1
|
Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. 2D and 3D-QSAR Modeling of 1H‑Pyrazole Derivatives as EGFR Inhibitors: Molecular Docking, and Pharmacokinetic Profiling. CHEMISTRY AFRICA 2023. [DOI: 10.1007/s42250-023-00592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
2
|
Wang Y, Zhai H, Wang J, Mao T, Ji C, Bao F, Gu Z, Fang W. Study protocol of an open-label prospective phase II umb rella study of precise ne oadjuvant therapy for patients with stage II-IIIB resectabl e non-small cell lung cancer ( PURPOSE). Front Oncol 2022; 12:1052774. [PMID: 36591460 PMCID: PMC9798087 DOI: 10.3389/fonc.2022.1052774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Background The outcomes of locally advanced non-small cell lung cancer (LA-NSCLC) are unfavorable mainly due to a high risk of cancer recurrence. Only around 5% of patients can benefit from perioperative chemotherapy which is the current standard treatment. Recently, promising results with neoadjuvant targeted and immune-therapy therapy have been seen. However, most clinical trials are looking for patients eligible for certain drugs, instead of seeking suitable treatments for certain patients. Therefore, it is necessary to look for more efficient perioperative therapies to increase resectability, reduce recurrence and improve prognosis. Methods/Design The study is an open-label, prospective, phase II, umbrella trial, enrolling patients diagnosed with treatment-naïve potentially resectable Stage II-IIIB NSCLC. Next-generation sequencing (NGS) using a 68-gene panel is performed for biopsies of tumor tissues from eligible patients. Enrolled patients are then stratified into six independent cohorts based on the status of gene mutations and PD-L1 status in tumor tissues, that is, ①EGFR 19del group, ②EGFR 21 L858R group, ③EGFR rare mutation group, ④Other driver mutation group, ⑤Drive mutation-negative group with PD-L1≥1%, ⑥Drive mutation-negative group with PD-L1<1%. A Simon's two-stage design is performed in each cohort independently and patients receive corresponding standard therapies accordingly. We aim to enroll 26 patients in each cohort and totally 156 patients will be enrolled. The primary endpoint is objective response rate (ORR). Secondary endpoints include oncological prognosis and perioperative outcomes. Exploratory endpoint is to investigate patient-specific minimal residual disease (MRD) in predicting treatment efficacy and oncological prognosis. Discussions This is the first umbrella trial focusing on the safety and efficacy of precise neoadjuvant therapy for patients diagnosed with potentially resectable LA-NSCLC based on NGS results. The results of this trial would help improve overall treatment results in LA-NSCLC patients. Trial registration Chinese Clinical Trial Registry. Trial registration number: ChiCTR2100053021. Advantages and limitations of this study There is no neoadjuvant umbrella trial focusing on LA-NSCLCs. This is the first neoadjuvant umbrella trial, using a precise individualized approach and seeking suitable drugs for LA-NSCLC patients, with the aim to improve overall treatment outcomes. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2100053021.
Collapse
|
3
|
Hagras M, Saleh MA, Ezz Eldin RR, Abuelkhir AA, Khidr EG, El-Husseiny AA, El-Mahdy HA, Elkaeed EB, Eissa IH. 1,3,4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:380-396. [PMID: 34923885 PMCID: PMC8725909 DOI: 10.1080/14756366.2021.2015342] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
In the current work, some 1,3,4-oxadiazole-naphthalene hybrids were designed and synthesised as VEGFR-2 inhibitors. The synthesised compounds were evaluated in vitro for their antiproliferative activity against two human cancer cell lines namely, HepG-2 and MCF-7. Compounds that exhibited promising cytotoxicity (5, 8, 15, 16, 17, and 18) were further evaluated for their VEGFR-2 inhibitory activities. Compound 5 showed good antiproliferative activity against both cell lines and inhibitory effect on VEGFR-2. Besides, it induced apoptosis by 22.86% compared to 0.51% in the control (HepG2) cells. This apoptotic effect was supported by a 5.61-fold increase in the level of caspase-3 compared to the control cells. Moreover, it arrested the HepG2 cell growth mostly at the Pre-G1 phase. Several in silico studies were performed including docking, ADMET, and toxicity studies to predict binding mode against VEGFR-2 and to anticipate pharmacokinetic, drug-likeness, and toxicity of the synthesised compounds.
Collapse
Affiliation(s)
- Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rogy R. Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | | | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
5
|
Prediction of Prognosis in Patients with Hepatocellular Carcinoma Based on Molecular Subtypes of Immune Genes. Gastroenterol Res Pract 2022; 2022:2746156. [PMID: 35837663 PMCID: PMC9274231 DOI: 10.1155/2022/2746156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
For those patients with hepatocellular carcinoma (HCC), it is really a heavy burden. Herein, the immune genes of HCC were analyzed in groups to determine prognostic biomarkers related to immune genes in HCC. The mRNA data, clinical data in TCGA-LIHC dataset, and immune gene in the ImmPort database were collected for the combining usage with
-means concordance clustering to cluster HCC patients according to the immune gene matrix. Based on ssGSEA analysis result, HCC patients were sorted into high- and low-immune subtypes, and survival curve presented that patients in high-immune subtypes had a better prognosis. Subsequently, differential expression analysis was performed to obtain immune-related differentially expressed genes (IRGs). Cox and lasso analyses were performed for obtaining five optimal immune genes related to prognosis, and a risk assessment model was then established. Patient samples in the training and validation sets were, respectively, divided into high- and low-risk groups.
-
survival curves presented a better prognosis of patients in the low-risk group than in the high-risk group. The ROC curve indicated that this model was finely used for the prediction of prognosis. In addition, immune infiltration assessment revealed that NR0B1 and FGF9 had potential to impact the tumor immune microenvironment. Finally, using qRT-PCR and transwell assays, it was demonstrated that the macrophage chemotaxis was enhanced when NR0B1 and FGF9 were highly expressed in HCC cells. In general, a 5-gene prognostic risk assessment model was constructed based on immune genes and bioinformatics analysis methods, which provides some reference for the prognosis of HCC as well as immunotherapy.
Collapse
|
6
|
Malyarenko TV, Malyarenko OS, Kicha AA, Kalinovsky AI, Dmitrenok PS, Ivanchina NV. In Vitro Anticancer and Cancer-Preventive Activity of New Triterpene Glycosides from the Far Eastern Starfish Solaster pacificus. Mar Drugs 2022; 20:216. [PMID: 35323516 PMCID: PMC8951750 DOI: 10.3390/md20030216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sea stars or starfish (class Asteroidea) and holothurians or sea cucumbers (class Holothuroidea), belonging to the phylum Echinodermata (echinoderms), are characterized by different sets of glycosidic metabolites: the steroid type in starfish and the triterpene type in holothurians. However, herein we report the isolation of eight new triterpene glycosides, pacificusosides D−K (1−3, 5−9) along with the known cucumarioside D (4), from the alcoholic extract of the Far Eastern starfish Solaster pacificus. The isolated new compounds are closely related to the metabolites of sea cucumbers, and their structures of 1−3 and 5−9 were determined by extensive NMR and ESIMS techniques. Compounds 2, 5, and 8 have a new type of tetrasaccharide chain with a terminal non-methylated monosaccharide unit. Compounds 3, 6, and 9 contain another new type of tetrasaccharide chain, having 6-O-SO3-Glc as one of the sugar units. The cytotoxic activity of 1−9 against non-cancerous mouse epidermal cells JB6 Cl41 and human melanoma cell lines SK-MEL-2, SK-MEL-28, and RPMI-7951 was determined by MTS assay. Compounds 1, 3, 4, 6, and 9 showed potent cytotoxicity against these cell lines, but the cancer selectivity (SI > 9) was observed only against the SK-MEL-2 cell line. Compounds 1, 3, 4, 6, and 9 at the non-toxic concentration of 0.1 μM significantly inhibited neoplastic cell transformation of JB6 Cl41 cells induced by chemical carcinogens (EGF, TPA) or ionizing radiation (X-rays and UVB). Moreover, compounds 1 and 4 at the non-toxic concentration of 0.1 µM possessed the highest inhibiting activity on colony formation among the investigated compounds and decreased the colonies number of SK-MEL-2 cells by 64% and 70%, respectively. Thus, triterpene glycosides 1 and 4 can be considered as prospective cancer-preventive and anticancer-compound leaders.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
- Department of Bioorganic Chemistry and Biotechnology, School of Natural Sciences, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-Let Vladivostoku 159, 690022 Vladivostok, Russia; (O.S.M.); (A.A.K.); (A.I.K.); (P.S.D.)
| |
Collapse
|
7
|
Alanazi MM, Alaa E, Alsaif NA, Obaidullah AJ, Alkahtani HM, Al-Mehizia AA, Alsubaie SM, Taghour MS, Eissa IH. Discovery of new 3-methylquinoxalines as potential anti-cancer agents and apoptosis inducers targeting VEGFR-2: design, synthesis, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:1732-1750. [PMID: 34325596 PMCID: PMC8330740 DOI: 10.1080/14756366.2021.1945591] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
There is an urgent need to design new anticancer agents that can prevent cancer cell proliferation even with minimal side effects. Accordingly, two new series of 3-methylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol derivatives were designed to act as VEGFR-2 inhibitors. The designed derivatives were synthesised and evaluated in vitro as cytotoxic agents against two human cancer cell lines namely, HepG-2 and MCF-7. Also, the synthesised derivatives were assessed for their VEGFR-2inhibitory effect. The most promising member 11e were further investigated to reach a valuable insight about its apoptotic effect through cell cycle and apoptosis analyses. Moreover, deep investigations were carried out for compound 11e using western-plot analyses to detect its effect against some apoptotic and apoptotic parameters including caspase-9, caspase-3, BAX, and Bcl-2. Many in silico investigations including docking, ADMET, toxicity studies were performed to predict binding affinity, pharmacokinetic, drug likeness, and toxicity of the synthesised compounds. The results revealed that compounds 11e, 11g, 12e, 12g, and 12k exhibited promising cytotoxic activities (IC50 range is 2.1 - 9.8 µM), comparing to sorafenib (IC50 = 3.4 and 2.2 µM against MCF-7 and HepG2, respectively). Moreover, 11b, 11f, 11g, 12e, 12f, 12g, and 12k showed the highest VEGFR-2 inhibitory activities (IC50 range is 2.9 - 5.4 µM), comparing to sorafenib (IC50 = 3.07 nM). Additionally, compound 11e had good potential to arrest the HepG2 cell growth at G2/M phase and to induce apoptosis by 49.14% compared to the control cells (9.71%). As well, such compound showed a significant increase in the level of caspase-3 (2.34-fold), caspase-9 (2.34-fold), and BAX (3.14-fold), and a significant decrease in Bcl-2 level (3.13-fold). For in silico studies, the synthesised compounds showed binding mode similar to that of the reference compound (sorafenib).
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Elwan Alaa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan M. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Nanayakkara AK, Boucher HW, Fowler VG, Jezek A, Outterson K, Greenberg DE. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA Cancer J Clin 2021; 71:488-504. [PMID: 34546590 DOI: 10.3322/caac.21697] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/23/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infection is the second leading cause of death in patients with cancer. Loss of efficacy in antibiotics due to antibiotic resistance in bacteria is an urgent threat against the continuing success of cancer therapy. In this review, the authors focus on recent updates on the impact of antibiotic resistance in the cancer setting, particularly on the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). This review highlights the health and financial impact of antibiotic resistance in patients with cancer. Furthermore, the authors recommend measures to control the emergence of antibiotic resistance, highlighting the risk factors associated with cancer care. A lack of data in the etiology of infections, specifically in oncology patients in United States, is identified as a concern, and the authors advocate for a centralized and specialized surveillance system for patients with cancer to predict and prevent the emergence of antibiotic resistance. Finding better ways to predict, prevent, and treat antibiotic-resistant infections will have a major positive impact on the care of those with cancer.
Collapse
Affiliation(s)
- Amila K Nanayakkara
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern, Dallas, Texas
| | - Helen W Boucher
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts
| | - Vance G Fowler
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Amanda Jezek
- Infectious Diseases Society of America, Arlington, Virginia
| | - Kevin Outterson
- CARB-X, Boston, Massachusetts
- Boston University School of Law, Boston, Massachusetts
| | - David E Greenberg
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, University of Texas Southwestern, Dallas, Texas
- Department of Microbiology, University of Texas Southwestern, Dallas, Texas
| |
Collapse
|
9
|
Malyarenko OS, Malyarenko TV, Usoltseva RV, Surits VV, Kicha AA, Ivanchina NV, Ermakova SP. Combined Anticancer Effect of Sulfated Laminaran from the Brown Alga Alaria angusta and Polyhydroxysteroid Glycosides from the Starfish Protoreaster lincki on 3D Colorectal Carcinoma HCT 116 Cell Line. Mar Drugs 2021; 19:540. [PMID: 34677439 PMCID: PMC8538801 DOI: 10.3390/md19100540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer is one of the most frequent types of malignancy in the world. The search for new approaches of increasing the efficacy of cancer therapy is relevant. This work was aimed to study individual, combined anticancer effects, and molecular mechanism of action of sulfated laminaran AaLs of the brown alga Alaria angusta and protolinckiosides A (PL1), B (PL2), and linckoside L1 (L1) of the starfish Protoreaster lincki using a 3D cell culture model. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), soft agar, 3D spheroids invasion, and Western blotting assays were performed to determine the effect and mechanism of the action of investigated compounds or their combinations on proliferation, colony formation, and the invasion of 3D HCT 116 spheroids. AaLs, PL1, PL2, and L1 individually inhibited viability, colony growth, and the invasion of 3D HCT 116 spheroids in a variable degree with greater activity of linckoside L1. AaLs in combination with L1 exerted synergism of a combined anticancer effect through the inactivation of protein kinase B (AKT) kinase and, consequently, the induction of apoptosis via the regulation of proapoptotic/antiapoptotic proteins balance. The obtained data about the efficacy of the combined anticancer effect of a laminaran derivative of brown algae and polyhydroxysteroid glycosides of starfish open up prospects for the development of new therapeutic approaches for colorectal cancer treatment.
Collapse
Affiliation(s)
- Olesya S. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 100-let Vladivostok Ave., 690022 Vladivostok, Russia; (T.V.M.); (R.V.U.); (V.V.S.); (A.A.K.); (N.V.I.); (S.P.E.)
| | | | | | | | | | | | | |
Collapse
|
10
|
Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The Functional Role of Long Non-coding RNA UCA1 in Human Multiple Cancers: a Review Study. Curr Mol Med 2021; 21:96-110. [PMID: 32560605 DOI: 10.2174/1566524020666200619124543] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023]
Abstract
In various cancers, high-grade tumor and poor survival rate in patients with upregulated lncRNAs UCA1 have been confirmed. Urothelial carcinoma associated 1 (UCA1) is an oncogenic non-coding RNA with a length of more than 200 nucleotides. The UCA1 regulate critical biological processes that are involved in cancer progression, including cancer cell growth, invasion, migration, metastasis, and angiogenesis. So It should not surprise that UCA1 overexpresses in variety of cancers type, including pancreatic cancer, ovarian cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, endometrial cancer, cervical cancer, bladder cancer, adrenal cancer, hypopharyngeal cancer, oral cancer, gallbladder cancer, nasopharyngeal cancer, laryngeal cancer, osteosarcoma, esophageal squamous cell carcinoma, renal cell carcinoma, cholangiocarcinoma, leukemia, glioma, thyroid cancer, medulloblastoma, hepatocellular carcinoma and multiple myeloma. In this article, we review the biological function and regulatory mechanism of UCA1 in several cancers and also, we will discuss the potential of its as cancer biomarker and cancer treatment.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Carenza C, Franzese S, Calcaterra F, Mavilio D, Della Bella S. Comprehensive Phenotyping of Dendritic Cells in Cancer Patients by Flow Cytometry. Cytometry A 2020; 99:218-230. [PMID: 33098618 DOI: 10.1002/cyto.a.24245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the complex interplay between tumor cells and the immune system. During the elimination phase of cancer immunoediting, immunostimulatory DCs are critical for the control of tumor growth. During the escape phase, regulatory DCs sustain tumor tolerance and contribute to the development of the immunosuppressive tumor microenvironment that characterizes this phase. Moreover, increasing evidence indicates that DCs are also critical for the success of cancer immunotherapy. Hence, there is increasing need to fully characterize DC subsets and their activatory/inhibitory profile in cancer patients. In this review, we describe the role played by different DC subsets in the different phases of cancer immunoediting, the function exerted by different activatory and inhibitory molecules expressed on DC surface, and the cytokines produced by distinct DC subsets, in order to provide an overview on the DC features that may be useful to be assessed when dealing with the flow cytometric characterization of DCs in cancer patients. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Sara Franzese
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| |
Collapse
|
12
|
Impact of the Human Microbiome in Forensic Sciences: a Systematic Review. Appl Environ Microbiol 2020; 86:AEM.01451-20. [PMID: 32887714 DOI: 10.1128/aem.01451-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Numerous studies relate differences in microbial communities to human health and disease; however, little is known about microbial changes that occur postmortem or the possible applications of microbiome analysis in the field of forensic science. The aim of this review was to study the microbiome and its applications in forensic sciences and to determine the main lines of investigation that are emerging, as well as its possible contributions to the forensic field. A systematic review of the human microbiome in relation to forensic science was carried out by following PRISMA guidelines. This study sheds light on the role of microbiome research in the postmortem interval during the process of decomposition, identifying death caused by drowning or sudden death, locating the geographical location of death, establishing a connection between the human microbiome and personal items, sexual contact, and the identification of individuals. Actinomycetaceae, Bacteroidaceae, Alcaligenaceae, and Bacilli play an important role in determining the postmortem interval. Aeromonas can be used to determine the cause of death, and Corynebacterium or Helicobacter pylori can be used to ascertain personal identity or geographical location. Several studies point to a promising future for microbiome analysis in the different fields of forensic science, opening up an important new area of research.
Collapse
|
13
|
Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1730. [PMID: 32272786 PMCID: PMC7178714 DOI: 10.3390/ma13071730] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Biological structures have emerged through millennia of evolution, and nature has fine-tuned the material properties in order to optimise the structure-function relationship. Following this paradigm, polydopamine (PDA), which was found to be crucial for the adhesion of mussels to wet surfaces, was hence initially introduced as a coating substance to increase the chemical reactivity and surface adhesion properties. Structurally, polydopamine is very similar to melanin, which is a pigment of human skin responsible for the protection of underlying skin layers by efficiently absorbing light with potentially harmful wavelengths. Recent findings have shown the subsequent release of the energy (in the form of heat) upon light excitation, presenting it as an ideal candidate for photothermal applications. Thus, polydopamine can both be used to (i) coat nanoparticle surfaces and to (ii) form capsules and ultra-small (nano)particles/nanocomposites while retaining bulk characteristics (i.e., biocompatibility, stability under UV irradiation, heat conversion, and activity during photoacoustic imaging). Due to the aforementioned properties, polydopamine-based materials have since been tested in adhesive and in energy-related as well as in a range of medical applications such as for tumour ablation, imaging, and drug delivery. In this review, we focus upon how different forms of the material can be synthesised and the use of polydopamine in biological and biomedical applications.
Collapse
Affiliation(s)
- Daniel Hauser
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Joel Turner
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | | |
Collapse
|
14
|
Abstract
Cancer is a multi-step process during which cells acquire mutations that eventually lead to uncontrolled cell growth and division and evasion of programmed cell death. The oncogenes such as Ras and c-Myc may be responsible in all three major stages of cancer i.e., early, intermediate, and late. The NF-κB has been shown to control the expression of genes linked with tumor pathways such as chronic inflammation, tumor cell survival, anti-apoptosis, proliferation, invasion, and angiogenesis. In the last few decades, various biomarker pathways have been identified that play a critical role in carcinogenesis such as Ras, NF-κB and DNA damage.
Collapse
Affiliation(s)
- Anas Ahmad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, India.,Department of Nano-Therapeutics, Institute of Nano Science and Technology (INST), Habitat Centre, Mohali, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
15
|
Aggarwal V, Sak K, Arora M, Iqubal A, Kumar A, Srivastava S, Pandey A, Kaur S, Tuli HS. History of Oncotherapies in Cancer Biology. DRUG TARGETS IN CELLULAR PROCESSES OF CANCER: FROM NONCLINICAL TO PRECLINICAL MODELS 2020:1-13. [DOI: 10.1007/978-981-15-7586-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
16
|
Carenza C, Calcaterra F, Oriolo F, Di Vito C, Ubezio M, Della Porta MG, Mavilio D, Della Bella S. Costimulatory Molecules and Immune Checkpoints Are Differentially Expressed on Different Subsets of Dendritic Cells. Front Immunol 2019; 10:1325. [PMID: 31244860 PMCID: PMC6579930 DOI: 10.3389/fimmu.2019.01325] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in initiating and shaping immune responses. The effects of DCs on adaptive immune responses depend partly on functional specialization of distinct DC subsets, and partly on the activation state of DCs, which is largely dictated by environmental signals. Fully activated immunostimulatory DCs express high levels of costimulatory molecules, produce pro-inflammatory cytokines, and stimulate T cell proliferation, whereas tolerogenic DCs express low levels of costimulatory molecules, produce immunomodulatory cytokines and impair T cell proliferation. Relevant to the increasing use of immune checkpoint blockade in cancer treatment, signals generated from inhibitory checkpoint molecules on DC surface may also contribute to the inhibitory properties of tolerogenic DCs. Yet, our knowledge on the expression of inhibitory molecules on human DC subsets is fragmentary. Therefore, in this study, we investigated the expression of three immune checkpoints on peripheral blood DC subsets, in basal conditions and upon exposure to pro-inflammatory and anti-inflammatory stimuli, by using a flow cytometric panel that allows a direct comparison of the activatory/inhibitory phenotype of DC-lineage and inflammatory DC subsets. We demonstrated that functionally distinct DC subsets are characterized by differential expression of activatory and inhibitory molecules, and that cDC1s in particular are endowed with a unique immune checkpoint repertoire characterized by high TIM-3 expression, scarce PD-L1 expression and lack of ILT2. Notably, this unique cDC1 repertoire was subverted in a group of patients with myelodysplastic syndromes included in the study. Applied to the characterization of DCs in the tumor microenvironment, this panel has the potential to provide valuable information to be used for investigating the role of DC subsets in cancer, guiding DC-targeting treatments, and possibly identifying predictive biomarkers for clinical response to cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Carenza
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Calcaterra
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ferdinando Oriolo
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clara Di Vito
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Ubezio
- Cancer Center, Humanitas Reserach Hospital, Rozzano, Italy
| | | | - Domenico Mavilio
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
17
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Zhang Y, Wu X, Xue X, Li C, Wang J, Wang R, Zhang C, Wang C, Shi Y, Zou L, Li Q, Huang Z, Hao X, Loomes K, Wu D, Chen HW, Xu J, Xu Y. Discovery and Characterization of XY101, a Potent, Selective, and Orally Bioavailable RORγ Inverse Agonist for Treatment of Castration-Resistant Prostate Cancer. J Med Chem 2019; 62:4716-4730. [DOI: 10.1021/acs.jmedchem.9b00327] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xishan Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
| | - Junjian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- School of Pharmaceutical Sciences, Jilin University, No.1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Yudan Shi
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | - Qiu Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| | | | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Vic 3168, Australia
| | - Kerry Loomes
- School of Biological Sciences & Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand
| | - Donghai Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | | | - Jinxin Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510530, China
| |
Collapse
|
19
|
Brissos RF, Korrodi-Gregório L, Pérez-Tomás R, Roubeau O, Gamez P. Antiproliferative properties of iron supramolecular cylinders. ACTA ACUST UNITED AC 2018. [DOI: 10.28954/2018.csq.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of metallohelicates as potential antiproliferative agents is mostly exemplified by one sole family of supramolecular compounds that is based on bis-iminopyridine ligands. In the present investigation, two other types of metallocylinders have been selected and their potential DNA-binding and cytotoxic properties have been investigated. Hence, two new neutral iron(III) metallosupramolecular compounds have been prepared from bis-β-diketone ligands, and a known cationic iron(II) helicate from bis-pyrazole ligands has been used for comparison purposes. DNA-interaction experiments and cell studies reveal remarkable biological properties for one of the neutral iron cylinders and the positively charged, pyrazole-based helicate, as illustrated by their antiproliferative behaviours, which are far better than those of two well-known compounds, i.e. the most studied metallohelicate in the field and cisplatin.
Collapse
|
20
|
Davidson NE, Armstrong SA, Coussens LM, Cruz-Correa MR, DeBerardinis RJ, Doroshow JH, Foti M, Hwu P, Kensler TW, Morrow M, Mulligan CG, Pao W, Platz EA, Smith TJ, Willman CL. AACR Cancer Progress Report 2016. Clin Cancer Res 2018; 22 Suppl 19:S1-S137. [PMID: 27697776 DOI: 10.1158/1078-0432.ccr-16-1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Fujii T, Naing A, Rolfo C, Hajjar J. Biomarkers of response to immune checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol 2018; 130:108-120. [PMID: 30196907 DOI: 10.1016/j.critrevonc.2018.07.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/12/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICPis) are emerging as the new corner stone of cancer treatment due to their ability to produce durable responses in patients with various cancers. But, objective responses to ICPis vary among each type of cancer. Further, treatment with ICPis is often associated with risk of developing immune-related adverse event, which are potentially life-threatening if untreated, indicating a need for patient selection. However, given the complexity of the tumor microenvironment and the dynamic interaction between tumor and immune cells, development of robust biomarkers to predict patients who are likely to respond to treatment with ICPis remains a challenge. In this review we present an overview of the immune monitoring strategies that are currently in use to enable appropriate patient selection.
Collapse
Affiliation(s)
- Takeo Fujii
- University of Hawaii Cancer Center, Honolulu, HI, United States
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christian Rolfo
- Thoracic Medical Oncology, Early Clinical Trials, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center (UMGCCC), Baltimore, MD, United States
| | - Joud Hajjar
- Section of Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
22
|
Azuaje F. Computational models for predicting drug responses in cancer research. Brief Bioinform 2017; 18:820-829. [PMID: 27444372 PMCID: PMC5862310 DOI: 10.1093/bib/bbw065] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 02/06/2023] Open
Abstract
The computational prediction of drug responses based on the analysis of multiple types of genome-wide molecular data is vital for accomplishing the promise of precision medicine in oncology. This will benefit cancer patients by matching their tumor characteristics to the most effective therapy available. As larger and more diverse layers of patient-related data become available, further demands for new bioinformatics approaches and expertise will arise. This article reviews key strategies, resources and techniques for the prediction of drug sensitivity in cell lines and patient-derived samples. It discusses major advances and challenges associated with the different model development steps. This review highlights major trends in this area, and will assist researchers in the assessment of recent progress and in the selection of approaches to emerging applications in oncology.
Collapse
Affiliation(s)
- Francisco Azuaje
- NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Corresponding author: Francisco Azuaje, NorLux Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), Luxembourg L-1526, Luxembourg. Tel.: +352-26970875; Fax: +352-26970396; E-mail:
| |
Collapse
|
23
|
Wang F, Qin C, Li Y, Qu W, Liu H, Li B, Qi J, Liu J, Wang L. Ursodeoxycholic acid induces autophagy via LC3B to suppress hepatocellular carcinoma in vivo and in vitro. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11805-11813. [PMID: 31966544 PMCID: PMC6966075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a common cancer worldwide. Researchers have found that UDCA can be used to inhibit the growth of tumors. Microtubule-associated protein light chain 3B (LC3B) is an important reglator of autophagosomes. No researches have been published on the relationship of UDCA and LC3B. METHODS A Cell Counting Kit-8 cell viability assay, cell migration assay, quantitative reverse transcription PCR (qRT-PCR) and western blot were conducted for the SMMC-7721 and HepG2 cell lines. Hematoxylin-eosin (HE) staining and immunohistochemistry (IHC) were used to analyze nude mice with 7721 xenograftes. The expression of LC3B was evaluated both in vivo and in vitro. RESULTS Our studies demonstrated that UDCA reduced the viability of the primary HCC cell lines 7721 and HepG2 (Student's t-test, P<0.05) and inhibited the migration of 7721 cells (Student's t-test, P<0.05). UDCA also increased the expression of LC3B and p53 in vitro (Student's t-test, P<0.05). Additionally, UDCA inhibited the growth of tumors (Student's t-test, P<0.05) and promoted the expression of LC3B in nude mice. CONCLUSION Our data showed that UDCA promoted the expression of LC3B, with suppressed HCC in vivo and in vitro.
Collapse
Affiliation(s)
- Fengyan Wang
- Department of Gastroenterology and Hepatology, Shandong Provincial Qianfoshan HospitalJinan, Shandong, China
| | - Chengyong Qin
- Department of Gastroenterology and Hepatology, Shandong Province Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Yang Li
- Department of Intensive Care Unit, Qilu Hospital, Shandong UniversityJinan, Shandong, China
| | - Wendong Qu
- Department of Health, The Central Hospital of Tai’anTai’an, Shandong, China
| | - Hui Liu
- Department of Gastroenterology and Hepatology, Shandong Province Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Bin Li
- Department of Gastroenterology and Hepatology, Shandong Province Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Jianni Qi
- Central Laboratory, Shandong Province Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Juan Liu
- Department of Gastroenterology and Hepatology, Shandong Province Hospital Affiliated to Shandong UniversityJinan, Shandong, China
| | - Liyun Wang
- Department of Gastroenterology and Hepatology, Shandong Provincial Qianfoshan HospitalJinan, Shandong, China
| |
Collapse
|
24
|
Ono A, Sano O, Kazetani KI, Muraki T, Imamura K, Sumi H, Matsui J, Iwata H. Feedback activation of AMPK-mediated autophagy acceleration is a key resistance mechanism against SCD1 inhibitor-induced cell growth inhibition. PLoS One 2017; 12:e0181243. [PMID: 28704514 PMCID: PMC5509324 DOI: 10.1371/journal.pone.0181243] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
Elucidating the bioactive compound modes of action is crucial for increasing success rates in drug development. For anticancer drugs, defining effective drug combinations that overcome resistance improves therapeutic efficacy. Herein, by using a biologically annotated compound library, we performed a large-scale combination screening with Stearoyl-CoA desaturase-1 (SCD1) inhibitor, T-3764518, which partially inhibits colorectal cancer cell proliferation. T-3764518 induced phosphorylation and activation of AMPK in HCT-116 cells, which led to blockade of downstream fatty acid synthesis and acceleration of autophagy. Attenuation of fatty acid synthesis by small molecules suppressed the growth inhibitory effect of T-3764518. In contrast, combination of T-3764518 with autophagy flux inhibitors synergistically inhibited cellular proliferation. Experiments using SCD1 knock-out cells validated the results obtained with T-3764518. The results of our study indicated that activation of autophagy serves as a survival signal when SCD1 is inhibited in HCT-116 cells. Furthermore, these findings suggest that combining SCD1 inhibitor with autophagy inhibitors is a promising anticancer therapy.
Collapse
Affiliation(s)
- Akito Ono
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Osamu Sano
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Ken-ichi Kazetani
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Takamichi Muraki
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Keisuke Imamura
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Hiroyuki Sumi
- Oncology Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Junji Matsui
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Hidehisa Iwata
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
25
|
Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat Commun 2016; 7:11262. [PMID: 27109927 PMCID: PMC4848466 DOI: 10.1038/ncomms11262] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) 1, 2 and 3 form the catalytic subunit of several large transcriptional repression complexes. Unexpectedly, the enzymatic activity of HDACs in these complexes has been shown to be regulated by inositol phosphates, which bind in a pocket sandwiched between the HDAC and co-repressor proteins. However, the actual mechanism of activation remains poorly understood. Here we have elucidated the stereochemical requirements for binding and activation by inositol phosphates, demonstrating that activation requires three adjacent phosphate groups and that other positions on the inositol ring can tolerate bulky substituents. We also demonstrate that there is allosteric communication between the inositol-binding site and the active site. The crystal structure of the HDAC1:MTA1 complex bound to a novel peptide-based inhibitor and to inositol hexaphosphate suggests a molecular basis of substrate recognition, and an entropically driven allosteric mechanism of activation.
Collapse
|
26
|
Fernandez-Salas E, Wang S, Chinnaiyan AM. Role of BET proteins in castration-resistant prostate cancer. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:29-38. [PMID: 27769354 DOI: 10.1016/j.ddtec.2016.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Castration resistant prostate cancer (CRPC) is a deadly disease with few therapeutic options once patients become resistant to second generation drugs targeting the AR-transcriptional program. The BET-BRD readers of chromatin are key regulators of AR-, ERG-, and c-Myc-mediated transcription in CRPC. BET-BRD inhibitors have demonstrated pre-clinical efficacy in models of CRPC and are currently being evaluated in several clinical trials. These novel drugs have the potential to transform the way we treat CRPC in the near future.
Collapse
Affiliation(s)
- Ester Fernandez-Salas
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|