ΔNp63 target genes related to the squamous phenotype such as KRT14, FAT2, and PTHLH. Interestingly, BET proteolysis-targeting chimera, MZ1, reversed the activation of these genes. Importantly, we observed a preferential degradation of BRDT by MZ1 compared with BRD2, BRD3, and BRD4. Taken together, these findings reveal a previously unknown function of BRDT in ESCC and provide a proof-of-concept that BRDT may represent a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ana P Kutschat
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Moyuru Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Evangelos Prokakis
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Patricia Böttcher
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany.
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Wang J, Huang TYT, Hou Y, Bartom E, Lu X, Shilatifard A, Yue F, Saratsis A. Epigenomic landscape and 3D genome structure in pediatric high-grade glioma. SCIENCE ADVANCES 2021; 7:7/23/eabg4126. [PMID: 34078608 PMCID: PMC10166578 DOI: 10.1126/sciadv.abg4126] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/16/2021] [Indexed: 05/10/2023]
Abstract
Pediatric high-grade gliomas (pHGGs), including glioblastoma multiforme (GBM) and diffuse intrinsic pontine glioma (DIPG), are morbid brain tumors. Even with treatment survival is poor, making pHGG the number one cause of cancer death in children. Up to 80% of DIPGs harbor a somatic missense mutation in genes encoding histone H3. To investigate whether H3K27M is associated with distinct chromatin structure that alters transcription regulation, we generated the first high-resolution Hi-C maps of pHGG cell lines and tumor tissue. By integrating transcriptome (RNA-seq), enhancer landscape (ChIP-seq), genome structure (Hi-C), and chromatin accessibility (ATAC-seq) datasets from H3K27M and wild-type specimens, we identified tumor-specific enhancers and regulatory networks for known oncogenes. We identified genomic structural variations that lead to potential enhancer hijacking and gene coamplification, including A2M, JAG2, and FLRT1 Together, our results imply three-dimensional genome alterations may play a critical role in the pHGG epigenetic landscape and contribute to tumorigenesis.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tina Yi-Ting Huang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Amanda Saratsis
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| |
Collapse
|
45
|
Quinlan RBA, Brennan PE. Chemogenomics for drug discovery: clinical molecules from open access chemical probes. RSC Chem Biol 2021; 2:759-795. [PMID: 34458810 PMCID: PMC8341094 DOI: 10.1039/d1cb00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years chemical probes have proved valuable tools for the validation of disease-modifying targets, facilitating investigation of target function, safety, and translation. Whilst probes and drugs often differ in their properties, there is a belief that chemical probes are useful for translational studies and can accelerate the drug discovery process by providing a starting point for small molecule drugs. This review seeks to describe clinical candidates that have been inspired by, or derived from, chemical probes, and the process behind their development. By focusing primarily on examples of probes developed by the Structural Genomics Consortium, we examine a variety of epigenetic modulators along with other classes of probe.
Collapse
Affiliation(s)
- Robert B A Quinlan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
| | - Paul E Brennan
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Old Road Campus Oxford OX3 7FZ UK
- Alzheimer's Research (UK) Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford OX3 7FZ UK
| |
Collapse
|
46
|
BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther 2021; 29:3011-3026. [PMID: 34058385 PMCID: PMC8531146 DOI: 10.1016/j.ymthe.2021.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is the deadliest brain malignancy without effective treatments. Here, we reported that epidermal growth factor receptor-targeted chimeric antigen receptor T cells (EGFR CAR-T) were effective in suppressing the growth of GBM cells in vitro and xenografts derived from GBM cell lines and patients in mice. However, mice soon acquired resistance to EGFR CAR-T cell treatment, limiting its potential use in the clinic. To find ways to improve the efficacy of EGFR CAR-T cells, we performed genomics and transcriptomics analysis for GBM cells incubated with EGFR CAR-T cells and found that a large cohort of genes, including immunosuppressive genes, as well as enhancers in vicinity are activated. BRD4, an epigenetic modulator functioning on both promoters and enhancers, was required for the activation of these immunosuppressive genes. Accordingly, inhibition of BRD4 by JQ1 blocked the activation of these immunosuppressive genes. Combination therapy with EGFR CAR-T cells and JQ1 suppressed the growth and metastasis of GBM cells and prolonged survival in mice. We demonstrated that transcriptional modulation by targeting epigenetic regulators could improve the efficacy of immunotherapy including CAR-T, providing a therapeutic avenue for treating GBM in the clinic.
Collapse
|
47
|
Gusyatiner O, Bady P, Pham MDT, Lei Y, Park J, Daniel RT, Delorenzi M, Hegi ME. BET inhibitors repress expression of Interferon-stimulated genes and synergize with HDAC inhibitors in glioblastoma. Neuro Oncol 2021; 23:1680-1692. [PMID: 33987681 PMCID: PMC8485441 DOI: 10.1093/neuonc/noab115] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The development of rational combination therapies is key to overcome inherent treatment resistance of glioblastoma (GBM). We aim at identifying new druggable targets by disturbing GBM cells with inhibitors of bromodomain and extra-terminal motif (BET) proteins to reveal cancer-relevant vulnerabilities that may sensitize to a second drug. BET proteins are epigenetic modulators and have been associated with proto-oncogene overexpression in cancer. Methods A GBM-derived sphere-line was treated with the BET inhibitor (BETi) JQ1 over a time-course of 48 hours, followed by RNA-sequencing. Four chromatin marks were investigated by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Signatures of interest were functionally validated in vitro and in orthotopic xenografts. Combination therapies were evaluated for synergistic effects. Results Cancer-relevant pathways significantly modulated by JQ1 comprised interferon alpha (IFN-α) response genes and response signatures to histone deacetylase inhibitors (HDACi). The IFN-signature was reminiscent of a GBM-derived IFN-signature comprising CD274 (PD-L1). Functional pathway analysis suggested that JQ1 was acting directly on the transcriptional level of IFN-response genes and not via the canonical JAK/STAT pathway. This was in line with JQ1 modulated expression and BRD4 and Pol II occupancy at IFN-signature genes, supporting a direct mechanistic interaction. Finally, we showed that combining HDACi with JQ1 acts synergistically in reducing cell viability of GS-lines. Conclusions Our approach identified BETi-induced vulnerabilities in cancer-relevant pathways, potentially amenable to synergistic combinatorial therapy, such as combination with HDACi. The direct inhibitory effect of BETi on IFN-responsive genes in GBM cells, including CD274, indicates modulation of the tumor immune landscape and warrants further studies.
Collapse
Affiliation(s)
- Olga Gusyatiner
- Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland.,Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL)
| | - Pierre Bady
- Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland.,Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL)
| | - Minh D T Pham
- Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Yvonne Lei
- Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Jungyeon Park
- Neuroscience Research Centre, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Roy T Daniel
- Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Ludwig Institute for Cancer Research and Department of Oncology, University of Lausanne, Epalinges, Switzerland.,Swiss Cancer Center Léman (SCCL)
| | - Monika E Hegi
- Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Swiss Cancer Center Léman (SCCL)
| |
Collapse
|
48
|
Virus-mediated inactivation of anti-apoptotic Bcl-2 family members promotes Gasdermin-E-dependent pyroptosis in barrier epithelial cells. Immunity 2021; 54:1447-1462.e5. [PMID: 33979579 DOI: 10.1016/j.immuni.2021.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Two sets of innate immune proteins detect pathogens. Pattern recognition receptors (PRRs) bind microbial products, whereas guard proteins detect virulence factor activities by the surveillance of homeostatic processes within cells. While PRRs are well known for their roles in many types of infections, the role of guard proteins in most infectious contexts remains less understood. Here, we demonstrated that inhibition of protein synthesis during viral infection is sensed as a virulence strategy and initiates pyroptosis in human keratinocytes. We identified the BCL-2 family members MCL-1 and BCL-xL as sensors of translation shutdown. Virus- or chemical-induced translation inhibition resulted in MCL-1 depletion and inactivation of BCL-xL, leading to mitochondrial damage, caspase-3-dependent cleavage of gasdermin E, and release of interleukin-1α (IL-1α). Blocking this pathway enhanced virus replication in an organoid model of human skin. Thus, MCL-1 and BCL-xL can act as guard proteins within barrier epithelia and contribute to antiviral defense.
Collapse
|
49
|
Shorstova T, Foulkes WD, Witcher M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer 2021; 124:1478-1490. [PMID: 33723398 PMCID: PMC8076232 DOI: 10.1038/s41416-021-01321-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The transcriptional upregulation of oncogenes is a driving force behind the progression of many tumours. However, until a decade ago, the concept of 'switching off' these oncogenic pathways represented a formidable challenge. Research has revealed that members of the bromo- and extra-terminal domain (BET) motif family are key activators of oncogenic networks in a spectrum of cancers; their function depends on their recruitment to chromatin through two bromodomains (BD1 and BD2). The advent of potent inhibitors of BET proteins (BETi), which target either one or both bromodomains, represents an important step towards the goal of suppressing oncogenic networks within tumours. Here, we discuss the biology of BET proteins, advances in BETi design and highlight potential biomarkers predicting their activity. We also outline the logic of incorporating BETi into combination therapies to enhance its efficacy. We suggest that understanding mechanisms of activity, defining predictive biomarkers and identifying potent synergies represents a roadmap for clinical success using BETi.
Collapse
Affiliation(s)
- Tatiana Shorstova
- grid.414980.00000 0000 9401 2774Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| | - William D. Foulkes
- grid.414980.00000 0000 9401 2774Departments of Oncology and Human Genetics, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| | - Michael Witcher
- grid.414980.00000 0000 9401 2774Departments of Oncology and Experimental Medicine, McGill University, Lady Davis Institute and Segal Cancer Centre, Jewish General Hospital, Montreal, QC Canada
| |
Collapse
|
50
|
Ni M, Li J, Zhao H, Xu F, Cheng J, Yu M, Ke G, Wu X. BRD4 inhibition sensitizes cervical cancer to radiotherapy by attenuating DNA repair. Oncogene 2021; 40:2711-2724. [PMID: 33712705 DOI: 10.1038/s41388-021-01735-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023]
Abstract
Cisplatin-based chemoradiotherapy is the recommended treatment for local advanced cervical cancer, but radioresistance remains one of the most important and unresolved clinical problems. Investigations have revealed aberrant epigenetic modifications as one of the chief culprits for the development of radioresistance. Here, we attempt to identify a radiosensitizer from an epigenetic drug synergy screen and explore the underlying mechanism. We integrated epigenetic inhibitors and radiotherapy in cervical cancer cell lines to identify potential radiosensitizers. We further verified the sensitization effect of the drug and the function of its target gene both in vitro and in vivo. Finally, we validated the clinical significance of its target gene in clinical cervical cancer specimens. We identified JQ1, a BRD4 inhibitor, as a potent radiosensitizer. Functional assays demonstrated that repressing BRD4 activity led to significant radiosensitization and potentiation of DNA damage in cervical cancer cell lines. By using RNA-seq to determine JQ1-mediated changes in transcription, we identified RAD51AP1 as a major BRD4 target gene involved in radiosensitivity. A dual-luciferase reporter assay and ChIP-qPCR showed that BRD4 binds to the promoter region of RAD51AP1 and promotes its transcription, whereas this activity was attenuated by BRD4 inhibition. The in vivo experiments also suggested a synergy between BRD4 inhibition and radiotherapy. High BRD4 expression was found to be related to a worse prognosis and radiation resistance. BRD4 inhibition sensitizes cervical cancer to radiotherapy by inhibiting RAD51AP1 transcription. The combination of JQ1 with radiotherapy merits further evaluation as a therapeutic strategy for improving local control in cervical cancer.
Collapse
Affiliation(s)
- Mengdong Ni
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haiyun Zhao
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Cheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min Yu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guihao Ke
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|