1
|
Sun J, Zhang Y, Adams JA, Higgins CB, Kelly SC, Zhang H, Cho KY, Johnson UG, Swarts BM, Wada SI, Patti GJ, Shriver LP, Finck BN, Herzog ED, DeBosch BJ. Hepatocyte Period 1 dictates oxidative substrate selection independent of the core circadian clock. Cell Rep 2024; 43:114865. [PMID: 39412985 DOI: 10.1016/j.celrep.2024.114865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Organisms integrate circadian and metabolic signals to optimize substrate selection to survive starvation, yet precisely how this occurs is unclear. Here, we show that hepatocyte Period 1 (Per1) is selectively induced during fasting, and mice lacking hepatocyte Per1 fail to initiate autophagic flux, ketogenesis, and lipid accumulation. Transcriptomic analyses show failed induction of the fasting hepatokine Fgf21 in Per1-deficient mice, and single-nucleus multiome sequencing defines a putative responding hepatocyte subpopulation that fails to induce the chromatin accessibility near the Fgf21 locus. In vivo isotopic tracing and indirect calorimetry demonstrate that hepatocyte Per1-deficient mice fail to transit from oxidation of glucose to fat, which is completely reversible by exogenous FGF21 or by inhibiting pyruvate dehydrogenase. Strikingly, disturbing other core circadian genes does not perturb Per1 induction during fasting. We thus describe Per1 as an important mechanism by which hepatocytes integrate internal circadian rhythm and external nutrition signals to facilitate proper fuel utilization.
Collapse
Affiliation(s)
- Jiameng Sun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yiming Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua A Adams
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cassandra B Higgins
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon C Kelly
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin Y Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ulysses G Johnson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Benjamin M Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA; Biochemistry, Cellular, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Shun-Ichi Wada
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian J DeBosch
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Li L, Zhang Y, Tang Q, Wu C, Yang M, Hu Y, Gong Z, Shi L, Guo C, Zeng Z, Chen P, Xiong W. Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01000-1. [PMID: 39373857 DOI: 10.1007/s13402-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Chunyu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yan Hu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410012, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
3
|
Chen F, Xue Y, Zhang W, Zhou H, Zhou Z, Chen T, YinWang E, Li H, Ye Z, Gao J, Wang S. The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy. Cancer Metastasis Rev 2024:10.1007/s10555-024-10211-9. [PMID: 39307891 DOI: 10.1007/s10555-024-10211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/08/2024] [Indexed: 11/05/2024]
Abstract
Mitochondria are central actors in diverse physiological phenomena ranging from energy metabolism to stress signaling and immune modulation. Accumulating scientific evidence points to the critical involvement of specific mitochondrial-associated events, including mitochondrial quality control, intercellular mitochondrial transfer, and mitochondrial genetics, in potentiating the metastatic cascade of neoplastic cells. Furthermore, numerous recent studies have consistently emphasized the highly significant role mitochondria play in coordinating the regulation of tumor-infiltrating immune cells and immunotherapeutic interventions. This review provides a comprehensive and rigorous scholarly investigation of this subject matter, exploring the intricate mechanisms by which mitochondria contribute to tumor metastasis and examining the progress of mitochondria-targeted cancer therapies.
Collapse
Affiliation(s)
- Fanglu Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yucheng Xue
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenkan Zhang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Zhou
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiyi Zhou
- The First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Tao Chen
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Eloy YinWang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengyuan Li
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoming Ye
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Shengdong Wang
- Department of Orthopedics, Musculoskeletal Tumor Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, P.R. China.
- Institute of Orthopedic Research, Zhejiang University, Hangzhou, 310009, P.R. China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Feng Y, Luo H, Huang J, Zhang Y, Wen J, Li L, Mi Z, Gao Q, He S, Liu X, Zhai X, Wang X, Zhang L, Niu T, Zheng Y. Dihydrolipoamide dehydrogenase (DLD) is a novel molecular target of bortezomib. Cell Death Dis 2024; 15:588. [PMID: 39138149 PMCID: PMC11322525 DOI: 10.1038/s41419-024-06982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Proteasome inhibitors (PIs), such as bortezomib and calfizomib, were backbone agents in the treatment of multiple myeloma (MM). In this study, we investigated bortezomib interactors in MM cells and identified dihydrolipoamide dehydrogenase (DLD) as a molecular target of bortezomib. DLD catalyzes the oxidation of dihydrolipoamide to form lipoamide, a reaction that also generates NADH. Our data showed that bortezomib bound to DLD and inhibited DLD's enzymatic function in MM cells. DLD knocked down MM cells (DLD-KD) had decreased levels of NADH. Reduced NADH suppressed assembly of proteasome complex in cells. As a result, DLD-KD MM cells had decreased basal-level proteasome activity and were more sensitive to bortezomib. Since PIs were used in many anti-MM regimens in clinics, we found that high expression of DLD correlated with inferior prognosis of MM. Considering the regulatory role of DLD in proteasome assembly, we evaluated DLD targeting therapy in MM cells. DLD inhibitor CPI-613 showed a synergistic anti-MM effect with bortezomib in vitro and in vivo. Overall, our findings elucidated DLD as an alternative molecular target of bortezomib in MM. DLD-targeting might increase MM sensitivity to PIs.
Collapse
Affiliation(s)
- Yu Feng
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongmei Luo
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingcao Huang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Wen
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
- Department of Hematology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Linfeng Li
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziyue Mi
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianwen Gao
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
- School of Life Science, Sichuan University, Chengdu, China
| | - Siyao He
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Liu
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Zhai
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Wang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Zhang
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Niu
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuhuan Zheng
- Department of Hematology/Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Deiana C, Agostini M, Brandi G, Giovannetti E. The trend toward more target therapy in pancreatic ductal adenocarcinoma. Expert Rev Anticancer Ther 2024; 24:525-565. [PMID: 38768098 DOI: 10.1080/14737140.2024.2357802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Despite the considerable progress made in cancer treatment through the development of target therapies, pancreatic ductal adenocarcinoma (PDAC) continues to exhibit resistance to this category of drugs. As a result, chemotherapy combination regimens remain the primary treatment approach for this aggressive cancer. AREAS COVERED In this review, we provide an in-depth analysis of past and ongoing trials on both well-known and novel targets that are being explored in PDAC, including PARP, EGFR, HER2, KRAS, and its downstream and upstream pathways (such as RAF/MEK/ERK and PI3K/AKT/mTOR), JAK/STAT pathway, angiogenesis, metabolisms, epigenetic targets, claudin, and novel targets (such as P53 and plectin). We also provide a comprehensive overview of the significant trials for each target, allowing a thorough glimpse into the past and future of target therapy. EXPERT OPINION The path toward implementing a target therapy capable of improving the overall survival of PDAC is still long, and it is unlikely that a monotherapy target drug will fulfill a meaningful role in addressing the complexity of this cancer. Thus, we discuss the future direction of target therapies in PDAC, trying to identify the more promising target and combination treatments, with a special focus on the more eagerly awaited ongoing trials.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Agostini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, San Giuliano, Italy
| |
Collapse
|
6
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
7
|
Atallah-Yunes SA, Habermann TM, Khurana A. Targeted therapy in Burkitt lymphoma: Small molecule inhibitors under investigation. Br J Haematol 2024; 204:2165-2172. [PMID: 38577716 DOI: 10.1111/bjh.19425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024]
Abstract
Multiagent chemoimmunotherapy remains the standard of care treatment for Burkitt lymphoma leading to a cure in the majority of cases. However, frontline treatment regimens are associated with a significant risk of treatment related toxicity especially in elderly and immunocompromised patients. Additionally, prognosis remains dismal in refractory/relapsed Burkitt lymphoma. Thus, novel therapies are required to not only improve outcomes in relapsed/refractory Burkitt lymphoma but also minimize frontline treatment related toxicities. Recurrent genomic changes and signalling pathway alterations that have been implicated in the Burkitt lymphomagenesis include cell cycle dysregulation, cell proliferation, inhibition of apoptosis, epigenetic dysregulation and tonic B-cell receptor-phosphatidylinositol 3-kinase (BCR-PI3K) signalling. Here, we will discuss novel targeted therapy approaches using small molecule inhibitors that could pave the way to the future treatment landscape based on the understanding of recurrent genomic changes and signalling pathway alterations in the lymphomagenesis of adult Burkitt lymphoma.
Collapse
Affiliation(s)
| | - Thomas M Habermann
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Cao J, Dong Y, Li Z, Wang S, Wu Z, Zheng E, Li Z. Treatment of Donor Cells with Oxidative Phosphorylation Inhibitor CPI Enhances Porcine Cloned Embryo Development. Animals (Basel) 2024; 14:1362. [PMID: 38731366 PMCID: PMC11083069 DOI: 10.3390/ani14091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Somatic cell nuclear transfer (SCNT) technology holds great promise for livestock industry, life science and human biomedicine. However, the development and application of this technology is limited by the low developmental potential of SCNT embryos. The developmental competence of cloned embryos is influenced by the energy metabolic status of donor cells. The purpose of this study was to investigate the effects of CPI, an oxidative phosphorylation inhibitor, on the energy metabolism pathways of pig fibroblasts and the development of subsequent SCNT embryos. The results showed that treatment of porcine fibroblasts with CPI changed the cellular energy metabolic pathways from oxidative phosphorylation to glycolysis and enhanced the developmental ability of subsequent SCNT embryos. The present study establishes a simple, new way to improve pig cloning efficiency, helping to promote the development and application of pig SCNT technology.
Collapse
Affiliation(s)
- Jinping Cao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yazheng Dong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Ichiki N, Saigo C, Hanamatsu Y, Iwata H, Takeuchi T. Inducing Melanoma Cell Apoptosis by ERp57/PDIA3 Antibody in the Presence of CPI-613 and Hydroxychloroquine. J Cancer 2024; 15:1779-1785. [PMID: 38434963 PMCID: PMC10905412 DOI: 10.7150/jca.92252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/04/2024] [Indexed: 03/05/2024] Open
Abstract
The combination of the cancer mitochondrial metabolic inhibitor CPI-613 and hydroxychloroquine has tumor-suppressive effects on clear cell sarcoma, which shares pathobiological properties with melanoma. Therefore, we intended to examine the effects of a combination of CPI-613 and hydroxychloroquine on the growth of melanoma cells in the present study. However, cell death was not induced in melanoma cells. Therefore, a monoclonal antibody, ICT, that induced apoptosis in melanoma cells in combination with CPI-613 and hydroxychloroquine was developed. Immunoprecipitation, mass spectrometry, and small interfering RNA (siRNA)-mediated gene silencing demonstrated that ICT targeted Endoplasmic Reticulum Resident Protein 57/ Protein Disulfide Isomerase Family A Member 3 (ERp57/PDIA3), which was first identified as being upregulated by metabolic depletion stress and is localized on the cell surface during immunogenic cell death. The combination of CPI-613 and hydroxychloroquine enhanced the localization of ERp57/PDIA3 to the surface of melanoma cells. siRNA-mediated downregulation of ERp57/PDIA3 did not significantly induce ICT-mediated apoptosis in melanoma cells in the presence of CPI-613 and hydroxychloroquine. Therefore, the ICT antibody acts as a tumor suppressor in melanoma cells by targeting the cell membrane ERp57/PDIA3, expression of which was enhanced by the combination of CPI-613 and hydroxychloroquine.
Collapse
Affiliation(s)
- Naohisa Ichiki
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research; COMIT, Gifu University, Gifu, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research; COMIT, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
Chen Z, Cretenet G, Carnazzo V, Simon-Molas H, Kater AP, Windt GJWVD, Eldering E. Electron transport chain and mTOR inhibition synergistically decrease CD40 signaling and counteract venetoclax resistance in chronic lymphocytic leukemia. Haematologica 2024; 109:151-162. [PMID: 37439352 PMCID: PMC10772535 DOI: 10.3324/haematol.2023.282760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
CD40 signaling upregulates BCL-XL and MCL-1 expression in the chronic lymphocytic leukemia (CLL) lymph node microenvironment, affording resistance to the BCL-2 inhibitor, venetoclax. Venetoclax resistance in the therapeutic setting and after long-term laboratory selection has been linked to metabolic alterations, but the underlying mechanism(s) are unknown. We aimed here to discover how CD40 stimulation as a model for tumor microenvironment-mediated metabolic changes, affects venetoclax sensitivity/resistance. CD40 stimulation increased oxidative phosphorylation and glycolysis, but only inhibition of oxidative phosphorylation countered venetoclax resistance. Furthermore, blocking mitochondrial import of pyruvate, glutamine or fatty acids affected CLL metabolism, but did not prevent CD40-mediated resistance to venetoclax. In contrast, inhibition of the electron transport chain (ETC) at complex I, III or V attenuated CLL activation and ATP production, and downregulated MCL-1 and BCL-XL, correlating with reduced CD40 surface expression. Moreover, ETC inhibition equaled mTOR1/2 but not mTOR1 inhibition alone for venetoclax resistance, and all three pathways were linked to control of general protein translation. In line with this, ETC plus mTOR inhibition synergistically counteracted venetoclax resistance. These findings link oxidative CLL metabolism to CD40 expression and cellular signaling, and may hold clinical potential.
Collapse
Affiliation(s)
- Zhenghao Chen
- Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands; Lymphoma and Myeloma Center, Amsterdam
| | - Gaspard Cretenet
- Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands; Lymphoma and Myeloma Center, Amsterdam
| | - Valeria Carnazzo
- Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Department of Clinical Pathology, S.M. Goretti Hospital, Latina
| | - Helga Simon-Molas
- Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands; Lymphoma and Myeloma Center, Amsterdam
| | - Arnon P Kater
- Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands; Lymphoma and Myeloma Center, Amsterdam
| | | | - Eric Eldering
- Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands; Lymphoma and Myeloma Center, Amsterdam.
| |
Collapse
|
11
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Liu N, Yan M, Tao Q, Wu J, Chen J, Chen X, Peng C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer 2023; 11:e007146. [PMID: 37678921 PMCID: PMC10496672 DOI: 10.1136/jitc-2023-007146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND anti-Programmed Death-1 (anti-PD-1) immunotherapy has shown promising manifestation in improving the survival rate of patients with advanced melanoma, with its efficacy closely linked to Programmed cell death-Ligand 1 (PD-L1) expression. However, low clinical efficacy and drug resistance remain major challenges. Although the metabolic alterations from tricarboxylic acid (TCA) cycle to glycolysis is a hallmark in cancer cells, accumulating evidence demonstrating TCA cycle plays critical roles in both tumorigenesis and treatment. METHODS The plasma levels of metabolites in patients with melanoma were measured by nuclear magnetic resonance (NMR) spectroscopy. The effect of pyruvate dehydrogenase subunit 1 (PDHA1) and oxoglutarate dehydrogenase (OGDH) on immunotherapy was performed by B16F10 tumor-bearing mice. Flow cytometry analyzed the immune microenvironment. RNA sequencing analyzed the global transcriptome alterations in CPI613-treated melanoma cells. The regulation of PD-L1 and glycolysis by PDHA1/OGDH-ATF3 signaling were confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, dual-luciferase reporter gene, Chromatin immunoprecipitation (ChIP)-quantitative PCR and Seahorse assay. The relationship between PDHA1/OGDH-ATF3-glycolysis and the efficacy of melanoma anti-PD-1 immunotherapy was verified in the clinical database and single-cell RNA-seq (ScRNA-Seq). RESULTS In our study, the results showed that significant alterations in metabolites associated with glycolysis and the TCA cycle in plasma of patients with melanoma through NMR technique, and then, PDHA1 and OGDH, key enzymes for regulation TCA cycle, were remarkable raised in melanoma and negatively related to anti-PD-1 efficacy through clinical database analysis as well as ScRNA-Seq. Inhibition of PDHA1 and OGDH by either shRNA or pharmacological inhibitor by CPI613 dramatically attenuated melanoma progression as well as improved the therapeutic efficacy of anti-PD-1 against melanoma. Most importantly, suppression of TCA cycle remarkably raises PD-L1 expression and glycolysis flux through AMPK-CREB-ATF3 signaling. CONCLUSIONS Taken together, our results demonstrated the role of TCA cycle in immune checkpoint blockade and provided a novel combination strategy for anti-PD-1 immunotherapy in melanoma treatment.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
14
|
Hsieh MT, Lee PC, Chiang YT, Lin HY, Lee DY. The Effects of a Curcumin Derivative and Osimertinib on Fatty Acyl Metabolism and Mitochondrial Functions in HCC827 Cells and Tumors. Int J Mol Sci 2023; 24:12190. [PMID: 37569564 PMCID: PMC10418893 DOI: 10.3390/ijms241512190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Drug combination therapy is a key approach in cancer treatments, aiming to improve therapeutic efficacy and overcome drug resistance. Evaluation of intracellular response in cancer cells to drug treatment may disclose the underlying mechanism of drug resistance. In this study, we aimed to investigate the effect of osimertinib, a tyrosine kinase inhibitor (TKI), and a curcumin derivative, 35d, on HCC827 cells and tumors by analyzing alterations in metabolome and related regulations. HCC827 tumor-bearing SCID mice and cultured HCC827 cells were separately examined. The treatment comprised four conditions: vehicle-only, 35d-only, osimertinib-only, and a combination of 35d and osimertinib. The treated tumors/cells were subsequently subjected to metabolomics profiling, fatty acyl analysis, mitochondrial potential measurement, and cell viability assay. Osimertinib induced changes in the ratio of short-chain (SC) to long-chain (LC) fatty acyls, particularly acylcarnitines (ACs), in both tumors and cells. Furthermore, 35d enhanced this effect by further lowering the SC/LC ratio of most ACs. Osimertinib and 35d also exerted detrimental effects on mitochondria through distinct mechanisms. Osimertinib upregulated the expression of carnitine palmitoyltransferase I (CPTI), while 35d induced the expression of heat shock protein 60 (HSP60). The alterations in ACs and CPTI were correlated with mitochondrial dysfunction and inhibited cell growth. Our results suggest that osimertinib and 35d disrupted the fatty acyl metabolism and induced mitochondrial stress in cancer cells. This study provides insights into the potential application of fatty acyl metabolism inhibitors, such as osimertinib or other TKIs, and mitochondrial stress inducers, such as curcumin derivatives, as combination therapy for cancer.
Collapse
Affiliation(s)
- Min-Tsang Hsieh
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Pei-Chih Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
| | - Yi-Ting Chiang
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Pharmacy Department, China Medical University Hsinchu Hospital, Hsinchu Country 302, Taiwan
| | - Hui-Yi Lin
- Drug Development Center, China Medical University, Taichung 406040, Taiwan; (M.-T.H.); (Y.-T.C.); (H.-Y.L.)
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
15
|
Mohan A, Griffith KA, Wuchu F, Zhen DB, Kumar-Sinha C, Crysler O, Hsiehchen D, Enzler T, Dippman D, Gunchick V, Achreja A, Animasahun O, Choppara S, Nenwani M, Chinnaiyan AM, Nagrath D, Zalupski MM, Sahai V. Devimistat in Combination with Gemcitabine and Cisplatin in Biliary Tract Cancer: Preclinical Evaluation and Phase Ib Multicenter Clinical Trial (BilT-04). Clin Cancer Res 2023; 29:2394-2400. [PMID: 37115501 PMCID: PMC10330233 DOI: 10.1158/1078-0432.ccr-23-0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Devimistat (CPI-613) is a novel inhibitor of tumoral mitochondrial metabolism. We investigated the effect of devimistat in vitro and in a phase Ib clinical trial in patients with advanced biliary tract cancer (BTC). PATIENTS AND METHODS Cell viability assays of devimistat ± gemcitabine and cisplatin (GC) were performed and the effect of devimistat on mitochondrial respiration via oxygen consumption rate (OCR) was evaluated. A phase Ib/II trial was initiated in patients with untreated advanced BTC. In phase Ib, devimistat was infused over 2 hours in combination with GC on days 1 and 8 every 21 days with a primary objective to determine the recommended phase II dose (RP2D). Secondary objectives included safety, overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS In vitro, devimistat with GC had a synergistic effect on two cell lines. Devimistat significantly decreased OCR at higher doses and in arms with divided dosing. In the phase Ib trial, 20 patients received a median of nine cycles (range, 3-19). One DLT was observed, and the RP2D of devimistat was determined to be 2,000 mg/m2 in combination with GC. Most common grade 3 toxicities included neutropenia (n = 11, 55%), anemia (n = 4, 20%), and infection (n = 3, 15%). There were no grade 4 toxicities. After a median follow-up of 15.6 months, ORR was 45% and median PFS was 10 months (95% confidence interval, 7.1-14.9). Median OS is not yet estimable. CONCLUSIONS Devimistat in combination with GC is well tolerated and has an acceptable safety profile in patients with untreated advanced BTC.
Collapse
Affiliation(s)
- Arathi Mohan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Kent A. Griffith
- Center for Cancer Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI
| | - Fulei Wuchu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
| | - David B. Zhen
- Division of Medical Oncology, Department of Internal Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Oxana Crysler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX
| | - Thomas Enzler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | | | - Valerie Gunchick
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
| | - Olamide Animasahun
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109
| | - Srinadh Choppara
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
| | - Minal Nenwani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
| | - Arul M. Chinnaiyan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, 48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109
| | - Mark M. Zalupski
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Mishra SK, Millman SE, Zhang L. Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood 2023; 141:1119-1135. [PMID: 36548959 PMCID: PMC10375271 DOI: 10.1182/blood.2022018092] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic rewiring and cellular reprogramming are trademarks of neoplastic initiation and progression in acute myeloid leukemia (AML). Metabolic alteration in leukemic cells is often genotype specific, with associated changes in epigenetic and functional factors resulting in the downstream upregulation or facilitation of oncogenic pathways. Targeting abnormal or disease-sustaining metabolic activities in AML provides a wide range of therapeutic opportunities, ideally with enhanced therapeutic windows and robust clinical efficacy. This review highlights the dysregulation of amino acid, nucleotide, lipid, and carbohydrate metabolism in AML; explores the role of key vitamins and enzymes that regulate these processes; and provides an overview of metabolism-directed therapies currently in use or development.
Collapse
Affiliation(s)
| | - Scott E. Millman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lingbo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| |
Collapse
|
17
|
Anderson R, Pladna KM, Schramm NJ, Wheeler FB, Kridel S, Pardee TS. Pyruvate Dehydrogenase Inhibition Leads to Decreased Glycolysis, Increased Reliance on Gluconeogenesis and Alternative Sources of Acetyl-CoA in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15020484. [PMID: 36672433 PMCID: PMC9857304 DOI: 10.3390/cancers15020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive disease characterized by poor outcomes and therapy resistance. Devimistat is a novel agent that inhibits pyruvate dehydrogenase complex (PDH). A phase III clinical trial in AML patients combining devimistat and chemotherapy was terminated for futility, suggesting AML cells were able to circumvent the metabolic inhibition of devimistat. The means by which AML cells resist PDH inhibition is unknown. AML cell lines treated with devimistat or deleted for the essential PDH subunit, PDHA, showed a decrease in glycolysis and decreased glucose uptake due to a reduction of the glucose transporter GLUT1 and hexokinase II. Both devimistat-treated and PDHA knockout cells displayed increased sensitivity to 2-deoxyglucose, demonstrating reliance on residual glycolysis. The rate limiting gluconeogenic enzyme phosphoenolpyruvate carboxykinase 2 (PCK2) was significantly upregulated in devimistat-treated cells, and its inhibition increased sensitivity to devimistat. The gluconeogenic amino acids glutamine and asparagine protected AML cells from devimistat. Non-glycolytic sources of acetyl-CoA were also important with fatty acid oxidation, ATP citrate lyase (ACLY) and acyl-CoA synthetase short chain family member 2 (ACSS2) contributing to resistance. Finally, devimistat reduced fatty acid synthase (FASN) activity. Taken together, this suggests that AML cells compensate for PDH and glycolysis inhibition by gluconeogenesis for maintenance of essential glycolytic intermediates and fatty acid oxidation, ACLY and ACSS2 for non-glycolytic production of acetyl-CoA. Strategies to target these escape pathways should be explored in AML.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kristin M. Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nathaniel J. Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Frances B. Wheeler
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Steven Kridel
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Timothy S. Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA
- Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
- Cornerstone Pharmaceuticals Inc., Cranbury, NJ 08512, USA
- Correspondence: ; Tel.: +1-336-716-5847; Fax: +1-336-716-5687
| |
Collapse
|
18
|
Chae HS, Hong ST. Overview of Cancer Metabolism and Signaling Transduction. Int J Mol Sci 2022; 24:12. [PMID: 36613455 PMCID: PMC9819818 DOI: 10.3390/ijms24010012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the remarkable progress in cancer treatment up to now, we are still far from conquering the disease. The most substantial change after the malignant transformation of normal cells into cancer cells is the alteration in their metabolism. Cancer cells reprogram their metabolism to support the elevated energy demand as well as the acquisition and maintenance of their malignancy, even in nutrient-poor environments. The metabolic alterations, even under aerobic conditions, such as the upregulation of the glucose uptake and glycolysis (the Warburg effect), increase the ROS (reactive oxygen species) and glutamine dependence, which are the prominent features of cancer metabolism. Among these metabolic alterations, high glutamine dependency has attracted serious attention in the cancer research community. In addition, the oncogenic signaling pathways of the well-known important genetic mutations play important regulatory roles, either directly or indirectly, in the central carbon metabolism. The identification of the convergent metabolic phenotypes is crucial to the targeting of cancer cells. In this review, we investigate the relationship between cancer metabolism and the signal transduction pathways, and we highlight the recent developments in anti-cancer therapy that target metabolism.
Collapse
Affiliation(s)
- Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 561-712, Jeonnbuk, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeonju 561-712, Jeonnbuk, Republic of Korea
| |
Collapse
|
19
|
Identification of Dihydrolipoamide Dehydrogenase as Potential Target of Vemurafenib-Resistant Melanoma Cells. Molecules 2022; 27:molecules27227800. [PMID: 36431901 PMCID: PMC9698468 DOI: 10.3390/molecules27227800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite recent improvements in therapy, the five-year survival rate for patients with advanced melanoma is poor, mainly due to the development of drug resistance. The aim of the present study was to investigate the mechanisms underlying this phenomenon, applying proteomics and structural approaches to models of melanoma cells. METHODS Sublines from two human (A375 and SK-MEL-28) cells with acquired vemurafenib resistance were established, and their proteomic profiles when exposed to denaturation were identified through LC-MS/MS analysis. The pathways derived from bioinformatics analyses were validated by in silico and functional studies. RESULTS The proteomic profiles of resistant melanoma cells were compared to parental counterparts by taking into account protein folding/unfolding behaviors. Several proteins were found to be involved, with dihydrolipoamide dehydrogenase (DLD) being the only one similarly affected by denaturation in all resistant cell sublines compared to parental ones. DLD expression was observed to be increased in resistant cells by Western blot analysis. Protein modeling analyses of DLD's catalytic site coupled to in vitro assays with CPI-613, a specific DLD inhibitor, highlighted the role of DLD enzymatic functions in the molecular mechanisms of BRAFi resistance. CONCLUSIONS Our proteomic and structural investigations on resistant sublines indicate that DLD may represent a novel and potent target for overcoming vemurafenib resistance in melanoma cells.
Collapse
|
20
|
Lv SY, He S, Ling XL, Wang YQ, Huang C, Long JR, Wang JQ, Qin Y, Wei H, Yu CY. Review of lipoic acid: From a clinical therapeutic agent to various emerging biomaterials. Int J Pharm 2022; 627:122201. [PMID: 36115465 DOI: 10.1016/j.ijpharm.2022.122201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Lipoic acid (LA), an endogenous small molecule in organisms, has been extensively used for the highly efficient clinical treatment of malignant diseases, which include diabetes, Alzheimer's disease, and cancer over the past seven decades. Tremendous progresses have been made on the use of LA in nanomedicine for the development of various biomaterials because of its unique biological properties and highly adaptable structure since the first discovery. However, there are few reviews thus far, to our knowledge, summarizing this hot subject of research of LA and its derived biomaterials. For this purpose, we present herein the first comprehensive summary on the design and development of LA and its derived materials for biomedical applications. This review first discusses the therapeutic use of LA followed by the description of synthesis and preclinical study of LA-derived-small molecules. The applications of various LA and poly (lipoic acid) (PLA)-derived-biomaterials are next summarized in detail with an emphasis on the use of LA for the design of biomaterials and the diverse properties. This review describes the development of LA from a clinical therapeutic agent to a building unit of various biomaterials field, which will promote the further discovery of new therapeutic uses of LA as therapeutic agents and facile development of LA-based derivates with greater performance for biomedical applications.
Collapse
Affiliation(s)
- Shao-Yang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Suisui He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiao-Li Ling
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yue-Qin Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jin-Rong Long
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jia-Qi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
21
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Sainero-Alcolado L, Liaño-Pons J, Ruiz-Pérez MV, Arsenian-Henriksson M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ 2022; 29:1304-1317. [PMID: 35831624 PMCID: PMC9287557 DOI: 10.1038/s41418-022-01022-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022] Open
Abstract
During decades, the research field of cancer metabolism was based on the Warburg effect, described almost one century ago. Lately, the key role of mitochondria in cancer development has been demonstrated. Many mitochondrial pathways including oxidative phosphorylation, fatty acid, glutamine, and one carbon metabolism are altered in tumors, due to mutations in oncogenes and tumor suppressor genes, as well as in metabolic enzymes. This results in metabolic reprogramming that sustains rapid cell proliferation and can lead to an increase in reactive oxygen species used by cancer cells to maintain pro-tumorigenic signaling pathways while avoiding cellular death. The knowledge acquired on the importance of mitochondrial cancer metabolism is now being translated into clinical practice. Detailed genomic, transcriptomic, and metabolomic analysis of tumors are necessary to develop more precise treatments. The successful use of drugs targeting metabolic mitochondrial enzymes has highlighted the potential for their use in precision medicine and many therapeutic candidates are in clinical trials. However, development of efficient personalized drugs has proved challenging and the combination with other strategies such as chemocytotoxic drugs, immunotherapy, and ketogenic or calorie restriction diets is likely necessary to boost their potential. In this review, we summarize the main mitochondrial features, metabolic pathways, and their alterations in different cancer types. We also present an overview of current inhibitors, highlight enzymes that are attractive targets, and discuss challenges with translation of these approaches into clinical practice. The role of mitochondria in cancer is indisputable and presents several attractive targets for both tailored and personalized cancer therapy. ![]()
Collapse
Affiliation(s)
- Lourdes Sainero-Alcolado
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - María Victoria Ruiz-Pérez
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum B7, Karolinska Institutet, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
23
|
Song K, Lee HS, Jia L, Chelakkot C, Rajasekaran N, Shin YK. SMAD4 Controls Cancer Cell Metabolism by Regulating Methylmalonic Aciduria Cobalamin Deficiency (cbl) B Type. Mol Cells 2022; 45:413-424. [PMID: 35680374 PMCID: PMC9200659 DOI: 10.14348/molcells.2022.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
Suppressor of mothers against decapentaplegic homolog (SMAD) 4 is a pluripotent signaling mediator that regulates myriad cellular functions, including cell growth, cell division, angiogenesis, apoptosis, cell invasion, and metastasis, through transforming growth factor β (TGF-β)-dependent and -independent pathways. SMAD4 is a critical modulator in signal transduction and functions primarily as a transcription factor or cofactor. Apart from being a DNA-binding factor, the additional SMAD4 mechanisms in tumor suppression remain elusive. We previously identified methyl malonyl aciduria cobalamin deficiency B type (MMAB) as a critical SMAD4 binding protein using a proto array analysis. This study confirmed the interaction between SMAD4 and MMAB using bimolecular fluorescence complementation (BiFC) assay, proximity ligation assay (PLA), and conventional immunoprecipitation. We found that transient SMAD4 overexpression down-regulates MMAB expression via a proteasome-dependent pathway. SMAD4-MMAB interaction was independent of TGF-β signaling. Finally, we determined the effect of MMAB downregulation on cancer cells. siRNA-mediated knockdown of MMAB affected cancer cell metabolism in HeLa cells by decreasing ATP production and glucose consumption as well as inducing apoptosis. These findings suggest that SMAD4 controls cancer cell metabolism by regulating MMAB.
Collapse
Affiliation(s)
- Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Korea
| | - Hun Seok Lee
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | - Nirmal Rajasekaran
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Guardado Rivas MO, Stuart SD, Thach D, Dahan M, Shorr R, Zachar Z, Bingham PM. Evidence for a novel, effective approach to targeting carcinoma catabolism exploiting the first-in-class, anti-cancer mitochondrial drug, CPI-613. PLoS One 2022; 17:e0269620. [PMID: 35675354 PMCID: PMC9176802 DOI: 10.1371/journal.pone.0269620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Clinical targeting of the altered metabolism of tumor cells has long been considered an attractive hypothetical approach. However, this strategy has yet to perform well clinically. Metabolic redundancy is among the limitations on effectiveness of many approaches, engendering intrinsic single-agent resistance or efficient evolution of such resistance. We describe new studies of the multi-target, tumor-preferential inhibition of the mitochondrial tricarboxylic acid (TCA) cycle by the first-in-class drug CPI-613® (devimistat). By suppressing the TCA hub, indispensable to many metabolic pathways, CPI-613 substantially reduces the effective redundancy of tumor catabolism. This TCA cycle suppression also engenders an apparently homeostatic accelerated, inefficient consumption of nutrient stores in carcinoma cells, eroding some sources of drug resistance. Nonetheless, sufficiently abundant, cell line-specific lipid stores in carcinoma cells are among remaining sources of CPI-613 resistance in vitro and during the in vivo pharmacological drug pulse. Specifically, the fatty acid beta-oxidation step delivers electrons directly to the mitochondrial electron transport system (ETC), by-passing the TCA cycle CPI-613 target and producing drug resistance. Strikingly, tested carcinoma cell lines configure much of this fatty acid flow to initially traverse the peroxisome enroute to additional mitochondrial beta-oxidation. This feature facilitates targeting as clinically practical agents disrupting this flow are available. Two such agents significantly sensitize an otherwise fully CPI-613-resistant carcinoma xenograft in vivo. These and related results are strong empirical support for a potentially general class of strategies for enhanced clinical targeting of carcinoma catabolism.
Collapse
Affiliation(s)
- Moises O. Guardado Rivas
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, United States of America
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Shawn D. Stuart
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Daniel Thach
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Michael Dahan
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Robert Shorr
- Rafael Pharmaceuticals, Cranbury, NJ, United States of America
| | - Zuzana Zachar
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kumstel S, Schreiber T, Goldstein L, Stenzel J, Lindner T, Joksch M, Zhang X, Wendt EHU, Schönrogge M, Krause B, Vollmar B, Zechner D. Targeting pancreatic cancer with combinatorial treatment of CPI-613 and inhibitors of lactate metabolism. PLoS One 2022; 17:e0266601. [PMID: 35452495 PMCID: PMC9032382 DOI: 10.1371/journal.pone.0266601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/23/2022] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death, with a 5-year survival rate of 10%. A stagnant high mortality rate over the last decades highlights the need for innovative therapeutic approaches. Pancreatic tumors pursue an altered metabolism in order to maintain energy generation under low nutrient influx and hypoxic conditions. Targeting these metabolic strategies might therefore be a reasonable therapeutic approach for pancreatic cancer. One promising agent is CPI- 613, a potent inhibitor of two enzymes of the tricarboxylic acid cycle. The present study evaluated the anti-cancerous efficacy of CPI-613 in combination with galloflavin, a lactate dehydrogenase inhibitor or with alpha-cyano-4-hydroxycinnamic acid, an inhibitor of monocarboxylate transporters. The efficacy of both combination therapies was tested in vitro on one human and two murine pancreatic cancer cell lines and in vivo in an orthotopic pancreatic cancer model. Tumor progression was evaluated by MRI and 18F-FDG PET-CT. Both combinatorial treatments demonstrated in vitro a significant inhibition of pancreatic cancer cell proliferation and induction of cell death. In contrast to the in vitro results, both combination therapies did not significantly reduce tumor growth in vivo. The in vitro results suggest that a combined inhibition of different metabolic pathways might be a promising approach for cancer therapy. However, the in vivo experiments indicate that applying a higher dosage or using other drugs targeting these metabolic pathways might be more promising.
Collapse
Affiliation(s)
- Simone Kumstel
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Tim Schreiber
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Lea Goldstein
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Jan Stenzel
- Core Facility Multimodal Small Animal Imaging, University Medical Center, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, University Medical Center, Rostock, Germany
| | - Markus Joksch
- Core Facility Multimodal Small Animal Imaging, University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Edgar Heinz Uwe Wendt
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Maria Schönrogge
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Bernd Krause
- Department of Nuclear Medicine, University Medical Center, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Center, Rostock, Germany
| |
Collapse
|
26
|
Anderson R, Miller LD, Isom S, Chou JW, Pladna KM, Schramm NJ, Ellis LR, Howard DS, Bhave RR, Manuel M, Dralle S, Lyerly S, Powell BL, Pardee TS. Phase II trial of cytarabine and mitoxantrone with devimistat in acute myeloid leukemia. Nat Commun 2022; 13:1673. [PMID: 35354808 PMCID: PMC8967916 DOI: 10.1038/s41467-022-29039-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Devimistat is a TCA cycle inhibitor. A previously completed phase I study of devimistat in combination with cytarabine and mitoxantrone in patients with relapsed or refractory AML showed promising response rates. Here we report the results of a single arm phase II study (NCT02484391). The primary outcome of feasibility of maintenance devimistat following induction and consolidation with devimistat in combination with high dose cytarabine and mitoxantrone was not met, as maintenance devimistat was only administered in 2 of 21 responders. The secondary outcomes of response (CR + CRi) and median survival were 44% (21/48) and 5.9 months respectively. There were no unexpected toxicities observed. An unplanned, post-hoc analysis of the phase I and II datasets suggests a trend of a dose response in older but not younger patients. RNA sequencing data from patient samples reveals an age-related decline in mitochondrial gene sets. Devimistat impairs ATP synthesis and we find a correlation between mitochondrial membrane potential and sensitivity to chemotherapy. Devimistat also induces mitochondrial reactive oxygen species and turnover consistent with mitophagy. We find that pharmacological or genetic inhibition of mitochondrial fission or autophagy sensitizes cells to devimistat. These findings suggest that an age related decline in mitochondrial quality and autophagy may be associated with response to devimistat however this needs to be confirmed in larger cohorts with proper trial design. Combining cytarabine and mitoxantrone with the tricarboxylic acid cycle inhibitor devimistat has been reported in a phase I clinical trial with relapsed or refractory acute myeloid leukaemia (AML). Here, the authors report the outcomes of a phase II study, analyse samples from both phases and perform preclinical analyses that show mitochondrial fission or autophagy inhibition sensitizes AML cells to devimistat.
Collapse
Affiliation(s)
- Rebecca Anderson
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Scott Isom
- Department of Biostatistics and Data Science, Wake Forest Public Health Sciences, Winston-Salem, NC, USA
| | - Jeff W Chou
- Department of Biostatistics and Data Science, Wake Forest Public Health Sciences, Winston-Salem, NC, USA
| | - Kristin M Pladna
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Nathaniel J Schramm
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Leslie R Ellis
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Dianna S Howard
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rupali R Bhave
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Megan Manuel
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Sarah Dralle
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Susan Lyerly
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Bayard L Powell
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Timothy S Pardee
- Section on Hematology and Oncology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA. .,Department of Cancer Biology, Comprehensive Cancer Center of Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA. .,Rafael Pharmaceuticals Inc, Cranbury, NJ, USA.
| |
Collapse
|
27
|
Reddy V, Boteju L, Boteju A, Shen L, Kassahun K, Reddy N, Sheldon A, Luther S, Hu K. In vitro and in vivo metabolism of a novel antimitochondrial cancer metabolism agent, CPI-613, in rats and human. Drug Metab Dispos 2022; 50:361-373. [PMID: 35086846 DOI: 10.1124/dmd.121.000726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
CPI-613, an inhibitor of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) enzymes, is currently in development for the treatment of pancreatic cancer (PANC), Acute Myeloid Leukemia (AML), and other cancers. CPI-613 is an analog of lipoic acid, an essential co-factor for both PDH and KGDH. Metabolism and mass balance studies were conducted in rats following IV administration of [14C]-CPI-613. CPI-613 was eliminated via oxidative metabolism followed by excretion of the metabolites in feces (59%) and urine (22%). β-Oxidation was the major pathway of elimination for CPI-613. The most abundant circulating components in rat plasma were those derived from β-oxidation. In human hepatocytes, CPI-613 mainly underwent β-oxidation (M1), sulfur oxidation (M2) and glucuronidation (M3). The Michaelis-Menten kinetics (Vmax and Km) of the metabolism of CPI-613 to these three metabolites predicted the fraction metabolized (fm) leading to the formation of M1, M2 and M3 to be 38, 6 and 56%, respectively. In humans, following IV administration of CPI-613, major circulating species in plasma were the parent and the β-oxidation derived products. Thus, CPI-613 metabolites profiles in rat and human plasma were qualitatively similar. β-Oxidation characteristics and excretion patterns of CPI-613 are discussed in comparison to that reported for its endogenous counterpart, lipoic acid. Significance Statement This work highlights the clearance mechanism of CPI-613 via β‑oxidation, species differences in their ability to carry out β‑oxidation and subsequent elimination routes. Structural limitations for completion of terminal cycle of β‑oxidation is discussed against the backdrop of its endogenous counterpart lipoic acid.
Collapse
Affiliation(s)
| | | | | | - Li Shen
- Frontage Laboratories Inc., United States
| | | | | | | | | | - Ke Hu
- Rafael Pharmaceuticals Inc., United States
| |
Collapse
|
28
|
de Beauchamp L, Himonas E, Helgason GV. Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia 2022; 36:1-12. [PMID: 34561557 PMCID: PMC8727299 DOI: 10.1038/s41375-021-01416-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
While the understanding of the genomic aberrations that underpin chronic and acute myeloid leukaemia (CML and AML) has allowed the development of therapies for these diseases, limitations remain. These become apparent when looking at the frequency of treatment resistance leading to disease relapse in leukaemia patients. Key questions regarding the fundamental biology of the leukaemic cells, such as their metabolic dependencies, are still unresolved. Even though a majority of leukaemic cells are killed during initial treatment, persistent leukaemic stem cells (LSCs) and therapy-resistant cells are still not eradicated with current treatments, due to various mechanisms that may contribute to therapy resistance, including cellular metabolic adaptations. In fact, recent studies have shown that LSCs and treatment-resistant cells are dependent on mitochondrial metabolism, hence rendering them sensitive to inhibition of mitochondrial oxidative phosphorylation (OXPHOS). As a result, rewired energy metabolism in leukaemic cells is now considered an attractive therapeutic target and the significance of this process is increasingly being recognised in various haematological malignancies. Therefore, identifying and targeting aberrant metabolism in drug-resistant leukaemic cells is an imperative and a relevant strategy for the development of new therapeutic options in leukaemia. In this review, we present a detailed overview of the most recent studies that present experimental evidence on how leukaemic cells can metabolically rewire, more specifically the importance of OXPHOS in LSCs and treatment-resistant cells, and the current drugs available to target this process. We highlight that uncovering specific energy metabolism dependencies will guide the identification of new and more targeted therapeutic strategies for myeloid leukaemia.
Collapse
Affiliation(s)
- Lucie de Beauchamp
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ekaterini Himonas
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Blockade of glutamine-dependent cell survival augments antitumor efficacy of CPI-613 in head and neck cancer. J Exp Clin Cancer Res 2021; 40:393. [PMID: 34906193 PMCID: PMC8670127 DOI: 10.1186/s13046-021-02207-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alterations in metabolism are one of the emerging hallmarks of cancer cells and targeting dysregulated cancer metabolism provides a new approach to developing more selective therapeutics. However, insufficient blockade critical metabolic dependencies of cancer allows the development of metabolic bypasses, thus limiting therapeutic benefits. METHODS A series of head and neck squamous cell carcinoma (HNSCC) cell lines and animal models were used to determine the efficacy of CPI-613 and CB-839 when given alone or in combination. Glutaminase 1 (GLS1) depletion was achieved by lentiviral shRNAs. Cell viability and apoptosis were determined in HNSCC cells cultured in 2D culture dish and SeedEZ™ 3D scaffold. Molecular alterations were examined by Western blotting and immunohistochemistry. Metabolic changes were assessed by glucose uptake, lactate production, glutathione levels, and oxygen consumption rate. RESULTS We show here that HNSCC cells display strong addiction to glutamine. CPI-613, a novel lipoate analog, redirects cellular activity towards tumor-promoting glutaminolysis, leading to low anticancer efficacy in HNSCC cells. Mechanistically, CPI-613 inhibits the tricarboxylic acid cycle by blocking the enzyme activities of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, which upregulates GLS1 and eventually promotes the compensatory role of glutaminolysis in cancer cell survival. Most importantly, the addition of a GLS1 inhibitor CB-839 to CPI-613 treatment abrogates the metabolic dependency of HNSCC cells on glutamine, achieving a synergistic anticancer effect in glutamine-addicted HNSCC. CONCLUSIONS These findings uncover the critical role of GLS1-mediated glutaminolysis in CPI-613 treatment and suggest that the CB-839 and CPI-613 combination may potentiate synergistic anticancer activity for HNSCC therapeutic gain.
Collapse
|
30
|
Soltani M, Zhao Y, Xia Z, Ganjalikhani Hakemi M, Bazhin AV. The Importance of Cellular Metabolic Pathways in Pathogenesis and Selective Treatments of Hematological Malignancies. Front Oncol 2021; 11:767026. [PMID: 34868994 PMCID: PMC8636012 DOI: 10.3389/fonc.2021.767026] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Despite recent advancements in the treatment of hematologic malignancies and the emergence of newer and more sophisticated therapeutic approaches such as immunotherapy, long-term overall survival remains unsatisfactory. Metabolic alteration, as an important hallmark of cancer cells, not only contributes to the malignant transformation of cells, but also promotes tumor progression and metastasis. As an immune-escape mechanism, the metabolic adaptation of the bone marrow microenvironment and leukemic cells is a major player in the suppression of anti-leukemia immune responses. Therefore, metabolic rewiring in leukemia would provide promising opportunities for newer therapeutic interventions. Several therapeutic agents which affect essential bioenergetic pathways in cancer cells including glycolysis, β-oxidation of fatty acids and Krebs cycle, or anabolic pathways such as lipid biosynthesis and pentose phosphate pathway, are being tested in various types of cancers. So far, numerous preclinical or clinical trial studies using such metabolic agents alone or in combination with other remedies such as immunotherapy are in progress and have demonstrated promising outcomes. In this review, we aim to argue the importance of metabolic alterations and bioenergetic pathways in different types of leukemia and their vital roles in disease development. Designing treatments based on targeting leukemic cells vulnerabilities, particularly in nonresponsive leukemia patients, should be warranted.
Collapse
Affiliation(s)
- Mojdeh Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yue Zhao
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
31
|
Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 2021; 21:141-162. [PMID: 34862480 PMCID: PMC8641543 DOI: 10.1038/s41573-021-00339-6] [Citation(s) in RCA: 498] [Impact Index Per Article: 166.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
One hundred years have passed since Warburg discovered alterations in cancer metabolism, more than 70 years since Sidney Farber introduced anti-folates that transformed the treatment of childhood leukaemia, and 20 years since metabolism was linked to oncogenes. However, progress in targeting cancer metabolism therapeutically in the past decade has been limited. Only a few metabolism-based drugs for cancer have been successfully developed, some of which are in - or en route to - clinical trials. Strategies for targeting the intrinsic metabolism of cancer cells often did not account for the metabolism of non-cancer stromal and immune cells, which have pivotal roles in tumour progression and maintenance. By considering immune cell metabolism and the clinical manifestations of inborn errors of metabolism, it may be possible to isolate undesirable off-tumour, on-target effects of metabolic drugs during their development. Hence, the conceptual framework for drug design must consider the metabolic vulnerabilities of non-cancer cells in the tumour immune microenvironment, as well as those of cancer cells. In this Review, we cover the recent developments, notable milestones and setbacks in targeting cancer metabolism, and discuss the way forward for the field.
Collapse
Affiliation(s)
| | | | | | - Chi V Dang
- The Wistar Institute Philadelphia, Philadelphia, PA, USA. .,Ludwig Institute for Cancer Research New York, New York, NY, USA.
| |
Collapse
|
32
|
Afify H, Ghoneum A, Almousa S, Abdulfattah AY, Warren B, Langsten K, Gonzalez D, Casals R, Bharadwaj M, Kridel S, Said N. Metabolomic credentialing of murine carcinogen-induced urothelial cancer. Sci Rep 2021; 11:22085. [PMID: 34764423 PMCID: PMC8585868 DOI: 10.1038/s41598-021-99746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Bladder cancer (BCa) is the most common malignancy of the urinary system with increasing incidence, mortality, and limited treatment options. Therefore, it is imperative to validate preclinical models that faithfully represent BCa cellular, molecular, and metabolic heterogeneity to develop new therapeutics. We performed metabolomic profiling of premalignant and non-muscle invasive bladder cancer (NMIBC) that ensued in the chemical carcinogenesis N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) mouse model. We identified the enriched metabolic signatures that associate with premalignant and NMIBC. We found that enrichment of lipid metabolism is the forerunner of carcinogen-induced premalignant and NMIBC lesions. Cross-species analysis revealed the prognostic value of the enzymes associated with carcinogen-induced enriched metabolic in human disease. To date, this is the first study describing the global metabolomic profiles associated with early premalignant and NMIBC and provide evidence that these metabolomic signatures can be used for prognostication of human disease.
Collapse
Affiliation(s)
- Hesham Afify
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Alia Ghoneum
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sameh Almousa
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Bailey Warren
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kendall Langsten
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Daniela Gonzalez
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Randy Casals
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Manish Bharadwaj
- Cell Analysis Division, Agilent Technologies, Inc, Santa Clara, CA, 95051, USA
| | - Steven Kridel
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA
| | - Neveen Said
- Department of Cancer Biology, Medical Center Boulevard, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Urology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
33
|
Arnold C, Demuth P, Seiwert N, Wittmann S, Boengler K, Rasenberger B, Christmann M, Huber M, Brunner T, Linnebacher M, Fahrer J. The mitochondrial disruptor devimistat (CPI-613®) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a Bim-dependent manner. Mol Cancer Ther 2021; 21:100-112. [PMID: 34750196 DOI: 10.1158/1535-7163.mct-21-0393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/22/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities, with an increasing incidence and mortality in younger adults in Europe and the US. 5-year survival rates for advanced CRC are still low, highlighting the need for novel targets in CRC therapy. Here, we investigated the therapeutic potential of the compound devimistat (CPI 613®) that targets altered mitochondrial cancer cell metabolism and its synergism with the antineoplastic drugs 5-fluorouracil (5-FU) and irinotecan (IT) in CRC. Devimistat exerted a comparable cytotoxicity in a panel of established CRC cell lines and patient-derived short-term culture independent of their genetic and epigenetic status, whereas human colonic epithelial cells were more resistant indicating tumor selectivity. These findings were corroborated in intestinal organoid and tumoroid models. Mechanistically, devimistat disrupted mitochondrial membrane potential and severely impaired mitochondrial respiration, resulting in CRC cell death induction independent of p53. Combination treatment of devimistat with 5-FU or IT demonstrated synergistic cell killing in CRC cells as shown by Combenefit modelling and Chou-Talalay analysis. Increased cell death induction was revealed as major mechanism involving downregulation of anti-apoptotic genes and accumulation of pro-apoptotic Bim, which was confirmed by its genetic knockdown. In human CRC xenograft mouse models, devimistat showed anti-tumor activity and synergized with IT, resulting in prolonged survival and enhanced therapeutic efficacy. In human tumor xenografts, devimistat prevented IT-triggered p53 stabilization and caused synergistic Bim induction. Taken together, our study revealed devimistat as a promising candidate in CRC therapy by synergizing with established antineoplastic drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Carina Arnold
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Philipp Demuth
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | - Nina Seiwert
- Institute of Toxicology, Medical Center of the University Mainz
| | - Simon Wittmann
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| | | | | | | | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipp University of Marburg
| | | | - Michael Linnebacher
- Department of General Surgery, Division of Molecular Oncology and Immunotherapy, University of Rostock
| | - Jörg Fahrer
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern
| |
Collapse
|
34
|
Smart Design of Mitochondria-Targeted and ROS-Responsive CPI-613 Delivery Nanoplatform for Bioenergetic Pancreatic Cancer Therapy. NANOMATERIALS 2021; 11:nano11112875. [PMID: 34835640 PMCID: PMC8617807 DOI: 10.3390/nano11112875] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Mitochondria, as the powerhouse of most cells, are not only responsible for the generation of adenosine triphosphate (ATP) but also play a decisive role in the regulation of apoptotic cell death, especially of cancer cells. Safe potential delivery systems which can achieve organelle-targeted therapy are urgently required. In this study, for effective pancreatic cancer therapy, a novel mitochondria-targeted and ROS-triggered drug delivery nanoplatform was developed from the TPP-TK-CPI-613 (TTCI) prodrug, in which the ROS-cleave thioketal functions as a linker connecting mitochondrial targeting ligand TPP and anti-mitochondrial metabolism agent CPI-613. DSPE-PEG2000 was added as an assistant component to increase accumulation in the tumor via the EPR effect. This new nanoplatform showed effective mitochondrial targeting, ROS-cleaving capability, and robust therapeutic performances. With active mitochondrial targeting, the formulated nanoparticles (TTCI NPs) demonstrate much higher accumulation in mitochondria, facilitating the targeted delivery of CPI-613 to its acting site. The results of in vitro antitumor activity and cell apoptosis revealed that the IC50 values of TTCI NPs in three types of pancreatic cancer cells were around 20~30 µM, which was far lower than those of CPI-613 (200 µM); 50 µM TTCI NPs showed an increase in apoptosis of up to 97.3% in BxPC3 cells. Therefore, this mitochondria-targeted prodrug nanoparticle platform provides a potential strategy for developing safe, targeting and efficient drug delivery systems for pancreatic cancer therapy.
Collapse
|
35
|
Hala D, Faulkner P, He K, Kamalanathan M, Brink M, Simons K, Apaydin M, Hernout B, Petersen LH, Ivanov I, Qian X. An integrated in vivo and in silico analysis of the metabolism disrupting effects of CPI-613 on embryo-larval zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109084. [PMID: 34051378 DOI: 10.1016/j.cbpc.2021.109084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/12/2023]
Abstract
CPI-613 is a mitochondrial metabolism disrupter that inhibits tricarboxylic acid (TCA) cycle activity. The consequences of TCA cycle disruption on various metabolic pathways and overall organismal physiology are not fully known. The present study integrates in vivo experimental data with an in silico stoichiometric metabolism model of zebrafish to study the metabolic pathways perturbed under CPI-613 exposure. Embryo-larval life stages of zebrafish (Danio rerio) were exposed to 1 μM CPI-613 for 20 days. Whole-organism respirometry measurements showed an initial suppression of O2 consumption at Day 5 of exposure, followed by recovery comparable to the solvent control (0.01% DMSO) by Day 20. Comparison of whole-transcriptome RNA-sequencing at Day 5 vs. 20 of exposure showed functional categories related to O2 binding and transport, antioxidant activity, FAD binding, and hemoglobin complexes, to be commonly represented. Metabolic enzyme gene expression changes and O2 consumption rate was used to parametrize two in silico stoichiometric metabolic models representative of Day 5 or 20 of exposure. Computational simulations predicted impaired ATP synthesis, α-ketoglutarate dehydrogenase (KGDH) activity, and fatty acid β-oxidation at Day 5 vs. 20 of exposure. These results show that the targeted disruption of KGDH may also impact oxidative phosphorylation (ATP synthesis) and fatty acid metabolism (β-oxidation), in turn influencing cellular bioenergetics and the observed reduction in whole-organism O2 consumption rate. The results of this study provide an integrated in vivo and in silico framework to study the impacts of metabolic disruption on organismal physiology.
Collapse
Affiliation(s)
- David Hala
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA; Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, USA.
| | - Patricia Faulkner
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kai He
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Manoj Kamalanathan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Mikeelee Brink
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Kristina Simons
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Meltem Apaydin
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Beatrice Hernout
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA; Institute for a Sustainable Environment, Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, USA
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX, USA
| | - Xiaoning Qian
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
36
|
Kubicka A, Matczak K, Łabieniec-Watała M. More Than Meets the Eye Regarding Cancer Metabolism. Int J Mol Sci 2021; 22:9507. [PMID: 34502416 PMCID: PMC8430985 DOI: 10.3390/ijms22179507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not "give up" on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.
Collapse
Affiliation(s)
- Anna Kubicka
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| | - Magdalena Łabieniec-Watała
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland;
| |
Collapse
|
37
|
Mitochondrial Metabolism in Carcinogenesis and Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133311. [PMID: 34282749 PMCID: PMC8269082 DOI: 10.3390/cancers13133311] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Reprogramming metabolism is a hallmark of cancer. Warburg’s effect, defined as increased aerobic glycolysis at the expense of mitochondrial respiration in cancer cells, opened new avenues of research in the field of cancer. Later findings, however, have revealed that mitochondria remain functional and that they actively contribute to metabolic plasticity of cancer cells. Understanding the mechanisms by which mitochondrial metabolism controls tumor initiation and progression is necessary to better characterize the onset of carcinogenesis. These studies may ultimately lead to the design of novel anti-cancer strategies targeting mitochondrial functions. Abstract Carcinogenesis is a multi-step process that refers to transformation of a normal cell into a tumoral neoplastic cell. The mechanisms that promote tumor initiation, promotion and progression are varied, complex and remain to be understood. Studies have highlighted the involvement of oncogenic mutations, genomic instability and epigenetic alterations as well as metabolic reprogramming, in different processes of oncogenesis. However, the underlying mechanisms still have to be clarified. Mitochondria are central organelles at the crossroad of various energetic metabolisms. In addition to their pivotal roles in bioenergetic metabolism, they control redox homeostasis, biosynthesis of macromolecules and apoptotic signals, all of which are linked to carcinogenesis. In the present review, we discuss how mitochondria contribute to the initiation of carcinogenesis through gene mutations and production of oncometabolites, and how they promote tumor progression through the control of metabolic reprogramming and mitochondrial dynamics. Finally, we present mitochondrial metabolism as a promising target for the development of novel therapeutic strategies.
Collapse
|
38
|
Inoue J, Kishikawa M, Tsuda H, Nakajima Y, Asakage T, Inazawa J. Identification of PDHX as a metabolic target for esophageal squamous cell carcinoma. Cancer Sci 2021; 112:2792-2802. [PMID: 33964039 PMCID: PMC8253269 DOI: 10.1111/cas.14938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The metabolism in tumors is reprogrammed to meet its energetic and substrate demands. However, this metabolic reprogramming creates metabolic vulnerabilities, providing new opportunities for cancer therapy. Metabolic vulnerability as a therapeutic target in esophageal squamous cell carcinoma (ESCC) has not been adequately clarified. Here, we identified pyruvate dehydrogenase (PDH) component X (PDHX) as a metabolically essential gene for the cell growth of ESCC. PDHX expression was required for the maintenance of PDH activity and the production of ATP, and its knockdown inhibited the proliferation of cancer stem cells (CSCs) and in vivo tumor growth. PDHX was concurrently upregulated with the CD44 gene, a marker of CSCs, by co-amplification at 11p13 in ESCC tumors and these genes coordinately functioned in cancer stemness. Furthermore, CPI-613, a PDH inhibitor, inhibited the proliferation of CSCs in vitro and the growth of ESCC xenograft tumors in vivo. Thus, our study provides new insights related to the development of novel therapeutic strategies for ESCC by targeting the PDH complex-associated metabolic vulnerability.
Collapse
Affiliation(s)
- Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Kishikawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Yasuaki Nakajima
- Department of Surgical Gastroenterology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
39
|
Camelo F, Le A. The Intricate Metabolism of Pancreatic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:77-88. [PMID: 34014535 DOI: 10.1007/978-3-030-65768-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Currently, approximately 95% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC), which are the most aggressive form and the fourth leading cause of cancer death with extremely poor prognosis [1]. Poor prognosis is primarily attributed to the late diagnosis of the disease when patients are no longer candidates for surgical resection [2]. Cancer cells are dependent on the oncogenes that allow them to proliferate limitlessly. Thus, targeting the expression of known oncogenes in pancreatic cancer has been shown to lead to more effective treatment [3]. This chapter discusses the complexity of metabolic features in pancreatic cancers. In order to comprehend the heterogeneous nature of cancer metabolism fully, we need to take into account the close relationship between cancer metabolism and genetics. Gene expression varies tremendously, not only among different types of cancers but also within the same type of cancer among different patients. Cancer metabolism heterogeneity is often prompted and perpetuated not only by mutations in oncogenes and tumor-suppressor genes but also by the innate diversity of the tumor microenvironment. Much effort has been focused on elucidating the genetic alterations that correlate with disease progression and treatment response [4, 5]. However, the precise mechanisms by which tumor metabolism contributes to cancer growth, survival, mobility, and aggressiveness represent a functional readout of tumor progression (Fig. 1).
Collapse
Affiliation(s)
- Felipe Camelo
- MD Program, Weill Cornell Medicine, New York, NY, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
40
|
Panina SB, Pei J, Kirienko NV. Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer Metab 2021; 9:17. [PMID: 33883040 PMCID: PMC8058979 DOI: 10.1186/s40170-021-00253-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemias (AML) are a group of aggressive hematologic malignancies resulting from acquired genetic mutations in hematopoietic stem cells that affect patients of all ages. Despite decades of research, standard chemotherapy still remains ineffective for some AML subtypes and is often inappropriate for older patients or those with comorbidities. Recently, a number of studies have identified unique mitochondrial alterations that lead to metabolic vulnerabilities in AML cells that may present viable treatment targets. These include mtDNA, dependency on oxidative phosphorylation, mitochondrial metabolism, and pro-survival signaling, as well as reactive oxygen species generation and mitochondrial dynamics. Moreover, some mitochondria-targeting chemotherapeutics and their combinations with other compounds have been FDA-approved for AML treatment. Here, we review recent studies that illuminate the effects of drugs and synergistic drug combinations that target diverse biomolecules and metabolic pathways related to mitochondria and their promise in experimental studies, clinical trials, and existing chemotherapeutic regimens.
Collapse
Affiliation(s)
| | - Jingqi Pei
- Department of BioSciences, Rice University, Houston, TX, USA
| | | |
Collapse
|
41
|
Rabben HL, Andersen GT, Olsen MK, Øverby A, Ianevski A, Kainov D, Wang TC, Lundgren S, Grønbech JE, Chen D, Zhao CM. Neural signaling modulates metabolism of gastric cancer. iScience 2021; 24:102091. [PMID: 33598644 PMCID: PMC7869004 DOI: 10.1016/j.isci.2021.102091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors comprise cancer cells and the associated stromal and immune/inflammatory cells, i.e., tumor microenvironment (TME). Here, we identify a metabolic signature of human and mouse model of gastric cancer and show that vagotomy in the mouse model reverses the metabolic reprogramming, reflected by metabolic switch from glutaminolysis to OXPHOS/glycolysis and normalization of the energy metabolism in cancer cells and TME. We next identify and validate SNAP25, mTOR, PDP1/α-KGDH, and glutaminolysis as drug targets and accordingly propose a therapeutic strategy to target the nerve-cancer metabolism. We demonstrate the efficacy of nerve-cancer metabolism therapy by intratumoral injection of BoNT-A (SNAP25 inhibitor) with systemic administration of RAD001 and CPI-613 but not cytotoxic drugs on overall survival in mice and show the feasibility in patients. These findings point to the importance of neural signaling in modulating the tumor metabolism and provide a rational basis for clinical translation of the potential strategy for gastric cancer. Metabolic reprogramming in gastric cancer cells and tumor microenvironment SNAP25, mTOR, PDP1/α-KGDH, and glutaminolysis as potential drug targets Combination of botulinum toxin type A, RAD001, and CPI-613 as a potential treatment
Collapse
Affiliation(s)
- Hanne-Line Rabben
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,The Central Norway Regional Health Authority, Norway
| | - Gøran Troseth Andersen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Magnus Kringstad Olsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Anders Øverby
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Timothy Cragin Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Division of Digestive and Liver Diseases, Columbia University College of Physicians and Surgeons, New York, NY 10032-3802, USA
| | - Steinar Lundgren
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Jon Erik Grønbech
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,Surgical Clinic, St. Olavs Hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway.,The Central Norway Regional Health Authority, Norway
| |
Collapse
|
42
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Darwiche W, Gomila C, Ouled-Haddou H, Naudot M, Doualle C, Morel P, Nguyen-Khac F, Garçon L, Marolleau JP, Ghamlouch H. Ascorbic acid (vitamin C) synergistically enhances the therapeutic effect of targeted therapy in chronic lymphocytic leukemia. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:228. [PMID: 33115525 PMCID: PMC7594454 DOI: 10.1186/s13046-020-01738-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 02/17/2023]
Abstract
Background Novel, less toxic, cost-effective and safe therapeutic strategies are needed to improve treatment of chronic lymphocytic leukemia (CLL). Ascorbic acid (AA, vitamin C) has shown a potential anti-cancer therapeutic activity in several cancers. However, the anti-cancer effects of ascorbic acid on CLL B-cells have not been extensively studied. We aimed in this study to evaluate the in vitro therapeutic activity using clinically relevant conditions. Methods Primary CLL B-cells and two CLL cell lines were exposed to a dose that is clinically achievable by AA oral administration (250 μM), and cell death and potential mechanisms were assessed. The role of the protective CLL microenvironment was studied. Synergistic interaction between AA and CLL approved drugs (Ibrutinib, Idelalisib and Venetoclax) was also evaluated. Results Ascorbic acid is cytotoxic for CLL B-cells at low dose (250 μM) but spares healthy B-cells. Ascorbic-acid-induced cytotoxicity involved pro-oxidant damage through the generation of reactive oxygen species in the extracellular media and in CLL cells, and induced caspase-dependent apoptosis. We also found that AA treatment overcame the supportive survival effect provided by microenvironment including bone marrow mesenchymal stem cells, T-cell cues (CD40L + IL-4), cytokines and hypoxia. Our data suggest that resistance to AA could be mediated by the expression of the enzyme catalase in some CLL samples and by the glucose metabolite pyruvate. We also demonstrated that AA synergistically potentiates the cytotoxicity of targeted therapies used in or being developed for CLL. Conclusion These preclinical results point to AA as an adjuvant therapy with potential to further improve CLL treatments in combination with targeted therapies. Supplementary information Supplementary information accompanies this paper at 10.1186/s13046-020-01738-0.
Collapse
Affiliation(s)
- Walaa Darwiche
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Cathy Gomila
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Hakim Ouled-Haddou
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France
| | - Marie Naudot
- EA 7516, CHIMERE, Université de Picardie Jules Verne, Amiens, France
| | - Cécile Doualle
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France
| | - Pierre Morel
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France
| | - Florence Nguyen-Khac
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Paris, France.,Hôpital Pitié-Salpêtrière, Sorbonne Université, APHP, Service d'Hématologie Biologique, Paris, France
| | - Loïc Garçon
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France.,Service d'hématologie Biologique, Centre Hospitalier Universitaire Amiens Picardie, Amiens, France
| | - Jean-Pierre Marolleau
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,Service d'Hématologie Clinique, Centre Hospitalier Universitaire Amiens Picardie, D408, 80054, Amiens Cedex, France.
| | - Hussein Ghamlouch
- EA 4666, HEMATIM, Université de Picardie Jules Verne, D408, 80054, Amiens Cedex, France. .,INSERM U1170, équipe labélisée Ligue Nationale Contre le Cancer, Gustave Roussy, 39 rue Camille Desmoulins, 94805, Villejuif Cedex, France.
| |
Collapse
|
44
|
Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020; 32:341-352. [PMID: 32668195 PMCID: PMC7483781 DOI: 10.1016/j.cmet.2020.06.019] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.
Collapse
|
45
|
Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine 2020; 59:102943. [PMID: 32818805 PMCID: PMC7452656 DOI: 10.1016/j.ebiom.2020.102943] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are dynamic organelles that have essential metabolic activity and are regarded as signalling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological pathways. However, mitochondria can influence all processes linked to oncogenesis, starting from malignant transformation to metastatic dissemination. In this review, we describe how alterations in the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing the most recent discoveries and the many unanswered questions. We also highlight that expanding our understanding of mitochondrial regulation and function mechanisms in the context of cancer cell metabolism could be an important task in biomedical research, thus offering the possibility of targeting mitochondria for the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
46
|
Neitzel C, Demuth P, Wittmann S, Fahrer J. Targeting Altered Energy Metabolism in Colorectal Cancer: Oncogenic Reprogramming, the Central Role of the TCA Cycle and Therapeutic Opportunities. Cancers (Basel) 2020; 12:E1731. [PMID: 32610612 PMCID: PMC7408264 DOI: 10.3390/cancers12071731] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the most frequent cancer entities worldwide. Multiple factors are causally associated with CRC development, such as genetic and epigenetic alterations, inflammatory bowel disease, lifestyle and dietary factors. During malignant transformation, the cellular energy metabolism is reprogrammed in order to promote cancer cell growth and proliferation. In this review, we first describe the main alterations of the energy metabolism found in CRC, revealing the critical impact of oncogenic signaling and driver mutations in key metabolic enzymes. Then, the central role of mitochondria and the tricarboxylic acid (TCA) cycle in this process is highlighted, also considering the metabolic crosstalk between tumor and stromal cells in the tumor microenvironment. The identified cancer-specific metabolic transformations provided new therapeutic targets for the development of small molecule inhibitors. Promising agents are in clinical trials and are directed against enzymes of the TCA cycle, including isocitrate dehydrogenase, pyruvate dehydrogenase kinase, pyruvate dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase (KGDH). Finally, we focus on the α-lipoic acid derivative CPI-613, an inhibitor of both PDC and KGDH, and delineate its anti-tumor effects for targeted therapy.
Collapse
Affiliation(s)
| | | | | | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany; (C.N.); (P.D.); (S.W.)
| |
Collapse
|
47
|
Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk SP. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. eLife 2020; 9:54954. [PMID: 32484436 PMCID: PMC7297531 DOI: 10.7554/elife.54954] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
MCL1 has critical antiapoptotic functions and its levels are tightly regulated by ubiquitylation and degradation, but mechanisms that drive this degradation, particularly in solid tumors, remain to be established. We show here in prostate cancer cells that increased NOXA, mediated by kinase inhibitor activation of an integrated stress response, drives the degradation of MCL1, and identify the mitochondria-associated ubiquitin ligase MARCH5 as the primary mediator of this NOXA-dependent MCL1 degradation. Therapies that enhance MARCH5-mediated MCL1 degradation markedly enhance apoptosis in response to a BH3 mimetic agent targeting BCLXL, which may provide for a broadly effective therapy in solid tumors. Conversely, increased MCL1 in response to MARCH5 loss does not strongly sensitize to BH3 mimetic drugs targeting MCL1, but instead also sensitizes to BCLXL inhibition, revealing a codependence between MARCH5 and MCL1 that may also be exploited in tumors with MARCH5 genomic loss.
Collapse
Affiliation(s)
- Seiji Arai
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States.,Department of Urology, Gunma University Hospital, Maebashi, Japan
| | - Andreas Varkaris
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Mannan Nouri
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Sen Chen
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Lisha Xie
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| | - Steven P Balk
- Hematology-Oncology Division, Department of Medicine, and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, United States
| |
Collapse
|
48
|
Dominiak A, Chełstowska B, Olejarz W, Nowicka G. Communication in the Cancer Microenvironment as a Target for Therapeutic Interventions. Cancers (Basel) 2020; 12:E1232. [PMID: 32422889 PMCID: PMC7281160 DOI: 10.3390/cancers12051232] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a complex system composed of multiple cells, such as non-cancerous fibroblasts, adipocytes, immune and vascular cells, as well as signal molecules and mediators. Tumor cells recruit and reprogram other cells to produce factors that maintain tumor growth. Communication between cancerous and surrounding cells is a two-way process and engages a diverse range of mechanisms that, in consequence, can lead to rapid proliferation, metastasis, and drug resistance, or can serve as a tumors-suppressor, e.g., through tumor-immune cell interaction. Cross-talk within the cancer microenvironment can be direct by cell-to-cell contact via adhesion molecules, electrical coupling, and passage through gap junctions, or indirect through classical paracrine signaling by cytokines, growth factors, and extracellular vesicles. Therapeutic approaches for modulation of cell-cell communication may be a promising strategy to combat tumors. In particular, integrative approaches targeting tumor communication in combination with conventional chemotherapy seem reasonable. Currently, special attention is paid to suppressing the formation of open-ended channels as well as blocking exosome production or ablating their cargos. However, many aspects of cell-to-cell communication have yet to be clarified, and, in particular, more work is needed in regard to mechanisms of bidirectional signal transfer. Finally, it seems that some interactions in TEM can be not only cancer-specific, but also patient-specific, and their recognition would help to predict patient response to therapy.
Collapse
Affiliation(s)
- Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Beata Chełstowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, 04-140 Warsaw, Poland;
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (W.O.); (G.N.)
- Center for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
49
|
Zayac AS, Olszewski AJ. Burkitt lymphoma: bridging the gap between advances in molecular biology and therapy. Leuk Lymphoma 2020; 61:1784-1796. [PMID: 32255708 DOI: 10.1080/10428194.2020.1747068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genomic studies have revealed molecular mechanisms involved in the pathogenesis of Burkitt's lymphoma, including the ID3/TCF3-dependent centroblast gene expression program, tonic PI3K-AKT-mTOR signaling, and deregulation of cell cycle and apoptosis through mutations in cyclin D3, CDKN2A, or TP53. Unfortunately, these advances have not been translated into treatment, which relies on dose-intense cytotoxic chemotherapy. While most patients achieve long-term survival, options for relapsed/refractory disease are lacking, as Burkitt lymphoma is often excluded from clinical trials of novel approaches. The lower-intensity, dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) regimen constitutes a major advance allowing for treatment of older and HIV-positive patients but needs augmentation to better address the central nervous system involvement. Furthermore, DA-EPOCH-R provides a platform for the study of targeted or immunotherapeutic approaches while de-escalating cytotoxic agents and their associated adverse effects. In this review we discuss the epidemiology and molecular genetics of BL, first-line treatment considerations, and potential novel treatment strategies.
Collapse
Affiliation(s)
- Adam S Zayac
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Adam J Olszewski
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|