1
|
Waseem M, Wang BD. Combination of miR-99b-5p and Enzalutamide or Abiraterone Synergizes the Suppression of EMT-Mediated Metastasis in Prostate Cancer. Cancers (Basel) 2024; 16:1933. [PMID: 38792011 PMCID: PMC11119738 DOI: 10.3390/cancers16101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Androgen deprivation therapy (ADT) has been systemically applied as a first-line therapy for PCa patients. Despite the initial responses, the majority of patients under ADT eventually experienced tumor progression to castration-resistant prostate cancer (CRPC), further leading to tumor metastasis to distant organs. Therefore, identifying the key molecular mechanisms underlying PCa progression remains crucial for the development of novel therapies for metastatic PCa. Previously, we identified that tumor-suppressive miR-99b-5p is frequently downregulated in aggressive African American (AA) PCa and European American (EA) CRPC, leading to upregulation of mTOR, androgen receptor (AR), and HIF-1α signaling. Given the fact that mTOR and HIF-1α signaling are critical upstream pathways that trigger the activation of epithelial-mesenchymal transition (EMT), we hypothesized that miR-99b-5p may play a critical functional role in regulating EMT-mediated PCa metastasis. To test this hypothesis, a series of cell biology, biochemical, and in vitro functional assays (wound healing, transwell migration, cell/ECM adhesion, and capillary-like tube formation assays) were performed to examine the effects of miR-99b-5p mimic on regulating EMT-mediated PCa metastasis processes. Our results have demonstrated that miR-99b-5p simultaneously targets MTOR and AR signaling, leading to upregulation of E-cadherin, downregulation of Snail/N-cadherin/Vimentin, and suppression of EMT-mediated PCa metastasis. MiR-99b-5p alone and in combination with enzalutamide or abiraterone significantly inhibits the EMT-mediated metastasis of AA PCa and EA CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Creighton CJ, Zhang F, Zhang Y, Castro P, Hu R, Islam M, Ghosh S, Ittmann M, Kwabi-Addo B. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer. Epigenetics 2023; 18:2180585. [PMID: 37279148 PMCID: PMC9980641 DOI: 10.1080/15592294.2023.2180585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array. mRNA expression database from a subset of the AA biospecimen were used to assess correlation of transcriptome and methylation datasets. Genome-wide methylation analysis identified 11,460 probes that were significant (p < 0.01) and differentially methylated in AA PCa compared to normal prostate tissues and showed significant (p < 0.01) inverse-correlation with mRNA expression. Ingenuity pathway analysis and Gene Ontology analysis in our AA dataset compared with TCGA dataset showed similarities in methylation patterns: top candidate genes with significant hypermethylation and corresponding down-regulated gene expression were associated with biological pathways in hemidesmosome assembly, mammary gland development, epidermis development, hormone biosynthesis, and cell communication. In addition, top candidate genes with significant hypomethylation and corresponding up-regulated gene expression were associated with biological pathways in macrophage differentiation, cAMP-dependent protein kinase activity, protein destabilization, transcription co-repression, and fatty acid biosynthesis. In contrast, differences in genome-wide methylation in our AA dataset compared with TCGA dataset were enriched for genes in steroid signalling, immune signalling, chromatin structure remodelling and RNA processing. Overall, differential methylation of AMIGO3, IER3, UPB1, GRM7, TFAP2C, TOX2, PLSCR2, ZNF292, ESR2, MIXL1, BOLL, and FGF6 were significant and uniquely associated with PCa progression in our AA cohort.
Collapse
Affiliation(s)
- Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Flora Zhang
- Center for Women’s Studies, Colgate University, Hamilton, New York, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Patricia Castro
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Rong Hu
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Md Islam
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Somiranjan Ghosh
- Department of Biology, Howard University, Washington, Columbia, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA
| | - Bernard Kwabi-Addo
- Department of Biochemistry and Molecular Biology, Howard University, Washington, Columbia, USA
| |
Collapse
|
3
|
Waseem M, Gujrati H, Wang BD. Tumor suppressive miR-99b-5p as an epigenomic regulator mediating mTOR/AR/SMARCD1 signaling axis in aggressive prostate cancer. Front Oncol 2023; 13:1184186. [PMID: 38023145 PMCID: PMC10661933 DOI: 10.3389/fonc.2023.1184186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction African American (AA) men exhibited 2.3-fold higher PCa incidence and 1.7-fold higher PCa mortality rates when compared to the European American (EA) men. Besides the socioeconomic factors, emerging evidence has highlighted that biological risk factors may play critical roles in the AA PCa disparities. Previously, we have shown that downregulated miR-99b-5p and upregulated mTOR cooperatively promotes the AA PCa aggressiveness and drug resistance. Methods In this study, we aimed to explore the miR-99b-5p/mTOR/AR/SMARCD1 signaling axis in AA PCa aggressiveness. The analyses used in the study included immunofluorescence, western blot, in-vitro functional assays (TUNEL, colony forming, and MTT), and chromatin immunoprecipitation (ChIP)-qPCR assays in 2D and/or 3D culture model of EA PCa and AA PCa cell lines. Results Specifically, the immunofluorescence staining, and western blot analysis has revealed that nuclear mTOR, AR, and SMARCD1 were highly expressed in AA PCa (MDA PCa 2b) compared to EA PCa (LNCaP) cell line. Western blot analysis further revealed that miR-99b-5p inhibited protein levels of mTOR, AR/AR-V7 and SMARCD1 in cytoplasm and nuclei of EA and AA PCa. The in-vitro functional (MTT, TUNEL, and clonogenic) assays have demonstrated that miR-99b-5p effectively inhibited cell proliferation/survival and induced cell apoptosis in EA and AA PCa cells. Moreover, combination of miR-99b-5p and enzalutamide (Enz) synergistically enhances the cytotoxicity against aggressive AA PCa and castration-resistant prostate cancer (CRPC). mTOR ChIP-qPCR assays further demonstrated that miR-99b-5p or miR-99b-5p/Enz significantly reduces the recruitment of mTOR to the genes involved in the metabolic reprogramming in CRPC. Discussion Taken together, miR-99b-5p may function as an epigenomic driver to modulate the mTOR/AR/SMARCD1 signaling axis in AA PCa and resistant CRPC.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
4
|
Ha S, Gujrati H, Wang BD. Aberrant PI3Kδ splice isoform as a potential biomarker and novel therapeutic target for endocrine cancers. Front Endocrinol (Lausanne) 2023; 14:1190479. [PMID: 37670888 PMCID: PMC10475954 DOI: 10.3389/fendo.2023.1190479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction PI3K/AKT signaling pathway is upregulated in a broad spectrum of cancers. Among the class I PI3Ks (PI3Kδ/β/δ isoforms), PI3Kδ has been implicated in hematologic cancers and solid tumors. Alternative splicing is a post-transcriptional process for acquiring proteomic diversity in eukaryotic cells. Emerging evidence has highlighted the involvement of aberrant mRNA splicing in cancer development/progression. Methods Our previous studies revealed that PIK3CD-S is an oncogenic splice variant that promotes tumor aggressiveness and drug resistance in prostate cancer (PCa). To further evaluate the potential of utilizing PI3Kδ-S (encoded from PIK3CD-S) as a cancer biomarker and/or drug target, comprehensive analyses were performed in a series of patient samples and cell lines derived from endocrine/solid tumors. Specifically, IHC, immunofluorescence, western blot and RT-PCR assay results have demonstrated that PI3Kδ isoforms were highly expressed in endocrine/solid tumor patient specimens and cell lines. Results Differential PIK3CD-S/PIK3CD-L expression profiles were identified in a panel of endocrine/solid tumor cells. SiRNA knockdown of PIK3CD-L or PIK3CD-S differentially inhibits AKT/mTOR signaling in PCa, breast, colon and lung cancer cell lines. Moreover, siRNA knockdown of PTEN increased PI3Kδ levels and activated AKT/mTOR signaling, while overexpression of PTEN reduced PI3Kδ levels and inhibited AKT/mTOR signaling in cancer cells. Intriguingly, PI3Kδ-S levels remained unchanged upon either siRNA knockdown or overexpression of PTEN. Taken together, these results suggested that PTEN negatively regulates PI3Kδ-L and its downstream AKT/mTOR signaling, while PI3Kδ-S promotes AKT/mTOR signaling without regulation by PTEN. Lastly, PI3Kδ inhibitor Idelalisib and SRPK1/2 inhibitor SRPIN340 were employed to assess their efficacies on inhibiting the PI3Kδ-expressing endocrine/solid tumors. Our results have shown that Idelalisib effectively inhibited PI3Kδ-L (but not PI3Kδ-S) mediated AKT/mTOR signaling. In contrast, SRPIN340 reversed the aberrant mRNA splicing, thereby inhibiting AKT/mTOR signaling. In-vitro functional assays have further demonstrated that a combination of Idelalisib and SRPIN340 achieved a synergistic drug effect (with drastically reduced cell viabilities/growths of tumor spheroids) in inhibiting the advanced tumor cells. Conclusion In summary, our study has suggested a promising potential of utilizing PI3Kδ-S (an oncogenic isoform conferring drug resistance and exempt from PTEN regulation) as a prognostic biomarker and drug target in advanced endocrine cancers.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Himali Gujrati
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD, United States
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
5
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Potential of miRNAs in Plasma Extracellular Vesicle for the Stratification of Prostate Cancer in a South African Population. Cancers (Basel) 2023; 15:3968. [PMID: 37568783 PMCID: PMC10417259 DOI: 10.3390/cancers15153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The analysis of microRNAs (miRNAs) in plasma extracellular vesicles (EVs) can be utilized as a non-invasive tool for the diagnosis of PCa. In this study, we used small RNA sequencing to profile miRNAs cargo in plasma EVs from South African PCa patients. We evaluated the differential expression of miRNAs between low and high Gleason scores in the plasma EVs of South African patients and in the prostatic tissue from data available in the Cancer Genome Atlas (TCGA) Data Portal. We identified 7 miRNAs differently expressed in both EVs and prostatic tissues. We evaluated their expression using qPCR in a larger cohort of 10 patients with benign prostatic hyperplasia (BPH) and 24 patients with PCa. Here, we reported that the ratio between two of these miRNAs (i.e., miR-194-5p/miR-16-5p) showed a higher concentration in PCa compared to BPH and in metastatic PCa compared to localized PCa. We explored for the first time the profiling of miRNAs cargo in plasma EVs as a tool for the identification of putative markers in the South African population. Our finding indicated the ratio miR-194-5p/miR-16-5p as a non-invasive marker for the evaluation of PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| |
Collapse
|
6
|
Gujrati H, Ha S, Wang BD. Deregulated microRNAs Involved in Prostate Cancer Aggressiveness and Treatment Resistance Mechanisms. Cancers (Basel) 2023; 15:3140. [PMID: 37370750 PMCID: PMC10296615 DOI: 10.3390/cancers15123140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer deaths among American men. Complex genetic and epigenetic mechanisms are involved in the development and progression of PCa. MicroRNAs (miRNAs) are short noncoding RNAs that regulate protein expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. In the past two decades, the field of miRNA research has rapidly expanded, and emerging evidence has revealed miRNA dysfunction to be an important epigenetic mechanism underlying a wide range of diseases, including cancers. This review article focuses on understanding the functional roles and molecular mechanisms of deregulated miRNAs in PCa aggressiveness and drug resistance based on the existing literature. Specifically, the miRNAs differentially expressed (upregulated or downregulated) in PCa vs. normal tissues, advanced vs. low-grade PCa, and treatment-responsive vs. non-responsive PCa are discussed. In particular, the oncogenic and tumor-suppressive miRNAs involved in the regulation of (1) the synthesis of the androgen receptor (AR) and its AR-V7 splice variant, (2) PTEN expression and PTEN-mediated signaling, (3) RNA splicing mechanisms, (4) chemo- and hormone-therapy resistance, and (5) racial disparities in PCa are discussed and summarized. We further provide an overview of the current advances and challenges of miRNA-based biomarkers and therapeutics in clinical practice for PCa diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Ha S, Wang BD. Molecular Insight into Drug Resistance Mechanism Conferred by Aberrant PIK3CD Splice Variant in African American Prostate Cancer. Cancers (Basel) 2023; 15:1337. [PMID: 36831678 PMCID: PMC9954641 DOI: 10.3390/cancers15041337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Targeting PI3Kδ has emerged as a promising therapy for hematologic and non-hematologic malignancies. Previously, we identified an oncogenic splice variant, PIK3CD-S, conferring Idelalisib resistance in African American (AA) prostate cancer (PCa). In the current study, we employed a comprehensive analysis combining molecular biology, biochemistry, histology, in silico simulation, and in vitro functional assays to investigate the PIK3CD-S expression profiles in PCa samples and to elucidate the drug resistance mechanism mediated by PI3Kδ-S (encoded by PIK3CD-S). The immunohistochemistry, RT-PCR, and Western blot assays first confirmed that PI3Kδ-S is highly expressed in AA PCa. Compared with PCa expressing the full-length PI3Kδ-L, PCa expressing PI3Kδ-S exhibits enhanced drug resistance properties, including a higher cell viability, more antiapoptotic and invasive capacities, and constitutively activated PI3K/AKT signaling, in the presence of PI3Kδ/PI3K inhibitors (Idelalisib, Seletalisib, Wortmannin, and Dactolisib). Molecular docking, ATP-competitive assays, and PI3 kinase assays have further indicated a drastically reduced affinity of PI3Kδ inhibitors with PI3Kδ-S vs. PI3Kδ-L, attributed to the lack of core binding residues in the PI3Kδ-S catalytic domain. Additionally, SRSF2 has been identified as a critical splicing factor mediating exon 20 skipping in PIK3CD pre-mRNA. The inhibition of the SRSF2 activity by SRPIN340 successfully sensitizes AA PCa cells to PI3Kδ inhibitors, suggesting a novel therapeutic option for Idelalisib-resistant tumors.
Collapse
Affiliation(s)
- Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy and Health Professions, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
8
|
Gu X, Wang S, Jin B, Qi Z, Deng J, Huang C, Yin X. A pathway analysis-based algorithm for calculating the participation degree of ncRNA in transcriptome. Sci Rep 2022; 12:22654. [PMID: 36587048 PMCID: PMC9805457 DOI: 10.1038/s41598-022-27178-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
After sequencing, it is common to screen ncRNA according to expression differences. But this may lose a lot of valuable information and there is currently no indicator to characterize the regulatory function and participation degree of ncRNA on transcriptome. Based on existing pathway enrichment methods, we developed a new algorithm to calculating the participation degree of ncRNA in transcriptome (PDNT). Here we analyzed multiple data sets, and differentially expressed genes (DEGs) were used for pathway enrichment analysis. The PDNT algorithm was used to calculate the Contribution value (C value) of each ncRNA based on its target genes and the pathways they participates in. The results showed that compared with ncRNAs screened by log2 fold change (FC) and p-value, those screened by C value regulated more DEGs in IPA canonical pathways, and their target DEGs were more concentrated in the core region of the protein-protein interaction (PPI) network. The ranking of disease critical ncRNAs increased integrally after sorting with C value. Collectively, we found that the PDNT algorithm provides a measure from another view compared with the log2FC and p-value and it may provide more clues to effectively evaluate ncRNA.
Collapse
Affiliation(s)
- Xinyi Gu
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Shen Wang
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Bo Jin
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Zhidan Qi
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Jin Deng
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Chen Huang
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| | - Xiaofeng Yin
- grid.411634.50000 0004 0632 4559Department of Orthopedics and Traumatology, Peking University People’s Hospital, Beijing, 100044 China ,grid.11135.370000 0001 2256 9319Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, China
| |
Collapse
|
9
|
Gujrati H, Ha S, Waseem M, Wang BD. Downregulation of miR-99b-5p and Upregulation of Nuclear mTOR Cooperatively Promotes the Tumor Aggressiveness and Drug Resistance in African American Prostate Cancer. Int J Mol Sci 2022; 23:9643. [PMID: 36077039 PMCID: PMC9455949 DOI: 10.3390/ijms23179643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) regulates various fundamental cellular events including cell proliferation, protein synthesis, metabolism, apoptosis, and autophagy. Tumor suppressive miR-99b-5p has been implicated in regulating PI3K/AKT/mTOR signaling in a variety of types of cancer. Our previous study suggested the reciprocal miR-99b-5p/MTOR (downregulated/upregulated) pairing as a key microRNA-mRNA regulatory component involved in the prostate cancer (PCa) disparities. In this study, we further validated the expression profiles of mTOR and miR-99b-5p in the PCa, colon, breast, and lung cancer specimens and cell lines. The immunohistochemistry (IHC), immunofluorescence, Western blot, and RT-qPCR assays have confirmed that mTOR is upregulated while miR-99b-5p is downregulated in different patient cohorts and a panel of cancer cell lines. Intriguingly, elevated nuclear mTOR expression was observed in African American PCa and other advanced cancers. Transfection of the miR-99b-5p mimic resulted in a significant reduction in nuclear mTOR and androgen receptor (AR), while a slight/moderate to no decrease in cytoplasmic mTOR and AR in PCa and other cancer cells, suggesting that miR-99b-5p inhibits mTOR and AR expression and their nuclear translocation. Moreover, overexpression of miR-99b-5p targets/inhibits AR-mTOR axis, subsequently initiating cell apoptosis and sensitizing docetaxel-induced cytotoxicity in various cancers. In conclusion, our data suggest that reciprocal miR-99b-5p/nuclear mTOR pairing may be a more precise diagnostic/prognostic biomarker for aggressive PCa, than miR-99b-5p/MTOR pairing or mTOR alone. Targeting the AR-mTOR axis using miR-99b-5p has also been suggested as a novel therapeutic strategy to induce apoptosis and overcome chemoresistance in aggressive PCa.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Mohammad Waseem
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore School of Pharmacy, Princess Anne, MD 21853, USA
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Lo UG, Chen YA, Cen J, Deng S, Luo J, Zhau H, Ho L, Lai CH, Mu P, Chung LWK, Hsieh JT. The driver role of JAK-STAT signalling in cancer stemness capabilities leading to new therapeutic strategies for therapy- and castration-resistant prostate cancer. Clin Transl Med 2022; 12:e978. [PMID: 35908276 PMCID: PMC9339240 DOI: 10.1002/ctm2.978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Lineage plasticity in prostate cancer (PCa) has emerged as an important mechanism leading to the onset of therapy- and castration-resistant PCa (t-CRPC), which is closely associated with cancer stem cell (CSC) activity. This study is to identify critical driver(s) with mechanism of action and explore new targeting strategy. METHODS Various PCa cell lines with different genetic manipulations were subjected to in vitro prostasphere assay, cell viability assay and in vivo stemness potential. In addition, bioinformatic analyses such as Ingenuity pathway and Gene Set Enrichment Analysis were carried out to determine clinical relevance. The in vivo anti-tumour activity of JAK or STAT1 inhibitors was examined in clinically relevant t-CRPC model. RESULTS We demonstrated the role of interferon-related signalling pathway in promoting PCa stemness, which correlated with significant elevation of interferon related DNA damage resistance signature genes in metastatic PCa. Inhibition of JAK-STAT1 signalling suppresses the in vitro and in vivo CSC capabilities. Mechanistically, IFIT5, a unique downstream effector of JAK-STAT1 pathway, can facilitate the acquisition of stemness properties in PCa by accelerating the turnover of specific microRNAs (such as miR-128 and -101) that can target several CSC genes (such as BMI1, NANOG, and SOX2). Consistently, knocking down IFIT5 in t-CRPC cell can significantly reduce in vitro prostasphere formation as well as decrease in vivo tumour initiating capability. CONCLUSIONS This study provides a critical role of STAT1-IFIT5 in the acquisition of PCSC and highlights clinical translation of JAK or STAT1 inhibitors to prevent the outgrowth of t-CRPC.
Collapse
Affiliation(s)
- U-Ging Lo
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Junjie Cen
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Su Deng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Junghang Luo
- Department of Urology, First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Haiyen Zhau
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lin Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ping Mu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Leland W K Chung
- Uro-Oncology Research, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering (Basel) 2022; 9:bioengineering9050214. [PMID: 35621492 PMCID: PMC9137836 DOI: 10.3390/bioengineering9050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze–thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications.
Collapse
|
12
|
Ji S, Shi Y, Yang L, Zhang F, Li Y, Xu F. miR-145-5p Inhibits Neuroendocrine Differentiation and Tumor Growth by Regulating the SOX11/MYCN Axis in Prostate cancer. Front Genet 2022; 13:790621. [PMID: 35368699 PMCID: PMC8965462 DOI: 10.3389/fgene.2022.790621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have shown that the downregulation of miR-145-5p in prostate cancer (PCa) is significantly associated with poor differentiation and prognosis. We aimed to investigate the biological role of miR-145-5p in the neuroendocrine differentiation (NED) of PCa. In this study, TheCancer Genome Atlas was used to identify the association of miR-145-5p with PCa. The functions of miR-145-5p were evaluated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle analysis. We validated changes in cell cycle control by testing the expression of cyclin-related genes by western blot. The luciferase reporter assay was performed to test miR-145-5p-targeting genes and direct transcriptional targets of SOX11. The expression of miR-145-5p was found to be significantly downregulated in castration-resistant PCa, and this was correlated with higher Gleason score and prostate-specific antigen. We confirmed these results using PC3 and LNCaP cell lines depicted a gradual decline of miR-145-5p while the cells were cultured under androgen depletion conditions. Moreover, the knockdown of miR-145-5p significantly promoted NED and proliferation of LNCaP cells, whereas overexpression of miR-145-5p significantly inhibited NED and proliferation of LNCaP cells. Mechanistically, we found that SOX11 was a direct target of miR-145-5p, which regulates MYCN might mediate induction of NED and proliferation of LNCaP cells. Furthermore, knockdown of miR-145-5p promoted tumor growth in vivo. Our findings suggest that miR-145-5p can inhibit NED and tumor growth by targeting SOX11, which regulates the expression of MYCN, and that this could be a novel therapeutic strategy for preventing the progression of PCa.
Collapse
Affiliation(s)
- Shuya Ji
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yi Shi
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Lin Yang
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Feng Zhang
- Department of General Practice, Shanghai Gonghexin Road Community Health Care Service Center, Shanghai, China
| | - Yong Li
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Feng Xu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
13
|
Gujrati H, Ha S, Mohamed A, Wang BD. MicroRNA-mRNA Regulatory Network Mediates Activation of mTOR and VEGF Signaling in African American Prostate Cancer. Int J Mol Sci 2022; 23:ijms23062926. [PMID: 35328346 PMCID: PMC8949405 DOI: 10.3390/ijms23062926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022] Open
Abstract
African American (AA) men exhibit 1.6-fold higher prostate cancer (PCa) incidence and 2.4-fold higher mortality rates compared to European American (EA) men. In addition to socioeconomic factors, emerging evidence suggests that intrinsic biological differences may explain part of PCa disparities. In this study, we applied microRNA (miRNA)-driven bioinformatics to evaluate whether differential miRNA-mRNA regulatory networks play a role in promoting the AA PCa disparities. 10 differentially expressed miRNAs were imported to mirPath V.3 algorithm, leading to identification of 58 signaling pathways differentially regulated in AA PCa versus EA PCa. Among these pathways, we particularly focused on mTOR and VEGF signaling, where we identified 5 reciprocal miRNA-mRNA pairings: miR-34a-5p/HIF1A, miR-34a-5p/PIK3CB, miR-34a-5p/IGFBP2, miR-99b-5p/MTOR and miR-96-5p/MAPKAPK2 in AA PCa versus EA PCa. RT-qPCR validation confirmed that miR-34a-5p, miR-99b-5p and MAPKAPK2 were downregulated, while miR-96-5p, IGFBP2, HIF1A, PIK3CB and MTOR were upregulated in AA PCa versus EA PCa cells. Transfection of miRNA mimics/antagomir followed by RT-qPCR and Western blot analysis further verified that IGFBP2, HIF1A and PIK3CB are negatively regulated by miR-34a-5p, whereas MTOR and MAPKAPK2 are negatively regulated by miR-99b-5p and miR-96-5p, respectively, at mRNA and protein levels. Targeting reciprocal pairings by miR-34a-5p mimic, miR-99b-5p mimic or miR-96-5p antagomir downregulates HIF1α, PI3Kβ, mTOR, IGFBP2 but upregulates MAPKAPK2, subsequently reducing cell proliferation and sensitizing docetaxel-induced cytotoxicity in PCa cells. These results suggest that miRNA-mRNA regulatory network plays a critical role in AA PCa disparities, and targeting these core miRNA-mRNA pairings may reduce PCa aggressiveness and overcome the chemoresistance in AA patients.
Collapse
Affiliation(s)
- Himali Gujrati
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
| | - Siyoung Ha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
| | - Azah Mohamed
- Toxicology Program, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA; (H.G.); (S.H.)
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
14
|
Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer. Int J Mol Sci 2022; 23:ijms23031626. [PMID: 35163550 PMCID: PMC8835890 DOI: 10.3390/ijms23031626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.
Collapse
|
15
|
Souza MF, Cólus IMS, Fonseca AS, Antunes VC, Kumar D, Cavalli LR. MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways. Biomolecules 2022; 12:187. [PMID: 35204688 PMCID: PMC8961520 DOI: 10.3390/biom12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients' survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Collapse
Affiliation(s)
- Marilesia Ferreira Souza
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Ilce Mara Syllos Cólus
- General Biology Department, State University of Londrina, Londrina, PR 86057-970, Brazil; (M.F.S.); (I.M.S.C.)
| | - Aline Simoneti Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Valquíria Casanova Antunes
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA;
| | - Luciane Regina Cavalli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR 80240-020, Brazil; (A.S.F.); (V.C.A.)
| |
Collapse
|
16
|
Role of Precision Oncology in Type II Endometrial and Prostate Cancers in the African Population: Global Cancer Genomics Disparities. Int J Mol Sci 2022; 23:ijms23020628. [PMID: 35054814 PMCID: PMC8776204 DOI: 10.3390/ijms23020628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
Precision oncology can be defined as molecular profiling of tumors to identify targetable alterations. Emerging research reports the high mortality rates associated with type II endometrial cancer in black women and with prostate cancer in men of African ancestry. The lack of adequate genetic reference information from the African genome is one of the major obstacles in exploring the benefits of precision oncology in the African context. Whilst external factors such as the geography, environment, health-care access and socio-economic status may contribute greatly towards the disparities observed in type II endometrial and prostate cancers in black populations compared to Caucasians, the contribution of African ancestry to the contribution of genetics to the etiology of these cancers cannot be ignored. Non-coding RNAs (ncRNAs) continue to emerge as important regulators of gene expression and the key molecular pathways involved in tumorigenesis. Particular attention is focused on activated/repressed genes and associated pathways, while the redundant pathways (pathways that have the same outcome or activate the same downstream effectors) are often ignored. However, comprehensive evidence to understand the relationship between type II endometrial cancer, prostate cancer and African ancestry remains poorly understood. The sub-Saharan African (SSA) region has both the highest incidence and mortality of both type II endometrial and prostate cancers. Understanding how the entire transcriptomic landscape of these two reproductive cancers is regulated by ncRNAs in an African cohort may help elucidate the relationship between race and pathological disparities of these two diseases. This review focuses on global disparities in medicine, PCa and ECa. The role of precision oncology in PCa and ECa in the African population will also be discussed.
Collapse
|
17
|
MacCuaig WM, Thomas A, Carlos-Sorto JC, Gomez-Gutierrez JG, Alexander AC, Wellberg EA, Grizzle WE, McNally LR. Differential expression of microRNA between triple negative breast cancer patients of African American and European American descent. Biotech Histochem 2022; 97:1-10. [PMID: 34979848 PMCID: PMC9047185 DOI: 10.1080/10520295.2021.2005147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There are racial disparities in the outcome of triple negative breast cancer (TNBC) patients between women of African ancestry and women of European ancestry, even after accounting for lifestyle, socioeconomic and clinical factors. MicroRNA (miRNA) are non-coding molecules whose level of expression is associated with cancer suppression, proliferation and drug resistance; therefore, these have potential for biomarker applications in cancers including TNBC. Historically, miRNAs up-regulated in African American (AA) patients have received less attention than for patients of European ancestry. Using laser capture microdissection (LCM) to acquire ultrapure tumor cell samples, miRNA expression was evaluated in 15 AA and 15 European American (EA) TNBC patients. Tumor sections were evaluated using RNA extraction followed by miRNA analysis and profiling. Results were compared based on ethnicity and method of tissue fixation. miRNAs that showed high differential expression in AA TNBC patients compared to EA included: miR-19a, miR-192, miR-302a, miR-302b, miR-302c, miR-335, miR-520b, miR-520f and miR-645. LCM is a useful technique for isolation of tumor cells. We found a greater abundance of RNA in frozen samples compared to formalin fixed, paraffin embedded samples. miRNA appears to be a useful biomarker for TNBC to improve diagnosis and treatment.
Collapse
Affiliation(s)
- William M. MacCuaig
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma
| | - Alexandra Thomas
- Department of Hematology Oncology, Wake Forest Baptist Health, Winston-Salem, North Carolina
| | - Juan C. Carlos-Sorto
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| | | | - Adam C. Alexander
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Family and Preventive Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Elizabeth A. Wellberg
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Pathology, University of Oklahoma, Oklahoma City, Oklahoma
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma,Department of Surgery, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
18
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
19
|
Delgir S, Ilkhani K, Safi A, Rahmati Y, Montazari V, Zaynali-Khasraghi Z, Seif F, Bastami M, Alivand MR. The expression of miR-513c and miR-3163 was downregulated in tumor tissues compared with normal adjacent tissue of patients with breast cancer. BMC Med Genomics 2021; 14:180. [PMID: 34233668 PMCID: PMC8265124 DOI: 10.1186/s12920-021-01029-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is the most invasive cancer with different subtypes that its metabolism is unique compared with normal cells. Glutamine is considered critical nutrition that many cancer cells, particularly BC cells, are dependent on it for growth and proliferation. Therefore, targeting glutamine metabolism, especially enzymes that are related to this pathway, can be beneficial to design anti-cancer agents. Recent evidence has shown that microRNAs (miRNAs), with a short length and single-strand properties, play a prominent role in regulating the genes related to glutamine metabolism, which may control the development of cancer. METHODS In silico analysis confirmed that miR-513c and miR-3163 might be involved in glutamine metabolism. The expression level of these two miRNAs was evaluated in eighty BC tissues and normal adjacent tissues. Furthermore, GSE38167, GSE38867, GSE42128, GSE45666, and GSE53179 were employed from gene expression omnibus (GEO). The Limma package was utilized to identify differentially expressed miRNAs (DEMs) of mentioned datasets to evaluate miR-513c and miR-3163 expression. Further, in silico analysis was utilized to predict the potential biological processes and molecular pathways of miR-513c and miR-3163, based on their target genes. RESULTS In silico studies revealed top categories of biological processes and cellular pathways that might play a critical role in metabolism reprogramming and cancer development and were target genes for miR-513c and miR-3163. The current study showed that miR-513c (p value = 0.02062 and FC = - 2.3801) and miR-3163 (p value = 0.02034 and FC = - 2.3792) were downregulated in tumor tissues compared to normal adjacent tissues. The analysis of GEO microarray datasets showed that miR-513c was downregulated in GSE38167, GSE38867, GSE42128, GSE45666 and GSE53179, whereas there was a significant downregulation of miR-3163 in only two studies, including GSE38867 and GSE42128 that they were in accordance with our experimental results. Furthermore, the subgroup analysis did not show any substantial relationship between expression levels of these two miRNAs and factors such as age, family history of cancer, and abortion history. CONCLUSION MiR-513c and miR-3163 were downregulated in BC tissues, which might serve as tumor suppressors. They are suggested as potential therapeutic targets for patients with BC.
Collapse
Affiliation(s)
- Soheila Delgir
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khandan Ilkhani
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asma Safi
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yazdan Rahmati
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Montazari
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences/and also Surgery Ward, Nour-Nejat Hospital, Tabriz, Iran
| | - Zahra Zaynali-Khasraghi
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research, Tehran, Iran
| | - Milad Bastami
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Molecular Genetics, Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Freedman JA, Al Abo M, Allen TA, Piwarski SA, Wegermann K, Patierno SR. Biological Aspects of Cancer Health Disparities. Annu Rev Med 2021; 72:229-241. [PMID: 33502900 DOI: 10.1146/annurev-med-070119-120305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Racial and ethnic disparities span the continuum of cancer care and are driven by a complex interplay among social, psychosocial, lifestyle, environmental, health system, and biological determinants of health. Research is needed to identify these determinants of cancer health disparities and to develop interventions to achieve cancer health equity. Herein, we focus on the overall burden of ancestry-related molecular alterations, the functional significance of the alterations in hallmarks of cancer, and the implications of the alterations for precision oncology and immuno-oncology. In conclusion, we reflect on the importance of estimating ancestry, improving diverse racial and ethnic participation in cancer clinical trials, and examining the intersection among determinants of cancer health disparities.
Collapse
Affiliation(s)
- Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Tyler A Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
| | - Sean A Piwarski
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Kara Wegermann
- Division of Gastroenterology, Duke University Health System, Durham, North Carolina 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA;
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
21
|
Wu Z, Chen H, Luo W, Zhang H, Li G, Zeng F, Deng F. The Landscape of Immune Cells Infiltrating in Prostate Cancer. Front Oncol 2020; 10:517637. [PMID: 33194581 PMCID: PMC7658630 DOI: 10.3389/fonc.2020.517637] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background This study was to explore the infiltration pattern of immune cells in the prostate cancer (PCa) microenvironment and evaluate the possibility of specific infiltrating immune cells as potential prognostic biomarkers in PCa. Methods Infiltrating percentage of 22 immune cells were extracted from 27 normalized datasets by CIBERSORT algorithm. Samples with CIBERSORT p-value < 0.05 were subsequently merged and divided into normal or tumor groups. The differences of 22 immune cells between normal and tumor tissues were analyzed along with potential infiltrating correlations among 22 immune cells and Gleason grades. SNV data from TCGA was used to calculate the TMB score. A univariate and multivariate regression were used to evaluate the prognostic effects of immune cells in PCa. Results Ten immune cells with significant differences were identified, including seven increased and three decreased infiltrating immune cells from 190 normal prostate tissues and 537 PCa tissues. Among them, the percentage of infiltration of resting NK cells increased the most, whereas the percentage of infiltration of resting mast cells decreased the most. In normal tissues, CD8+ T cells had the strongest infiltrating correlation with monocytes, while activated NK cells and naive B cells were the highest in PCa tissues. Moreover, the infiltration of five immune cells was significantly associated with TMB score and mutations of immune gene change the infiltration of immune cells. The Area Under Curve (AUC) of the multivariate regression model for the five- and 10-year survival prediction of PCa reached 0.796 and 0.862. The validation cohort proved that the model was reproducible. Conclusions This study demonstrated that different infiltrating immune cells in prostate cancer, especially higher infiltrating M1 macrophages and neutrophils in PCa tissue, are associated with patients’ prognosis, suggesting that these two immune cells might be potential targets for PCa diagnosis and prognosis of treatment.
Collapse
Affiliation(s)
- Zhicong Wu
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hua Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hanyun Zhang
- Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Kurimoto R, Chiba T, Ito Y, Matsushima T, Yano Y, Miyata K, Yashiro Y, Suzuki T, Tomita K, Asahara H. The tRNA pseudouridine synthase TruB1 regulates the maturation of let-7 miRNA. EMBO J 2020; 39:e104708. [PMID: 32926445 PMCID: PMC7560213 DOI: 10.15252/embj.2020104708] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.
Collapse
Affiliation(s)
- Ryota Kurimoto
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tomoki Chiba
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yoshiaki Ito
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Research CoreResearch Facility ClusterInstitute of ResearchTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Takahide Matsushima
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Yuki Yano
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kohei Miyata
- Department Obstetrics and GynecologyFaculty of MedicineFukuoka UniversityFukuokaJapan
| | - Yuka Yashiro
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Tsutomu Suzuki
- Department of Chemistry and BiotechnologyGraduate School of EngineeringUniversity of TokyoTokyoJapan
| | - Kozo Tomita
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChibaJapan
| | - Hiroshi Asahara
- Department of Systems BioMedicineGraduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- Department of Molecular and Experimental MedicineThe Scripps Research InstituteSan DiegoCAUSA
| |
Collapse
|
23
|
Arnold NS, Noren Hooten N, Zhang Y, Lehrmann E, Wood W, Camejo Nunez W, Thorpe RJ, Evans MK, Dluzen DF. The association between poverty and gene expression within peripheral blood mononuclear cells in a diverse Baltimore City cohort. PLoS One 2020; 15:e0239654. [PMID: 32970748 PMCID: PMC7514036 DOI: 10.1371/journal.pone.0239654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
Socioeconomic status (SES), living in poverty, and other social determinants of health contribute to health disparities in the United States. African American (AA) men living below poverty in Baltimore City have a higher incidence of mortality when compared to either white males or AA females living below poverty. Previous studies in our laboratory and elsewhere suggest that environmental conditions are associated with differential gene expression (DGE) patterns in peripheral blood mononuclear cells (PBMCs). DGE have also been associated with hypertension and cardiovascular disease (CVD) and correlate with race and sex. However, no studies have investigated how poverty status associates with DGE between male and female AAs and whites living in Baltimore City. We examined DGE in 52 AA and white participants of the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) cohort, who were living above or below 125% of the 2004 federal poverty line at time of sample collection. We performed a microarray to assess DGE patterns in PBMCs from these participants. AA males and females living in poverty had the most genes differentially-expressed compared with above poverty controls. Gene ontology (GO) analysis identified unique and overlapping pathways related to the endosome, single-stranded RNA binding, long-chain fatty-acyl-CoA biosynthesis, toll-like receptor signaling, and others within AA males and females living in poverty and compared with their above poverty controls. We performed RT-qPCR to validate top differentially-expressed genes in AA males. We found that KLF6, DUSP2, RBM34, and CD19 are expressed at significantly lower levels in AA males in poverty and KCTD12 is higher compared to above poverty controls. This study serves as an additional link to better understand the gene expression response in peripheral blood mononuclear cells in those living in poverty.
Collapse
Affiliation(s)
- Nicole S. Arnold
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - William Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Wendy Camejo Nunez
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
| | - Roland J. Thorpe
- Program for Research on Men’s Health, Hopkins Center for Health Disparities Solutions, Johns Hopkins University, Baltimore, MD, United States of America
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Douglas F. Dluzen
- Department of Biology, Morgan State University, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
24
|
Varghese RS, Zhou Y, Chen Y, Barefoot ME, Tadesse M, Ressom HW. Epigenetic changes associated with mechanisms of disparities in hepatocellular carcinoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:5320-5325. [PMID: 33019185 PMCID: PMC9576401 DOI: 10.1109/embc44109.2020.9176036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In addition to socioeconomic influences, biological factors are believed to play a role in health disparities. In this paper, we investigate miRNA, mRNA, and DNA methylation patterns that contribute to disparities in hepatocellular carcinoma (HCC). This is accomplished by integration of mRNA-Seq, miRNA-Seq, and DNA methylation data we acquired by analysis of liver tissues from 30 HCC patients consisting of European Americans (EAs), African Americans (AAs), and Asian Americans (Asians). Mixed-ANOVA models are applied to identify miRNAs, mRNAs, and DNA methylation sites that are significantly altered in tumor vs. adjacent normal tissues in a race-specific manner. Through integrated analysis, a refined list of differentially expressed mRNAs is obtained by selecting those that are targets of differentially expressed miRNAs and consist of promoter regions that are differentially methylated.
Collapse
|
25
|
Arkorful MA, Noren Hooten N, Zhang Y, Hewitt AN, Barrientos Sanchez L, Evans MK, Dluzen DF. MicroRNA-1253 Regulation of WASF2 (WAVE2) and its Relevance to Racial Health Disparities. Genes (Basel) 2020; 11:E572. [PMID: 32443852 PMCID: PMC7288301 DOI: 10.3390/genes11050572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of hypertension among African Americans (AAs) in the US is among the highest of any demographic and affects over two-thirds of AA women. Previous data from our laboratory suggest substantial differential gene expression (DGE) of mRNAs and microRNAs (miRNAs) exists within peripheral blood mononuclear cells (PBMCs) isolated from AA and white women with or without hypertension. We hypothesized that DGE by race may contribute to racial differences in hypertension. In a reanalysis of our previous dataset, we found that the Wiskott-Aldrich syndrome protein Verprolin-homologous protein 2 (WASF2 (also known as WAVE2)) is differentially expressed in AA women with hypertension, along with several other members of the actin cytoskeleton signaling pathway that plays a role in cell shape and branching of actin filaments. We performed an in silico miRNA target prediction analysis that suggested miRNA miR-1253 regulates WASF2. Transfection of miR-1253 mimics into human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs) significantly repressed WASF2 mRNA and protein levels (p < 0.05), and a luciferase reporter assay confirmed that miR-1253 regulates the WASF2 3' UTR (p < 0.01). miR-1253 overexpression in HUVECs significantly increased HUVEC lamellipodia formation (p < 0.01), suggesting the miR-1253-WASF2 interaction may play a role in cell shape and actin cytoskeleton function. Together, we have identified novel roles for miR-1253 and WASF2 in a hypertension-related disparities context. This may ultimately lead to the discovery of additional actin-related genes which are important in the vascular-related complications of hypertension and influence the disproportionate susceptibility to hypertension among AAs in general and AA women in particular.
Collapse
Affiliation(s)
- Mercy A. Arkorful
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA;
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD 21224, USA; (N.N.H.); (A.N.H.); (L.B.S.); (M.K.E.)
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Amirah N. Hewitt
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD 21224, USA; (N.N.H.); (A.N.H.); (L.B.S.); (M.K.E.)
| | - Lori Barrientos Sanchez
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD 21224, USA; (N.N.H.); (A.N.H.); (L.B.S.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, Baltimore, MD 21224, USA; (N.N.H.); (A.N.H.); (L.B.S.); (M.K.E.)
| | - Douglas F. Dluzen
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA;
| |
Collapse
|
26
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
27
|
Varghese RS, Zhou Y, Barefoot M, Chen Y, Di Poto C, Balla AK, Oliver E, Sherif ZA, Kumar D, Kroemer AH, Tadesse MG, Ressom HW. Identification of miRNA-mRNA associations in hepatocellular carcinoma using hierarchical integrative model. BMC Med Genomics 2020; 13:56. [PMID: 32228601 PMCID: PMC7106691 DOI: 10.1186/s12920-020-0706-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background The established role miRNA-mRNA regulation of gene expression has in oncogenesis highlights the importance of integrating miRNA with downstream mRNA targets. These findings call for investigations aimed at identifying disease-associated miRNA-mRNA pairs. Hierarchical integrative models (HIM) offer the opportunity to uncover the relationships between disease and the levels of different molecules measured in multiple omic studies. Methods The HIM model we formulated for analysis of mRNA-seq and miRNA-seq data can be specified with two levels: (1) a mechanistic submodel relating mRNAs to miRNAs, and (2) a clinical submodel relating disease status to mRNA and miRNA, while accounting for the mechanistic relationships in the first level. Results mRNA-seq and miRNA-seq data were acquired by analysis of tumor and normal liver tissues from 30 patients with hepatocellular carcinoma (HCC). We analyzed the data using HIM and identified 157 significant miRNA-mRNA pairs in HCC. The majority of these molecules have already been independently identified as being either diagnostic, prognostic, or therapeutic biomarker candidates for HCC. These pairs appear to be involved in processes contributing to the pathogenesis of HCC involving inflammation, regulation of cell cycle, apoptosis, and metabolism. For further evaluation of our method, we analyzed miRNA-seq and mRNA-seq data from TCGA network. While some of the miRNA-mRNA pairs we identified by analyzing both our and TCGA data are previously reported in the literature and overlap in regulation and function, new pairs have been identified that may contribute to the discovery of novel targets. Conclusion The results strongly support the hypothesis that miRNAs are important regulators of mRNAs in HCC. Furthermore, these results emphasize the biological relevance of studying miRNA-mRNA pairs.
Collapse
Affiliation(s)
- Rency S Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Yuan Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Megan Barefoot
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Yifan Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Cristina Di Poto
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | | | - Everett Oliver
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington DC, USA
| | - Deepak Kumar
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA
| | | | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington DC, USA
| | - Habtom W Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room 175, Building D, 4000 Reservoir Rd NW, Washington, DC, 20057, USA.
| |
Collapse
|
28
|
Lu T, Chen S, Qu L, Wang Y, Chen HD, He C. Identification of a five-miRNA signature predicting survival in cutaneous melanoma cancer patients. PeerJ 2019; 7:e7831. [PMID: 31660262 PMCID: PMC6814066 DOI: 10.7717/peerj.7831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Cutaneous melanoma (CM) is the deadliest form of skin cancer. Numerous studies have revealed that microRNAs (miRNAs) are expressed abnormally in melanoma tissues. Our work aimed to assess multiple miRNAs using bioinformatic analysis in order to predict the prognoses of cutaneous melanoma patients. Methods The microarray dataset GSE35579 was downloaded from the Gene Expression Omnibus (GEO) database to detect the differential expression of miRNAs (DEMs), including 41 melanoma (primary and metastatic) tissues and 11 benign nevi. Clinical information and miRNA sequencing data of cutaneous melanoma tissues were downloaded from the Cancer Genome Atlas database (TCGA) to assess the prognostic values of DEMs. Additionally, the target genes of DEMs were anticipated using miRanda, miRmap, TargetScan, and PicTar. Finally, functional analysis was performed using selected target genes on the Annotation, Visualization and Integrated Discovery (DAVID) website. Results After performing bioinformatic analysis, a total of 185 DEMs were identified: 80 upregulated miRNAs and 105 downregulated miRNAs. A five-miRNA (miR-25, miR-204, miR-211, miR-510, miR-513c) signature was discovered to be a potential significant prognostic biomarker of cutaneous melanoma when using the Kaplan–Meier survival method (P = 0.001). Univariate and multivariate Cox regression analyses showed that the five-miRNA signature could be an independent prognostic marker (HR = 0.605, P = 0.006) in cutaneous melanoma patients. Biological pathway analysis indicated that the target genes may be involved in PI3K-Akt pathways, ubiquitin-mediated proteolysis, and focal adhesion. Conclusion The identified five-miRNA signature may serve as a prognostic biomarker, or as a potential therapeutic target, in cutaneous melanoma patients.
Collapse
Affiliation(s)
- Tao Lu
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China.,Department of Dermatology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China.,Graduate school, China Medical University, Shenyang, Liao Ning, China
| | - Shuang Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Le Qu
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Yunlin Wang
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Hong-Duo Chen
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China
| | - Chundi He
- Department of Dermatology, No. 1 Hospital of China Medical University, Shenyang, Liao Ning, China.,Graduate school, China Medical University, Shenyang, Liao Ning, China
| |
Collapse
|
29
|
Wong M, Bierman Y, Pettaway C, Kittles R, Mims M, Jones J, Ittmann M. Comparative analysis of p16 expression among African American and European American prostate cancer patients. Prostate 2019; 79:1274-1283. [PMID: 31111520 PMCID: PMC6617792 DOI: 10.1002/pros.23833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/01/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Expression of p16 is increased in a number of malignancies, including prostate cancer (PCa). Recent studies in a European cohort showed that expression of p16 is correlated with expression of the TMPRSS2/ERG (T/E) fusion protein. The T/E fusion is significantly less common in PCas in African American (AA) men. Thus, it would be predicted that p16 expression should be less common in PCas in AA men. We, therefore, sought to compare the expression of p16 in benign prostate and PCas from AA and European American (EA) men. METHODS Immunohistochemistry for p16 and ERG was performed on tissue microarrays constructed from radical prostatectomies performed on AA and EA veterans. Staining was scored and the scores compared with demographic, clinical and pathological parameters. Percent of West African ancestry in the AA cohort was assessed using ancestry informative markers. RESULTS Contrary to our predictions, p16 expression was similar in the cancers in the AA and EA cohorts. Consistent with prior reports, expression of p16 was quite low in benign prostate tissues from EA patients but surprisingly was significantly higher in benign tissues from AA patients. Expression of p16 was significantly associated with a family history of PCa in AA men. In addition, p16 was associated with ERG expression in AA PCa. CONCLUSIONS While overall expression of p16 is similar in PCas from the two racial groups, the expression of p16 in benign tissues from a subset of AA men and the stronger correlation with ERG expression implies that there are different mechanisms for p16 overexpression in PCas from the two racial groups.
Collapse
Affiliation(s)
- Myra Wong
- Department of Pathology and Immunology, Michael E. DeBakey VA Medical CenterBaylor College of MedicineHoustonTexas
| | - Yaeli Bierman
- Department of Pathology and Immunology, Michael E. DeBakey VA Medical CenterBaylor College of MedicineHoustonTexas
| | - Curtis Pettaway
- Department of UrologyUT MD Anderson Cancer CenterHoustonTexas
| | - Rick Kittles
- Department of Population Sciences, Division of Health EquitiesCity of Hope Comprehensive Cancer CenterDuarteCalifornia
| | - Martha Mims
- Department of MedicineBaylor College of MedicineHoustonTexas
| | - Jeffrey Jones
- Scott Department of Urology, Michael E. DeBakey VA Medical CenterBaylor College of MedicineHoustonTexas
| | - Michael Ittmann
- Department of Pathology and Immunology, Michael E. DeBakey VA Medical CenterBaylor College of MedicineHoustonTexas
| |
Collapse
|
30
|
Bhagirath D, Yang TL, Tabatabai ZL, Shahryari V, Majid S, Dahiya R, Tanaka Y, Saini S. Role of a novel race-related tumor suppressor microRNA located in frequently deleted chromosomal locus 8p21 in prostate cancer progression. Carcinogenesis 2019; 40:633-642. [PMID: 30874288 PMCID: PMC7331454 DOI: 10.1093/carcin/bgz058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/07/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
The prostate cancer (PCa) genome is characterized by deletions of chromosome 8p21-22 region that increase significantly with tumor grade and are associated with poor prognosis. We proposed and validated a novel, paradigm-shifting hypothesis that this region is associated with a set of microRNA genes-miR-3622, miR-3622b, miR-383-that are lost in PCa and play important mechanistic roles in PCa progression and metastasis. Extending our hypothesis, in this study, we evaluated the role of a microRNA gene located in chromosome 8p-miR-4288-by employing clinical samples and cell lines. Our data suggests that (i) miR-4288 is widely downregulated in primary prostate tumors and cell lines; (ii) miR-4288 expression is lost in metastatic castration-resistant PCa; (ii) miR-4288 downregulation is race-related PCa alteration that is prevalent in Caucasian patients and not in African Americans; (iii) in Caucasians, miR-4288 was found to be associated with increasing tumor grade and high serum prostate-specific antigen, suggesting that miR-4288 downregulation/loss may be associated with tumor progression specifically in Caucasians; (iv) miR-4288 possess significant potential as a molecular biomarker to predict aggressiveness/metastasis; and (v) miR-4288 is anti-proliferative, is anti-invasive and inhibits epithelial-to-mesenchymal transition; and (vi) miR-4288 directly represses expression of metastasis/invasion-associated genes MMP16 and ROCK1. Thus, the present study demonstrates a tumor suppressor role for a novel miRNA located with a frequently lost region in PCa, strengthening our hypothesis that this locus is causally related to PCa disease progression via loss of microRNA genes. Our study suggests that miR-4288 may be a novel biomarker and therapeutic target, particularly in Caucasians.
Collapse
Affiliation(s)
- Divya Bhagirath
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Thao Ly Yang
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Z Laura Tabatabai
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Varahram Shahryari
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Hashimoto Y, Shiina M, Dasgupta P, Kulkarni P, Kato T, Wong RK, Tanaka Y, Shahryari V, Maekawa S, Yamamura S, Saini S, Deng G, Tabatabai ZL, Majid S, Dahiya R. Upregulation of miR-130b Contributes to Risk of Poor Prognosis and Racial Disparity in African-American Prostate Cancer. Cancer Prev Res (Phila) 2019; 12:585-598. [PMID: 31266828 DOI: 10.1158/1940-6207.capr-18-0509] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/23/2019] [Accepted: 06/24/2019] [Indexed: 12/18/2022]
Abstract
Prostate cancer incidence and mortality rates are higher in African-American (AA) than in European-American (EA) men. The main objective of this study was to elucidate the role of miR-130b as a contributor to prostate cancer health disparity in AA patients. We also determined whether miR-130b is a prognostic biomarker and a new therapeutic candidate for AA prostate cancer. A comprehensive approach of using cell lines, tissue samples, and the TCGA database was employed. We performed a series of functional assays such as cell proliferation, migration, invasion, RT2-PCR array, qRT-PCR, cell cycle, luciferase reporter, immunoblot, and IHC. Various statistical approaches such as Kaplan-Meier, uni-, and multivariate analyses were utilized to determine the clinical significance of miR-130b. Our results showed that elevated levels of miR-130b correlated with race disparity and PSA levels/failure and acted as an independent prognostic biomarker for AA patients. Two tumor suppressor genes, CDKN1B and FHIT, were validated as direct functional targets of miR-130b. We also found race-specific cell-cycle pathway activation in AA patients with prostate cancer. Functionally, miR-130b inhibition reduced cell proliferation, colony formation, migration/invasion, and induced cell-cycle arrest. Inhibition of miR-130b modulated critical prostate cancer-related biological pathways in AA compared with EA prostate cancer patients. In conclusion, attenuation of miR-130b expression has tumor suppressor effects in AA prostate cancer. miR-130b is a significant contributor to prostate cancer racial disparity as its overexpression is a risk factor for poor prognosis in AA patients with prostate cancer. Thus, regulation of miR-130b may provide a novel therapeutic approach for the management of prostate cancer in AA patients.
Collapse
Affiliation(s)
- Yutaka Hashimoto
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Marisa Shiina
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Pritha Dasgupta
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Priyanka Kulkarni
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Taku Kato
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Ryan K Wong
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Yuichiro Tanaka
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Varahram Shahryari
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Shigekatsu Maekawa
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Soichiro Yamamura
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Sharanjot Saini
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Guoren Deng
- Department of Urology, San Francisco VA Medical Center, San Francisco, California.,University of California San Francisco, San Francisco, California
| | - Z Laura Tabatabai
- Department of Pathology, San Francisco VA Medical Center, California.,University of California San Francisco, San Francisco, California
| | - Shahana Majid
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| | - Rajvir Dahiya
- Department of Urology, San Francisco VA Medical Center, San Francisco, California. .,University of California San Francisco, San Francisco, California
| |
Collapse
|
32
|
Ma H, Wang LY, Yang RH, Zhou Y, Zhou P, Kong L. Identification of reciprocal microRNA-mRNA pairs associated with metastatic potential disparities in human prostate cancer cells and signaling pathway analysis. J Cell Biochem 2019; 120:17779-17790. [PMID: 31127646 DOI: 10.1002/jcb.29045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022]
Abstract
The major cause of mortality for prostate cancer (PCa) is metastasis; however, the metastatic mechanism remains unclear. MicroRNAs (miRNAs) alter the expression patterns of essential genes through posttranscriptional regulation during cancer development. The study was mainly aimed at identifying specific miRNA-messenger RNA (mRNA) interactions and signaling pathways associated with PCa distant metastasis. New analytical approaches were applied, combining miRNA and gene expression microarray, to screen differentially expressed miRNA-mRNA pairs in the normal prostate epithelial cell line RWPE-1, the highly-metastatic human PCa cell line PC-3M-1E8 (H-1E8 or 1E8) and the lowly metastatic cell line PC-3M-2B4 (L-2B4 or 2B4). Eight differentially expressed candidate miRNAs and their targets closely related to PCa metastasis were identified and validated in patients by using the Gene Expression Omnibus database. Among them, overexpression of hsa-miR-92b-3p and hsa-let-7a-5p and underexpression of their targets, such as glutathione-S-transferase M3 (GSTM3), baculoviral IAP repeat-containing 3, and cyclin-dependent kinase inhibitor 1 (CDKN1A), were also validated in H-1E8 cells compared with L-2B4 cells. Bioinformatics suggested that hsa-miR-92b-3p and hsa-let-7a-5p and their targets might promote PCa metastasis through platinum-based drug resistance and the JAK-STAT signaling pathway. H-1E8 and L-2B4 cells treated by cisplatin showed the greatly decreased levels of hsa-miR-92b-3p and hsa-let-7a-5p; however, in contrast to 2B4 cells, 1E8 cells did not negatively regulate the increase in the expression levels of the targets GSTM3 and CDKN1A. This finding suggests that the dysregulation between hsa-let-7a-5p/CDKN1A and hsa-miR-92b-3p/GSTM3 pairs is associated with platinum-based chemoresistance of metastatic cancer cells.
Collapse
Affiliation(s)
- Hui Ma
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Li-Yong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, China
| | - Rong-Hui Yang
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ying Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Ping Zhou
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| | - Lu Kong
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Rai R, Yadav SS, Pan H, Khan I, O'Connor J, Alshalalfa M, Davicioni E, Taioli E, Elemento O, Tewari AK, Yadav KK. Epigenetic analysis identifies factors driving racial disparity in prostate cancer. Cancer Rep (Hoboken) 2019; 2:e1153. [PMID: 32721098 PMCID: PMC7941489 DOI: 10.1002/cnr2.1153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second most leading cause of death in men worldwide. African-American men (AA) represent more aggressive form of the disease compared to Caucasian (CA) counterparts. Several lines of evidences suggest that biological factors are responsible for the observed racial disparity. AIM This study was aimed at identifying the epigenetic variation among AA and CA PCa patients and whether DNA methylation differences have an association with clinical outcomes in the two races. METHODS AND RESULTS The cancer genome atlas (TCGA) dataset (2015) was used to identify existing epigenetic variation in AA and CA PCa patients. Reduced Representation Bisulfite Sequencing (RRBS) was performed to identify global DNA methylation changes in a small cohort of AA and CA PCa patients. The RRBS data were then used to identify survival and recurrence outcomes in AA and CA PCa patients using publicly available datasets. The TCGA data analysis revealed epigenetic heterogeneity, which could be categorized into four classes. AA associated primarily to methylation cluster 1 (p = 0.048), and CA associated to methylation cluster 3 (p = 0.000146). Enrichment of the Wnt signaling pathway was identified in both the races; however, they were differentially activated in terms of canonical and non-canonical Wnt signaling. This was further validated using the Decipher Genomics Resource Information Database (GRID). The RRBS data also identified discrete methylation patterns in AA compared with CA and, in part, validated our TCGA findings. Survival analysis using the RRBS data suggested hypomethylated genes to be significantly associated with recurrence of PCa in CA (p = 6.07 × 10-6) as well as in AA (p = 0.0077). CONCLUSION Overall, we observed epigenetic-based racial disparity in PCa which could affect survival and should be considered during prognosis and treatment.
Collapse
Affiliation(s)
- Richa Rai
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Shalini S. Yadav
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Heng Pan
- Department of Physiology and Biophysics, Institute for Precision MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Irtaza Khan
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - James O'Connor
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | | | - Emanuela Taioli
- Department of Population Health Science and Policy and Institute for Translational EpidemiologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Precision MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Kamlesh K. Yadav
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Sema4StamfordConnecticutUSA
| |
Collapse
|
34
|
New mechanistic insights of clear cell renal cell carcinoma from integrated miRNA and mRNA expression profiling studies. Biomed Pharmacother 2019; 111:821-834. [DOI: 10.1016/j.biopha.2018.12.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/12/2018] [Accepted: 12/23/2018] [Indexed: 12/20/2022] Open
|
35
|
Chen D, Lu X, Yang F, Xing N. Circular RNA circHIPK3 promotes cell proliferation and invasion of prostate cancer by sponging miR-193a-3p and regulating MCL1 expression. Cancer Manag Res 2019; 11:1415-1423. [PMID: 30863152 PMCID: PMC6388976 DOI: 10.2147/cmar.s190669] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND While emerging evidence indicates that circHIPK3 is critically involved in tumorigenesis and the development of several cancers, its role in prostate cancer (PCa) is not clearly understood. MATERIALS AND METHODS Human PCa samples and their matched normal adjacent tissues were obtained from 26 patients to assess the expression of circHIPK3 and its relationship with PCa prognosis. A series of in vitro and in vivo functional experiments were carried out to elucidate the role of circHIPK3 in PCa progression and its underlying molecular mechanisms. RESULTS In this study, we found that circHIPK3 was overexpressed in PCa tissues and that higher circHIPK3 expression was associated with tumor stage. Moreover, circHIPK3 knockdown markedly inhibited the proliferation, migration, and invasion of PCa cells in vitro and impaired tumor growth in vivo. Bioinformatics analysis and luciferase reporter assays demonstrated that circHIPK3 could promote MCL1 expression by interacting with miR-193a-3p in PCa. Finally, rescue assays illustrated that circHIPK3 knockdown could partially reverse the effects of MCL1 overexpression. CONCLUSION In summary, our study illustrated, for the first time, that circHIPK3-mediated miR-193a-3p-MCL1 signaling promotes PCa development and progression, providing a novel therapeutic target for PCa.
Collapse
Affiliation(s)
- Dong Chen
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinxing Lu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Feiya Yang
- Department of Urology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center, Beijing 100021, China,
| | - Nianzeng Xing
- Department of Urology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Cancer Center, Beijing 100021, China,
| |
Collapse
|
36
|
Olender J, Lee NH. Role of Alternative Splicing in Prostate Cancer Aggressiveness and Drug Resistance in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:119-139. [PMID: 31576545 PMCID: PMC6777849 DOI: 10.1007/978-3-030-22254-3_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing, the process of removing introns and joining exons of pre-mRNA, is critical for growth, development, tissue homeostasis, and species diversity. Dysregulation of alternative splicing can initiate and drive disease. Aberrant alternative splicing has been shown to promote the "hallmarks of cancer" in both hematological and solid cancers. Of interest, recent work has focused on the role of alternative splicing in prostate cancer and prostate cancer health disparities. We will provide a review of prostate cancer health disparities involving the African American population, alternative RNA splicing, and alternative splicing in prostate cancer. Lastly, we will summarize our work on differential alternative splicing in prostate cancer disparities and its implications for disparate health outcomes and therapeutic targets.
Collapse
Affiliation(s)
- Jacqueline Olender
- Department of Pharmacology and Physiology, GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, GW Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
37
|
Long MD, Singh PK, Russell JR, Llimos G, Rosario S, Rizvi A, van den Berg PR, Kirk J, Sucheston-Campbell LE, Smiraglia DJ, Campbell MJ. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene 2019; 38:421-444. [PMID: 30120411 PMCID: PMC6336686 DOI: 10.1038/s41388-018-0450-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/25/2018] [Accepted: 06/26/2018] [Indexed: 01/22/2023]
Abstract
Expression levels of retinoic acid receptor gamma (NR1B3/RARG, encodes RARγ) are commonly reduced in prostate cancer (PCa). Therefore, we sought to establish the cellular and gene regulatory consequences of reduced RARγ expression, and determine RARγ regulatory mechanisms. RARG shRNA approaches in non-malignant (RWPE-1 and HPr1-AR) and malignant (LNCaP) prostate models revealed that reducing RARγ levels, rather than adding exogenous retinoid ligand, had the greatest impact on prostate cell viability and gene expression. ChIP-Seq defined the RARγ cistrome, which was significantly enriched at active enhancers associated with AR binding sites. Reflecting a significant genomic role for RARγ to regulate androgen signaling, RARγ knockdown in HPr1-AR cells significantly regulated the magnitude of the AR transcriptome. RARγ downregulation was explained by increased miR-96 in PCa cell and mouse models, and TCGA PCa cohorts. Biochemical approaches confirmed that miR-96 directly regulated RARγ expression and function. Capture of the miR-96 targetome by biotin-miR-96 identified that RARγ and a number of RARγ interacting co-factors including TACC1 were all targeted by miR-96, and expression of these genes were prominently altered, positively and negatively, in the TCGA-PRAD cohort. Differential gene expression analyses between tumors in the TCGA-PRAD cohort with lower quartile expression levels of RARG and TACC1 and upper quartile miR-96, compared to the reverse, identified a gene network including several RARγ target genes (e.g., SOX15) that significantly associated with worse disease-free survival (hazard ratio 2.23, 95% CI 1.58 to 2.88, p = 0.015). In summary, miR-96 targets a RARγ network to govern AR signaling, PCa progression and disease outcome.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Androgens
- Animals
- Cell Line, Tumor
- Disease Progression
- Enhancer Elements, Genetic
- Fetal Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Humans
- Kaplan-Meier Estimate
- Male
- Mice
- MicroRNAs/physiology
- Microtubule-Associated Proteins/metabolism
- Neoplasm Proteins/physiology
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/mortality
- Neoplasms, Hormone-Dependent/pathology
- Nuclear Proteins/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/mortality
- Prostatic Neoplasms/pathology
- RNA Interference
- RNA, Neoplasm/physiology
- RNA, Small Interfering/genetics
- Receptors, Androgen/metabolism
- Receptors, Retinoic Acid/physiology
- Signal Transduction
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Mark D Long
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Prashant K Singh
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - James R Russell
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Gerard Llimos
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Spencer Rosario
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Abbas Rizvi
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick R van den Berg
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
- Leiden institute of Physics, Leiden University, 2300 RA, Leiden, The Netherlands
| | - Jason Kirk
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lara E Sucheston-Campbell
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Dominic J Smiraglia
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center (RPCCC), Buffalo, NY, 14263, USA
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH, 43210, USA.
| |
Collapse
|
38
|
Yang Y, Jia B, Zhao X, Wang Y, Ye W. miR-93-5p may be an important oncogene in prostate cancer by bioinformatics analysis. J Cell Biochem 2018; 120:10463-10483. [PMID: 30582208 DOI: 10.1002/jcb.28332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/29/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Prostate adenocarcinoma is one of the most prevalent causes of cancer-related deaths in males worldwide. However, the underlying mechanisms remain poorly understood. Hence, it is important to identify specific and effective therapeutic targets, to be able to determine appropriate therapy and management. So, this study aimed to predict that miR-93-5p is an important oncogene in prostate cancer by bioinformatics analysis. METHODS In this study, initially we identified differentially expressed genes (DEGs) and differently expressed miRNAs (DEMs) in the The Cancer Genome Atlas (TCGA) database, performed Gene Ontology (GO) and pathway enrichment analysis, then investigated the relationship between DEGs and DEMs, and finally through consulting the literature and retrieving the database, we found that miR-93-5p may play a major role in prostate cancer, so we predicted the expression and survival of miR-93-5p and its isomers by bioinformatics analysis, meanwhile, evaluated the function of miR-93-5p in vitro. RESULTS In total, 104 DEMs were differently expressed between prostate cancer and normal samples, including 56 downregulated ones and 48 upregulated ones; miR-93-5p (upregulated) was identified as a good biomarker. And 1904 DEGs were retrieved, including 794 downregulated ones and 1110 upregulated ones. We also obtained 1254 DEGs of the DEMs. In GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the significantly enriched pathways involved pathway in focal adhesion, vascular smooth muscle contraction, and regulation of actin cytoskeleton. By the KEGG pathway, we got 16 target genes and 92 pathways of the miR-93-5p in prostate cancer. We also found that the miR-93-5p and its isomers can express in prostate cancer, and which with a high expression had a poor overall survival and a significant difference recurrence rate within 5 years. Further in vitro verification results demonstrated that the low expression of miR-93-5p can inhibit cell proliferation, migration, invasion, change cell cycle, and promote early apoptosis of PC-3 cells. CONCLUSION The miR-93-5p and its target genes were used to define important molecular targets that could serve as a prognostic and predictive marker in the treatment of prostate cancer. Further research on the function of the miR-93-5p and its target genes in the KEGG pathway could provide references for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Binghan Jia
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Xiaoling Zhao
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Yao Wang
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| | - Weiliang Ye
- Department of R&D Technology Center, Beijing Zhicheng Biomedical Technology Co, Ltd, Beijing, China
| |
Collapse
|
39
|
Ali HEA, Lung PY, Sholl AB, Gad SA, Bustamante JJ, Ali HI, Rhim JS, Deep G, Zhang J, Abd Elmageed ZY. Dysregulated gene expression predicts tumor aggressiveness in African-American prostate cancer patients. Sci Rep 2018; 8:16335. [PMID: 30397274 PMCID: PMC6218553 DOI: 10.1038/s41598-018-34637-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Molecular mechanisms underlying the health disparity of prostate cancer (PCa) have not been fully determined. In this study, we applied bioinformatic approach to identify and validate dysregulated genes associated with tumor aggressiveness in African American (AA) compared to Caucasian American (CA) men with PCa. We retrieved and analyzed microarray data from 619 PCa patients, 412 AA and 207 CA, and we validated these genes in tumor tissues and cell lines by Real-Time PCR, Western blot, immunocytochemistry (ICC) and immunohistochemistry (IHC) analyses. We identified 362 differentially expressed genes in AA men and involved in regulating signaling pathways associated with tumor aggressiveness. In PCa tissues and cells, NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3 and AMD1 transcripts were significantly upregulated (p < 0.05) compared to normal cells. IHC confirmed the overexpression of TPD52 (p = 0.0098) and LTC4S (p < 0.0005) in AA compared to CA men. ICC and Western blot analyses additionally corroborated this observation in PCa cells. These findings suggest that dysregulation of transcripts in PCa may drive the disparity of PCa outcomes and provide new insights into development of new therapeutic agents against aggressive tumors. More studies are warranted to investigate the clinical significance of these dysregulated genes in promoting the oncogenic pathways in AA men.
Collapse
Affiliation(s)
- Hamdy E A Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA.,Department of Radiobiological Applications, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Andrew B Sholl
- Departments of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shaimaa A Gad
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Juan J Bustamante
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Hamed I Ali
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, FL, USA
| | - Zakaria Y Abd Elmageed
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA.
| |
Collapse
|
40
|
Sengupta M, Wang BD, Lee NH, Marx A, Kusner LL, Kaminski HJ. MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis. PLoS One 2018; 13:e0205464. [PMID: 30308012 PMCID: PMC6181382 DOI: 10.1371/journal.pone.0205464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A characteristic pathology of early onset myasthenia gravis is thymic hyperplasia with ectopic germinal centers (GC). However, the mechanisms that trigger and maintain thymic hyperplasia are poorly characterized. Dysregulation of small, non-coding microRNAs (miRNAs) and their target genes has been identified in the pathology of several autoimmune diseases. We assessed the miRNA and mRNA profiles of the MG thymus and have investigated their role in GC formation and maintenance. METHODS MG thymus samples were assessed by histology and grouped based upon the appearance of GC; GC positive and GC negative. A systems biology approach was used to study the differences between the groups. Our study included miRNA and mRNA profiling, quantitative real-time PCR validation, miRNA target identification, pathway analysis, miRNA-mRNA reciprocal expression pairing and interaction. RESULTS Thirty-eight mature miRNAs and forty-six annotated mRNA transcripts were differentially expressed between the two groups (>1.5 fold change, ANOVA p<0.05). The miRNAs were found to be involved in immune response pathways and identified in other autoimmune diseases. The cellular and molecular functions of the mRNAs showed involvement in cell death and cell survival, cellular proliferation, cytokine signaling and extra-cellular matrix reorganization. Eleven miRNA and mRNA pairs were reciprocally regulated. The Regulator of G protein Signalling 13 (RGS13), known to be involved in GC regulation, was identified in specimens with GC and was paired with downregulation of miR-452-5p and miR-139-5p. MiRNA target sites were validated by dual luciferase assay. Transfection of miRNA mimics led to down regulation of RGS13 expression in Raji cells. CONCLUSION Our study indicates a distinct miRNA and mRNA expression pattern in ectopic GC in MG thymus. These miRNAs and mRNAs are involved in regulatory pathways common to inflammation and immune response, cell cycle regulation and anti-apoptotic pathways suggesting their involvement in support of GC formation in the thymus. We demonstrate for the first time that miR-139-5p and miR-452-5p negatively regulate RGS13 expression.
Collapse
Affiliation(s)
- Manjistha Sengupta
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| | - Bi-Dar Wang
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
| | - Alexander Marx
- University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Linda L. Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, D.C., United States of America
- * E-mail:
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
41
|
Dyson G, Farran B, Bolton S, Craig DB, Dombkowski A, Beebe-Dimmer JL, Powell IJ, Podgorski I, Heilbrun LK, Bock CH. The extrema of circulating miR-17 are identified as biomarkers for aggressive prostate cancer. Am J Cancer Res 2018; 8:2088-2095. [PMID: 30416858 PMCID: PMC6220145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 06/09/2023] Open
Abstract
MicroRNAs (miRNAs) constitute short non-coding RNAs that can post-transcriptionally modulate the expression of many oncogenes and tumor suppressor genes engaged in key cellular processes. Deregulated serum miRNA signatures have been detected in various solid cancers including prostate cancer, suggesting that circulating miRNAs could function as non-invasive biomarkers of tumor emergence and progression. To determine whether serum miRNA expression levels are different between patients with aggressive and non-aggressive prostate cancer, we analyzed a panel of miRNAs from the blood of African American (AA) prostate cancer patients using a new recursive partitioning method that allows hypothesis testing of each split. We observed that both extrema of circulating miR-17, i.e. upregulation and downregulation, are associated with aggressive prostate cancer. A similar effect was observed in tumor samples from a separate dataset representing a different population of prostate cancer patients and in AA prostate cancer samples from the TCGA. The dual effect is consistent with the contradictory findings on the role of miR-17 in prostate cancer progression, whereby it controls important oncogenic and tumor-suppressive genes.
Collapse
Affiliation(s)
- Greg Dyson
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Batoul Farran
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Susan Bolton
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Douglas B Craig
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Alan Dombkowski
- Karmanos Cancer Institute and Department of Pediatrics, Wayne State UniversityDetroit MI, USA
| | | | - Isaac J Powell
- Karmanos Cancer Institute and Department of Urology, Wayne State UniversityDetroit MI, USA
| | - Izabela Podgorski
- Karmanos Cancer Institute and Department of Pharmacology, Wayne State UniversityDetroit MI, USA
| | - Lance K Heilbrun
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Cathryn H Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| |
Collapse
|
42
|
Ye Y, Li SL, Wang SY. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer. PLoS One 2018; 13:e0198055. [PMID: 30138363 PMCID: PMC6107126 DOI: 10.1371/journal.pone.0198055] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Purpose Prostate cancer (PCa) causes a common male urinary system malignant tumour, and the molecular mechanisms of PCa are related to the abnormal regulation of various signalling pathways. An increasing number of studies have suggested that mRNAs, miRNAs, lncRNAs, and TFs could play important roles in various biological processes that are associated with cancer pathogenesis. This study aims to reveal functional genes and investigate the underlying molecular mechanisms of PCa with bioinformatics. Methods Original gene expression profiles were obtained from the GSE64318 and GSE46602 datasets in the Gene Expression Omnibus (GEO). We conducted differential screens of the expression of genes (DEGs) between two groups using the online tool GEO2R based on the R software limma package. Interactions between differentially expressed miRNAs, mRNAs and lncRNAs were predicted and merged with the target genes. Co-expression of miRNAs, lncRNAs and mRNAs was selected to construct mRNA-miRNA-lncRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the DEGs. Protein-protein interaction (PPI) networks were constructed, and transcription factors were annotated. Expression of hub genes in the TCGA datasets was verified to improve the reliability of our analysis. Results The results demonstrate that 60 miRNAs, 1578 mRNAs and 61 lncRNAs were differentially expressed in PCa. The mRNA-miRNA-lncRNA networks were composed of 5 miRNA nodes, 13 lncRNA nodes, and 45 mRNA nodes. The DEGs were mainly enriched in the nuclei and cytoplasm and were involved in the regulation of transcription, related to sequence-specific DNA binding, and participated in the regulation of the PI3K-Akt signalling pathway. These pathways are related to cancer and focal adhesion signalling pathways. Furthermore, we found that 5 miRNAs, 6 lncRNAs, 6 mRNAs and 2 TFs play important regulatory roles in the interaction network. The expression levels of EGFR, VEGFA, PIK3R1, DLG4, TGFBR1 and KIT were significantly different between PCa and normal prostate tissue. Conclusion Based on the current study, large-scale effects of interrelated mRNAs, miRNAs, lncRNAs, and TFs established a new prostate cancer network. In addition, we conducted functional module analysis within the network. In conclusion, this study provides new insight for exploration of the molecular mechanisms of PCa and valuable clues for further research into the process of tumourigenesis and its development in PCa.
Collapse
Affiliation(s)
- Yun Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
- * E-mail:
| | - Su-Liang Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Sheng-Yu Wang
- Department of Respiration, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
43
|
Ganaie AA, Beigh FH, Astone M, Ferrari MG, Maqbool R, Umbreen S, Parray AS, Siddique HR, Hussain T, Murugan P, Morrissey C, Koochekpour S, Deng Y, Konety BR, Hoeppner LH, Saleem M. BMI1 Drives Metastasis of Prostate Cancer in Caucasian and African-American Men and Is A Potential Therapeutic Target: Hypothesis Tested in Race-specific Models. Clin Cancer Res 2018; 24:6421-6432. [PMID: 30087142 DOI: 10.1158/1078-0432.ccr-18-1394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 08/01/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Metastasis is the major cause of mortality in prostate cancer patients. Factors such as genetic makeup and race play critical role in the outcome of therapies. This study was conducted to investigate the relevance of BMI1 in metastatic prostate cancer disease in Caucasian and African-Americans. EXPERIMENTAL DESIGN We employed race-specific prostate cancer models, clinical specimens, clinical data mining, gene-microarray, transcription-reporter assay, chromatin-immunoprecipitation (ChIP), IHC, transgenic-(tgfl/fl) zebrafish, and mouse metastasis models. RESULTS BMI1 expression was observed to be elevated in metastatic tumors (lymph nodes, lungs, bones, liver) of Caucasian and African-American prostate cancer patients. The comparative analysis of stage III/IV tumors showed an increased BMI1 expression in African-Americans than Caucasians. TCGA and NIH/GEO clinical data corroborated to our findings. We show that BMI1 expression (i) positively correlates to metastatic (MYC, VEGF, cyclin D1) and (ii) negative correlates to tumor suppressor (INKF4A/p16, PTEN) levels in tumors. The correlation was prominent in African-American tumors. We show that BMI1 regulates the transcriptional activation of MYC, VEGF, INKF4A/p16, and PTEN. We show the effect of pharmacological inhibition of BMI1 on the metastatic genome and invasiveness of tumor cells. Next, we show the anti-metastatic efficacy of BMI1-inhibitor in transgenic zebrafish and mouse metastasis models. Docetaxel as monotherapy has poor outcome on the growth of metastatic tumors. BMI1 inhibitor as an adjuvant improved the taxane therapy in race-based in vitro and in vivo models. CONCLUSIONS BMI1, a major driver of metastasis, represents a promising therapeutic target for treating advanced prostate cancer in patients (including those belonging to high-risk group).
Collapse
Affiliation(s)
- Arsheed A Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Firdous H Beigh
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Matteo Astone
- Department of Molecular Biology and Translational Cancer Research, Hormel Institute, Austin, Minnesota
| | - Marina G Ferrari
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raihana Maqbool
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Syed Umbreen
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aijaz S Parray
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Institute of Neurosciences, Academic Health Systems Hamad Medical Corporation, Doha, Qatar
| | - Hifzur R Siddique
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Aligarh University, Aligarh, Uttar Pradesh, India
| | - Tabish Hussain
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Paari Murugan
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Shahriar Koochekpour
- Department of Cancer Genetics and Genomics, Roswell Park Cancer Center, Buffalo, New York
| | - Yibin Deng
- Department of Mouse Genetics, Hormel Institute, Austin, Minnesota
| | - Badrinath R Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Luke H Hoeppner
- Department of Molecular Biology and Translational Cancer Research, Hormel Institute, Austin, Minnesota
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
44
|
Tang Y, Pan J, Huang S, Peng X, Zou X, Luo Y, Ren D, Zhang X, Li R, He P, Wa Q. Downregulation of miR-133a-3p promotes prostate cancer bone metastasis via activating PI3K/AKT signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:160. [PMID: 30021600 PMCID: PMC6052526 DOI: 10.1186/s13046-018-0813-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bone metastasis is a leading cause of morbidity and mortality in advanced prostate cancer (PCa). Downexpression of miR-133a-3p has been found to contribute to the progression, recurrence and distant metastasis in PCa. However, clinical significance of miR-133a-3p in bone metastasis of PCa, and the biological role of miR-133a-3p and its molecular mechanisms underlying bone metastasis of PCa remain unclear. METHODS miR-133a-3p expression was evaluated in 245 clinical PCa tissues by real-time PCR. Statistical analysis was performed to evaluate the clinical correlation between miR-133a-3p expression and clinicopathological features, and overall and bone metastasis-free survival in PCa patients. The biological roles of miR-133a-3p in the bone metastasis of PCa were investigated both in vitro and in vivo. Bioinformatics analysis, real-time PCR, western blot and luciferase reporter analysis were applied to demonstrate the relationship between miR-133a-3p and its potential targets. Western blotting and luciferase assays were examined to identify the underlying pathway involved in the anti-tumor role of miR-133a-3p. Clinical correlation of miR-133a-3p with its targets was verified in human PCa tissues. RESULTS miR-133a-3p expression is reduced in PCa tissues compared with the adjacent normal tissues and benign prostate lesion tissues, particularly in bone metastatic PCa tissues. Low expression of miR-133a-3p is significantly correlated with advanced clinicopathological characteristics and shorter bone metastasis-free survival in PCa patients by statistical analysis. Moreover, upregulating miR-133a-3p inhibits cancer stem cell-like phenotypes in vitro and in vivo, as well as attenuates anoikis resistance in vitro in PCa cells. Importantly, administration of agomir-133a-3p greatly suppresses the incidence of PCa bone metastasis in vivo. Our results further demonstrate that miR-133a-3p suppresses bone metastasis of PCa via inhibiting PI3K/AKT signaling by directly targeting multiple cytokine receptors, including EGFR, FGFR1, IGF1R and MET. The negative clinical correlation of miR-133a-3p with EGFR, FGFR1, IGF1R, MET and PI3K/AKT signaling activity is determined in clinical PCa tissues. CONCLUSION Our results unveil a novel mechanism by which miR-133a-3p inhibits bone metastasis of PCa, providing the evidence that miR-133a-3p may serve as a potential bone metastasis marker in PCa, and delivery of agomir-133a-3p may be an effective anti-bone metastasis therapeutic strategy in PCa.
Collapse
Affiliation(s)
- Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Yongxiang Luo
- Department of biomedical engineering, health science center, Shenzhen University, Shenzhen, 518060, China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China
| | - Xin Zhang
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Ronggang Li
- Department of Pathology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, 529030, China
| | - Peiheng He
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan 2rd Road, Guangzhou, 510080, Guangdong Province, China.
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 149 Dalian Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
45
|
Xia HL, Lv Y, Xu CW, Fu MC, Zhang T, Yan XM, Dai S, Xiong QW, Zhou Y, Wang J, Cao X. MiR-513c suppresses neuroblastoma cell migration, invasion, and proliferation through direct targeting glutaminase (GLS). Cancer Biomark 2018; 20:589-596. [PMID: 28800318 DOI: 10.3233/cbm-170577] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuroblastoma is a malignancy [corrected] of childhood and accounts for 7-10% of childhood cancers, leading to approximately 15% of pediatric cancer deaths. MicroRNAs (miRNAs) are a family of short (about 18-25 nucleotides), noncoding and single stranded endogenous RNAs, which complementarily bind to the 3' untranslated regions of their target genes. Recently, glutamine metabolism has been recognized as an important nutrition source for tumor cells, and hence targeting glutamine metabolism could benefit to development of anti-cancer agents. In this study, we investigate the roles of miR-513c in human neuroblastoma. We report miR-513c is significantly downregulated in human neuroblastoma tissues compared with their adjacent normal tissues. Moreover, miR-513c is significantly downregulated in neuroblastoma cell lines compared with normal neuroblast cells. Overexpression of miR-513c suppresses neuroblastoma cells' migration, invasion, and proliferation. We demonstrate the glutaminase (GLS) is a direct target of miR-513c in human neuroblastoma cells. In addition, we found restoration of GLS expression recovered the neuroblastoma cells' migration, invasion, and proliferation. In summary, this study illustrates a miR-513c mediated neuroblastoma cells suppression, providing a new aspect on the miRNA-based therapeutic approach for the treatments of neuroblastoma.
Collapse
Affiliation(s)
- Hong-Liang Xia
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China.,Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yao Lv
- Department of Neurosurgery, Quzhou People's Hospital in Zhejiang Province, Quzhou, Zhejiang 324000, China.,Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Chun-Wei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Ming-Cui Fu
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Ting Zhang
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiang-Ming Yan
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Shu Dai
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Yun Zhou
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Wang
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| | - Xu Cao
- Department of Surgery, Children's Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215000, China
| |
Collapse
|
46
|
McDonald AC, Vira M, Shen J, Sanda M, Raman JD, Liao J, Patil D, Taioli E. Circulating microRNAs in plasma as potential biomarkers for the early detection of prostate cancer. Prostate 2018; 78:411-418. [PMID: 29383739 DOI: 10.1002/pros.23485] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/27/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been linked to prostate cancer (PC) risk; however, their role as a screening biomarker for PC has yet to be determined. We examined whether circulating miRNAs in plasma could be potential biomarkers for the early detection of PC among men undergoing prostate needle biopsy. METHODS Men who had a prostate biopsy due to an abnormal screening test were recruited. Linear regression was used to examine the association between miRNAs in plasma and PC status and to model individual miRNA expression on serum PSA and age to calculate the partial correlation coefficient (r). RESULTS There were 134 men, aged 46-86 years, included, with 66 men with a PC diagnosis (cases), eight men with no PC diagnosis but atypical lesion, and 60 men without a PC diagnosis (controls). The most statistically significant PC circulating miRNAs were miR-381, miR-34a, miR-523, miR-365, miR-122, miR-375, miR-1255b, miR-34b, miR-450b-5p, and miR-639 after adjusting for age (P-values ≤0.05); however, they were no longer statistically significant after P-value adjustment for multiple comparisons. MiR-671-3p was differentially expressed between black and white cases (P-value = 0.03). Moderate positive correlations with serum PSA were observed for miR-381 overall and among controls (r = 0.43-0.60; P-values ≤0.05) and miR-34a among cases (r = 0.46; P-value = 0.02). CONCLUSIONS There was no miRNA associated with PC diagnosis after adjusting for age and P-values; however, moderate correlations between miRNAs and serum PSA were observed. Further investigation between miRNAs and PC risk is warranted in a larger population at high risk for PC.
Collapse
Affiliation(s)
- Alicia C McDonald
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Manish Vira
- Hofstra Northwell School of Medicine, Smith Institute for Urology, New Hyde Park, New York
| | - Jing Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, New York, New York
| | - Martin Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Jay D Raman
- Department of Surgery, Pennsylvania State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Emanuela Taioli
- Department of Population Health Science and Policy and Department of Thoracic Surgery, Ichan School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
47
|
Kumar S, Singh R, Malik S, Manne U, Mishra M. Prostate cancer health disparities: An immuno-biological perspective. Cancer Lett 2018; 414:153-165. [PMID: 29154974 PMCID: PMC5743619 DOI: 10.1016/j.canlet.2017.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignancy in males, and, in the United States, is the second leading cause of cancer-related death for men older than 40 years. There is a higher incidence of PCa for African Americans (AAs) than for European-Americans (EAs). Investigations related to the incidence of PCa-related health disparities for AAs suggest that there are differences in the genetic makeup of these populations. Other differences are environmentally induced (e.g., diet and lifestyle), and the exposures are different. Men who immigrate from Eastern to Western countries have a higher risk of PCa than men in their native countries. However, the number of immigrants developing PCa is still lower than that of men in Western countries, suggesting that genetic factors are involved in the development of PCa. Altered genetic polymorphisms are associated with PCa progression. Androgens and the androgen receptor (AR) are involved in the development and progression of PCa. For populations with diverse racial/ethnic backgrounds, differences in lifestyle, diet, and biology, including genetic mutations/polymorphisms and levels of androgens and AR, are risk factors for PCa. Here, we provide an immuno-biological perspective on PCa in relation to racial/ethnic disparities and identify factors associated with the disproportionate incidence of PCa and its clinical outcomes.
Collapse
Affiliation(s)
- Sanjay Kumar
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Shalie Malik
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Upender Manne
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
48
|
Karakas C, Wang C, Deng F, Huang H, Wang D, Lee P. Molecular mechanisms involving prostate cancer racial disparity. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2017; 5:34-48. [PMID: 29181436 PMCID: PMC5698597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related deaths in the United States. The African (AA) descent has greater incidence and mortality rates of PCa as compared to Caucasian (CA) men. While socioeconomic differences across racial groups contribute to disparity in PCa, increasing evidence points that genetic and molecular alterations play important roles in racial disparities associated with PCa. In this review, we focus on genetic and molecular influences that contribute to racial disparity between AA and CA men including: androgen and estrogen receptor signaling pathways, growth factors, apoptotic proteins, genetic, genomic and epigenetic alterations. Future translational studies will identify prognostic and predictive biomarkers for AA PCa and assist in the development of new targeted-therapies specifically for AA men with PCa.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Cassie Wang
- Department of Bioengineering, University of PennsylvaniaPennsylvania, PA, USA
| | - Fangming Deng
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Hongying Huang
- Department of Pathology, New York University School of MedicineNew York, NY, USA
| | - Dongwen Wang
- Department of Urology, First Hospital of Shanxi Medical UniversityTaiyuan, Shanxi, China
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, NY, USA
- Department of Urology, New York University School of MedicineNew York, NY, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, NY, USA
| |
Collapse
|
49
|
Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, Kato M, Yamazaki K, Ishida Y, Naya Y, Ichikawa T, Seki N. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer 2017; 117:409-420. [PMID: 28641312 PMCID: PMC5537499 DOI: 10.1038/bjc.2017.191] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative. Novel approaches for identification of therapeutic targets of CRPC are needed. METHODS Next-generation sequencing revealed 945-1248 miRNAs from each lethal mCRPC sample. We constructed miRNA expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these miRNAs in prostate cancer (PCa). RESULTS Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in patients with PCa. CONCLUSIONS Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Kurozumi
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nijiro Nohata
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuto Yamazaki
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yasuo Ishida
- Department of Pathology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
50
|
Wang BD, Ceniccola K, Hwang S, Andrawis R, Horvath A, Freedman JA, Olender J, Knapp S, Ching T, Garmire L, Patel V, Garcia-Blanco MA, Patierno SR, Lee NH. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat Commun 2017; 8:15921. [PMID: 28665395 PMCID: PMC5497057 DOI: 10.1038/ncomms15921] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/15/2017] [Indexed: 12/12/2022] Open
Abstract
Clinical challenges exist in reducing prostate cancer (PCa) disparities. The RNA splicing landscape of PCa across racial populations has not been fully explored as a potential molecular mechanism contributing to race-related tumour aggressiveness. Here, we identify novel genome-wide, race-specific RNA splicing events as critical drivers of PCa aggressiveness and therapeutic resistance in African American (AA) men. AA-enriched splice variants of PIK3CD, FGFR3, TSC2 and RASGRP2 contribute to greater oncogenic potential compared with corresponding European American (EA)-expressing variants. Ectopic overexpression of the newly cloned AA-enriched variant, PIK3CD-S, in EA PCa cell lines enhances AKT/mTOR signalling and increases proliferative and invasive capacity in vitro and confers resistance to selective PI3Kδ inhibitor, CAL-101 (idelalisib), in mouse xenograft models. High PIK3CD-S expression in PCa specimens associates with poor survival. These results highlight the potential of RNA splice variants to serve as novel biomarkers and molecular targets for developmental therapeutics in aggressive PCa.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, USA
| | - Kristin Ceniccola
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - SuJin Hwang
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Ramez Andrawis
- Department of Urology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Anelia Horvath
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Jennifer A. Freedman
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jacqueline Olender
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| | - Stefan Knapp
- Department of Clinical Pharmacology, University of Oxford, Oxford OX3 7BN, UK
- The Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford OX3 7BN, UK
| | - Travers Ching
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Lana Garmire
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Vyomesh Patel
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mariano A. Garcia-Blanco
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555, USA
| | - Steven R. Patierno
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Norman H. Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District Of Columbia 20037, USA
| |
Collapse
|