1
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer 2024; 1879:189197. [PMID: 39413854 DOI: 10.1016/j.bbcan.2024.189197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
In the evolving landscape of cancer treatment, therapeutic peptides are assuming to play an increasingly vital role. Although the number of peptide drugs available for clinical cancer treatment is currently limited, extensive preclinical research is underway, presenting a promising trajectory for the future. The collaborative efforts of natural anti-cancer peptides (ACPs) and synthetic ACPs, propelled by advancements in molecular biology and peptide chemistry, are steering remarkable progress in this domain. We explores the intricate mechanisms underlying the anti-cancer effects of these peptides. The exploration of innovative strategies, including cancer immunotherapy and advanced drug delivery systems, is likely to contribute to the increasing presenceuse of peptide drugs in clinical cancer care. Furthermore, we delve into the potential implications and challenges associated with this anticipated shift, emphasizing the need for continued research and development to unlock the full therapeutic potential of peptide drugs in cancer treatment.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China
| | - Zhiwei Zhao
- School of Basic Medical Sciences, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | | | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450003, China; Research Center of Basic Medicine Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Jiang D, Chen R, Wang L, Xu G. Screening, expression and anti-tumor functional identification of anti-LAG-3 nanobodies. Protein Expr Purif 2024; 222:106522. [PMID: 38851552 DOI: 10.1016/j.pep.2024.106522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To screen and obtain specific anti-lymphocyte activation gene-3 (LAG3) nanobody sequences, purify and express recombinant anti-LAG3 nanobody, and verify its effect on promoting T cells to kill tumor cells. METHODS Based on the camel derived natural nanobody phage display library constructed by the research group, the biotinylated LAG3 antigen was used as the target, and the anti-LAG3 nanobody sequences were screened by biotin-streptavidin liquid phase screening, phage-ELISA and sequencing. The sequence-conjμgated human IgG1 Fc fragment was obtained, the recombinant anti-LAG3 nanobody expression vector was constructed, the expression of the recombinant anti-LAG3 nanobody was induced by IPTG and purified, and the characteristics and functions of the recombinant anti-LAG3 nanobody were verified by SDS-PAGE, Western blot, cytotoxicity assay, etc. RESULTS: One anti-LAG3 nanobody sequence was successfully screened, and the corresponding recombinant anti-LAG3 nanobody-expressing bacteria were constructed. The results of SDS-PAGE, Western blot and cytotoxicity assay showed that the recombinant anti-LAG3 nanobody was successfully expressed, which was specific, and it could promote the killing ability of T cells against tumor cells, and the optimal concentration was 200 μg/mL. CONCLUSION The recombinant anti-LAG3 nanobody screened and expressed has specific and auxiliary anti-tumor cell effects, which lays a foundation for its subsequent application.
Collapse
Affiliation(s)
- Dan Jiang
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Rui Chen
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Liyan Wang
- Ningxia Chinese Medicine Research Centre, Yinchuan, Ningxia, 750000, China
| | - Guangxian Xu
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| |
Collapse
|
4
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024:10.1007/s10495-024-02022-8. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
5
|
Proulx-Rocray F, Soulières D. Emerging monoclonal antibody therapy for head and neck squamous cell carcinoma. Expert Opin Emerg Drugs 2024; 29:165-176. [PMID: 38616696 DOI: 10.1080/14728214.2024.2339906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing, particularly among younger populations. It is projected that the number of new cases will increase by almost 50% by 2040, with market revenues expected to triple in the same period. Despite the recent introduction of immune checkpoint inhibitors (ICIs) into the therapeutic armamentarium, the vast majority of patients with recurrent and/or metastatic (R/M) HNSCC fail to derive durable benefits from systemic therapy. AREAS COVERED This article aims to review the multiple monoclonal antibodies (mAbs) regimens currently under development, targeting various growth factors, immune checkpoints, immune costimulatory receptors, and more. EXPERT OPINION So far, the combination of anti-EGFR and ICI appears to be the most promising, especially in HPV-negative patients. It will be interesting to confirm whether the arrival of antibody-drug conjugates and bispecific mAb can surpass the efficacy of anti-EGFR, as they are also being tested in combination with ICI. Furthermore, we believe that immune costimulatory agonists and various ICIs combination are worth monitoring, despite some initial setbacks.
Collapse
Affiliation(s)
- Francis Proulx-Rocray
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Denis Soulières
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
6
|
Wang J, Wang Y, Jiang X, Xu M, Wang M, Wang R, Zheng B, Chen M, Ke Q, Long J. Unleashing the power of immune checkpoints: Post-translational modification of novel molecules and clinical applications. Cancer Lett 2024; 588:216758. [PMID: 38401885 DOI: 10.1016/j.canlet.2024.216758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Immune checkpoint molecules play a pivotal role in the initiation, regulation, and termination of immune responses. Tumor cells exploit these checkpoints to dampen immune cell function, facilitating immune evasion. Clinical interventions target this mechanism by obstructing the binding of immune checkpoints to their ligands, thereby restoring the anti-tumor capabilities of immune cells. Notably, therapies centered on immune checkpoint inhibitors, particularly PD-1/PD-L1 and CTLA-4 blocking antibodies, have demonstrated significant clinical promise. However, a considerable portion of patients still encounter suboptimal efficacy and develop resistance. Recent years have witnessed an exponential surge in preclinical and clinical trials investigating novel immune checkpoint molecules such as TIM3, LAG3, TIGIT, NKG2D, and CD47, along with their respective ligands. The processes governing immune checkpoint molecules, from their synthesis to transmembrane deployment, interaction with ligands, and eventual degradation, are intricately tied to post-translational modifications. These modifications encompass glycosylation, phosphorylation, ubiquitination, neddylation, SUMOylation, palmitoylation, and ectodomain shedding. This discussion proceeds to provide a concise overview of the structural characteristics of several novel immune checkpoints and their ligands. Additionally, it outlines the regulatory mechanisms governed by post-translational modifications, offering insights into their potential clinical applications in immune checkpoint blockade.
Collapse
Affiliation(s)
- Jie Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meifang Xu
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Meifeng Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Rong Wang
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Boshu Zheng
- Department of Pathology, Institute of Oncology & Diagnostic Pathology Center, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Qi Ke
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Zhou H, Ma Y, Liu F, Li B, Qiao D, Ren P, Wang M. Current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment. Front Immunol 2023; 14:1255799. [PMID: 37731507 PMCID: PMC10508181 DOI: 10.3389/fimmu.2023.1255799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
New York-esophageal cancer 1 (NY-ESO-1) belongs to the cancer testis antigen (CTA) family, and has been identified as one of the most immunogenic tumor-associated antigens (TAAs) among the family members. Given its ability to trigger spontaneous humoral and cellular immune response and restricted expression, NY-ESO-1 has emerged as one of the most promising targets for cancer immunotherapy. Cancer vaccines, an important element of cancer immunotherapy, function by presenting an exogenous source of TAA proteins, peptides, and antigenic epitopes to CD4+ T cells via major histocompatibility complex class II (MHC-II) and to CD8+ T cells via major histocompatibility complex class I (MHC-I). These mechanisms further enhance the immune response against TAAs mediated by cytotoxic T lymphocytes (CTLs) and helper T cells. NY-ESO-1-based cancer vaccines have a history of nearly two decades, starting from the first clinical trial conducted in 2003. The current cancer vaccines targeting NY-ESO-1 have various types, including Dendritic cells (DC)-based vaccines, peptide vaccines, protein vaccines, viral vaccines, bacterial vaccines, therapeutic whole-tumor cell vaccines, DNA vaccines and mRNA vaccines, which exhibit their respective benefits and obstacles in the development and application. Here, we summarized the current advances in cancer vaccines targeting NY-ESO-1 for solid cancer treatment, aiming to provide perspectives for future research.
Collapse
Affiliation(s)
- Hong Zhou
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Yipeng Ma
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Fenglan Liu
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Bin Li
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Innovation Immunotechnology Co., Ltd, Shenzhen, China
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen, China
| |
Collapse
|
8
|
Kreidieh FY, Tawbi HA. The introduction of LAG-3 checkpoint blockade in melanoma: immunotherapy landscape beyond PD-1 and CTLA-4 inhibition. Ther Adv Med Oncol 2023; 15:17588359231186027. [PMID: 37484526 PMCID: PMC10357068 DOI: 10.1177/17588359231186027] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Despite major advances with immunotherapy and targeted therapy in the past decade, metastatic melanoma continues to be a deadly disease for close to half of all patients. Over the past decade, advancement in immune profiling and a deeper understanding of the immune tumor microenvironment (TME) have enabled the development of novel approaches targeting and a multitude of targets being investigated for the immunotherapy of melanoma. However, to date, immune checkpoint blockade has remained the most successful with programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) inhibitors, alone or in combination, yielding the most robust and durable clinical outcome in patients with metastatic melanoma. The highest rate of durable responses is achieved with the combination with PD-1 and CTLA-4 inhibition, and is effective in a variety of settings including brain metastases; however, it comes at the expense of a multitude of life-threatening toxicities occurring in up to 60% of patients. This has also established melanoma as the forefront of immuno-oncology (IO) drug development, and the search for novel checkpoints has been ongoing with multiple relevant targets including T-cell immunoglobulin and mucinodomain containing-3 (TIM-3), LAG-3, V-domain immunoglobulin suppressor T-cell activation (VISTA), T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT), among others. Lymphocyte activation gene-3 (LAG-3), which is a co-inhibitory receptor on T cells that suppress their activation, has revolutionized immunomodulation in melanoma. The 'game changing' results from the RELATIVITY-047 trial validated LAG-3 blockade as a relevant biological target and established it as the third clinically relevant immune checkpoint. Importantly, LAG-3 inhibition in combination with PD-1 inhibition offered impressive efficacy with modest increases in toxicity over single agent PD-1 inhibitor and has been U.S. Food and Drug Administration approved for the first-line therapy of patients with metastatic melanoma. The efficacy of this combination in patients with untreated brain or leptomeningeal metastases or with rare melanoma types, such as uveal melanoma, remains to be established. The challenge remains to elucidate specific mechanisms of response and resistance to LAG-3 blockade and to extend its benefits to other malignancies. Ongoing trials are studying the combination of LAG-3 antibodies with PD-1 inhibitors in multiple cancers and settings. The low toxicity of the combination may also allow for further layering of additional therapeutic approaches such as chemotherapy, oncolytic viruses, cellular therapies, and possibly novel cytokines, among others.
Collapse
Affiliation(s)
- Firas Y. Kreidieh
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
9
|
Ibrahim R, Saleh K, Chahine C, Khoury R, Khalife N, Cesne AL. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy. Biomedicines 2023; 11:1878. [PMID: 37509517 PMCID: PMC10377063 DOI: 10.3390/biomedicines11071878] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most important steps forward in the management of cancer was the discovery of immunotherapy. It has become an essential pillar in the treatment paradigm of cancer patients. Unfortunately, despite the various options presented with immune checkpoint inhibitors (ICIs), the benefit is still limited to select patients and the vast majority of these patients gain either minimal benefit or eventually progress, leaving an unmet need for the development of novel therapeutic agents and strategies. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor protein, is a molecule found on the surface of activated T-cells. It plays a major role in negatively regulating T-cell function thereby providing tumors with an immune escape in the tumor microenvironment (TME). Given its importance in regulating the immune system, LAG-3 has been considered as a promising target in oncology and precision medicine. To date, two LAG-3-directed agents (eftilagimod alpha and relatlimab) have been approved in combination with programmed death-1 (PD-1) inhibitors in the setting of advanced solid tumors. In this review, we discuss the structure of LAG-3, its mechanism of action, and its interaction with its ligands. We also shed light on the emerging treatments targeting LAG-3 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of head and neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
10
|
Ziogas DC, Theocharopoulos C, Lialios PP, Foteinou D, Koumprentziotis IA, Xynos G, Gogas H. Beyond CTLA-4 and PD-1 Inhibition: Novel Immune Checkpoint Molecules for Melanoma Treatment. Cancers (Basel) 2023; 15:2718. [PMID: 37345056 PMCID: PMC10216291 DOI: 10.3390/cancers15102718] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
More than ten years after the approval of ipilimumab, immune checkpoint inhibitors (ICIs) against PD-1 and CTLA-4 have been established as the most effective treatment for locally advanced or metastatic melanoma, achieving durable responses either as monotherapies or in combinatorial regimens. However, a considerable proportion of patients do not respond or experience early relapse, due to multiple parameters that contribute to melanoma resistance. The expression of other immune checkpoints beyond the PD-1 and CTLA-4 molecules remains a major mechanism of immune evasion. The recent approval of anti-LAG-3 ICI, relatlimab, in combination with nivolumab for metastatic disease, has capitalized on the extensive research in the field and has highlighted the potential for further improvement of melanoma prognosis by synergistically blocking additional immune targets with new ICI-doublets, antibody-drug conjugates, or other novel modalities. Herein, we provide a comprehensive overview of presently published immune checkpoint molecules, including LAG-3, TIGIT, TIM-3, VISTA, IDO1/IDO2/TDO, CD27/CD70, CD39/73, HVEM/BTLA/CD160 and B7-H3. Beginning from their immunomodulatory properties as co-inhibitory or co-stimulatory receptors, we present all therapeutic modalities targeting these molecules that have been tested in melanoma treatment either in preclinical or clinical settings. Better understanding of the checkpoint-mediated crosstalk between melanoma and immune effector cells is essential for generating more effective strategies with augmented immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, Laiko General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (C.T.); (P.-P.L.); (D.F.); (I.-A.K.); (G.X.)
| |
Collapse
|
11
|
Charles J, Vrionis A, Mansur A, Mathias T, Shaikh J, Ciner A, Jiang Y, Nezami N. Potential Immunotherapy Targets for Liver-Directed Therapies, and the Current Scope of Immunotherapeutics for Liver-Related Malignancies. Cancers (Basel) 2023; 15:2624. [PMID: 37174089 PMCID: PMC10177356 DOI: 10.3390/cancers15092624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Liver cancer, including hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is increasing in incidence and mortality across the globe. An improved understanding of the complex tumor microenvironment has opened many therapeutic doors and led to the development of novel pharmaceuticals targeting cellular signaling pathways or immune checkpoints. These interventions have significantly improved tumor control rates and patient outcomes, both in clinical trials and in real-world practice. Interventional radiologists play an important role in the multidisciplinary team given their expertise in minimally invasive locoregional therapy, as the bulk of these tumors are usually in the liver. The aim of this review is to highlight the immunological therapeutic targets for primary liver cancers, the available immune-based approaches, and the contributions that interventional radiology can provide in the care of these patients.
Collapse
Affiliation(s)
- Jonathan Charles
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Andrea Vrionis
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
| | - Arian Mansur
- Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Trevor Mathias
- School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Jamil Shaikh
- Morsani College of Medicine, University of South Florida, 560 Channelside Drive, Tampa, FL 33602, USA; (J.C.); (A.V.); (J.S.)
- Department of Radiology, Tampa General Hospital, University of South Florida Health, Tampa General Cir, Tampa, FL 33606, USA
| | - Aaron Ciner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Yixing Jiang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.); (Y.J.)
| | - Nariman Nezami
- Division of Vascular and Interventional Radiology, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Experimental Therapeutics Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Li CJ, Jiang CL, Chao TL, Lin SY, Tsai YM, Chao CS, Su YT, Chen CJ, Chang SY, Lin FJ, Chang SC. Elicitation of potent neutralizing antibodies in obese mice by ISA 51-adjuvanted SARS-CoV-2 spike RBD-Fc vaccine. Appl Microbiol Biotechnol 2023; 107:2983-2995. [PMID: 36988669 PMCID: PMC10049902 DOI: 10.1007/s00253-023-12490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Vaccination is considered to be the most effective countermeasure to prevent and combat the global health threats of COVID-19. People with obesity are at a greater risk of hospitalization, life-threatening illness, and adverse outcomes after having COVID-19. Therefore, a safe and effective COVID-19 vaccine for obese individuals is urgently needed. In the study, the vaccine composed of the ISA 51 adjuvant and the SARS-CoV-2 spike (S) receptor-binding domain (RBD) in conjugation with the human IgG1 Fc fragment (named as ISA 51-adjuvanted RBD-Fc vaccine) was developed and inoculated in the regular chow diet (RCD) lean mice and the high-fat diet (HFD)-induced obese mice. The S protein-specific IgG titers were largely induced in an increasing manner along with three doses of ISA 51-adjuvanted RBD-Fc vaccine without causing any harmful side effect. In the HFD mice, the S protein-specific IgG titers can be quickly observed 2 weeks post the first inoculation. The antisera elicited by the ISA 51-adjuvanted RBD-Fc vaccine in the RCD and HFD mice exhibited potent SARS-CoV-2 neutralizing activities in the plaque reduction neutralization test (PRNT) assays and showed similar specificity for recognizing the key residues in the RBD which were involved in interacting with angiotensin-converting enzyme 2 (ACE2) receptor. The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine in the HFD mice can be sustainably maintained with the PRNT50 values of 1.80-1.91×10-3 for at least 8 weeks post the third inoculation. Collectively, the RBD-Fc-based immunogen and the ISA 51-adjuvanted formulation can be developed as an effective COVID-19 vaccine for obese individuals. KEY POINTS: • The ISA 51-adjuvanted RBD-Fc vaccine can induce potent SARS-CoV-2 neutralizing antibodies in the obese mouse • The antibodies elicited by the ISA 51-adjuvanted RBD-Fc vaccine can bind to the key RBD residues involved in interacting with ACE2 • The immune efficacy of the ISA 51-adjuvanted RBD-Fc vaccine can be sustainably maintained for at least 8 weeks post the third inoculation.
Collapse
Affiliation(s)
- Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shiau-Yu Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Ya-Min Tsai
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Chong-Syun Chao
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Ting Su
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, 106, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 106, Taiwan.
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Perez-Santos M, Anaya-Ruiz M, Villafaña-Diaz L, Sánchez Esgua G. Approaches for development of LAG-3 inhibitors and the promise they hold as anticancer agents. Expert Opin Drug Discov 2022; 17:1341-1355. [PMID: 36399656 DOI: 10.1080/17460441.2022.2148652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION LAG-3 is considered to be the third point of immunological control in relation to clinical trials that address cancer treatment, only behind PD-1 and CTLA-4, due to its role as a suppressor of the immune response and enhancer of differentiation of Treg cells. AREAS COVERED The authors focus on emphasizing the strategy of development of LAG-3 inhibitors to develop anticancer therapeutics, especially from the perspective of designing new monoclonal and bispecific antibodies against LAG-3. This article also covers details of patents and clinical trials of LAG-3 inhibitors reported in the literature. In addition, we highlight as future research challenges the design and development of peptides and small molecules as inhibitors of LAG-3 function. EXPERT OPINION Three approaches have been used for the development of LAG-3 inhibitors, and they include inhibitory LAG-3 binding peptides and antagonist monoclonal and multispecific antibodies. These approaches include more than 100 clinical trials of 21 molecules that bind to LAG-3 and block its binding to MHC II. However, these approaches do not cover the design and development of peptides and small molecules that could inhibit the function of LAG-3, for which it is necessary to develop new alternatives that cover this gap.
Collapse
Affiliation(s)
- Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP, México
| | - Luis Villafaña-Diaz
- Centro de Investigación en Inteligencia de Negocios, Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Gabriela Sánchez Esgua
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| |
Collapse
|
14
|
Szlasa W, Janicka N, Sauer N, Michel O, Nowak B, Saczko J, Kulbacka J. Chemotherapy and Physical Therapeutics Modulate Antigens on Cancer Cells. Front Immunol 2022; 13:889950. [PMID: 35874714 PMCID: PMC9299262 DOI: 10.3389/fimmu.2022.889950] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells possess specific properties, such as multidrug resistance or unlimited proliferation potential, due to the presence of specific proteins on their cell membranes. The release of proliferation-related proteins from the membrane can evoke a loss of adaptive ability in cancer cells and thus enhance the effects of anticancer therapy. The upregulation of cancer-specific membrane antigens results in a better outcome of immunotherapy. Moreover, cytotoxic T-cells may also become more effective when stimulated ex-vivo toward the anticancer response. Therefore, the modulation of membrane proteins may serve as an interesting attempt in anticancer therapy. The presence of membrane antigens relies on various physical factors such as temperature, exposure to radiation, or drugs. Therefore, changing the tumor microenvironment conditions may lead to cancer cells becoming sensitized to subsequent therapy. This paper focuses on the therapeutic approaches modulating membrane antigens and enzymes in anticancer therapy. It aims to analyze the possible methods for modulating the antigens, such as pharmacological treatment, electric field treatment, photodynamic reaction, treatment with magnetic field or X-ray radiation. Besides, an overview of the effects of chemotherapy and immunotherapy on the immunophenotype of cancer cells is presented. Finally, the authors review the clinical trials that involved the modulation of cell immunophenotype in anticancer therapy.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Bernadetta Nowak
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
15
|
Huo JL, Wang YT, Fu WJ, Lu N, Liu ZS. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol 2022; 13:956090. [PMID: 35958563 PMCID: PMC9361790 DOI: 10.3389/fimmu.2022.956090] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
LAG-3, a type of immune checkpoint receptor protein belonging to the immunoglobulin superfamily, is confirmed to be expressed on activated immune cells, mainly including activated T cells. LAG-3 can negatively regulate the function of T cells, exerting important effects on maintaining the homeostasis of the immune system under normal physiological conditions and promoting tumor cells immune escape in the tumor microenvironment. Given its important biological roles, LAG-3 has been regarded as a promising target for cancer immunotherapy. To date, many LAG-3 inhibitors have been reported, which can be divided into monoclonal antibody, double antibody, and small molecule drug, some of which have entered the clinical research stage. LAG-3 inhibitors can negatively regulate and suppress T cell proliferation and activation through combination with MHC II ligand. Besides, LAG-3 inhibitors can also affect T cell function via binding to Galectin-3 and LSECtin. In addition, LAG-3 inhibitors can prevent the FGL1-LAG-3 interaction, thereby enhancing the human body’s antitumor immune effect. In this review, we will describe the function of LAG-3 and summarize the latest LAG-3 inhibitors in the clinic for cancer therapy.
Collapse
Affiliation(s)
- Jin-Ling Huo
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Ya-Tao Wang
- Department of Orthopedics, First People’s Hospital of Shangqiu, Shangqiu, China
| | - Wen-Jia Fu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Nan Lu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Nan Lu, ; Zhang-Suo Liu,
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Research Institute of Nephrology, Zhengzhou University, Henan Province Research Center For Kidney Disease, Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
- *Correspondence: Nan Lu, ; Zhang-Suo Liu,
| |
Collapse
|
16
|
Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M, Garnica M, Ramos P, Fernández-Hinojal G, Vera R, Kochan G, Escors D. Clinical landscape of LAG-3-targeted therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100079. [PMID: 35755891 PMCID: PMC9216443 DOI: 10.1016/j.iotech.2022.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
Collapse
Affiliation(s)
- L. Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E. Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - H. Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - L. Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A. Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P. Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Fernández-Hinojal
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - R. Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D. Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
17
|
Aroldi F, Saleh R, Jafferji I, Barreto C, Saberian C, Middleton MR. Lag3: From Bench to Bedside. Cancer Treat Res 2022; 183:185-199. [PMID: 35551660 DOI: 10.1007/978-3-030-96376-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The introduction of immune checkpoint inhibitors represented a breakthrough treatment for metastatic melanoma, but the effect of these agents is not limited to a single cancer type. Promising results have been reported in various solid tumors, for example, lung cancer. The success of these drugs depends on the activation of tumor-infiltrating lymphocytes and primary and acquired resistance have been reported alongside a high rate of immune-related adverse events when agents targeting different immune checkpoints are given in combination. Numerous other targets have been investigated to overcome the resistance, improve the activity, and reduce the toxicity of checkpoint inhibitor therapy. Among these, the most promising is Lymphocyte-activation gene 3 (LAG-3), a transmembrane protein involved in cytokine release and inhibitory signaling in T cells. Preclinical data showed that LAG-3 is a negative regulator of both CD4+ T cell and CD8+ T cell and the activity on CD8+ T cell is independent of CD4+ activation. On the CD8+ T cell, LAG-3 activation abrogates the antigen presentation whereas on the CD4+ T cell, arrests the S phase of the cell cycle. The blockade of LAG-3 has been tested in several combination therapies, and recent clinical data showed a good safety profile and a synergistic effect with anti-PD-1, suggesting that this combination could become a standard treatment for metastatic melanoma. In this review, we report the available preclinical data and the new clinical data on LAG-3 blockade in different solid tumors, and we discuss LAG-3 as potential prognostic and predictive factor, together with possible future applications.
Collapse
Affiliation(s)
- Francesca Aroldi
- Department of Oncology, The University of Oxford, OX 37LE, Oxford, England.
| | - Reem Saleh
- Peter MacCallum Cancer Centre, Tumor Suppression and Cancer Sex Disparity Laboratory, Melbourne, VIC, 3000, Australia.,Department of Oncology, The University of Melbourne, The Sir Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Insiya Jafferji
- Department of Immunology, The University of Texas MD Anderson Cancer Centre, Houston, TX, 77030, USA
| | - Carmelia Barreto
- Investigational Cancer Therapeutics (A Phase I Program), The University of Texas MD Anderson Cancer Centre, Houston, TX, 77030, USA
| | - Chantal Saberian
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Centre, Houston, TX, 77030, USA
| | - Mark R Middleton
- Department of Oncology, The University of Oxford, OX 37LE, Oxford, England
| |
Collapse
|
18
|
Development of Peptide-Based Vaccines for Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9749363. [PMID: 35342400 PMCID: PMC8941562 DOI: 10.1155/2022/9749363] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
Peptides cancer vaccines are designed based on the epitope peptides that can elicit humoral and cellular immune responses targeting tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs). In order to develop a clinically safe and more effective vaccine for the future, several issues need to be addressed, and these include the selection of optimal antigen targets, adjuvants, and immunization regimens. Another emerging approach involves the use of personalized peptide-based vaccines based on neoantigens to enhance antitumor response. Rationally designed combinatorial therapy is currently being investigated with chemotherapeutic drugs or immune checkpoint inhibitor therapies to improve the efficacy. This review discusses an overview of the development of peptide-based vaccines, the role of adjuvants, and the delivery systems for peptide vaccines as well as combinatorial therapy as potential anticancer strategies.
Collapse
|
19
|
Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl) 2022; 135:1203-1212. [PMID: 35170503 PMCID: PMC9337260 DOI: 10.1097/cm9.0000000000001981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical applications of LAG-3 in cancers.
Collapse
|
20
|
Shi AP, Tang XY, Xiong YL, Zheng KF, Liu YJ, Shi XG, Lv Y, Jiang T, Ma N, Zhao JB. Immune Checkpoint LAG3 and Its Ligand FGL1 in Cancer. Front Immunol 2022; 12:785091. [PMID: 35111155 PMCID: PMC8801495 DOI: 10.3389/fimmu.2021.785091] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
LAG3 is the most promising immune checkpoint next to PD-1 and CTLA-4. High LAG3 and FGL1 expression boosts tumor growth by inhibiting the immune microenvironment. This review comprises four sections presenting the structure/expression, interaction, biological effects, and clinical application of LAG3/FGL1. D1 and D2 of LAG3 and FD of FGL1 are the LAG3-FGL1 interaction domains. LAG3 accumulates on the surface of lymphocytes in various tumors, but is also found in the cytoplasm in non-small cell lung cancer (NSCLC) cells. FGL1 is found in the cytoplasm in NSCLC cells and on the surface of breast cancer cells. The LAG3-FGL1 interaction mechanism remains unclear, and the intracellular signals require elucidation. LAG3/FGL1 activity is associated with immune cell infiltration, proliferation, and secretion. Cytokine production is enhanced when LAG3/FGL1 are co-expressed with PD-1. IMP321 and relatlimab are promising monoclonal antibodies targeting LAG3 in melanoma. The clinical use of anti-FGL1 antibodies has not been reported. Finally, high FGL1 and LAG3 expression induces EGFR-TKI and gefitinib resistance, and anti-PD-1 therapy resistance, respectively. We present a comprehensive overview of the role of LAG3/FGL1 in cancer, suggesting novel anti-tumor therapy strategies.
Collapse
Affiliation(s)
- An-Ping Shi
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China
| | - Xi-Yang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yan-Lu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kai-Fu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Jian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xian-Gui Shi
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Yao Lv
- College of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
21
|
Chen BJ, Zhao JW, Zhang DH, Zheng AH, Wu GQ. Immunotherapy of Cancer by Targeting Regulatory T cells. Int Immunopharmacol 2022; 104:108469. [PMID: 35008005 DOI: 10.1016/j.intimp.2021.108469] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023]
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by inhibiting abnormal/overactive immune responses to both autogenic and nonautogenic antigens. Treg cells play an important role in immune tolerance, autoimmune diseases, infectious diseases, organ transplantation, and tumor diseases. Treg cells have two functional characteristics: T cell anergy and immunosuppression. Treg cells remain immune unresponsive to high concentrations of interleukin-2 and anti-CD3 monoclonal antibodies. In addition, the activation of Treg cells after TCR-mediated signal stimulation inhibits the activation and proliferation of effector T cells. In the process of tumor development, Treg cells accumulate locally in the tumor and lead to tumor escape by inducing anergy and immunosuppression. It is believed that targeted elimination of Treg cells can activate tumor-specific effector T cells and improve the efficiency of cancer immunotherapy. Therefore, inhibition/clearance of Treg cells is a promising strategy for enhancing antitumor immunity. Here, we review studies of cancer immunotherapies targeting Treg cells.
Collapse
Affiliation(s)
- Bo-Jin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing-Wen Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Da-Hong Zhang
- Department of Urology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ai-Hong Zheng
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Guo-Qing Wu
- Department of Oncology Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Burnell SEA, Capitani L, MacLachlan BJ, Mason GH, Gallimore AM, Godkin A. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. IMMUNOTHERAPY ADVANCES 2021; 2:ltab025. [PMID: 35265944 PMCID: PMC8895726 DOI: 10.1093/immadv/ltab025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Despite three decades of research to its name and increasing interest in immunotherapies that target it, LAG-3 remains an elusive co-inhibitory receptor in comparison to the well-established PD-1 and CTLA-4. As such, LAG-3 targeting therapies have yet to achieve the clinical success of therapies targeting other checkpoints. This could, in part, be attributed to the many unanswered questions that remain regarding LAG-3 biology. Of these, we address: (i) the function of the many LAG-3-ligand interactions, (ii) the hurdles that remain to acquire a high-resolution structure of LAG-3, (iii) the under-studied LAG-3 signal transduction mechanism, (iv) the elusive soluble form of LAG-3, (v) the implications of the lack of (significant) phenotype of LAG-3 knockout mice, (vi) the reports of LAG-3 expression on the epithelium, and (vii) the conflicting reports of LAG-3 expression (and potential contributions to pathology) in the brain. These mysteries which surround LAG-3 highlight how the ever-evolving study of its biology continues to reveal ever-increasing complexity in its role as an immune receptor. Importantly, answering the questions which shroud LAG-3 in mystery will allow the maximum therapeutic benefit of LAG-3 targeting immunotherapies in cancer, autoimmunity and beyond.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Georgina H Mason
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
23
|
In Silico Model Estimates the Clinical Trial Outcome of Cancer Vaccines. Cells 2021; 10:cells10113048. [PMID: 34831269 PMCID: PMC8616443 DOI: 10.3390/cells10113048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Over 30 years after the first cancer vaccine clinical trial (CT), scientists still search the missing link between immunogenicity and clinical responses. A predictor able to estimate the outcome of cancer vaccine CTs would greatly benefit vaccine development. Published results of 94 CTs with 64 therapeutic vaccines were collected. We found that preselection of CT subjects based on a single matching HLA allele does not increase immune response rates (IRR) compared with non-preselected CTs (median 60% vs. 57%, p = 0.4490). A representative in silico model population (MP) comprising HLA-genotyped subjects was used to retrospectively calculate in silico IRRs of CTs based on the percentage of MP-subjects having epitope(s) predicted to bind ≥ 1–4 autologous HLA allele(s). We found that in vitro measured IRRs correlated with the frequency of predicted multiple autologous allele-binding epitopes (AUC 0.63–0.79). Subgroup analysis of multi-antigen targeting vaccine CTs revealed correlation between clinical response rates (CRRs) and predicted multi-epitope IRRs when HLA threshold was ≥ 3 (r = 0.7463, p = 0.0004) but not for single HLA allele-binding epitopes (r = 0.2865, p = 0.2491). Our results suggest that CRR depends on the induction of broad T-cell responses and both IRR and CRR can be predicted when epitopes binding to multiple autologous HLAs are considered.
Collapse
|
24
|
Sancho-Araiz A, Mangas-Sanjuan V, Trocóniz IF. The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13071016. [PMID: 34371708 PMCID: PMC8309057 DOI: 10.3390/pharmaceutics13071016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) focuses on the ability of the immune system to detect and eliminate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies have become a major player in oncology treatment and, in 2021, represented the highest number of approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to these therapies and develop resistance mechanisms. In this sense, mathematical models offer an opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to provide a description of the different mathematical approaches (top-down, middle-out, and bottom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. Among the different strategies, middle-out models, which combine both theoretical and evidence-based description of tumor growth and immunological cell-type dynamics, represent an optimal framework to evaluate new IO strategies.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-96354-3351
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
25
|
Xie X, Hu Y, Ye T, Chen Y, Zhou L, Li F, Xi X, Wang S, He Y, Gao X, Wei W, Ma G, Li Y. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng 2021; 5:414-428. [PMID: 33046865 DOI: 10.1038/s41551-020-00624-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant. The sustained release of a tumour-associated peptide and of anti-PD-1 may represent a generalizable strategy for boosting antitumour immune responses to leukaemia.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, P R China.
| |
Collapse
|
26
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
27
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
28
|
Rohatgi A, Kirkwood JM. Beyond PD-1: The Next Frontier for Immunotherapy in Melanoma. Front Oncol 2021; 11:640314. [PMID: 33732652 PMCID: PMC7958874 DOI: 10.3389/fonc.2021.640314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of first and second-generation immune checkpoint blockade (ICI) has resulted in improved survival of patients with metastatic melanoma over the past decade. However, the majority of patients ultimately progress despite these treatments, which has served as an impetus to consider a range of subsequent therapies. Many of the next generation of immunotherapeutic agents focus on modifying the immune system to overcome resistance to checkpoint blockade. ICI resistance can be understood as primary, or acquired-where the latter is the most common scenario. While there are several postulated mechanisms by which resistance, particularly acquired resistance, occurs, the predominant escape mechanisms include T cell exhaustion, upregulation of alternative inhibitory checkpoint receptors, and alteration of the tumor microenvironment (TME) into a more suppressive, anti-inflammatory state. Therapeutic agents in development are designed to work by combating one or more of these resistance mechanisms. These strategies face the added challenge of minimizing immune-related toxicities, while improving antitumor efficacy. This review focuses upon the following categories of novel therapeutics: 1) alternative inhibitory receptor pathways; 2) damage- or pathogen-associated molecular patterns (DAMPs/PAMPs); and 3) immune cell signaling mediators. We present the current state of these therapies, including preclinical and clinical data available for these targets under development.
Collapse
Affiliation(s)
| | - John M. Kirkwood
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Jäger N. Bioinformatics workflows for clinical applications in precision oncology. Semin Cancer Biol 2021; 84:103-112. [PMID: 33476720 DOI: 10.1016/j.semcancer.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
High-throughput molecular profiling of tumors is a fundamental aspect of precision oncology, enabling the identification of genomic alterations that can be targeted therapeutically. In this context, a patient is matched to a specific drug or therapy based on the tumor's underlying genetic driver events rather than the histologic classification. This approach requires extensive bioinformatics methodology and workflows, including raw sequencing data processing and quality control, variant calling and annotation, integration of different molecular data types, visualization and finally reporting the data to physicians, cancer researchers and pharmacologists in a format that is readily interpretable for clinical decision making. This review comprises a broad overview of these bioinformatics aspects and discusses the multiple analytical, technical and interpretational challenges that remain to efficiently translate molecular findings into personalized treatment recommendations.
Collapse
Affiliation(s)
- Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
Qi Y, Chen L, Liu Q, Kong X, Fang Y, Wang J. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy. Front Immunol 2021; 11:563258. [PMID: 33488573 PMCID: PMC7820761 DOI: 10.3389/fimmu.2020.563258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Although various immunotherapies have exerted promising effects on cancer treatment, many patients with cancer continue to exhibit poor responses. Because of its negative regulatory effects on T cells and its biological functions related to immune and inflammatory responses, there has been considerable emphasis on a protein-coding gene named lymphocyte-activation gene 3 (LAG3). Recently, evidence demonstrated marked synergy in its targeted therapy with programmed death-1 and programmed death-1 ligand-1 (PD-1/PD-L1) blockade, and a variety of LAG3 targeted agents are in clinical trials, indicating the important role of LAG3 in immunotherapy. This mini-review discusses preclinical and clinical studies investigating PD-1 pathway blockade in combination with LAG3 inhibition as a potentially more effective immunotherapy strategy for further development in the clinic. This strategy might provide a new approach for the design of more effective and precise cancer immune checkpoint therapies.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Abstract
Cancer immunotherapy, which aims to control the immune system to eradicate cancer cells and prevent their spread, needs to be personalized because anticancer immune responses can be inhibited in several ways that vary from patient to patient. Cancer immunotherapy includes pharmaceuticals such as immune checkpoint inhibitors and monoclonal antibodies (MAbs) as well as cell therapy, immunogene therapy, and vaccines. Combination of programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) drugs with other immunotherapy drugs, for example, antibody-drug conjugates, as well as combination of PD-1/PD-L1 drugs with other therapies, for example, chemotherapy and radiation therapy, are being explored. Biomarkers are important for predicting the response to immunotherapy. Molecular diagnostics and sequencing are important technologies for guiding treatment in immuno-oncology. Genomic profiling of tumor mutational burden may enhance the predictive utility of PD-L1 expression and facilitate personalized combination immunotherapy. Optimization of personalized immuno-oncology requires integration of several technologies and selection of those best suited for an individual patient. Advances in immuno-oncology are also attributed to technologies for targeted delivery of anticancer therapeutics such as antigen-capturing nanoparticles for precision targeting and selective delivery. A breakthrough in cell therapy of cancer is a chimeric antigen receptors-T cell, which combines the antigen-binding site of a MAb with the signal activating machinery of a T cell, freeing antigen recognition from major histocompatibility complex restriction. Gene-editing tools such as clustered regularly interspaced short palindromic repeats have a promising application for removing alloreactivity and decreasing immunogenicity of third-party T cells. In conclusion, personalized immuno-oncology is one of the most promising approaches to management of cancer.
Collapse
|
32
|
Armitage JD, Newnes HV, McDonnell A, Bosco A, Waithman J. Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour Immunosuppression. Cells 2021; 10:E56. [PMID: 33401460 PMCID: PMC7823446 DOI: 10.3390/cells10010056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionised the treatment of cancers by harnessing the power of the immune system to eradicate malignant tissue. However, it is well recognised that some cancers are highly resistant to these therapies, which is in part attributed to the immunosuppressive landscape of the tumour microenvironment (TME). The contexture of the TME is highly heterogeneous and contains a complex architecture of immune, stromal, vascular and tumour cells in addition to acellular components such as the extracellular matrix. While understanding the dynamics of the TME has been instrumental in predicting durable responses to immunotherapy and developing new treatment strategies, recent evidence challenges the fundamental paradigms of how tumours can effectively subvert immunosurveillance. Here, we discuss the various immunosuppressive features of the TME and how fine-tuning these mechanisms, rather than ablating them completely, may result in a more comprehensive and balanced anti-tumour response.
Collapse
Affiliation(s)
- Jesse D. Armitage
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Hannah V. Newnes
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Alison McDonnell
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
- National Centre for Asbestos Related Diseases, QEII Medical Centre, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia; (J.D.A.); (H.V.N.); (A.M.)
| |
Collapse
|
33
|
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm. Int J Mol Sci 2020; 22:ijms22010075. [PMID: 33374804 PMCID: PMC7795594 DOI: 10.3390/ijms22010075] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.
Collapse
Affiliation(s)
- Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Marleen Keyaerts
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
34
|
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and Molecular Mechanisms of CD8 + T Cell Differentiation, Dysfunction and Exhaustion. Int J Mol Sci 2020; 21:ijms21197357. [PMID: 33027962 PMCID: PMC7582856 DOI: 10.3390/ijms21197357] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically “exhausted” in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Matthias Mulazzani
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
35
|
Jafari S, Molavi O, Kahroba H, Hejazi MS, Maleki-Dizaji N, Barghi S, Kiaie SH, Jadidi-Niaragh F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci 2020; 77:3693-3710. [PMID: 32006051 PMCID: PMC11104895 DOI: 10.1007/s00018-020-03459-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Immunotherapy is considered as an effective method for cancer treatment owing to the induction of specific and long-lasting anti-cancer effects. Immunotherapeutic strategies have shown significant success in human malignancies, particularly in prostate cancer (PCa), a major global health issue regarding its high metastatic rates. In fact, the first cancer vaccine approved by FDA was Provenge, which has been successfully used for treatment of PCa. Despite the remarkable success of cancer immunotherapy in PCa, many of the developed immunotherapy methods show poor therapeutic outcomes. Immunosuppression in tumor microenvironment (TME) induced by non-functional T cells (CD4+ and CD8+), tolerogenic dendritic cells (DCs), and regulatory T cells, has been reported to be the main obstacle to the effectiveness of anti-tumor immune responses induced by an immunotherapy method. The present review particularly focuses on the latest findings of the immune checkpoints (ICPs), including CTLA-4, PD-1, PD-L1, LAG-3, OX40, B7-H3, 4-1BB, VISTA, TIM-3, and ICOS; these checkpoints are able to have immune modulatory effects on the TME of PCa. This paper further discusses different approaches in ICPs targeting therapy and summarizes the latest advances in the clinical application of ICP-targeted therapy as monotherapy or in combination with other cancer therapy modalities in PCa.
Collapse
Affiliation(s)
- Sevda Jafari
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Biotechnology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran.
| | - Houman Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saied Hejazi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Nasrin Maleki-Dizaji
- Department of Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Barghi
- Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Hossein Kiaie
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer 2020; 8:jitc-2020-001014. [PMID: 32929051 PMCID: PMC7488795 DOI: 10.1136/jitc-2020-001014] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiura
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Il-Mi Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Hu S, Liu X, Li T, Li Z, Hu F. LAG3 (CD223) and autoimmunity: Emerging evidence. J Autoimmun 2020; 112:102504. [PMID: 32576412 DOI: 10.1016/j.jaut.2020.102504] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Immune checkpoint molecules play pivotal roles in maintaining the immune homeostasis. Targeting these molecules, such as the classical Cytotoxic T-Lymphocyte Antigen 4 (CTLA4) and Programmed Cell Death Protein 1 (PD1), achieves great success in treating cancers. However, not all the patients respond well. This urges the immunologists to identify novel immune checkpoint molecules. Lymphocyte activation gene-3 (LAG3; CD223) is a newly identified inhibitory receptor. It is expressed on a variety of immune cells, including CD4+ T cells, CD8+ T cells, Tregs, B cells, and NK cells. Its unique intracellular domains, signaling patterns as well as the striking synergy observed in its targeted therapy with anti-PD1 indicate the important role of LAG3 in maintaining immune tolerance. Currently, a variety of agents targeting LAG3 are in clinical trials, revealing great perspectives in the future immunotherapy. In this review, we briefly summarize the studies on LAG3, including its structure, isoforms, ligands, signaling, function, roles in multiple diseases, as well as the latest targeted therapeutic advances, with particular concern on the potential association of LAG3 with autoimmune diseases.
Collapse
Affiliation(s)
- Suiyuan Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xu Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Tianding Li
- Software Center, Bank of China, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
39
|
Cebada J, Flores A, Bandala C, Lizaliturri-Flores I, Villa-Ruano N, Perez-Santos M. Bispecific anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic solid tumors: a patent evaluation of US2018326054. Expert Opin Ther Pat 2020; 30:487-494. [PMID: 32397849 DOI: 10.1080/13543776.2020.1767071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Due to the primary role of PD-1 and LAG-3 in regulating the immune response in tumors, there is a need to develop therapies focused on the inhibition of PD-1 and LAG-3 in order to improve the immune response in patients with cancer. The authors of US2018326054 patent propose a method to eradicate cancer by using bispecific anti-PD-1/LAG-3 antibodies. AREAS COVERED The US2018326054 patent describes anti-PD-1/LAG3 antibodies, pharmaceutical composition that contains it, and their application for cancer treatment, particularly pancreatic carcinoma. Proof concept and preclinical results show anti-PD-1/LAG-3 bispecific antibodies bind and are internalized by CD4 + T cells thereby increasing their effector functions (release of Granzyme B and INF-γ) in the presence of tumor cells, and completely suppress tumors in a murine model. EXPERT OPINION Anti-PD-1/LAG-3 bispecific antibodies of the US2018326054 patent are new in a general concept, but treatment data is only shown for pancreatic carcinoma. The results to be obtained in future clinical trials of safety and efficacy could conclude whether these bispecific anti-PD-1/LAG-3 antibodies will be useful in a cancer treatment scheme.
Collapse
Affiliation(s)
- Jorge Cebada
- Facultad De Medicina, Benemérita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto De Fisiología, Benemerita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Cindy Bandala
- Departamento De Neurociencias, Instituto Nacional De Rehabilitación , Ciudad De México, Mexico.,Escuela Superior De Medicina, Instituto Politécnico Naciona , Ciudad De México, Mexico
| | - Ian Lizaliturri-Flores
- Lab De Modelado Molecular Y Diseño De Fármacos. Escuela Superior De Medicina, Instituto Politécnico Nacional , Ciudad De México, Mexico
| | - Nemesio Villa-Ruano
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| | - Martin Perez-Santos
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| |
Collapse
|
40
|
Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol 2020; 42:101305. [PMID: 31604537 DOI: 10.1016/j.smim.2019.101305] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/17/2019] [Indexed: 11/26/2022]
Abstract
Immune checkpoint therapy has revolutionized cancer treatment by blocking inhibitory pathways in T cells that limits the an effective anti-tumor immune response. Therapeutics targeting CTLA-4 and PD1/PDL1 have progressed to first line therapy in multiple tumor types with some patients exhibiting tumor regression or remission. However, the majority of patients do not benefit from checkpoint therapy emphasizing the need for alternative therapeutic options. Lymphocyte Activation Gene 3 (LAG3) or CD223 is expressed on multiple cell types including CD4+ and CD8+ T cells, and Tregs, and is required for optimal T cell regulation and homeostasis. Persistent antigen-stimulation in cancer or chronic infection leads to chronic LAG3 expression, promoting T cell exhaustion. Targeting LAG3 along with PD1 facilitates T cell reinvigoration. A substantial amount of pre-clinical data and mechanistic analysis has led to LAG3 being the third checkpoint to be targeted in the clinic with nearly a dozen therapeutics under investigation. In this review, we will discuss the structure, function and role of LAG3 in murine and human models of disease, including autoimmune and inflammatory diseases, chronic viral and parasitic infections, and cancer, emphasizing new advances in the development of LAG3-targeting immunotherapies for cancer that are currently in clinical trials.
Collapse
Affiliation(s)
- Elisa Ruffo
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| | - Richard C Wu
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA; Division of Hematology-Oncology, UPMC Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA; Hematology/Oncology Fellowship Program, University of Pittsburgh Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA 15232, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR. Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Transl Oncol 2020; 13:100738. [PMID: 32114384 PMCID: PMC7047187 DOI: 10.1016/j.tranon.2019.12.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.
Collapse
Affiliation(s)
- Luisa Barrueto
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Francheska Caminero
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Lindsay Cash
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Courtney Makris
- Lake Erie College of Osteopathic Medicine, College of Osteopathic Medicine, Bradenton, FL
| | - Purushottam Lamichhane
- Lake Erie College of Osteopathic Medicine, Florida School of Dental Medicine, Bradenton, FL.
| | - Rahul R Deshmukh
- Lake Erie College of Osteopathic Medicine, School of Pharmacy, Bradenton, FL.
| |
Collapse
|
42
|
Lemke-Miltner CD, Blackwell SE, Yin C, Krug AE, Morris AJ, Krieg AM, Weiner GJ. Antibody Opsonization of a TLR9 Agonist-Containing Virus-like Particle Enhances In Situ Immunization. THE JOURNAL OF IMMUNOLOGY 2020; 204:1386-1394. [PMID: 31953355 DOI: 10.4049/jimmunol.1900742] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
The immunologic and therapeutic effects of intratumoral (IT) delivery of a novel virus-like particle as a lymphoma immunotherapy were evaluated in preclinical studies with human cells and a murine model. CMP-001 is a virus-like particle composed of the Qβ bacteriophage capsid protein encapsulating an immunostimulatory CpG-A oligodeoxynucleotide TLR9 agonist. In vitro, CMP-001 induced cytokine production, including IFN-α from plasmacytoid dendritic cells, but only in the presence of anti-Qβ Ab. In vivo, IT CMP-001 treatment of murine A20 lymphoma enhanced survival and reduced growth of both injected and contralateral noninjected tumors in a manner dependent on both the ability of mice to generate anti-Qβ Ab and the presence of T cells. The combination of IT CMP-001 with systemic anti-PD-1 enhanced antitumor responses in both injected and noninjected tumors. IT CMP-001 alone or combined with anti-PD-1 augmented T cell infiltration in tumor-draining lymph nodes. We conclude IT CMP-001 induces a robust antitumor T cell response in an anti-Qβ Ab-dependent manner and results in systemic antitumor T cell effects that are enhanced by anti-PD-1 in a mouse model of B cell lymphoma. Early-phase clinical evaluation of CMP-001 and anti-PD-1 combination therapy in lymphoma will begin shortly, based in part on these results.
Collapse
Affiliation(s)
| | - Sue E Blackwell
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | - Anna E Krug
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242
| | | | | | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242; .,Department of Internal Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
43
|
Tsur N, Kogan Y, Rehm M, Agur Z. Response of patients with melanoma to immune checkpoint blockade – insights gleaned from analysis of a new mathematical mechanistic model. J Theor Biol 2020; 485:110033. [DOI: 10.1016/j.jtbi.2019.110033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/30/2022]
|
44
|
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 2019; 18:155. [PMID: 31690319 PMCID: PMC6833286 DOI: 10.1186/s12943-019-1091-2] [Citation(s) in RCA: 735] [Impact Index Per Article: 147.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/18/2019] [Indexed: 02/10/2023] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs), mainly including anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies (mAbs), has shaped therapeutic landscape of some type of cancers. Despite some ICIs have manifested compelling clinical effectiveness in certain tumor types, the majority of patients still showed de novo or adaptive resistance. At present, the overall efficiency of immune checkpoint therapy remains unsatisfactory. Exploring additional immune checkpoint molecules is a hot research topic. Recent studies have identified several new immune checkpoint targets, like lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and so on. The investigations about these molecules have generated promising results in preclinical studies and/or clinical trials. In this review, we discussed the structure and expression of these newly-characterized immune checkpoints molecules, presented the current progress and understanding of them. Moreover, we summarized the clinical data pertinent to these recent immune checkpoint molecules as well as their application prospects.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
45
|
Smolle MA, Prinz F, Calin GA, Pichler M. Current concepts of non-coding RNA regulation of immune checkpoints in cancer. Mol Aspects Med 2019; 70:117-126. [PMID: 31582259 DOI: 10.1016/j.mam.2019.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
The discovery of immune checkpoint molecules as important regulators of immune responses in healthy individuals as well as immune escape of malignant tumours has led to profound changes in understanding, research and treatment of human cancer. Especially the introduction of immune checkpoint inhibitors in cancer therapy has set anti-cancer therapy on a novel level. With increasing experience of approved CTLA-4 and PD1/PD-L1 inhibitors and the evolution of novel immune checkpoint molecules from pre-clinical models to clinical trials, mechanisms of the regulation of these immune system guiding factors, are of paramount importance to overcome mechanisms of resistance. Non-protein coding RNAs (i.e. non-coding RNAs) such as short microRNAs and long non-coding RNAs are involved in regulating of various cellular processes and have attracted attention of cancer researchers and immunologists over the last years. In the present review, interactions between non coding RNAs and immune checkpoint molecules, within the framework of human cancer, will be discussed and current and developing concepts between the immunological and non-coding RNA world, will be elucidated.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department for Orthopaedics & Trauma, Medical University of Graz, Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| | - Felix Prinz
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 1950, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| | - Martin Pichler
- Research Unit for Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Unit 1950, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Burova E, Hermann A, Dai J, Ullman E, Halasz G, Potocky T, Hong S, Liu M, Allbritton O, Woodruff A, Pei J, Rafique A, Poueymirou W, Martin J, MacDonald D, Olson WC, Murphy A, Ioffe E, Thurston G, Mohrs M. Preclinical Development of the Anti-LAG-3 Antibody REGN3767: Characterization and Activity in Combination with the Anti-PD-1 Antibody Cemiplimab in Human PD-1xLAG-3-Knockin Mice. Mol Cancer Ther 2019; 18:2051-2062. [PMID: 31395688 DOI: 10.1158/1535-7163.mct-18-1376] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022]
Abstract
In the tumor microenvironment, multiple inhibitory checkpoint receptors can suppress T-cell function, thereby enabling tumor immune evasion. Blockade of one of these checkpoint receptors, PD-1, with therapeutic antibodies has produced positive clinical responses in various cancers; however, the efficacy of this approach can be further improved. Simultaneously targeting multiple inhibitory checkpoint receptors has emerged as a promising therapeutic strategy. Here, we report the development and characterization of REGN3767, a fully human IgG4 antibody targeting LAG-3, another inhibitory receptor on T cells. REGN3767 binds human and monkey LAG-3 with high affinity and specificity and blocks the interaction of LAG-3 with its ligand, MHC class II. In an engineered T-cell/antigen-presenting cell bioassay, REGN3767 alone, or in combination with cemiplimab (REGN2810, human anti-PD-1 antibody), blocked inhibitory signaling to T cells mediated by hLAG-3/MHCII in the presence of PD-1/PD-L1. To test the in vivo activity of REGN3767 alone or in combination with cemiplimab, we generated human PD-1xLAG-3 knockin mice, in which the extracellular domains of mouse Pdcd1 and Lag3 were replaced with their human counterparts. In these humanized mice, treatment with cemiplimab and REGN3767 showed increased efficacy in a mouse tumor model and enhanced the secretion of proinflammatory cytokines by tumor-specific T cells. The favorable pharmacokinetics and toxicology of REGN3767 in nonhuman primates, together with enhancement of antitumor efficacy of anti-PD-1 antibody in preclinical tumor models, support its clinical development.
Collapse
Affiliation(s)
- Elena Burova
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jie Dai
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Terra Potocky
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Seongwon Hong
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Matt Liu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Amy Woodruff
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Jerry Pei
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Joel Martin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | - Andrew Murphy
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ella Ioffe
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Markus Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York.
| |
Collapse
|
47
|
Singer J, Irmisch A, Ruscheweyh HJ, Singer F, Toussaint NC, Levesque MP, Stekhoven DJ, Beerenwinkel N. Bioinformatics for precision oncology. Brief Bioinform 2019; 20:778-788. [PMID: 29272324 PMCID: PMC6585151 DOI: 10.1093/bib/bbx143] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular profiling of tumor biopsies plays an increasingly important role not only in cancer research, but also in the clinical management of cancer patients. Multi-omics approaches hold the promise of improving diagnostics, prognostics and personalized treatment. To deliver on this promise of precision oncology, appropriate bioinformatics methods for managing, integrating and analyzing large and complex data are necessary. Here, we discuss the specific requirements of bioinformatics methods and software that arise in the setting of clinical oncology, owing to a stricter regulatory environment and the need for rapid, highly reproducible and robust procedures. We describe the workflow of a molecular tumor board and the specific bioinformatics support that it requires, from the primary analysis of raw molecular profiling data to the automatic generation of a clinical report and its delivery to decision-making clinical oncologists. Such workflows have to various degrees been implemented in many clinical trials, as well as in molecular tumor boards at specialized cancer centers and university hospitals worldwide. We review these and more recent efforts to include other high-dimensional multi-omics patient profiles into the tumor board, as well as the state of clinical decision support software to translate molecular findings into treatment recommendations.
Collapse
Affiliation(s)
- Jochen Singer
- Department of Biosystems Science and Engineering of ETH Zurich in Basel, Switzerland
| | - Anja Irmisch
- Department of Dermatology at the University of Zurich Hospital in Zurich, Switzerland
| | | | | | | | | | | | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering of ETH Zurich in Basel, Switzerland
| |
Collapse
|
48
|
Perez-Santos M, Anaya-Ruiz M, Cebada J, Herrera-Camacho I. Treatment of cancer with a combination of LAG-3Ig and anti-PD-1/anti-PD-L1 antibodies: a patent evaluation of US2018271940 A1. Expert Opin Ther Pat 2019; 29:311-314. [DOI: 10.1080/13543776.2019.1608947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Martin Perez-Santos
- Oficina de Comercialización de Tecnología, Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Jorge Cebada
- Facultad de Medicina, Benémerita Universidad Autónoma de Puebla, Puebla, México
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
49
|
Xiang Z, Yu Y. Screening responsive or resistant biomarkers of immune checkpoint inhibitors based on online databases. Front Med 2019; 13:24-31. [PMID: 30659409 DOI: 10.1007/s11684-019-0679-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors are a promising strategy in the treatment of cancer, especially advanced types. However, not all patients are responsive to immune checkpoint inhibitors. The response rate depends on the immune microenvironment, tumor mutational burden (TMB), expression level of immune checkpoint proteins, and molecular subtypes of cancers. Along with the Cancer Genome Project, various open access databases, including The Cancer Genome Atlas and Gene Expression Omnibus, provide large volumes of data, which allow researchers to explore responsive or resistant biomarkers of immune checkpoint inhibitors. In this review, we introduced some methodologies on database selection, biomarker screening, current progress of immune checkpoint blockade in solid tumor treatment, possible mechanisms of drug resistance, strategies of overcoming resistance, and indications for immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
50
|
Luther C, Swami U, Zhang J, Milhem M, Zakharia Y. Advanced stage melanoma therapies: Detailing the present and exploring the future. Crit Rev Oncol Hematol 2018; 133:99-111. [PMID: 30661664 DOI: 10.1016/j.critrevonc.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic melanoma therapies have proliferated over the last ten years. Prior to this, decades passed with only very few drugs available to offer our patients, and even then, those few drugs had minimal survival benefits. Many treatment options emerged over the last ten years with diverse mechanisms of action. Further, combination regimens have demonstrated superiority over monotherapy, especially for targeted agents. Each therapeutic combination possesses different advantages and side effect profiles. In this review, we outline the United States Food and Drug Administration-approved melanoma treatment agents and therapies currently in clinical development, focusing on combination approaches.
Collapse
Affiliation(s)
- Chelsea Luther
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, United States
| | - Umang Swami
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Jun Zhang
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Mohammed Milhem
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
| |
Collapse
|