1
|
Al-Hawary SIS, Abdalkareem Jasim S, Altalbawy FMA, Kumar A, Kaur H, Pramanik A, Jawad MA, Alsaad SB, Mohmmed KH, Zwamel AH. miRNAs in radiotherapy resistance of cancer; a comprehensive review. Cell Biochem Biophys 2024; 82:1665-1679. [PMID: 38805114 DOI: 10.1007/s12013-024-01329-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
While intensity-modulated radiation therapy-based comprehensive therapy increases outcomes, cancer patients still have a low five-year survival rate and a high recurrence rate. The primary factor contributing to cancer patients' poor prognoses is radiation resistance. A class of endogenous non-coding RNAs, known as microRNAs (miRNAs), controls various biological processes in eukaryotes. These miRNAs influence tumor cell growth, death, migration, invasion, and metastasis, which controls how human carcinoma develops and spreads. The correlation between the unbalanced expression of miRNAs and the prognosis and sensitivity to radiation therapy is well-established. MiRNAs have a significant impact on the regulation of DNA repair, the epithelial-to-mesenchymal transition (EMT), and stemness in the tumor radiation response. But because radio resistance is a complicated phenomena, further research is required to fully comprehend these mechanisms. Radiation response rates vary depending on the modality used, which includes the method of delivery, radiation dosage, tumor stage and grade, confounding medical co-morbidities, and intrinsic tumor microenvironment. Here, we summarize the possible mechanisms through which miRNAs contribute to human tumors' resistance to radiation.
Collapse
Affiliation(s)
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Salim Basim Alsaad
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | | | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Yang Q, Zhou X, Fang J, Lin A, Zhang H, Cheng Q, Liu Z, Luo P, Zhang J. Development and validation of a radiosensitivity model to evaluate radiotherapy benefits in pan-cancer. Cancer Sci 2024; 115:1820-1833. [PMID: 38571294 PMCID: PMC11145160 DOI: 10.1111/cas.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Radiotherapy, one of the most fundamental cancer treatments, is confronted with the dilemma of treatment failure due to radioresistance. To predict the radiosensitivity and improve tumor treatment efficiency in pan-cancer, we developed a model called Radiation Intrinsic Sensitivity Evaluation (RISE). The RISE model was built using cell line-based mRNA sequencing data from five tumor types with varying radiation sensitivity. Through four cell-derived datasets, two public tissue-derived cohorts, and one local cohort of 42 nasopharyngeal carcinoma patients, we demonstrated that RISE could effectively predict the level of radiation sensitivity (area under the ROC curve [AUC] from 0.666 to 1 across different datasets). After the verification by the colony formation assay and flow cytometric analysis of apoptosis, our four well-established radioresistant cell models successfully proved higher RISE values in radioresistant cells by RT-qPCR experiments. We also explored the prognostic value of RISE in five independent TCGA cohorts consisting of 1137 patients who received radiation therapy and found that RISE was an independent adverse prognostic factor (pooled multivariate Cox regression hazard ratio [HR]: 1.84, 95% CI 1.39-2.42; p < 0.01). RISE showed a promising ability to evaluate the radiotherapy benefit while predicting the prognosis of cancer patients, enabling clinicians to make individualized radiotherapy strategies in the future and improve the success rate of radiotherapy.
Collapse
Affiliation(s)
- Qi Yang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xinyi Zhou
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianbo Fang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Anqi Lin
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongman Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Yang J, Gu Z. Ferroptosis in head and neck squamous cell carcinoma: from pathogenesis to treatment. Front Pharmacol 2024; 15:1283465. [PMID: 38313306 PMCID: PMC10834699 DOI: 10.3389/fphar.2024.1283465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide, with high morbidity and mortality. Surgery and postoperative chemoradiotherapy have largely reduced the recurrence and fatality rates for most HNSCCs. Nonetheless, these therapeutic approaches result in poor prognoses owing to severe adverse reactions and the development of drug resistance. Ferroptosis is a kind of programmed cell death which is non-apoptotic. Ferroptosis of tumor cells can inhibit tumor development. Ferroptosis involves various biomolecules and signaling pathways, whose expressions can be adjusted to modulate the sensitivity of cells to ferroptosis. As a tool in the fight against cancer, the activation of ferroptosis is a treatment that has received much attention in recent years. Therefore, understanding the molecular mechanism of ferroptosis in HNSCC is an essential strategy with therapeutic potential. The most important thing to treat HNSCC is to choose the appropriate treatment method. In this review, we discuss the molecular and defense mechanisms of ferroptosis, analyze the role and mechanism of ferroptosis in the inhibition and immunity against HNSCC, and explore the therapeutic strategy for inducing ferroptosis in HNSCC including drug therapy, radiation therapy, immunotherapy, nanotherapy and comprehensive treatment. We find ferroptosis provides a new target for HNSCC treatment.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Riemann A, Rauschner M, Reime S, Thews O. The Role of microRNAs in Gene Expression and Signaling Response of Tumor Cells to an Acidic Environment. Int J Mol Sci 2023; 24:16919. [PMID: 38069241 PMCID: PMC10707721 DOI: 10.3390/ijms242316919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Many tumors are characterized by marked extracellular acidosis due to increased glycolytic metabolism, which affects gene expression and thereby tumor biological behavior. At the same time, acidosis leads to altered expression of several microRNAs (Mir7, Mir183, Mir203, Mir215). The aim of this study was to analyze whether the acidosis-induced changes in cytokines and tumor-related genes are mediated via pH-sensitive microRNAs. Therefore, the expression of Il6, Nos2, Ccl2, Spp1, Tnf, Acat2, Aox1, Crem, Gls2, Per3, Pink1, Txnip, and Ypel3 was examined in acidosis upon simultaneous transfection with microRNA mimics or antagomirs in two tumor lines in vitro and in vivo. In addition, it was investigated whether microRNA expression in acidosis is affected via known pH-sensitive signaling pathways (MAPK, PKC, PI3K), via ROS, or via altered intracellular Ca2+ concentration. pH-dependent microRNAs were shown to play only a minor role in modulating gene expression. Individual genes (e.g., Ccl2, Txnip, Ypel3) appear to be affected by Mir183, Mir203, or Mir215 in acidosis, but these effects are cell line-specific. When examining whether acid-dependent signaling affects microRNA expression, it was found that Mir203 was modulated by MAPK and ROS, Mir7 was affected by PKC, and Mir215 was dependent on the intracellular Ca2+ concentration. Mir183 could be increased by ROS scavenging. These correlations could possibly result in new therapeutic approaches for acidotic tumors.
Collapse
Affiliation(s)
| | | | | | - Oliver Thews
- Julius Bernstein Institute of Physiology, University of Halle-Wittenberg, 06108 Halle, Germany
| |
Collapse
|
5
|
Lamba N, Cagney DN, Catalano PJ, Kim D, Elhalawani H, Haas-Kogan DA, Wen PY, Wagle N, Aizer AA. A genomic score to predict local control among patients with brain metastases managed with radiation. Neuro Oncol 2023; 25:1815-1827. [PMID: 37260393 PMCID: PMC10547520 DOI: 10.1093/neuonc/noad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Clinical predictors of local recurrence following radiation among patients with brain metastases (BrM) provide limited explanatory power. We developed a DNA-based signature of radiotherapeutic efficacy among patients with BrM to better characterize recurrence risk. METHODS We identified 570 patients with 1487 BrM managed with whole-brain (WBRT) or stereotactic radiation therapy at Brigham and Women's Hospital/Dana-Farber Cancer Institute (2013-2020) for whom next-generation sequencing panel data (OncoPanel) were available. Fine/Gray's competing risks regression was utilized to compare local recurrence on a per-metastasis level among patients with versus without somatic alterations of likely biological significance across 84 genes. Genes with a q-value ≤ 0.10 were utilized to develop a "Brain-Radiation Prediction Score" ("Brain-RPS"). RESULTS Genomic alterations in 11 (ATM, MYCL, PALB2, FAS, PRDM1, PAX5, CDKN1B, EZH2, NBN, DIS3, and MDM4) and 2 genes (FBXW7 and AURKA) were associated with decreased or increased risk of local recurrence, respectively (q-value ≤ 0.10). Weighted scores corresponding to the strength of association with local failure for each gene were summed to calculate a patient-level RPS. On multivariable Fine/Gray's competing risks regression, RPS [1.66 (1.44-1.91, P < .001)], metastasis-associated edema [1.60 (1.16-2.21), P = .004], baseline size [1.02 (1.01-1.03), P < .001] and receipt of WBRT without local therapy [4.04 (2.49-6.58), P < .001] were independent predictors of local failure. CONCLUSIONS We developed a genomic score to quantify local recurrence risk following brain-directed radiation. To the best of our knowledge, this represents the first study to systematically correlate DNA-based alterations with radiotherapeutic outcomes in BrM. If validated, Brain-RPS has potential to facilitate clinical trials aimed at genome-based personalization of radiation in BrM.
Collapse
Affiliation(s)
- Nayan Lamba
- Harvard Radiation Oncology Program, Harvard University, Boston, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Paul J Catalano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, and Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Dewey Kim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil Wagle
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Dioguardi M, Spirito F, Iacovelli G, Sovereto D, Laneve E, Laino L, Caloro GA, Nabi AQ, Ballini A, Lo Muzio L, Troiano G. The Potential microRNA Prognostic Signature in HNSCCs: A Systematic Review. Noncoding RNA 2023; 9:54. [PMID: 37736900 PMCID: PMC10514860 DOI: 10.3390/ncrna9050054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are often diagnosed at advanced stages, incurring significant high mortality and morbidity. Several microRNAs (miRs) have been identified as pivotal players in the onset and advancement of HNSCCs, operating as either oncogenes or tumor suppressors. Distinctive miR patterns identified in tumor samples, as well as in serum, plasma, or saliva, from patients have significant clinical potential for use in the diagnosis and prognosis of HNSCCs and as potential therapeutic targets. The aim of this study was to identify previous systematic reviews with meta-analysis data and clinical trials that showed the most promising miRs in HNSCCs, enclosing them into a biomolecular signature to test the prognostic value on a cohort of HNSCC patients according to The Cancer Genome Atlas (TCGA). Three electronic databases (PubMed, Scopus, and Science Direct) and one registry (the Cochrane Library) were investigated, and a combination of keywords such as "signature microRNA OR miR" AND "HNSCC OR LSCC OR OSCC OR oral cancer" were searched. In total, 15 systematic literature reviews and 76 prognostic clinical reports were identified for the study design and inclusion process. All survival index data were extracted, and the three miRs (miR-21, miR-155, and miR-375) most investigated and presenting the largest number of patients included in the studies were selected in a molecular biosignature. The difference between high and low tissue expression levels of miR-21, miR-155, and miR-375 for OS had an HR = 1.28, with 95% CI: [0.95, 1.72]. In conclusion, the current evidence suggests that miRNAs have potential prognostic value to serve as screening tools for clinical practice in HNSCC follow-up and treatment. Further large-scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giovanna Iacovelli
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Enrica Laneve
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy;
| | - Ari Qadir Nabi
- Biology Department, Salahaddin University-Erbil, Erbil 44001, Kurdistan, Iraq;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| |
Collapse
|
7
|
Rydzewski NR, Helzer KT, Bootsma M, Shi Y, Bakhtiar H, Sjöström M, Zhao SG. Machine Learning & Molecular Radiation Tumor Biomarkers. Semin Radiat Oncol 2023; 33:243-251. [PMID: 37331779 PMCID: PMC10287033 DOI: 10.1016/j.semradonc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and "omics" assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.
Collapse
Affiliation(s)
- Nicholas R Rydzewski
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI; Carbone Cancer Center, University of Wisconsin, Madison, WI; William S. Middleton Memorial Veterans Hospital, Madison, WI.
| |
Collapse
|
8
|
Hegazy M, Elkady MA, Yehia AM, Elsakka EGE, Abulsoud AI, Abdelmaksoud NM, Elshafei A, Abdelghany TM, Elkhawaga SY, Ismail A, Mokhtar MM, El-Mahdy HA, Doghish AS. The role of miRNAs in laryngeal cancer pathogenesis and therapeutic resistance - A focus on signaling pathways interplay. Pathol Res Pract 2023; 246:154510. [PMID: 37167812 DOI: 10.1016/j.prp.2023.154510] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Laryngeal cancer (LC)is the malignancy of the larynx (voice box). The majority of LC are squamous cell carcinomas. Many risk factors were reported to be associated with LC as tobacco use, obesity, alcohol intake, human papillomavirus (HPV) infection, and asbestos exposure. Besides, epigenetics as non-coding nucleic acids also have a great role in LC. miRNAs are short nucleic acid molecules that can modulate multiple cellular processes by regulating the expression of their genes. Therefore, LC progression, apoptosis evasions, initiation, EMT, and angiogenesis are associated with dysregulated miRNA expressions. miRNAs also could have some vital signaling pathways such as mTOR/P-gp, Wnt/-catenin signaling, JAK/STAT, KRAS, and EGF. Besides, miRNAs also have a role in the modulation of LC response to different therapeutic modalities. In this review, we have provided a comprehensive and updated overview highlighting the microRNAs biogenesis, general biological functions, regulatory mechanisms, and signaling dysfunction in LC carcinogenesis, in addition to their clinical potential for LC diagnosis, prognosis, and chemotherapeutics response implications.
Collapse
Affiliation(s)
- Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
9
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Avril D, Foy JP, Bouaoud J, Grégoire V, Saintigny P. Biomarkers of radioresistance in head and neck squamous cell carcinomas. Int J Radiat Biol 2023; 99:583-593. [PMID: 35930497 DOI: 10.1080/09553002.2022.2110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is a major cause of morbidity and mortality. Although HNSCC is mainly caused by tobacco and alcohol consumption, infection by Human Papilloma Virus (HPV) has been also associated with the increasing incidence of oropharyngeal squamous cell carcinomas (OPSCC) during the past decades. HPV-positive HNSCC is characterized by a higher radiosensitivity compared to HPV-negative tumor. While several clinical trials are evaluating de-escaladed radiation doses strategies in HPV-positive HNSCC, molecular mechanisms associated with relative radioresistance in HPV-negative HNSCC are still broadly unknown. Our goal was to review recently proposed biomarkers of radioresistance in this setting, which may be useful for stratifying tumor's patient according to predicted level of radioresistance. CONCLUSIONS most of biomarkers of radioresistance in HPV-negative HNSCC are identified using a hypothesis-driven approach, based on molecular mechanisms known to play a key role during carcinogenesis, compared to an unsupervised data-driven approach regardless the biological rational. DNA repair and hypoxia are the two most widely investigated biological and targetable pathways related to radioresistance in HNSCC. The better understanding of molecular mechanisms and biomarkers of radioresistance in HPV-negative HNSCC could help for the development of radiosensitization strategies, based on targetable biomarkers, in radioresistant tumors as well as de-escalation radiation dose strategies, based on biological level of radioresistance, in radiosensitive tumors.
Collapse
Affiliation(s)
- Delphine Avril
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Jean-Philippe Foy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Maxillo-Facial Surgery, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
11
|
Shibata T, Cao DY, Dar TB, Ahmed F, Bhat SA, Veiras LC, Bernstein EA, Khan AA, Chaum M, Shiao SL, Tourtellotte WG, Giani JF, Bernstein KE, Cui X, Vail E, Khan Z. miR766-3p and miR124-3p Dictate Drug Resistance and Clinical Outcome in HNSCC. Cancers (Basel) 2022; 14:5273. [PMID: 36358691 PMCID: PMC9655574 DOI: 10.3390/cancers14215273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with poor prognosis, which is mainly due to drug resistance. The biology determining the response to chemo-radiotherapy in HNSCC is poorly understood. Using clinical samples, we found that miR124-3p and miR766-3p are overexpressed in chemo-radiotherapy-resistant (non-responder) HNSCC, as compared to responder tumors. Our study shows that inhibition of miR124-3p and miR766-3p enhances the sensitivity of HNSCC cell lines, CAL27 and FaDu, to 5-fluorouracil and cisplatin (FP) chemotherapy and radiotherapy. In contrast, overexpression of miR766-3p and miR124-3p confers a resistance phenotype in HNSCC cells. The upregulation of miR124-3p and miR766-3p is associated with increased HNSCC cell invasion and migration. In a xenograft mouse model, inhibition of miR124-3p and miR766-3p enhanced the efficacy of chemo-radiotherapy with reduced growth of resistant HNSCC. For the first time, we identified that miR124-3p and miR766-3p attenuate expression of CREBRF and NR3C2, respectively, in HNSCC, which promotes aggressive tumor behavior by inducing the signaling axes CREB3/ATG5 and β-catenin/c-Myc. Since miR124-3p and miR766-3p affect complementary pathways, combined inhibition of these two miRNAs shows an additive effect on sensitizing cancer cells to chemo-radiotherapy. In conclusion, our study demonstrated a novel miR124-3p- and miR766-3p-based biological mechanism governing treatment-resistant HNSCC, which can be targeted to improve clinical outcomes in HNSCC.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tahir B. Dar
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shabir A. Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Luciana C. Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ellen A. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manita Chaum
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen L. Shiao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Warren G. Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jorge F. Giani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth E. Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric Vail
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Yigider AP, Yigit O. Biomarkers in Otorhinolaryngology. Biomark Med 2022. [DOI: 10.2174/9789815040463122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biomarkers of otorhinolaryngologic diseases with higher insult over a
person’s him/herself and overall health services are summarized in brief. In order to
define, diagnose, treat and monitor any disease markers are needed.
Otorhinolaryngology (ORL) is interested in special disease entities of the region
besides otorhinolaryngologic involvements of the systemic diseases and unique forms
of pathologies such as cholesteatoma, Meniere’s disease and otosclerosis. Neoplasia is
another heading to deal with. In the following chapter, one will find an overview of
molecules that have been used as a biomarker as well as the end points of the present
research on the issue relevant with ORL. Day by day, new molecules are being named
however, the pathways of action are rather the same. Readers will find the headings
related to the most common diseases of the field, informing them about where to look
for defining new strategies of understanding of each disease.
Collapse
Affiliation(s)
- Ayse Pelin Yigider
- Istanbul Research and Training Hospital Otorhinolaryngology,Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul,Turkey
| | - Ozgur Yigit
- Istanbul Research and Training Hospital Otorhinolaryngology, Istanbul, Turkey
| |
Collapse
|
13
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
14
|
Huang Y, Gu M, Tang Y, Sun Z, Luo J, Li Z. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in laryngeal squamous cell cancer. Cancer Cell Int 2021; 21:316. [PMID: 34158050 PMCID: PMC8220842 DOI: 10.1186/s12935-021-02021-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Laryngeal carcinoma is a primary malignant tumor originating from the laryngeal mucosa, and its pathogenesis is not fully understood. It is a rare type of cancer that shows a downward trend in the 5-year survival rate. In clinical practice, dysregulated microRNAs are often observed in patients with laryngeal cancer. In recent years, an increasing number of studies have confirmed that the strong biomarker potential of microRNAs. We conducted a systematic review and meta-analysis to identify and highlight multiple microRNAs as biomarkers for disease prognosis in patients with laryngeal cancer. Methods We actively searched the systematic reviews in PubMed, Embase, Web of Science and The Cochrane Library to select the studies that met the proposed guidelines. A total of 5307 patients with laryngeal cancer were included in this study to evaluate the association between microRNAs expression levels and patient outcomes. For overall survival in the clinical stage, a hazard ratio (HR) and corresponding 95% confidence interval (CI) are calculated to assess the effect of survival. Results A total of 36 studies on microRNAs and laryngeal cancer recovery were included in this meta-analysis. The selected endpoints for these studies included overall survival (OS) and disease-free survival (DFS).The comorbidities of overexpression and underexpression of microRNAs were 1.13 (95% CI 1.06–1.20, P < 0.05) and 1.10 (95% CI 1.00–1.20, P < 0.05), respectively. Conclusion MiRNA-100, miRNA-155, miRNA-21, miRNA-34a, miRNA-195 and miR-let-7 are expected to be potential noninvasive and simple markers for laryngeal cancer.
Collapse
Affiliation(s)
- Yan Huang
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.,Department of Head and Neck Surgery, Graduate School of Dalian Medical University, Dalian, China
| | - Min Gu
- Department of Stomatology, Affiliated Third Hospital of Soochow University, The First People's Hospital of Changzhou City, Changzhou, China
| | - Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhiqiang Sun
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Judong Luo
- Department of Radiotherapy, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Zhe Li
- Department of Breast Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
15
|
Fitriana M, Hwang WL, Chan PY, Hsueh TY, Liao TT. Roles of microRNAs in Regulating Cancer Stemness in Head and Neck Cancers. Cancers (Basel) 2021; 13:cancers13071742. [PMID: 33917482 PMCID: PMC8038798 DOI: 10.3390/cancers13071742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are epithelial malignancies with 5-year overall survival rates of approximately 40-50%. Emerging evidence indicates that a small population of cells in HNSCC patients, named cancer stem cells (CSCs), play vital roles in the processes of tumor initiation, progression, metastasis, immune evasion, chemo-/radioresistance, and recurrence. The acquisition of stem-like properties of cancer cells further provides cellular plasticity for stress adaptation and contributes to therapeutic resistance, resulting in a worse clinical outcome. Thus, targeting cancer stemness is fundamental for cancer treatment. MicroRNAs (miRNAs) are known to regulate stem cell features in the development and tissue regeneration through a miRNA-target interactive network. In HNSCCs, miRNAs act as tumor suppressors and/or oncogenes to modulate cancer stemness and therapeutic efficacy by regulating the CSC-specific tumor microenvironment (TME) and signaling pathways, such as epithelial-to-mesenchymal transition (EMT), Wnt/β-catenin signaling, and epidermal growth factor receptor (EGFR) or insulin-like growth factor 1 receptor (IGF1R) signaling pathways. Owing to a deeper understanding of disease-relevant miRNAs and advances in in vivo delivery systems, the administration of miRNA-based therapeutics is feasible and safe in humans, with encouraging efficacy results in early-phase clinical trials. In this review, we summarize the present findings to better understand the mechanical actions of miRNAs in maintaining CSCs and acquiring the stem-like features of cancer cells during HNSCC pathogenesis.
Collapse
Affiliation(s)
- Melysa Fitriana
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Otorhinolaryngology Head and Neck Surgery Department, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Cancer Progression Center of Excellence, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Pak-Yue Chan
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tai-Yuan Hsueh
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-Y.C.); (T.-Y.H.)
| | - Tsai-Tsen Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2736-1661 (ext. 3435)
| |
Collapse
|
16
|
Jeffery D, Gatto A, Podsypanina K, Renaud-Pageot C, Ponce Landete R, Bonneville L, Dumont M, Fachinetti D, Almouzni G. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun Biol 2021; 4:417. [PMID: 33772115 PMCID: PMC7997993 DOI: 10.1038/s42003-021-01941-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Tumour evolution is driven by both genetic and epigenetic changes. CENP-A, the centromeric histone H3 variant, is an epigenetic mark that directly perturbs genetic stability and chromatin when overexpressed. Although CENP-A overexpression is a common feature of many cancers, how this impacts cell fate and response to therapy remains unclear. Here, we established a tunable system of inducible and reversible CENP-A overexpression combined with a switch in p53 status in human cell lines. Through clonogenic survival assays, single-cell RNA-sequencing and cell trajectory analysis, we uncover the tumour suppressor p53 as a key determinant of how CENP-A impacts cell state, cell identity and therapeutic response. If p53 is functional, CENP-A overexpression promotes senescence and radiosensitivity. Surprisingly, when we inactivate p53, CENP-A overexpression instead promotes epithelial-mesenchymal transition, an essential process in mammalian development but also a precursor for tumour cell invasion and metastasis. Thus, we uncover an unanticipated function of CENP-A overexpression to promote cell fate reprogramming, with important implications for development and tumour evolution.
Collapse
Grants
- Ligue Contre le Cancer
- Agence Nationale de la Recherche (French National Research Agency)
- Université de Recherche Paris Sciences et Lettres (PSL Research University)
- Centre National de la Recherche Scientifique (National Center for Scientific Research)
- Institut Curie
- AG, CRP, DJ, KP, LB, RPL and GA were supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), Labex DEEP (ANR-11-LABX-0044_DEEP, ANR-10-IDEX-0001-02), PSL, ERC-2015-ADG-694694 ChromADICT and ANR-16-CE12-0024 CHIFT. Funding for RPL provided by Horizon 2020 Marie Skłodowska-Curie Actions Initial Training Network “EpiSyStem” (grant number 765966). Individual funding was also provided to DJ from la Fondation ARC pour la recherche sur le cancer (“Aides individuelles” 3 years, post-doc), and to AG from the Horizon 2020 Framework Programme for Research and Innovation (H2020 Marie Skłodowska-Curie Actions grant agreement 798106 “REPLICHROM4D”). DF receives salary support from the Centre Nationale de Recherche Scientifique (CNRS). MD receives salary support from the City of Paris via Emergence(s) 2018 of DF.
Collapse
Affiliation(s)
- Daniel Jeffery
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Katrina Podsypanina
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlène Renaud-Pageot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Rebeca Ponce Landete
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lorraine Bonneville
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
17
|
Du T, Jiang J, Chen Y, Zhang N, Chen G, Wang X, Long X, Feng X. MiR-138-1-3p alters the stemness and radiosensitivity of tumor cells by targeting CRIPTO and the JAK2/STAT3 pathway in nasopharyngeal carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:485. [PMID: 33850882 PMCID: PMC8039661 DOI: 10.21037/atm-21-521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Tumor resistance to radiotherapy is one of the main obstacles to the clinical treatment of nasopharyngeal carcinoma (NPC). Improving the radiosensitivity of tumor cells has an important clinical significance in treatment of clinical NPC. This study aimed to identify that miR-138-1-3p as a novel therapeutic target in radioresistant NPC cells and found its targets, CRIPTO and the JAK2/STAT3 pathway. Methods Radioresistant C666-IR and HK-1R cells were derived from the NPC cell lines C666-1 and HK-1. The different microRNAs (miRNAs) and their targeting genes were analyzed between C666-1 and C666-IR cells using microarray bioinformatics. Western blot, qRT-PCR, gene transfection, Luciferase reporter assay, and confocal laser scanning microscopy were applied for the analysis of the different genes. Results MiR-138-1-3p was found to target CRIPTO, which involved in the epithelial-mesenchymal transition (EMT) and JAK2/STAT3 signaling pathways. The luciferase reporter assay confirmed that miR-138-1-3p targeted CRIPTO and downregulated the expression of CRIPTO. Furthermore, miR-138-1-3p affected the stability of the CRIPTO-GRP78 complex on the cell membrane and also reversed the radioresistant characteristics of NPC stem cells, which affected EMT and the JAK2/STAT3 signaling pathway. Conclusions The miR-138-1-3p is a small molecule that can modulate radiosensitivity in the radioresistant C666-IR and HK-1R NPC cell lines by inhibiting EMT and targeting CRIPTO to reduce the activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Tao Du
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahui Jiang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Yiting Chen
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Nengwei Zhang
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Guanyang Chen
- Department of General Surgery, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Xingwei Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xueying Long
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
The CD44high Subpopulation of Multifraction Irradiation-Surviving NSCLC Cells Exhibits Partial EMT-Program Activation and DNA Damage Response Depending on Their p53 Status. Int J Mol Sci 2021; 22:ijms22052369. [PMID: 33673439 PMCID: PMC7956695 DOI: 10.3390/ijms22052369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation (IR) is used for patients diagnosed with unresectable non-small cell lung cancer (NSCLC). However, radiotherapy remains largely palliative due to the survival of specific cell subpopulations. In the present study, the sublines of NSCLC cells, A549IR (p53wt) and H1299IR (p53null) survived multifraction X-ray radiation exposure (MFR) at a total dose of 60 Gy were investigated three weeks after the MFR course. We compared radiosensitivity (colony formation), expression of epithelial-mesenchymal transition (EMT) markers, migration activity, autophagy, and HR-dependent DNA double-strand break (DSB) repair in the bulk and entire CD44high/CD166high CSC-like populations of both parental and MFR survived NSCLC cells. We demonstrated that the p53 status affected: the pattern of expression of N-cadherin, E-cadherin, Vimentin, witnessing the appearance of EMT-like phenotype of MFR-surviving sublines; 1D confined migratory behavior (wound healing); the capability of an irradiated cell to continue to divide and form a colony of NSCLC cells before and after MFR; influencing the CD44/CD166 expression level in MFR-surviving NSCLC cells after additional single irradiation. Our data further emphasize the impact of p53 status on the decay of γH2AX foci and the associated efficacy of the DSB repair in NSCLC cells survived after MFR. We revealed that Rad51 protein might play a principal role in MFR-surviving of p53 null NSCLC cells promoting DNA DSB repair by homologous recombination (HR) pathway. The proportion of Rad51 + cells elevated in CD44high/CD166high population in MFR-surviving p53wt and p53null sublines and their parental cells. The p53wt ensures DNA-PK-mediated DSB repair for both parental and MFR-surviving cells irrespectively of a subsequent additional single irradiation. Whereas in the absence of p53, a dose-dependent increase of DNA-PK-mediated non-homologous end joining (NHEJ) occurred as an early post-irradiation response is more intensive in the CSC-like population MFR-surviving H1299IR, compared to their parental H1299 cells. Our study strictly observed a significantly higher content of LC3 + cells in the CD44high/CD166high populations of p53wt MFR-surviving cells, which enriched the CSC-like cells in contrast to their p53null counterparts. The additional 2 Gy and 5 Gy X-ray exposure leads to the dose-dependent increase in the proportion of LC3 + cells in CD44high/CD166high population of both parental p53wt and p53null, but not MFR-surviving NSCLC sublines. Our data indicated that autophagy is not necessarily associated with CSC-like cells’ radiosensitivity, emphasizing that careful assessment of other milestone processes (such as senescence and autophagy-p53-Zeb1 axis) of primary radiation responses may provide new potential targets modulated for therapeutic benefit through radiosensitizing cancer cells while rescuing normal tissue. Our findings also shed light on the intricate crosstalk between autophagy and the p53-related EMT, by which MFR-surviving cells might obtain an invasive phenotype and metastatic potential.
Collapse
|
19
|
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer Radiotherapy. Int J Nanomedicine 2021; 16:1083-1102. [PMID: 33603370 PMCID: PMC7886779 DOI: 10.2147/ijn.s290438] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that can enhance the killing effect on tumor cells by accelerating DNA damage and producing free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In recent years, several strategies have been exploited to develop radiosensitizers that are highly effective and have low toxicity. In this review, we first summarized the applications of radiosensitizers including small molecules, macromolecules, and nanomaterials, especially those that have been used in clinical trials. Second, the development states of radiosensitizers and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the challenges and prospects for clinical translation of radiosensitizers in oncotherapy are presented.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Chengcheng Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, 710061, People’s Republic of China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, People’s Republic of China
| |
Collapse
|
20
|
Zhang X, Yang J. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance of Head and Neck Cancer: From Basic Research to Clinical Application. Front Cell Dev Biol 2021; 8:637435. [PMID: 33644038 PMCID: PMC7905100 DOI: 10.3389/fcell.2020.637435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers (HNCs) rank as the sixth common and the seventh leading cause of cancer-related death worldwide, with an estimated incidence of 600,000 cases and 40-50% mortality rate every year. Radiotherapy is a common local therapeutic modality for HNC mainly through the function of ionizing radiation, with approximately 60% of patients treated with radiotherapy or chemoradiotherapy. Although radiotherapy is more advanced and widely used in clinical practice, the 5-year overall survival rates of locally advanced HNCs are still less than 40%. HNC cell resistance to radiotherapy remains one of the major challenges to improve the overall survival in HNC patients. Non-coding RNAs (ncRNAs) are newly discovered functional small RNA molecules that are different from messenger RNAs, which can be translated into a protein. Many previous studies have reported the dysregulation and function of ncRNAs in HNC. Importantly, researchers reported that several ncRNAs were also dysregulated in radiotherapy-sensitive or radiotherapy-resistant HNC tissues compared with the normal cancer tissues. They found that ectopically elevating or knocking down expression of some ncRNAs could significantly influence the response of HNC cancer cells to radiotherapy, indicating that ncRNAs could regulate the sensitivity of cancer cells to radiotherapy. The implying mechanism for ncRNAs in regulating radiotherapy sensitivity may be due to its roles on affecting DNA damage sensation, inducing cell cycle arrest, regulating DNA damage repair, modulating cell apoptosis, etc. Additionally, clinical studies reported that in situ ncRNA expression in HNC tissues may predict the response of radiotherapy, and circulating ncRNA from body liquid serves as minimally invasive therapy-responsive and prognostic biomarkers in HNC. In this review, we aimed to summarize the current function and mechanism of ncRNAs in regulating the sensitivity of HNC cancer cells to radiotherapy and comprehensively described the state of the art on the role of ncRNAs in the prognosis prediction, therapy monitoring, and prediction of response to radiotherapy in HNC.
Collapse
Affiliation(s)
- Xixia Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Li X, Wu P, Tang Y, Fan Y, Liu Y, Fang X, Wang W, Zhao S. Down-Regulation of MiR-181c-5p Promotes Epithelial-to-Mesenchymal Transition in Laryngeal Squamous Cell Carcinoma via Targeting SERPINE1. Front Oncol 2020; 10:544476. [PMID: 33680908 PMCID: PMC7931772 DOI: 10.3389/fonc.2020.544476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) arises from the squamous epithelium of the larynx and is associated with a high incidence of cervical lymph node metastasis. MicroRNAs (miRNAs) play a crucial role in the epigenetic regulation of cellular biological processes, including cancer metastasis. However, the molecular mechanisms of specific miRNAs responsible for LSCC metastasis and their clinical significance have yet to be fully elucidated. In this study, LSCC cohort datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were downloaded and examined by comprehensive bioinformatics analysis, which revealed that upregulation of mRNA SERPINE1 and downregulation of miR-181c-5p were associated with unfavorable overall survival. Our analysis showed that SERPINE1 expression negatively correlated with the expression level of miR-181c-5p in our LSCC patient samples. Silencing of miR-181c-5p expression promoted cell migration and invasion in cell lines, whereas the overexpression of miR-181c-5p suppressed cell migration and epithelial-to-mesenchymal transition (EMT) through the downregulation of SERPINE1. Further analysis showed that the enhancement effect on EMT and metastasis induced by silencing miR-181c-5p could be rescued through knockdown of SERPINE1 expression in vitro. Collectively, our findings indicated that miR-181c-5p acted as an EMT suppressor miRNA by downregulation of SERPINE1 in LSCC and offers novel strategies for the prevention of metastasis in LSCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Ping Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yaoyun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yuhua Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Yalan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xing Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Suping Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China.,Province Key Laboratory of Otolaryngology Critical Diseases, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
23
|
Coleman CN, Eke I, Makinde AY, Chopra S, Demaria S, Formenti SC, Martello S, Bylicky M, Mitchell JB, Aryankalayil MJ. Radiation-induced Adaptive Response: New Potential for Cancer Treatment. Clin Cancer Res 2020; 26:5781-5790. [PMID: 32554542 PMCID: PMC7669567 DOI: 10.1158/1078-0432.ccr-20-0572] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022]
Abstract
Radiotherapy is highly effective due to its ability to physically focus the treatment to target the tumor while sparing normal tissue and its ability to be combined with systemic therapy. This systemic therapy can be utilized before radiotherapy as an adjuvant or induction treatment, during radiotherapy as a radiation "sensitizer," or following radiotherapy as a part of combined modality therapy. As part of a unique concept of using radiation as "focused biology," we investigated how tumors and normal tissues adapt to clinically relevant multifraction (MF) and single-dose (SD) radiation to observe whether the adaptations can induce susceptibility to cell killing by available drugs or by immune enhancement. We identified an adaptation occurring after MF (3 × 2 Gy) that induced cell killing when AKT-mTOR inhibitors were delivered following cessation of radiotherapy. In addition, we identified inducible changes in integrin expression 2 months following cessation of radiotherapy that differ between MF (1 Gy × 10) and SD (10 Gy) that remain targetable compared with preradiotherapy. Adaptation is reflected across different "omics" studies, and thus the range of possible molecular targets is not only broad but also time, dose, and schedule dependent. While much remains to be studied about the radiation adaptive response, radiation should be characterized by its molecular perturbations in addition to physical dose. Consideration of the adaptive effects should result in the design of a tailored radiotherapy treatment plan that accounts for specific molecular changes to be targeted as part of precision multimodality cancer treatment.
Collapse
Affiliation(s)
- C Norman Coleman
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Iris Eke
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Adeola Y Makinde
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunita Chopra
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sandra Demaria
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Silvia C Formenti
- Radiation Oncology and Pathology, Weill Cornell Medicine, New York, New York
| | - Shannon Martello
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Michelle Bylicky
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - James B Mitchell
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch and Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
24
|
Kim SI, Kang JW, Noh JK, Jung HR, Lee YC, Lee JW, Kong M, Eun YG. Gene signature for prediction of radiosensitivity in human papillomavirus-negative head and neck squamous cell carcinoma. Radiat Oncol J 2020; 38:99-108. [PMID: 33012153 PMCID: PMC7533413 DOI: 10.3857/roj.2020.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/06/2020] [Indexed: 11/08/2022] Open
Abstract
Purpose The probability of recurrence of cancer after adjuvant or definitive radiotherapy in patients with human papillomavirus-negative (HPV(–)) head and neck squamous cell carcinoma (HNSCC) varies for each patient. This study aimed to identify and validate radiation sensitivity signature (RSS) of patients with HPV(–) HNSCC to predict the recurrence of cancer after radiotherapy. Materials and Methods Clonogenic survival assays were performed to assess radiosensitivity in 14 HNSCC cell lines. We identified genes closely correlated with radiosensitivity and validated them in The Cancer Genome Atlas (TCGA) cohort. The validated RSS were analyzed by ingenuity pathway analysis (IPA) to identify canonical pathways, upstream regulators, diseases and functions, and gene networks related to radiosensitive genes in HPV(–) HNSCC. Results The survival fraction of 14 HNSCC cell lines after exposure to 2 Gy of radiation ranged from 48% to 72%. Six genes were positively correlated and 35 genes were negatively correlated with radioresistance, respectively. RSS was validated in the HPV(–) TCGA HNSCC cohort (n = 203), and recurrence-free survival (RFS) rate was found to be significantly lower in the radioresistant group than in the radiosensitive group (p = 0.035). Cell death and survival, cell-to-cell signaling, and cellular movement were significantly enriched in RSS, and RSSs were highly correlated with each other. Conclusion We derived a HPV(–) HNSCC-specific RSS and validated it in an independent cohort. The outcome of adjuvant or definitive radiotherapy in HPV(–) patients with HNSCC can be predicted by analyzing their RSS, which might help in establishing a personalized therapeutic plan.
Collapse
Affiliation(s)
- Su Il Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jeong Wook Kang
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae Rim Jung
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, Korea
| | - Jung Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Moonkyoo Kong
- Division of Lung & Head and Neck Oncology, Department of Radiation Oncology, Kyung Hee University Medical Center, Seoul, Korea
| | - Young-Gyu Eun
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Noordhuis MG, Kop EA, van der Vegt B, Langendijk JA, van der Laan BFAM, Schuuring E, de Bock GH. Biological tumor markers associated with local control after primary radiotherapy in laryngeal cancer: A systematic review. Clin Otolaryngol 2020; 45:486-494. [PMID: 32246586 PMCID: PMC7318351 DOI: 10.1111/coa.13540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/11/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The choice of treatment in laryngeal cancer is mainly based on tumor stage, post-treatment morbidity and quality of life. Biological tumor markers might also be of potential clinical relevance. OBJECTIVE OF THE REVIEW The aim was to systematically review the value of published biological tumor markers to predict local control in laryngeal cancer patients treated with definitive radiotherapy. TYPE OF REVIEW Systematic review. SEARCH STRATEGY PubMed, Embase, Cochrane Library. EVALUATION METHOD A literature search was performed using multiple terms for laryngeal cancer, radiotherapy, biological markers, detection methods and local control or survival. Studies regarding the relation between biological tumor markers and local control or survival in laryngeal cancer patients primarily treated with radiotherapy were included. Markers were clustered on biological function. Quality of all studies was assessed. Study selection, data extraction and quality assessment was performed by two independent reviewers. RESULTS A total of 52 studies out of 618 manuscripts, concerning 118 markers, were included. EGFR and P53 showed consistent evidence for not being predictive of local control after primary radiotherapy, whereas proliferation markers (ie high Ki-67 expression) showed some, but no consistent, evidence for being predictive of better local control. Other clusters of markers (markers involved in angiogenesis and hypoxia, apoptosis markers, cell cycle, COX-2 and DNA characteristics) showed no consistent evidence towards being predictors of local control after primary radiotherapy. CONCLUSIONS Cell proliferation could be of potential interest for predicting local control after primary radiotherapy in laryngeal cancer patients, whereas EGFR and p53 are not predictive in contrast to some previous analyses. Large diversity in research methods is found between studies, which results in contradictory outcomes. Future studies need to be more standardised and well described according to the REMARK criteria in order to have better insight into which biomarkers can be used as predictors of local control after primary radiotherapy.
Collapse
Affiliation(s)
- Maartje G. Noordhuis
- Dept. of Otorhinolaryngology/Head and Neck SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Emiel A. Kop
- Dept. of Otorhinolaryngology/Head and Neck SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Bert van der Vegt
- Dept. of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Johannes A. Langendijk
- Dept. of Radiation OncologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bernard F. A. M. van der Laan
- Dept. of Otorhinolaryngology/Head and Neck SurgeryUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Ed Schuuring
- Dept. of Pathology and Medical BiologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Geertruida H. de Bock
- Dept. of Epidemiology and StatisticsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
26
|
Poel D, Rustenburg F, Sie D, van Essen HF, Eijk PP, Bloemena E, Elhorst Benites T, van den Berg MC, Vergeer MR, Leemans RC, Buffart TE, Ylstra B, Brakenhoff RH, Verheul HM, Voortman J. Expression of let-7i and miR-192 is associated with resistance to cisplatin-based chemoradiotherapy in patients with larynx and hypopharynx cancer. Oral Oncol 2020; 109:104851. [PMID: 32585557 DOI: 10.1016/j.oraloncology.2020.104851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The majority of patients with locally advanced larynx or hypopharynx squamous cell carcinoma are treated with organ-preserving chemoradiotherapy (CRT). Clinical outcome following CRT varies greatly. We hypothesized that tumor microRNA (miRNA) expression is predictive for outcome following CRT. METHODS Next-generation sequencing (NGS) miRNA profiling was performed on 37 formalin-fixed paraffin-embedded (FFPE) tumor samples. Patients with a recurrence-free survival (RFS) of less than 2 years and patients with late/no recurrence within 2 years were compared by differential expression analysis. Tumor-specific miRNAs were selected based on normal mucosa miRNA expression data from The Cancer Genome Atlas database. A model was constructed to predict outcome using group-regularized penalized logistic ridge regression. Candidate miRNAs were validated by RT-qPCR in the initial sample set as well as in 46 additional samples. RESULTS Thirteen miRNAs were differentially expressed (p < 0.05, FDR < 0.1) according to outcome group. Initial class prediction in the NGS cohort (n = 37) resulted in a model combining five miRNAs and disease stage, able to predict CRT outcome with an area under the curve (AUC) of 0.82. In the RT-qPCR cohort (n = 83), 25 patients (30%) experienced early recurrence (median RFS 8 months; median follow-up 42 months). Class prediction resulted in a model combining let-7i-5p, miR-192-5p and disease stage, able to discriminate patients with good versus poor clinical outcome (AUC:0.80). CONCLUSION The combined miRNA expression and disease stage prediction model for CRT outcome is superior to using either factor alone. This study indicates NGS miRNA profiling using FFPE specimens is feasible, resulting in clinically relevant biomarkers.
Collapse
Affiliation(s)
- Dennis Poel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - François Rustenburg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, the Netherlands
| | - Daoud Sie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Hendrik F van Essen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Paul P Eijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), the Netherlands
| | - Teresita Elhorst Benites
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Madeleine C van den Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Marije R Vergeer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, Cancer Center Amsterdam, the Netherlands
| | - René C Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Tineke E Buffart
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Antoni van Leeuwenhoek Hospital, Department of Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Henk M Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Takeuchi T, Kawasaki H, Luce A, Cossu AM, Misso G, Scrima M, Bocchetti M, Ricciardiello F, Caraglia M, Zappavigna S. Insight toward the MicroRNA Profiling of Laryngeal Cancers: Biological Role and Clinical Impact. Int J Mol Sci 2020; 21:E3693. [PMID: 32456271 PMCID: PMC7279294 DOI: 10.3390/ijms21103693] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), a heterogeneous disease arising from various anatomical locations including the larynx, is a leading cause of death worldwide. Despite advances in multimodality treatment, the overall survival rate of the disease is still largely dismal. Early and accurate diagnosis of HNSCC is urgently demanded in order to prevent cancer progression and to improve the quality of the patient's life. Recently, microRNAs (miRNAs), a family of small non-coding RNAs, have been widely reported as new robust tools for prediction, diagnosis, prognosis, and therapeutic approaches of human diseases. Abnormally expressed miRNAs are strongly associated with cancer development, resistance to chemo-/radiotherapy, and metastatic potential through targeting a large variety of genes. In this review, we summarize on the recent reports that emphasize the pivotal biological roles of miRNAs in regulating carcinogenesis of HNSCC, particularly laryngeal cancer. In more detail, we report the characterized miRNAs with an evident either oncogenic or tumor suppressive role in the cancers. In addition, we also focus on the correlation between miRNA deregulation and clinical relevance in cancer patients. On the basis of intriguing findings, the study of miRNAs will provide a new great opportunity to access better clinical management of the malignancies.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Hiromichi Kawasaki
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| |
Collapse
|
28
|
Zhang S, Ding L, Gao F, Fan H. Long non-coding RNA DSCAM-AS1 upregulates USP47 expression through sponging miR-101-3p to accelerate osteosarcoma progression. Biochem Cell Biol 2020; 98:600-611. [PMID: 32379981 DOI: 10.1139/bcb-2020-0031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma (OS) originating from mesenchyme is one of the most common invasive tumors of bone, and has an extremely high mortality rate. Previous studies have reported that long non-coding RNAs (lncRNAs) play essential roles in the tumorigenesis and progression of a multitude of human cancers. The lncRNA DSCAM-AS1 has been reported to be an oncogenic gene in many cancers. However, the roles and regulatory mechanisms of DSCAM-AS1 in OS have not been deeply investigated. In this study, our findings prove that DSCAM-AS1 is highly expressed in OS cells. Knockdown of DSCAM-AS1 suppressed cell proliferation, migration, and invasiveness, and induced cell apoptosis in OS. Additionally, knockdown of DSCAM-AS1 inactivated the Wnt-β-catenin signaling pathway. Moreover, research into its molecular mechanisms confirmed that DSCAM-AS1 functions as a sponge for miR-101-3p, and that ubiquitin-specific peptidase 47 (USP47) is a target gene of miR-101-3p. Furthermore, a negative relationship between miR-101-3p and DSCAM-AS1 or USP47 was discovered. The results from our rescue assays suggest that DSCAM-AS1 regulates the progression of OS through binding with miR-101-3p to control the expression of USP47. Finally, we discovered that AKT-mTOR signaling pathway mediates the activity of DSCAM-AS1 in OS. Taken together, our results show that DSCAM-AS1 accelerates the progression of OS via the miR-101-3p-USP47 axis, which could present a new potential therapeutic treatment for OS.
Collapse
Affiliation(s)
- Shanyong Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, P.R. China
| | - Lei Ding
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, Jilin, P.R. China
| | - Feng Gao
- Department of Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun 130000, Jilin, P.R. China
| | - Hongwu Fan
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin, P.R. China
| |
Collapse
|
29
|
Zhou S, Zhang M, Zhou C, Wang W, Yang H, Ye W. The role of epithelial-mesenchymal transition in regulating radioresistance. Crit Rev Oncol Hematol 2020; 150:102961. [PMID: 32361589 DOI: 10.1016/j.critrevonc.2020.102961] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer patients with different stages can benefit from radiotherapy, but there are still limited due to inherent or acquired radioresistance. The epithelial-mesenchymal transition (EMT) is a complex biological process that is implicated in malignant characteristics of cancer, such as radioresistance. Although the possible mechanisms of EMT-dependent radioresistance are being extensively studied, there is a lack of a clear picture of the overall signaling of EMT-mediated radioresistance. In this review, we highlight the role and possible molecular mechanisms of EMT in cancer radioresistance, in particular to EMT-associated signaling pathway, EMT-inducing transcription factors (EMT-TFs), EMT-related non-coding RNAs. The knowledge of EMT-associated mechanisms of radioresistance will offer more potent therapy targets to improve the radiotherapy responses.
Collapse
Affiliation(s)
- Suna Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China.
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Chao Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China
| | - Wei Wang
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China
| | - Haihua Yang
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China; Laboratory of Cellular and Molecular Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China
| | - Wenguang Ye
- Department of Gastroenterology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Taizhou 317000, Zhejiang, China.
| |
Collapse
|
30
|
Chen H, Yao X, Di X, Zhang Y, Zhu H, Liu S, Chen T, Yu D, Sun X. MiR-450a-5p inhibits autophagy and enhances radiosensitivity by targeting dual-specificity phosphatase 10 in esophageal squamous cell carcinoma. Cancer Lett 2020; 483:114-126. [PMID: 32014456 DOI: 10.1016/j.canlet.2020.01.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Radioresistance reduces the success of therapy for patients with ESCC. Enhancing our understanding of the cardinal principles of radioresistance may improve the response of patients to irradiation. MicroRNAs perform a key role in posttranscriptional regulation, which is linked with the response of tumors to irradiation. Here, we successfully constructed a radioresistant cell line model, ECA109R, from parental esophageal cancer cell line ECA109. We used RNA-Seq analysis and qRT-PCR to compare the miRNA expression profiles of the ECA109 and ECA109R cell lines. The results revealed that miR-450a-5p was downregulated in the radioresistant cells. Functional analysis indicated that miR-450a-5p increases cellular radiosensitivity and suppresses autophagy in ESCC cells. We utilized a luciferase reporter assay to identify the target gene, DUSP10, as an indispensable regulator of the p38 and SAPK/JNK signaling pathways. Upregulation or downregulation of DUSP10 expression could reverse the effects of miR-450a-5p overexpression or inhibition. Tumor xenograft experiments verified that miR-450a-5p overexpression could increase sensitivity to radiation therapy in vivo. In general, our findings indicate that miR-450a-5p is a latent radiosensitizer and may represent a potential novel therapeutic target for radioresistance in ESCC.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xijuan Yao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xiaoke Di
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yixuan Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Hongcheng Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Tingting Chen
- Department of Oncology, Northern Jiangsu People's Hospital and Clinical Medical College of Yangzhou University, Yangzhou, 225001, China
| | - Dingyue Yu
- Department of Radiotherapy, The Dongfang Hospital of LianYungang, Lianyungang, Jiangsu Province, 222000, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
31
|
Liu SH, Wang PP, Chen CT, Li D, Liu QY, Lv L, Liu X, Wang LN, Li BX, Weng CY, Fang XS, Cao XF, Mao HB, Chen XJ, Luo SL, Zheng SX, Liu GL, Wu Y. MicroRNA-148b enhances the radiosensitivity of B-cell lymphoma cells by targeting Bcl-w to promote apoptosis. Int J Biol Sci 2020; 16:935-946. [PMID: 32140063 PMCID: PMC7053334 DOI: 10.7150/ijbs.40756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Lymphoma is a malignant disease of the hematopoietic system that typically affects B cells. The up-regulation of miR-148b is associated with radiosensitization in B-cell lymphoma (BCL). This study aimed to explore the role of miR-148b in regulating the radiosensitivity of BCL cells and to investigate the underlying mechanism. miR-148b directly targeted Bcl-w, decreased the cell viability and colony formation, while promoted apoptosis, in irradiated BCL cells. These changes were accompanied by decreased mitochondrial membrane potential, release of cytochrome C, increased levels of the cleaved caspase 9 and caspase 3, and increased expression of other proteins related to the mitochondrial apoptosis pathway. These effects of miR-148b were effectively inhibited by Bcl-w. In addition, miR-148b inhibited the growth of tumors in nude mice implanted with xenografts of irradiated Raji cells. In patients with BCL, levels of miR-148b were downregulated, while levels of Bcl-w were upregulated; a significant negative correlation between levels of miR-148b and Bcl-w was confirmed. Taken together, these experiments showed that miR-148b promoted radiation-induced apoptosis in BCL cells by targeting anti-apoptotic Bcl-w. miR-148b might be used as a marker to predict the radiosensitivity of BCL.
Collapse
Affiliation(s)
- Si-Hong Liu
- Department of Orthopaedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pei-Pei Wang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cun-Te Chen
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Li
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiong-Yao Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lin Lv
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xia Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li-Na Wang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bao-Xiu Li
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng-Yin Weng
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi-Sheng Fang
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Fei Cao
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai-Bo Mao
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Jun Chen
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shao-Li Luo
- Department of Gerontology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu-Xiang Zheng
- Department of Obstetrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guo-Long Liu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yong Wu
- Department of Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
33
|
Najafi M, Farhood B, Mortezaee K, Kharazinejad E, Majidpoor J, Ahadi R. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol 2019; 146:19-31. [PMID: 31734836 DOI: 10.1007/s00432-019-03080-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Cancer stem cells (CSCs) are highly tumorigenic cell types that reside within specific areas of tumor microenvironment (TME), and are endowed with self-renewal and resistance properties. Here, we aimed to discuss mechanisms involved in hypoxia-derived CSC resistance and targeting for effective cancer therapy. RESULTS Preferential localization within hypoxic niches would help CSCs develop adaptive mechanisms, mediated through the modification of responses to various stressors and, as a result, show a more aggressive behavior. CONCLUSION Hypoxia, in fact, serves as a multi-tasking strategy to nurture CSCs with this adaptive capacity, complexing targeted therapies.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Xie C, Wu Y, Fei Z, Fang Y, Xiao S, Su H. MicroRNA-1275 induces radiosensitization in oesophageal cancer by regulating epithelial-to-mesenchymal transition via Wnt/β-catenin pathway. J Cell Mol Med 2019; 24:747-759. [PMID: 31733028 PMCID: PMC6933350 DOI: 10.1111/jcmm.14784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acquired radioresistance is one of the main obstacles for the anti-tumour efficacy of radiotherapy in oesophageal cancer (EC). Recent studies have proposed microRNAs (miRNAs) as important participators in the development of radioresistance in various cancers. Here, we investigated the role of miR-1275 in acquired radioresistance and epithelial-mesenchymal transition (EMT) in EC. Firstly, a radioresistant cell line KYSE-150R was established, with an interesting discovery was observed that miR-1275 was down-regulated in KYSE-150R cells compared to the parental cells. Functionally, miR-1275 inhibition elevated radioresistance in KYSE-150 cells via promoting EMT, whereas enforced expression of miR-1275 increased radiosensitivity in KYSE-150R cells by inhibiting EMT. Mechanically, we demonstrated that miR-1275 directly targeted WNT1 and therefore inactivated Wnt/β-catenin signalling pathway in EC cells. Furthermore, WNT1 depletion countervailed the promoting effect of miR-1275 suppression on KYSE-150 cell radioresistance through hampering EMT, whereas WNT1 overexpression rescued miR-1275 up-regulation-impaired EMT to reduce the sensitivity of KYSE-150R cells to radiation. Collectively, our findings suggested that miR-1275 suppressed EMT to encourage radiosensitivity in EC cells via targeting WNT1-activated Wnt/β-catenin signalling, providing a new therapeutic outlet for overcoming radioresistance of patients with EC.
Collapse
Affiliation(s)
- Congying Xie
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youyi Wu
- Departments of Radiation Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Fang
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenlan Xiao
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
Manem VS, Lambie M, Smith I, Smirnov P, Kofia V, Freeman M, Koritzinsky M, Abazeed ME, Haibe-Kains B, Bratman SV. Modeling Cellular Response in Large-Scale Radiogenomic Databases to Advance Precision Radiotherapy. Cancer Res 2019; 79:6227-6237. [PMID: 31558563 DOI: 10.1158/0008-5472.can-19-0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022]
Abstract
Radiotherapy is integral to the care of a majority of patients with cancer. Despite differences in tumor responses to radiation (radioresponse), dose prescriptions are not currently tailored to individual patients. Recent large-scale cancer cell line databases hold the promise of unravelling the complex molecular arrangements underlying cellular response to radiation, which is critical for novel predictive biomarker discovery. Here, we present RadioGx, a computational platform for integrative analyses of radioresponse using radiogenomic databases. We fit the dose-response data within RadioGx to the linear-quadratic model. The imputed survival across a range of dose levels (AUC) was a robust radioresponse indicator that correlated with biological processes known to underpin the cellular response to radiation. Using AUC as a metric for further investigations, we found that radiation sensitivity was significantly associated with disruptive mutations in genes related to nonhomologous end joining. Next, by simulating the effects of different oxygen levels, we identified putative genes that may influence radioresponse specifically under hypoxic conditions. Furthermore, using transcriptomic data, we found evidence for tissue-specific determinants of radioresponse, suggesting that tumor type could influence the validity of putative predictive biomarkers of radioresponse. Finally, integrating radioresponse with drug response data, we found that drug classes impacting the cytoskeleton, DNA replication, and mitosis display similar therapeutic effects to ionizing radiation on cancer cell lines. In summary, RadioGx provides a unique computational toolbox for hypothesis generation to advance preclinical research for radiation oncology and precision medicine. SIGNIFICANCE: The RadioGx computational platform enables integrative analyses of cellular response to radiation with drug responses and genome-wide molecular data. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/24/6227/F1.large.jpg.See related commentary by Spratt and Speers, p. 6076.
Collapse
Affiliation(s)
- Venkata Sk Manem
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Meghan Lambie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ian Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada
| | - Petr Smirnov
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada
| | - Victor Kofia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mark Freeman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed E Abazeed
- Department of Translational Hematology Oncology Research, Cleveland, Ohio.,Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Vector Institute, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Essers PBM, van der Heijden M, Verhagen CVM, Ploeg EM, de Roest RH, Leemans CR, Brakenhoff RH, van den Brekel MWM, Bartelink H, Verheij M, Vens C. Drug Sensitivity Prediction Models Reveal a Link between DNA Repair Defects and Poor Prognosis in HNSCC. Cancer Res 2019; 79:5597-5611. [PMID: 31515237 DOI: 10.1158/0008-5472.can-18-3388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by the frequent manifestation of DNA crosslink repair defects. We established novel expression-based DNA repair defect markers to determine the clinical impact of such repair defects. Using hypersensitivity to the DNA crosslinking agents, mitomycin C and olaparib, as proxies for functional DNA repair defects in a panel of 25 HNSCC cell lines, we applied machine learning to define gene expression models that predict repair defects. The expression profiles established predicted hypersensitivity to DNA-damaging agents and were associated with mutations in crosslink repair genes, as well as downregulation of DNA damage response and repair genes, in two independent datasets. The prognostic value of the repair defect prediction profiles was assessed in two retrospective cohorts with a total of 180 patients with advanced HPV-negative HNSCC, who were treated with cisplatin-based chemoradiotherapy. DNA repair defects, as predicted by the profiles, were associated with poor outcome in both patient cohorts. The poor prognosis association was particularly strong in normoxic tumor samples and was linked to an increased risk of distant metastasis. In vitro, only crosslink repair-defective HNSCC cell lines are highly migratory and invasive. This phenotype could also be induced in cells by inhibiting rad51 in repair competent and reduced by DNA-PK inhibition. In conclusion, DNA crosslink repair prediction expression profiles reveal a poor prognosis association in HNSCC. SIGNIFICANCE: This study uses innovative machine learning-based approaches to derive models that predict the effect of DNA repair defects on treatment outcome in HNSCC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/21/5597/F1.large.jpg.
Collapse
Affiliation(s)
- Paul B M Essers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Emily M Ploeg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reinout H de Roest
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Schulz A, Meyer F, Dubrovska A, Borgmann K. Cancer Stem Cells and Radioresistance: DNA Repair and Beyond. Cancers (Basel) 2019; 11:cancers11060862. [PMID: 31234336 PMCID: PMC6627210 DOI: 10.3390/cancers11060862] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The current preclinical and clinical findings demonstrate that, in addition to the conventional clinical and pathological indicators that have a prognostic value in radiation oncology, the number of cancer stem cells (CSCs) and their inherent radioresistance are important parameters for local control after radiotherapy. In this review, we discuss the molecular mechanisms of CSC radioresistance attributable to DNA repair mechanisms and the development of CSC-targeted therapies for tumor radiosensitization. We also discuss the current challenges in preclinical and translational CSC research including the high inter- and intratumoral heterogeneity, plasticity of CSCs, and microenvironment-stimulated tumor cell reprogramming.
Collapse
Affiliation(s)
- Alexander Schulz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Felix Meyer
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kerstin Borgmann
- Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
38
|
van der Heijden M, de Jong MC, Verhagen CVM, de Roest RH, Sanduleanu S, Hoebers F, Leemans CR, Brakenhoff RH, Vens C, Verheij M, van den Brekel MWM. Acute Hypoxia Profile is a Stronger Prognostic Factor than Chronic Hypoxia in Advanced Stage Head and Neck Cancer Patients. Cancers (Basel) 2019; 11:E583. [PMID: 31027242 PMCID: PMC6520712 DOI: 10.3390/cancers11040583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 02/01/2023] Open
Abstract
Hypoxic head and neck tumors respond poorly to radiotherapy and can be identified using gene expression profiles. However, it is unknown whether treatment outcome is driven by acute or chronic hypoxia. Gene expression data of 398 head and neck cancers was collected. Four clinical hypoxia profiles were compared to in vitro acute and chronic hypoxia profiles. Chronic and acute hypoxia profiles were tested for their association to outcome using Cox proportional hazard analyses. In an initial set of 224 patients, scores of the four clinical hypoxia profiles correlated with each other and with chronic hypoxia. However, the acute hypoxia profile showed a stronger association with local recurrence after chemoradiotherapy (p = 0.02; HR = 3.1) than the four clinical (chronic hypoxia) profiles (p = 0.2; HR = 0.9). An independent set of 174 patients confirmed that acute hypoxia is a stronger prognostic factor than chronic hypoxia for overall survival, progression-free survival, local and locoregional control. Multivariable analyses accounting for known prognostic factors substantiate this finding (p = 0.045; p = 0.042; p = 0.018 and p = 0.003, respectively). In conclusion, the four clinical hypoxia profiles are related to chronic hypoxia and not acute hypoxia. The acute hypoxia profile shows a stronger association with patient outcome and should be incorporated into existing prediction models.
Collapse
Affiliation(s)
- Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
| | - Monique C de Jong
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
| | - Reinout H de Roest
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head & Neck Surgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Sebastian Sanduleanu
- Department of Radiation Oncology (MAASTRO), GROW ⁻ School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, 6229 ET Maastricht, The Netherlands.
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), GROW ⁻ School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, 6229 ET Maastricht, The Netherlands.
| | - C René Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head & Neck Surgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology/Head & Neck Surgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Radiation Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands.
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Plesmanlaan 121, 1006 CX Amsterdam, The Netherlands.
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Yang CX, Sedhom W, Song J, Lu SL. The Role of MicroRNAs in Recurrence and Metastasis of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:E395. [PMID: 30901831 PMCID: PMC6468798 DOI: 10.3390/cancers11030395] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) affects 650,000 people worldwide and has a dismal 50% 5-year survival rate. Recurrence and metastasis are believed the two most important factors causing this high mortality. Understanding the biological process and the underlying mechanisms of recurrence and metastasis is critical to develop novel and effective treatment, which is expected to improve patients' survival of HNSCC. MicroRNAs are small, non-coding nucleotides that regulate gene expression at the transcriptional and post-transcriptional level. Oncogenic and tumor-suppressive microRNAs have shown to regulate nearly every step of recurrence and metastasis, ranging from migration and invasion, epithelial-mesenchymal transition (EMT), anoikis, to gain of cancer stem cell property. This review encompasses an overview of microRNAs involved in these processes. The recent advances of utilizing microRNA as biomarkers and targets for treatment, particularly on controlling recurrence and metastasis are also reviewed.
Collapse
Affiliation(s)
- Chris X Yang
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Wafik Sedhom
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - John Song
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Shi-Long Lu
- Department of Otolaryngology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
40
|
Li B, Hong P, Zheng CC, Dai W, Chen WY, Yang QS, Han L, Tsao SW, Chan KT, Lee NPY, Law S, Xu LY, Li EM, Chan KW, Qin YR, Guan XY, Lung ML, He QY, Xu WW, Cheung ALM. Identification of miR-29c and its Target FBXO31 as a Key Regulatory Mechanism in Esophageal Cancer Chemoresistance: Functional Validation and Clinical Significance. Theranostics 2019; 9:1599-1613. [PMID: 31037126 PMCID: PMC6485198 DOI: 10.7150/thno.30372] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/18/2019] [Indexed: 02/05/2023] Open
Abstract
Rationale: Dysregulated microRNA (miRNA) expressions in cancer can contribute to chemoresistance. This study aims to identify miRNAs that are associated with fluorouracil (5-FU) chemoresistance in esophageal squamous cell carcinoma (ESCC). The potential of miR-29c as a novel diagnostic, prognostic and treatment-predictive marker in ESCC, and its mechanisms and therapeutic implication in overcoming 5-FU chemoresistance were explored. Methods: The miRNA profiles of an ESCC cell model with acquired chemoresistance to 5-FU were analyzed using a Taqman miRNA microarray to identify novel miRNAs associated with 5-FU chemoresistance. Quantitative real-time PCR was used to determine miR-29c expression in tissue and serum samples of patients. Bioinformatics, gain- and loss-of-function experiments, and luciferase reporter assay were performed to validate F-box only protein 31 (FBXO31) as a direct target of miR-29c, and to identify potential transcription factor binding events that control miR-29c expression. The potential of systemic miR-29c oligonucleotide-based therapy in overcoming 5-FU chemoresistance was evaluated in tumor xenograft model. Results: MiR-29c, under the regulatory control of STAT5A, was frequently downregulated in tumor and serum samples of patients with ESCC, and the expression level was correlated with overall survival. Functional studies showed that miR-29c could override 5-FU chemoresistance in vitro and in vivo by directly interacting with the 3'UTR of FBXO31, leading to repression of FBXO31 expression and downstream activation of p38 MAPK. Systemically administered miR-29c dramatically improved response of 5-FU chemoresistant ESCC xenografts in vivo. Conclusions: MiR-29c modulates chemoresistance by interacting with FBXO31, and is a promising non-invasive biomarker and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Bin Li
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pan Hong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei Dai
- Department of Clinical oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wen-You Chen
- Department of Thoracic Surgery, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qing-Sheng Yang
- Department of Thoracic Surgery, First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Liang Han
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kin Tak Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nikki Pui Yue Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - En Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Kwok Wah Chan
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yan Ru Qin
- Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xin Yuan Guan
- Department of Clinical oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Maria Li Lung
- Department of Clinical oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wen Wen Xu
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
- ✉ Corresponding authors: Dr. Annie L. M. Cheung, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. Phone: (852) 39179293; Fax: (852) 28170857; and Dr. Wen Wen Xu, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China. Phone: (86)-20-85221062; Fax: (86)-20-85221062;
| | - Annie LM Cheung
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- ✉ Corresponding authors: Dr. Annie L. M. Cheung, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China. Phone: (852) 39179293; Fax: (852) 28170857; and Dr. Wen Wen Xu, Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China. Phone: (86)-20-85221062; Fax: (86)-20-85221062;
| |
Collapse
|
41
|
Jiang T, Zhou ML, Fan J. Inhibition of GLUT-1 expression and the PI3K/Akt pathway to enhance the chemosensitivity of laryngeal carcinoma cells in vitro. Onco Targets Ther 2018; 11:7865-7872. [PMID: 30464533 PMCID: PMC6228052 DOI: 10.2147/ott.s176818] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background The mechanism of chemoresistance remains unknown. Here, we investigated if glucose transporter-1 (GLUT-1) and PI3K/Akt pathways are associated with the sensitivity to cisplatin in Hep-2 laryngeal carcinoma cells and whether the inhibition of GLUT-1 and the PI3K/Akt pathways enhances the chemosensitivity of Hep-2 cells. Method The effects of inhibiting GLUT-1 by a GLUT-1 siRNA, and PI3K/Akt by Ly294002, on cisplatin-induced effects were assessed in vitro. Results GLUT-1 siRNA and cisplatin showed a synergistic effect in inhibiting the proliferation of Hep-2. LY294002 and cisplatin also showed a synergistic effect in inhibiting the proliferation of Hep-2. GLUT-1 siRNA, LY294002 and cisplatin effectively inhibited the mRNA expressions and protein expressions of GLUT-1, Akt, PI3k and HIF-1α in Hep-2 cells. Furthermore, GLUT-1 siRNA and cisplatin demonstrated a synergism to inhibit the mRNA expression of HIF-1α. Moreover, it was found in this study that GLUT-1 siRNA, LY294002 and cisplatin induced the suppression of the cell cycle at G1/G2 and the increasing of apoptosis in Hep-2 cells. Conclusion This study showed that inhibiting GLUT-1, by a GLUT-1 siRNA and inhibiting PI3K/Akt by Ly294002, could suppress the proliferation of Hep-2 alone and together with cisplatin synergistically, which demonstrated the potentials to treat laryngeal carcinoma in the future therapy. Additionally, the synergistic effect between LY294002 and cisplatin to suppress the proliferation of Hep-2 might not be from GLUT-1, Akt, PI3k and HIF-1α; the synergistic effect between GLUT-1 siRNA and cisplatin to suppress the proliferation of Hep-2 might not be from GLUT-1, Akt and PI3k and might be more or less related to HIF-1α.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Otolaryngology, Yinzhou People's Hospital of Ningbo City Zhejiang Province, Zhejiang, China,
| | | | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine Zhejiang University, Zhejiang, China
| |
Collapse
|
42
|
Ricciardiello F, Capasso R, Kawasaki H, Abate T, Oliva F, Lombardi A, Misso G, Ingrosso D, Leone CA, Iengo M, Caraglia M. A miRNA signature suggestive of nodal metastases from laryngeal carcinoma. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:467-474. [PMID: 29327732 PMCID: PMC5782423 DOI: 10.14639/0392-100x-851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/11/2017] [Indexed: 12/16/2022]
Abstract
The discovery that miRNAs are frequently deregulated in tumours offers the opportunity to identify them as prognostic and diagnostic markers. The aim of this multicentric study is to identify a miRNA expression profile specific for laryngeal cancer. The secondary endpoint was to identify specific deregulated miRNAs with potential as prognostic biomarkers for tumour spread and nodal involvement, and specifically to search for a miRNA pattern pathognomonic for N+ laryngeal cancer and for N- tissues. We identified 20 miRNAs specific for laryngeal cancer and a tissue-specific miRNA signature that is predictive of lymph node metastases in laryngeal carcinoma characterised by 11 miRNAs, seven of which are overexpressed (upregulated) and four downregulated. These results allow the identification of a group of potential specific tumour biomarkers for laryngeal carcinoma that can be used to improve its diagnosis, particularly in early stages, as well as its prognosis.
Collapse
Affiliation(s)
- F Ricciardiello
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - R Capasso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - H Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima, Japan
| | - T Abate
- Ear Nose and Throat Unit, University of Naples Federico II, Naples, Italy
| | - F Oliva
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - A Lombardi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - G Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - D Ingrosso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - C A Leone
- Ear Nose and Throat Unit and Neck Surgery, Monaldi Hospital, Naples, Italy
| | - M Iengo
- Ear Nose and Throat Unit, Cardarelli Hospital, Naples, Italy
| | - M Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| |
Collapse
|
43
|
Li H, Jin X, Chen B, Li P, Li Q. Autophagy-regulating microRNAs: potential targets for improving radiotherapy. J Cancer Res Clin Oncol 2018; 144:1623-1634. [PMID: 29971533 DOI: 10.1007/s00432-018-2675-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/21/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Radiotherapy (RT) is one of the most important therapeutic strategies against cancer. However, resistance of cancer cells to radiation remains a major challenge for RT. Thus, novel strategies to overcome cancer cell radioresistance are urgent. Macroautophagy (hereafter referred to as autophagy) is a biological process by which damaged cell components can be removed and accordingly represent a cytoprotective mechanism. Because radiation-induced autophagy is associated with either cell death or radioresistance of cancer cells, a deeper understanding of the autophagy mechanism triggered by radiation will expedite a development of strategies improving the efficacy of RT. MicroRNAs (miRNAs) are involved in many biological processes. Mounting evidence indicates that many miRNAs are involved in regulation of the autophagic process induced by radiation insult, but the underlying mechanisms remain obscure. Therefore, a deep understanding of the mechanisms of miRNAs in regulating autophagy and radioresistance will provide a new perspective for RT against cancer. METHODS We summarized the recent pertinent literature from various electronic databases, including PubMed. We reviewed the radiation-induced autophagy response and its association of the role, function and regulation of miRNAs, and discussed the feasibility of targeting autophagy-related miRNAs to improve the efficacy of RT. CONCLUSION The beneficial or harmful effect of autophagy may depend on the types of cancer and stress. The cytoprotective role of autophagy plays a dominant role in cancer RT. For most tumor cells, reducing radiation-induced autophagy can improve the efficacy of RT. MiRNAs have been confirmed to take part in the autophagy regulatory network of cancer RT, the autophagy-regulating miRNAs therefore could be developed as potential targets for improving RT.
Collapse
Affiliation(s)
- Hongbin Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
| | - Bing Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, Gansu, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
44
|
Feng X, Lv W, Wang S, He Q. miR‑495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol Rep 2018; 40:1223-1232. [PMID: 30015969 PMCID: PMC6072388 DOI: 10.3892/or.2018.6538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
Glucose-regulated protein 78 (GRP78) was revealed to be associated with the radioresistance of nasopharyngeal carcinoma (NPC) in our previous study. GRP78 is a highly expressed cell surface protein, and holds great promise as a cancer specific target. Its expression may be impacted by the regulation of miRNAs, which may be involved in the radioresistance of NPC. A better understanding of the mechanisms of radioresistance may generate new targets of therapy for NPC patients. The present study was designed to investigate the effect of microRNA targeting GRP78 on the radiosensitivity of NPC. First, we used miRWalk software to predict miRNAs that may interact with GRP78. Subsequently, analysis of miR-495 and GRP78 expression was performed in the primary tissues of 92 NPC tissues and cell lines by immunohistochemistry and real-time PCR and the results revealed that miR-495 expression was lower in radioresistant NPC tissues in comparison to chronic rhinitis tissues, and also lower in radioresistant 5-8F cells (5-8F-IR) in comparison to its parental 5-8F cells. Notably, we observed an inverse association between the expression miR-495 and GRP78. Our bioinformatics analysis led to the identification of miR-495 as the optimal miRNA interacting with GRP78 mRNA. Furthermore, miR-495 targeting the 3′untranslated region (UTR) of GRP78 was detected by a Dual-Glo Luciferase Assay system. Finally, we observed that miR-495 inhibition led to a significant increase in the radioresistance of 5-8F cells and higher GRP78 expression, which may be involved in epithelial-mesenchymal transition (EMT) phenotype. miR-495 targeted the 3′UTR of GRP78 and contributed to the efficacy of radiation therapy in NPC.
Collapse
Affiliation(s)
- Xueping Feng
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Wuwu Lv
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Shuanglian Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Qian He
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
45
|
Shao Y, Zhang D, Li X, Yang J, Chen L, Ning Z, Xu Y, Deng G, Tao M, Zhu Y, Jiang J. MicroRNA-203 Increases Cell Radiosensitivity via Directly Targeting Bmi-1 in Hepatocellular Carcinoma. Mol Pharm 2018; 15:3205-3215. [PMID: 29906128 DOI: 10.1021/acs.molpharmaceut.8b00302] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND B-cell-specific moloney leukemia virus insertion site 1 (Bmi-1) plays important roles in various cancers, but its regulation through microRNAs (miRNAs) and its functions in hepatocellular carcinoma (HCC) remains unclear. METHODS We evaluated the expression and prognostic significance of Bmi-1 in HCC by using tissue samples and The Cancer Genome Atlas (TCGA) data sets. The relationship between miRNAs and Bmi-1 was verified by bioinformatics prediction and immunofluorescence. Colony formation and apoptosis assays were used to reveal the effect of miR-203 on radiosensitivity. RESULTS The Bmi-1 mRNA and protein were upregulated in HCC tissues. Cox regression multivariate analyses showed that Bmi-1 overexpression was an independent prognostic parameter for HCC patients. The expression level of Bmi-1 was negatively associated with miR-203 levels in HCC tissues. Dual-luciferase reporter assays showed that miR-203 could target the 3' untranslated region (3'-UTR) of Bmi-1 directly. Overexpression of miR-203 in HepG2 and Smmc-7721 cells increases their sensitivity to ionizing radiation in vitro and in vivo. Moreover, the improved cell radiosensitivity induced by miR-203 could be rescued by restoration of Bmi-1 expression. CONCLUSIONS Bmi-1 could improve the predictive accuracy for HCC patients' survival. Moreover, miR-203 enhance cell radiosensitivity in vitro and in vivo by targeting Bmi-1 in HCC.
Collapse
Affiliation(s)
- Yingjie Shao
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China
| | - Dachuan Zhang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Xiaodong Li
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Jing Yang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Lujun Chen
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Zhonghua Ning
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China
| | - Yun Xu
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Guohua Deng
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Min Tao
- Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Yibei Zhu
- Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| | - Jingting Jiang
- Jiangsu Engineering Research Center for Tumor Immunotherapy , Changzhou 213003 , China.,Institute of Cell Therapy , Soochow University , Changzhou 213003 , China
| |
Collapse
|
46
|
MiRNA-mRNA crosstalk in laryngeal squamous cell carcinoma based on the TCGA database. Eur Arch Otorhinolaryngol 2018; 275:751-759. [PMID: 29332170 DOI: 10.1007/s00405-018-4876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND The functional characterization of non-coding microRNAs (miRNAs) has been shown to be associated with the pathophysiology of the disease, but it is still a challenging task to elucidate the pathogenesis of microRNAs and disease. In addition, the understanding of the role of miRNAs in the development of LSCC still needs further exploration. MATERIALS AND METHODS In this study, to identify miRNAs that play a key role in LSCC, we analyzed miRNA and mRNA sequence data from 162 LSCC samples from the TCGA database, and screened specific miRNAs and mRNAs by differential gene expression analysis. And then, construct a differentially expressed miRNAs and mRNAs interaction network. RESULTS In our investigation, 23 miRNAs (P < 0.01, log2FoldChange > 2) and 331 mRNAs (P < 0.01, log2FoldChange > 4) were identified differentially expressed in LSCC and reduced the number of loosely linked miRNAs and mRNAs according to appropriate thresholds. Finally, 13 miRNAs and 35 mRNAs were enriched in a network. CONCLUSIONS Our study provides the most comprehensive information on the expression of miRNAs in LSCC and identifies the known oncogenic miRNAs (such as miR-163a), as well as aberrant expression of novel miRNAs involved in cell regulation and metabolic defects that occur during development of LSCC.
Collapse
|
47
|
Steinbichler TB, Alshaimaa A, Maria MV, Daniel D, Herbert R, Jozsef D, Ira-Ida S. Epithelial-mesenchymal crosstalk induces radioresistance in HNSCC cells. Oncotarget 2017; 9:3641-3652. [PMID: 29423072 PMCID: PMC5790489 DOI: 10.18632/oncotarget.23248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Objective Epithelial-mesenchymal crosstalk (EMC) contributes to tumor progression, chemoresistance and acquisition of a mesenchymal phenotype (EMT) of cancer cells. This study aims to investigate the effects of EMC on radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Methods In tumor cell lines, the response of HNSCC cells, stimulated with EMC conditioned medium (CM), to irradiation was evaluated with viability and clonogenic assays. Dose modifying factors (DMF) were calculated from the results of clonogenic assays. Potential pathways involved in radioresistance were analyzed with quantitative Real-Time PCR and western blot. Results CM significantly reduced the doubling time of SCC-25 cells (from 32.8 hours to 16.8 hours, p=0.0001) and Detroit 562 cells (from 88.5 hours to 29.6 hours, p=0.014). Further it increased clonogenic survival after irradiation. The DMF of CM was 2.04 ± 0.43 (mean ± standard deviation) for SCC-25 cells (p=0.015) and 2.14 ± 0.34 for Detroit 562 cells (p=0.008). Treatment with CM more than tripled the ERCC1 and survivin gene expression in SCC-25 cells. Conclusion EMC induced pathways involved in cell survival and DNA repair and led to increased radioresistance in HNSCC cells.
Collapse
Affiliation(s)
| | - Abdelmoez Alshaimaa
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Dejaco Daniel
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Riechelmann Herbert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dudas Jozsef
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Skvortsova Ira-Ida
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
48
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
49
|
Jin Y, Xu K, Chen Q, Wang B, Pan J, Huang S, Wei Y, Ma H. Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway. Exp Cell Res 2017; 362:362-369. [PMID: 29208461 DOI: 10.1016/j.yexcr.2017.11.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/13/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Acquired radioresistance compromises the efficacy of radiotherapy for carcinomas including esophageal cancer (EC), thus resulting in recurrence and poor survival. Recent research corroborated radiosensitive function of simvastatin in stem-like breast cancer cells. However, its role in EC radioresistance remains poorly elucidated. Here, we developed a radioresistant EC cell line Ec9706-R with higher resistance to irradiation relative to control Ec9706 cells. Intriguingly, Ec9706-R cells exhibited epithelial-mesenchymal transition (EMT) characteristics with high invasion and migration ability. Simvastatin sensitized radioresistance of Ec9706-R cells and suppressed cell proliferation, but aggravated radiation-induced apoptosis and caspase-3 activity. Furthermore, simvastatin reversed EMT and inhibited cell invasion and migration of Ec9706-R cells. Mechanism assay confirmed the activation of PI3K/AKT pathway after radiation, which was inhibited by simvastatin. After restoring this pathway by its activator, IGF-1, simvastatin-mediated radiosensitivity and EMT reversion were abrogated. Further assay substantiated the PTEN suppression after irradiation, which was elevated following simvastatin pre-treatment. Moreover, PTEN cessation attenuated the inhibitory effect of simvastatin on PI3K/AKT activation, and subsequently antagonized simvastatin-induced radiosensitivity and EMT reversion. Additionally, simvastatin aggravated radiation-mediated Ec9706-R tumor growth inhibition. Together, simvastatin inhibits the development of Ec9706-R cells by increasing radiosensitivity and reversing EMT via PTEN-PI3K/AKT pathway, implying a promising strategy against EC radioresistance.
Collapse
Affiliation(s)
- Yingying Jin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Kun Xu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Qingjuan Chen
- Department of Oncology, Xianyang Center Hospital, Xianyang 610041, Shaanxi Province, China
| | - Baofeng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Jiyuan Pan
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Shan Huang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Yang Wei
- Laboratory of Scientific Research Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hongbing Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| |
Collapse
|
50
|
Foy JP, Bazire L, Ortiz-Cuaran S, Deneuve S, Kielbassa J, Thomas E, Viari A, Puisieux A, Goudot P, Bertolus C, Foray N, Kirova Y, Verrelle P, Saintigny P. A 13-gene expression-based radioresistance score highlights the heterogeneity in the response to radiation therapy across HPV-negative HNSCC molecular subtypes. BMC Med 2017; 15:165. [PMID: 28859688 PMCID: PMC5580222 DOI: 10.1186/s12916-017-0929-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/10/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Radiotherapy for head and neck squamous cell carcinomas (HNSCC) is associated with a substantial morbidity and inconsistent efficacy. Human papillomavirus (HPV)-positive status is recognized as a marker of increased radiosensitivity. Our goal was to identify molecular markers associated with benefit to radiotherapy in patients with HPV-negative disease. METHODS Gene expression profiles from public repositories were downloaded for data mining. Training sets included 421 HPV-negative HNSCC tumors from The Cancer Genome Atlas (TCGA) and 32 HNSCC cell lines with available radiosensitivity data (GSE79368). A radioresistance (RadR) score was computed using the single sample Gene Set Enrichment Analysis tool. The validation sets included two panels of cell lines (NCI-60 and GSE21644) and HPV-negative HNSCC tumor datasets, including 44 (GSE6631), 82 (GSE39366), and 179 (GSE65858) patients, respectively. We finally performed an integrated analysis of the RadR score with known recurrent genomic alterations in HNSCC, patterns of protein expression, biological hallmarks, and patterns of drug sensitivity using TCGA and the E-MTAB-3610 dataset (659 pancancer cell lines, 140 drugs). RESULTS We identified 13 genes differentially expressed between tumor and normal head and neck mucosa that were associated with radioresistance in vitro and in patients. The 13-gene expression-based RadR score was associated with recurrence in patients treated with surgery and adjuvant radiotherapy but not with surgery alone. It was significantly different among different molecular subtypes of HPV-negative HNSCC and was significantly lower in the "atypical" molecular subtype. An integrated analysis of RadR score with genomic alterations, protein expression, biological hallmarks and patterns of drug sensitivity showed a significant association with CCND1 amplification, fibronectin expression, seven hallmarks (including epithelial-to-mesenchymal transition and unfolded protein response), and increased sensitivity to elesclomol, an HSP90 inhibitor. CONCLUSIONS Our study highlights the clinical relevance of the molecular classification of HNSCC and the RadR score to refine radiation strategies in HPV-negative disease.
Collapse
Affiliation(s)
- Jean-Philippe Foy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, F-69008, France.,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, F-69008, France.,Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | - Louis Bazire
- Department of Radiation Oncology, Institut Curie, Paris, F-75005, France
| | - Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, F-69008, France.,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, F-69008, France
| | - Sophie Deneuve
- Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, F-69008, France.,Department of Surgery, Centre Léon Bérard, Lyon, F-69008, France
| | - Janice Kielbassa
- Platform of Bioninformatics-Gilles Thomas, Synergie Lyon Cancer, Lyon, F-69008, France
| | - Emilie Thomas
- Platform of Bioninformatics-Gilles Thomas, Synergie Lyon Cancer, Lyon, F-69008, France
| | - Alain Viari
- Platform of Bioninformatics-Gilles Thomas, Synergie Lyon Cancer, Lyon, F-69008, France
| | - Alain Puisieux
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, F-69008, France
| | - Patrick Goudot
- Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | - Chloé Bertolus
- Department of Oral and Maxillofacial Surgery, University of Pierre Marie Curie-Paris 6, Pitié-Salpêtrière Hospital, Paris, F-75013, France
| | - Nicolas Foray
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, F-69008, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, F-75005, France
| | - Pierre Verrelle
- INSERM U 1196 , CNRS UMR 9187, Institut Curie, Orsay, F-91405, France.,Université Clermont Auvergne, Centre Jean-Perrin, Clermont-Ferrand, F-63000, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, F-69008, France. .,Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, F-69008, France. .,Department of Medical Oncology, Centre Léon Bérard, Lyon, 69008, France.
| |
Collapse
|