1
|
Chen Y, Fang S, Zhong C, Mo S, Shi Y, Ling X, Liu F, Zhong W, Deng J, Dong Z, Chen J, Lu J. Multi-omics profiling highlights karyopherin subunit alpha 2 as a promising biomarker for prognosis and immunotherapy respond in pediatric and adult adrenocortical carcinoma. Ann Med 2024; 56:2397092. [PMID: 39624961 PMCID: PMC11616749 DOI: 10.1080/07853890.2024.2397092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE Adrenocortical carcinoma (ACC) afflicts both pediatric and adult populations and is characterized by dismal prognosis and elevated mortality. Given the inconsistent therapeutic benefits and significant side effects associated with the conventional chemotherapy agent, mitotane, and the nascent stage of immunotherapy and targeted treatments, there is an urgent need to identify novel prognostic biomarkers and therapeutic targets in ACC. METHODS Utilizing multi-omic datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), we employed Weighted Gene Co-expression Network Analysis (WGCNA), Cox regression, Receiver Operating Characteristic (ROC) curves, and survival analyses to sift for potential prognostic biomarkers. We subsequently validated these findings through immunohistochemistry and cell assays, and delved into the biological role of KPNA2 in ACC through functional enrichment analysis, mutational landscape, and immune cell infiltration. RESULTS A total of 77 progression-associated genes with aberrant chromosomal accessibility were discerned within the TCGA-ACC dataset. By integrating ROC and Cox regression from GEO datasets, KPNA2 emerged as an independent risk factor portending poor outcomes in ACC. ATAC-seq analysis revealed attenuated chromatin accessibility of KPNA2 in cases with unfavorable prognosis. Immunohistochemistry corroborated elevated KPNA2 expression, which was linked to enhanced proliferation and invasion. Elevated KPNA2 levels were found to activate oncogenic pathways while simultaneously suppressing immunological responses. Immune infiltration analysis further revealed a decrement in CD8+ T-cell infiltration in KPNA2-high cohorts. CONCLUSION This study demonstrates the clinical and biological significance of KPNA2 in ACC and suggests that KPNA2 could serve as a promising biomarker for predicting prognosis and immunotherapeutic responses in pediatric and adult ACC patients.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Andrology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Urology, Huizhou Central Hospital, Huizhou, China
| | - Shumin Fang
- Science Research Center, Huizhou Central Hospital, Huizhou, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Reproductive Medicine Center, Huizhou Central Hospital, Huizhou, China
| | - Shanshan Mo
- Department of Andrology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongcheng Shi
- Department of Urology, Huizhou Central Hospital, Huizhou, China
| | - Xiaohui Ling
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Reproductive Medicine Center, Huizhou Central Hospital, Huizhou, China
| | - Fengping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
| | - Weide Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junhong Deng
- Department of Andrology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhong Dong
- Department of Urology, Huizhou Central Hospital, Huizhou, China
| | - Jiahong Chen
- Department of Urology, Huizhou Central Hospital, Huizhou, China
| | - Jianming Lu
- Department of Andrology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Schumacher TJ, Iyer AV, Rumbley J, Ronayne CT, Mereddy VR. Exploring the impact of mitochondrial-targeting anthelmintic agents with GLUT1 inhibitor BAY-876 on breast cancer cell metabolism. BMC Cancer 2024; 24:1415. [PMID: 39550554 PMCID: PMC11568538 DOI: 10.1186/s12885-024-13186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Cancer cells alter their metabolic phenotypes with nutritional change. Single agent approaches targeting mitochondrial metabolism in cancer have failed due to either dose limiting off target toxicities, or lack of significant efficacy in vivo. To mitigate these clinical challenges, we investigated the potential utility of repurposing FDA approved mitochondrial targeting anthelmintic agents, niclosamide, IMD-0354 and pyrvinium pamoate, to be combined with GLUT1 inhibitor BAY-876 to enhance the inhibitory capacity of the major metabolic phenotypes exhibited by tumors. METHODS To test this, we used breast cancer cell lines MDA-MB-231 and 4T1 which exhibit differing basal metabolic rates of glycolysis and mitochondrial respiration, respectively. Metabolic characterization was carried out using Seahorse XFe96 Bioanalyzer and statistical analysis was carried out via ANOVA. RESULTS Here, we found that specific responses to mitochondrial and glycolysis targeting agents elicit responses that correlate with tested cell lines basal metabolic rates and fuel preference, highlighting the potential to cater metabolism targeting treatment regimens based on specific tumor nutrient handling. Inhibition of GLUT1 with BAY-876 potently inhibited glycolysis in both MDA-MB-231 and 4T1 cells, and niclosamide and pyrvinium pamoate perturbed mitochondrial respiration that resulted in potent compensatory glycolysis in the cell lines tested. CONCLUSION In this regard, combination of BAY-876 with both mitochondrial targeting agents resulted in inhibition of compensatory glycolysis and subsequent metabolic crisis. These studies highlight targeting tumor metabolism as a combination treatment regimen that can be tailored by basal and compensatory metabolic phenotypes.
Collapse
Affiliation(s)
- Tanner J Schumacher
- Integrated Biosciences Graduate Program, University of Minnesota, 1035 Kirby Drive, Duluth, MN, 55812, USA
| | - Ananth V Iyer
- Department of Chemistry, Carleton College, One North College Street, Northfield, MN, 55057, USA
| | - Jon Rumbley
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Conor T Ronayne
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA.
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, 1035 Kirby Drive, Duluth, MN, 55812, USA
- Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
- Department of Chemistry and Biochemistry, University of Minnesota, 1038 University Drive, Duluth, MN, 55812, USA
| |
Collapse
|
3
|
Schmitt L, Krings KS, Wolsing A, Buque X, Zimmermann M, Flores-Romero H, Lenz T, Lechtenberg I, Peter C, Stork B, Teusch N, Proksch P, Stühler K, García-Sáez AJ, Reichert AS, Aspichueta P, Bhatia S, Wesselborg S. Targeting mitochondrial metabolism by the mitotoxin bromoxib in leukemia and lymphoma cells. Cell Commun Signal 2024; 22:541. [PMID: 39533399 PMCID: PMC11558866 DOI: 10.1186/s12964-024-01913-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Targeting mitochondrial metabolism represents a promising approach for cancer treatment. Here, we investigated the mitotoxic potential of the polybrominated diphenyl ether bromoxib, a natural compound isolated from the marine sponge Dysidea family. We could show that bromoxib comprised strong cytotoxicity in different leukemia and lymphoma cell lines (such as HL60, HPBALL, Jurkat, K562, KOPTK1, MOLT4, SUPB15 and Ramos), but also in solid tumor cell lines (such as glioblastoma cell lines SJ-GBM2 and TP365MG). Bromoxib activated the mitochondrial death pathway as evidenced by the rapid translocation of Bax to the mitochondria and the subsequent mitochondrial release of Smac. Accordingly, bromoxib-induced apoptosis was blocked in caspase 9 deficient Jurkat cells and Jurkat cells overexpressing the antiapoptotic protein Bcl-2. In addition, we could show that bromoxib functioned as an uncoupler of the electron transport chain with similar rapid kinetics as CCCP in terms of dissipation of the mitochondrial membrane potential (ΔΨm), processing of the dynamin-like GTPase OPA1 and subsequent fragmentation of mitochondria. Beyond that, bromoxib strongly abrogated ATP production via glycolysis as well as oxidative phosphorylation (OXPHOS) by targeting electron transport chain complexes II, III, and V (ATP-synthase) in Ramos lymphoma cells. Thus, bromoxib's potential to act on both cytosolic glycolysis and mitochondrial respiration renders it a promising agent for the treatment of leukemia and lymphoma.
Collapse
Affiliation(s)
- Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Andre Wolsing
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Xabier Buque
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco, Vitoria-gasteiz, Spain
| | - Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hector Flores-Romero
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological-Medical-Research Centre (BMFZ), Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Peter
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nicole Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological-Medical-Research Centre (BMFZ), Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ana J García-Sáez
- Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, Universidad del País Vasco, Vitoria-gasteiz, Spain
- Biobizkia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
4
|
Bleloch J, Lu S, Khan S, Serala K, Seraia E, Millar V, Ebner D, Goding C, Prince S. A High-Throughput Drug Repurposing Strategy to Treat TBX2 and/or TBX3 Dependent Cancers. Cancer Med 2024; 13:e70303. [PMID: 39403898 PMCID: PMC11474296 DOI: 10.1002/cam4.70303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The highly homologous T-box transcription factors TBX2 and TBX3 are critical for embryonic development, and their overexpression in postnatal tissues contributes to a wide range of malignancies, including melanoma and rhabdomyosarcoma. Importantly, when TBX2 and TBX3 are depleted in cancers where they are overexpressed, the malignant phenotype is inhibited, and they have therefore been regarded as druggable targets. However, the time and costs associated with de novo drug development are challenging and result in drugs that are costly, especially for patients in low- and middle-income countries. In the current study, we therefore combined a targeted and drug repurposing approach to identify drugs that are expected to be more efficacious and cost-effective with significantly reduced side effects. METHODS A high-throughput cell-based immunofluorescence screen was performed to identify drugs in the Pharmakon 1600 drug library that can negatively regulate TBX2 and/or TBX3 levels. "Hit" drugs were validated for their effect on TBX2/TBX3 levels and cytotoxicity in TBX2/TBX3-dependent melanoma and rhabdomyosarcoma cells. To this end, immunofluorescence, western blotting, quantitative real-time PCR, and MTT cell viability assays were performed. RESULTS Niclosamide, piroctone olamine, and pyrvinium pamoate, were identified as TBX2 and/or TBX3-targeting drugs, and they exhibited cytotoxicity in a TBX2/TBX3-dependent manner. Furthermore, these "Hit" drugs were shown to induce senescence and/or apoptosis. CONCLUSIONS Niclosamide, piroctone olamine, and pyrvinium pamoate are promising, cost-effective therapeutic agents for the treatment of TBX2/TBX3-dependent cancers.
Collapse
Affiliation(s)
- Jenna S. Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Saif Feroz Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Karabo Serala
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| | - Elena Seraia
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Val Millar
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health SciencesUniversity of Cape Town, ObservatoryCape TownSouth Africa
| |
Collapse
|
5
|
Omran MM, Kamal MM, Ammar YA, Abusaif MS, Ismail MMF, Mansour HH. Pharmacological investigation of new niclosamide-based isatin hybrids as antiproliferative, antioxidant, and apoptosis inducers. Sci Rep 2024; 14:19818. [PMID: 39191850 DOI: 10.1038/s41598-024-69250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
A group of Niclosamide-linked isatin hybrids (Xo, X1, and X2) was created and examined using IR, 1HNMR, 13C NMR, and mass spectrometry. These hybrids' cytotoxicity, antioxidant, cell cycle analysis, and apoptosis-inducing capabilities were identified. Using the SRB assay, their cytotoxicity against the human HCT-116, MCF-7, and HEPG-2 cancer cell lines, as well as VERO (African Green Monkey Kidney), was evaluated. Compound X1 was the most effective compound. In HCT-116 cells, compound X1 produced cell cycle arrest in the G1 phase, promoted cell death, and induced apoptosis through mitochondrial membrane potential breakdown in comparison to niclosamide and the control. Niclosamide and compound X1 reduced reactive oxygen species generation and modulated the gene expression of BAX, Bcl-2, Bcl-xL, and PAR-4 in comparison to the control. Docking modeling indicated their probable binding modalities with the XIAP BIR2 domain, which selectively binds caspase-3/7, and highlighted their structural drivers of activity for further optimization investigations. Computational in silico modeling of the new hybrids revealed that they presented acceptable physicochemical values as well as drug-like characteristics, which may introduce them as drug-like candidates. The study proved that compound X1 might be a novel candidate for the development of anticancer agents as it presents antiproliferative activity mediated by apoptosis.
Collapse
Affiliation(s)
- Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona M Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Magda M F Ismail
- Department of Medicinal Pharmaceutical Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11754, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City Cairo, Egypt.
| |
Collapse
|
6
|
Silva-Carvalho AÉ, Filiú-Braga LDC, Bogéa GMR, de Assis AJB, Pittella-Silva F, Saldanha-Araujo F. GLP and G9a histone methyltransferases as potential therapeutic targets for lymphoid neoplasms. Cancer Cell Int 2024; 24:243. [PMID: 38997742 PMCID: PMC11249034 DOI: 10.1186/s12935-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
Histone methyltransferases (HMTs) are enzymes that regulate histone methylation and play an important role in controlling transcription by altering the chromatin structure. Aberrant activation of HMTs has been widely reported in certain types of neoplastic cells. Among them, G9a/EHMT2 and GLP/EHMT1 are crucial for H3K9 methylation, and their dysregulation has been associated with tumor initiation and progression in different types of cancer. More recently, it has been shown that G9a and GLP appear to play a critical role in several lymphoid hematologic malignancies. Importantly, the key roles played by both enzymes in various diseases made them attractive targets for drug development. In fact, in recent years, several groups have tried to develop small molecule inhibitors targeting their epigenetic activities as potential anticancer therapeutic tools. In this review, we discuss the physiological role of GLP and G9a, their oncogenic functions in hematologic malignancies of the lymphoid lineage, and the therapeutic potential of epigenetic drugs targeting G9a/GLP for cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Alan Jhones Barbosa de Assis
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasilia, Brasília, Brazil
| | - Fábio Pittella-Silva
- Laboratory of Molecular Pathology of Cancer, Faculty of Health Sciences and Medicine, University of Brasilia, Brasília, Brazil
| | - Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Faculty of Health Sciences, University of Brasília, Brasilia, Brazil.
| |
Collapse
|
7
|
Zhang J, Wu L, Su T, Liu H, Jiang L, Jiang Y, Wu Z, Chen L, Li H, Zheng J, Sun Y, Peng H, Han R, Ning G, Ye L, Wang W. Pharmacogenomic analysis in adrenocortical carcinoma reveals genetic features associated with mitotane sensitivity and potential therapeutics. Front Endocrinol (Lausanne) 2024; 15:1365321. [PMID: 38779454 PMCID: PMC11109426 DOI: 10.3389/fendo.2024.1365321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Adrenocortical carcinoma (ACC) is an aggressive endocrine malignancy with limited therapeutic options. Treating advanced ACC with mitotane, the cornerstone therapy, remains challenging, thus underscoring the significance to predict mitotane response prior to treatment and seek other effective therapeutic strategies. Objective We aimed to determine the efficacy of mitotane via an in vitro assay using patient-derived ACC cells (PDCs), identify molecular biomarkers associated with mitotane response and preliminarily explore potential agents for ACC. Methods In vitro mitotane sensitivity testing was performed in 17 PDCs and high-throughput screening against 40 compounds was conducted in 8 PDCs. Genetic features were evaluated in 9 samples using exomic and transcriptomic sequencing. Results PDCs exhibited variable sensitivity to mitotane treatment. The median cell viability inhibition rate was 48.4% (IQR: 39.3-59.3%) and -1.2% (IQR: -26.4-22.1%) in responders (n=8) and non-responders (n=9), respectively. Median IC50 and AUC were remarkably lower in responders (IC50: 53.4 µM vs 74.7 µM, P<0.0001; AUC: 158.0 vs 213.5, P<0.0001). Genomic analysis revealed CTNNB1 somatic alterations were only found in responders (3/5) while ZNRF3 alterations only in non-responders (3/4). Transcriptomic profiling found pathways associated with lipid metabolism were upregulated in responder tumors whilst CYP27A1 and ABCA1 expression were positively correlated to in vitro mitotane sensitivity. Furthermore, pharmacologic analysis identified that compounds including disulfiram, niclosamide and bortezomib exhibited efficacy against PDCs. Conclusion ACC PDCs could be useful for testing drug response, drug repurposing and guiding personalized therapies. Our results suggested response to mitotane might be associated with the dependency on lipid metabolism. CYP27A1 and ABCA1 expression could be predictive markers for mitotane response, and disulfiram, niclosamide and bortezomib could be potential therapeutics, both warranting further investigation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luming Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haorong Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hangya Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Arakawa Y, Jo U, Kumar S, Sun NY, Elloumi F, Thomas A, Roper N, Varghese DG, Takebe N, Zhang X, Ceribelli M, Holland DO, Beck E, Itkin Z, McKnight C, Wilson KM, Travers J, Klumpp-Thomas C, Thomas CJ, Hoang CD, Hernandez JM, Del Rivero J, Pommier Y. Activity of the Ubiquitin-activating Enzyme Inhibitor TAK-243 in Adrenocortical Carcinoma Cell Lines, Patient-derived Organoids, and Murine Xenografts. CANCER RESEARCH COMMUNICATIONS 2024; 4:834-848. [PMID: 38451783 PMCID: PMC10949913 DOI: 10.1158/2767-9764.crc-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Current treatment options for metastatic adrenocortical carcinoma (ACC) have limited efficacy, despite the common use of mitotane and cytotoxic agents. This study aimed to identify novel therapeutic options for ACC. An extensive drug screen was conducted to identify compounds with potential activity against ACC cell lines. We further investigated the mechanism of action of the identified compound, TAK-243, its synergistic effects with current ACC therapeutics, and its efficacy in ACC models including patient-derived organoids and mouse xenografts. TAK-243, a clinical ubiquitin-activating enzyme (UAE) inhibitor, showed potent activity in ACC cell lines. TAK-243 inhibited protein ubiquitination in ACC cells, leading to the accumulation of free ubiquitin, activation of the unfolded protein response, and induction of apoptosis. TAK-243 was found to be effluxed out of cells by MDR1, a drug efflux pump, and did not require Schlafen 11 (SLFN11) expression for its activity. Combination of TAK-243 with current ACC therapies (e.g., mitotane, etoposide, cisplatin) produced synergistic or additive effects. In addition, TAK-243 was highly synergistic with BCL2 inhibitors (Navitoclax and Venetoclax) in preclinical ACC models including patient-derived organoids. The tumor suppressive effects of TAK-243 and its synergistic effects with Venetoclax were further confirmed in a mouse xenograft model. These findings provide preclinical evidence to support the initiation of a clinical trial of TAK-243 in patients with advanced-stage ACC. TAK-243 is a promising potential treatment option for ACC, either as monotherapy or in combination with existing therapies or BCL2 inhibitors. SIGNIFICANCE ACC is a rare endocrine cancer with poor prognosis and limited therapeutic options. We report that TAK-243 is active alone and in combination with currently used therapies and with BCL2 and mTOR inhibitors in ACC preclinical models. Our results suggest implementation of TAK-243 in clinical trials for patients with advanced and metastatic ACC.
Collapse
Affiliation(s)
- Yasuhiro Arakawa
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ukhyun Jo
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Suresh Kumar
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nai-Yun Sun
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fathi Elloumi
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Anish Thomas
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Nitin Roper
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Diana Grace Varghese
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Naoko Takebe
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xiaohu Zhang
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Michele Ceribelli
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - David O. Holland
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Erin Beck
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Zina Itkin
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Crystal McKnight
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Jameson Travers
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | | | - Craig J. Thomas
- National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | | | - Jaydira Del Rivero
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yves Pommier
- Laboratory of Molecular Pharmacology and Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
9
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Mann JE, Gao R, London SS, Swift JA. Desolvation Processes in Channel Solvates of Niclosamide. Mol Pharm 2023; 20:5554-5562. [PMID: 37850910 PMCID: PMC10630950 DOI: 10.1021/acs.molpharmaceut.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The antiparasitic drug niclosamide (NCL) is notable for its ability to crystallize in multiple 1:1 channel solvate forms, none of which are isostructural. Here, using a combination of time-resolved synchrotron powder X-ray diffraction and thermogravimetry, the process-induced desolvation mechanisms of methanol and acetonitrile solvates are investigated. Structural changes in both solvates follow a complicated molecular-level trajectory characterized by a sudden shift in lattice parameters several degrees below the temperature where the desolvated phase first appears. Model fitting of kinetic data obtained under isothermal heating conditions suggests that the desolvation is rate-limited by the nucleation of the solvent-free product. The desolvation pathways identified in these systems stand in contrast to previous investigations of the NCL channel hydrate, where water loss by diffusion initially yields an anhydrous isomorph that converts to the thermodynamic polymorph at significantly higher temperatures. Taking the view that each solvate lattice is a unique "pre-organized" precursor, a comparison of the pathways from different starting topologies to the same final product provides the opportunity to reevaluate assumptions of how various factors (e.g., solvent binding strength, density) influence solid-state desolvation processes.
Collapse
Affiliation(s)
- Jen E. Mann
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United
States
| | - Renee Gao
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United
States
| | - Shae S. London
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United
States
| | - Jennifer A. Swift
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United
States
| |
Collapse
|
11
|
Hsu CM, Chang KC, Chuang TM, Chu ML, Lin PW, Liu HS, Kao SY, Liu YC, Huang CT, Wang MH, Yeh TJ, Gau YC, Du JS, Wang HC, Cho SF, Hsiao CE, Tsai Y, Hsiao SY, Hung LC, Yen CH, Hsiao HH. High G9a Expression in DLBCL and Its Inhibition by Niclosamide to Induce Autophagy as a Therapeutic Approach. Cancers (Basel) 2023; 15:4150. [PMID: 37627178 PMCID: PMC10452841 DOI: 10.3390/cancers15164150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a malignant lymphoid tumor disease that is characterized by heterogeneity, but current treatment does not benefit all patients, which highlights the need to identify oncogenic genes and appropriate drugs. G9a is a histone methyltransferase that catalyzes histone H3 lysine 9 (H3K9) methylation to regulate gene function and expression in various cancers. METHODS TCGA and GTEx data were analyzed using the GEPIA2 platform. Cell viability under drug treatment was assessed using Alamar Blue reagent; the interaction between G9a and niclosamide was assessed using molecular docking analysis; mRNA and protein expression were quantified in DLBCL cell lines. Finally, G9a expression was quantified in 39 DLBCL patient samples. RESULTS The TCGA database analysis revealed higher G9a mRNA expression in DLBCL compared to normal tissues. Niclosamide inhibited DLBCL cell line proliferation in a time- and dose-dependent manner, reducing G9a expression and increasing p62, BECN1, and LC3 gene expression by autophagy pathway regulation. There was a correlation between G9a expression in DLBCL samples and clinical data, showing that advanced cancer stages exhibited a higher proportion of G9a-expressing cells. CONCLUSION G9a overexpression is associated with tumor progression in DLBCL. Niclosamide effectively inhibits DLBCL growth by reducing G9a expression via the cellular autophagy pathway; therefore, G9a is a potential molecular target for the development of therapeutic strategies for DLBCL.
Collapse
Affiliation(s)
- Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Kung-Chao Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Tzer-Ming Chuang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Man-Ling Chu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Pei-Wen Lin
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
| | - Hsiao-Sheng Liu
- M.Sc. Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (M.-L.C.); (P.-W.L.); (H.-S.L.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Yu Kao
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Tzu Huang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Hong Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
| | - Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jeng-Shiun Du
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Feng Cho
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chi-En Hsiao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA;
| | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Li-Chuan Hung
- Long-Term Care and Health Management Department, Cheng Shiu University, Kaohsiung 833, Taiwan;
| | - Chia-Hung Yen
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (C.-M.H.); (T.-M.C.); (Y.-C.L.); (M.-H.W.); (T.-J.Y.); (Y.-C.G.); (J.-S.D.); (H.-C.W.); (S.-F.C.)
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
12
|
Mann JE, Gao R, Swift JA. Dehydration of Niclosamide Monohydrate Polymorphs: Different Mechanistic Pathways to the Same Product. CRYSTAL GROWTH & DESIGN 2023; 23:5102-5111. [PMID: 38510268 PMCID: PMC10950297 DOI: 10.1021/acs.cgd.3c00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/15/2023] [Indexed: 03/22/2024]
Abstract
Many active pharmaceutical ingredients (APIs) can crystallize as hydrates or anhydrates, the relative stability of which depends on their internal structures as well as the external environment. Hydrates may dehydrate unexpectedly or intentionally, though the molecular-level mechanisms by which such transformations occur are difficult to predict a priori. Niclosamide is an anthelmintic drug on the World Health Organization's "List of Essential Medicines" that crystallizes in two monohydrate forms: HA and HB. Through complementary time-resolved synchrotron powder X-ray diffraction and thermogravimetric kinetic studies, we demonstrate that the two monohydrates dehydrate via distinctly different solid state pathways yet yield the same final anhydrate phase. Water loss from HA via diffusion yields an isomorphous desolvate intermediate which can rearrange to at least two different polymorphs, only one of which exhibits long-term stability. In contrast, dehydration of HB proceeds via a surface nucleation process where simultaneous water loss and product formation occur with no detectable crystalline intermediates. Comparative analysis of the two systems serves to highlight the complex relationship between lattice structure and solid state dehydration processes.
Collapse
Affiliation(s)
- Jen E. Mann
- Georgetown
University, Department of Chemistry, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United States
| | - Renee Gao
- Georgetown
University, Department of Chemistry, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United States
| | - Jennifer A. Swift
- Georgetown
University, Department of Chemistry, 37th and O Streets NW, Washington, District of Columbia 20057-1227, United States
| |
Collapse
|
13
|
Nazam N, Jabir NR, Ahmad I, Alharthy SA, Khan MS, Ayub R, Tabrez S. Phenolic Acids-Mediated Regulation of Molecular Targets in Ovarian Cancer: Current Understanding and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:274. [PMID: 37259418 PMCID: PMC9962268 DOI: 10.3390/ph16020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a global health concern with a dynamic rise in occurrence and one of the leading causes of mortality worldwide. Among different types of cancer, ovarian cancer (OC) is the seventh most diagnosed malignant tumor, while among the gynecological malignancies, it ranks third after cervical and uterine cancer and sadly bears the highest mortality and worst prognosis. First-line treatments have included a variety of cytotoxic and synthetic chemotherapeutic medicines, but they have not been particularly effective in extending OC patients' lives and are associated with side effects, recurrence risk, and drug resistance. Hence, a shift from synthetic to phytochemical-based agents is gaining popularity, and researchers are looking into alternative, cost-effective, and safer chemotherapeutic strategies. Lately, studies on the effectiveness of phenolic acids in ovarian cancer have sparked the scientific community's interest because of their high bioavailability, safety profile, lesser side effects, and cost-effectiveness. Yet this is a road less explored and critically analyzed and lacks the credibility of the novel findings. Phenolic acids are a significant class of phytochemicals usually considered in the nonflavonoid category. The current review focused on the anticancer potential of phenolic acids with a special emphasis on chemoprevention and treatment of OC. We tried to summarize results from experimental, epidemiological, and clinical studies unraveling the benefits of various phenolic acids (hydroxybenzoic acid and hydroxycinnamic acid) in chemoprevention and as anticancer agents of clinical significance.
Collapse
Affiliation(s)
- Nazia Nazam
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Nasimudeen R. Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur 613403, Tamil Nadu, India
| | - Iftikhar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saif A. Alharthy
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Ayub
- Technology and Innovation Unit, Department of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
14
|
Li W, Shao C, Zhou H, Du H, Chen H, Wan H, He Y. Multi-omics research strategies in ischemic stroke: A multidimensional perspective. Ageing Res Rev 2022; 81:101730. [PMID: 36087702 DOI: 10.1016/j.arr.2022.101730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 01/31/2023]
Abstract
Ischemic stroke (IS) is a multifactorial and heterogeneous neurological disorder with high rate of death and long-term impairment. Despite years of studies, there are still no stroke biomarkers for clinical practice, and the molecular mechanisms of stroke remain largely unclear. The high-throughput omics approach provides new avenues for discovering biomarkers of IS and explaining its pathological mechanisms. However, single-omics approaches only provide a limited understanding of the biological pathways of diseases. The integration of multiple omics data means the simultaneous analysis of thousands of genes, RNAs, proteins and metabolites, revealing networks of interactions between multiple molecular levels. Integrated analysis of multi-omics approaches will provide helpful insights into stroke pathogenesis, therapeutic target identification and biomarker discovery. Here, we consider advances in genomics, transcriptomics, proteomics and metabolomics and outline their use in discovering the biomarkers and pathological mechanisms of IS. We then delineate strategies for achieving integration at the multi-omics level and discuss how integrative omics and systems biology can contribute to our understanding and management of IS.
Collapse
Affiliation(s)
- Wentao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chongyu Shao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haixia Du
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haiyang Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
15
|
Ren J, Wang B, Wu Q, Wang G. Combination of niclosamide and current therapies to overcome resistance for cancer: New frontiers for an old drug. Biomed Pharmacother 2022; 155:113789. [DOI: 10.1016/j.biopha.2022.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/02/2022] Open
|
16
|
Bridging the Scientific Gaps to Identify Effective Treatments in Adrenocortical Cancer. Cancers (Basel) 2022; 14:cancers14215245. [DOI: 10.3390/cancers14215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocortical cancer (ACC) typically presents in advanced stages of disease and has a dismal prognosis. One of the foremost reasons for this is the lack of available systemic therapies, with mitotane remaining the backbone of treatment since its discovery in the 1960s, despite underwhelming efficacy. Surgery remains the only potentially curative option, but about half of patients will recur post-operatively, often with metastatic disease. Other local treatment options have been attempted but are only used practically on a case-by-case basis. Over the past few decades there have been significant advances in understanding the molecular background of ACC, but this has not yet translated to better treatment options. Attempts at novel treatment strategies have not provided significant clinical benefit. This paper reviews our current treatment options and molecular understanding of ACC and the reasons why a successful treatment has remained elusive. Additionally, we discuss the knowledge gaps that need to be overcome to bring us closer to successful treatment and ways to bridge them.
Collapse
|
17
|
Lam SK, Yan S, Lam JSM, Feng Y, Khan M, Chen C, Ko FCF, Ho JCM. Disturbance of the Warburg effect by dichloroacetate and niclosamide suppresses the growth of different sub-types of malignant pleural mesothelioma in vitro and in vivo. Front Pharmacol 2022; 13:1020343. [PMID: 36304150 PMCID: PMC9592830 DOI: 10.3389/fphar.2022.1020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Inhalation of asbestos fibers is the most common cause of malignant pleural mesothelioma (MPM). In 2004, the United States Food and Drug Administration approved a combination of cisplatin with pemetrexed to treat unresectable MPM. Nonetheless novel treatment is urgently needed. The objective of this study is to report the combination effect of dichloroacetate (DCA) or niclosamide (Nic) Nic in MPM. Materials and methods: The effect of a combination of DCA and Nic was studied using a panel of MPM cell lines (H28, MSTO-211H, H226, H2052, and H2452). Cell viability was monitored by MTT assay. Glycolysis, oxidative phosphorylation, glucose, glycogen, pyruvate, lactate, citrate, succinate and ATP levels were determined by corresponding ELISA. Apoptosis, mitochondrial transmembrane potential, cell cycle analysis, hydrogen peroxide and superoxide were investigated by flow cytometry. Cell migration and colony formation were investigated by transwell migration and colony formation assays respectively. The in vivo effect was confirmed using 211H and H226 nude mice xenograft models. Results and conclusion: Cell viability was reduced. Disturbance of glycolysis and/or oxidative phosphorylation resulted in downregulation of glycogen, citrate and succinate. DCA and/or Nic increased apoptosis, mitochondrial transmembrane depolarization, G2/M arrest and reactive oxygen species. Moreover, DCA and/or Nic suppressed cell migration and colony formation. Furthermore, a better initial tumor suppressive effect was induced by the DCA/Nic combination compared with either drug alone in both 211H and H226 xenograft models. In H226 xenografts, DCA/Nic increased median survival of mice compared with single treatment. Single drug and/or a combination disturbed the Warburg effect and activated apoptosis, and inhibition of migration and proliferation in vivo. In conclusion, dichloroacetate and/or niclosamide showed a tumor suppressive effect in MPM in vitro and in vivo, partially mediated by disturbance of glycolysis/oxidative phosphorylation, apoptosis, ROS production, G2/M arrest, and suppression of migration and proliferation.
Collapse
|
18
|
Zhu B, Lei L, Sun Y, Shi X, Fu K, Hua J, Martyniuk CJ, Han J, Yang L, Zhou B. Niclosamide Exposure at Environmentally Relevant Concentrations Efficaciously Inhibited the Growth and Disturbed the Liver-Gut Axis of Adult Male Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11516-11526. [PMID: 35901075 DOI: 10.1021/acs.est.2c02712] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the current study, adult male zebrafish fed a normal diet (ND) or high-fat diet (HFD) were exposed to niclosamide (NIC) at environmentally relevant concentrations to reveal the accumulation and distribution in different tissues and evaluate the effects on liver-gut axis. Chemical analysis indicated that the liver bore a greater burden of NIC compared with the brain and gonads in adult zebrafish, and the HFD-fed fish bore greater burden in their liver and brain than those ND-fed fish. The indications from body weight, growth rate, body mass index, micro-CT images, biochemical and pathological changes confirmed that NIC can efficaciously curb weight gain and improve overloads of in plasma insulin and glucose in HFD-fed zebrafish. However, the potential effects on liver-gut axis in ND-fed zebrafish were also elucidated: NIC disturbed mitochondrial energy production, inhibited the glycemic and triacylglycerol biosynthesis but promoted triacylglycerol and free fatty acid catabolism, therefore reduced lipid accumulation in hepatocytes; NIC also impaired the physical barrier, evoked inflammatory and oxidative stress and led to microbiota dysbiosis in the intestine. There findings highlighted the necessity for evaluating its potential impacts on the health of wild animals as well as human beings upon long-term exposure.
Collapse
Affiliation(s)
- Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiongjie Shi
- College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
19
|
Thuru X, Magnez R, El-Bouazzati H, Vergoten G, Quesnel B, Bailly C. Drug Repurposing to Enhance Antitumor Response to PD-1/PD-L1 Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:3368. [PMID: 35884428 PMCID: PMC9322126 DOI: 10.3390/cancers14143368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/26/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Monoclonal antibodies targeting the PD-1/PD-L1 immune checkpoint have considerably improved the treatment of some cancers, but novel drugs, new combinations, and treatment modalities are needed to reinvigorate immunosurveillance in immune-refractory tumors. An option to elicit antitumor immunity against cancer consists of using approved and marketed drugs known for their capacity to modulate the expression and functioning of the PD-1/PD-L1 checkpoint. Here, we have reviewed several types of drugs known to alter the checkpoint, either directly via the blockade of PD-L1 or indirectly via an action on upstream effectors (such as STAT3) to suppress PD-L1 transcription or to induce its proteasomal degradation. Specifically, the repositioning of the approved drugs liothyronine, azelnidipine (and related dihydropyridine calcium channel blockers), niclosamide, albendazole/flubendazole, and a few other modulators of the PD-1/PD-L1 checkpoint (repaglinide, pimozide, fenofibrate, lonazolac, propranolol) is presented. Their capacity to bind to PD-L1 or to repress its expression and function offer novel perspectives for combination with PD-1 targeted biotherapeutics. These known and affordable drugs could be useful to improve the therapy of cancer.
Collapse
Affiliation(s)
- Xavier Thuru
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Romain Magnez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Hassiba El-Bouazzati
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Inserm, INFINITE—U1286, 3 Rue du Professeur Laguesse, BP-83, F-59006 Lille, France;
| | - Bruno Quesnel
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR1277—Canther—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (X.T.); (R.M.); (H.E.-B.); (B.Q.)
| | | |
Collapse
|
20
|
Gargantilla M, Persoons L, Kauerová T, del Río N, Daelemans D, Priego EM, Kollar P, Pérez-Pérez MJ. Hybridization Approach to Identify Salicylanilides as Inhibitors of Tubulin Polymerization and Signal Transducers and Activators of Transcription 3 (STAT3). Pharmaceuticals (Basel) 2022; 15:835. [PMID: 35890135 PMCID: PMC9318074 DOI: 10.3390/ph15070835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.
Collapse
Affiliation(s)
- Marta Gargantilla
- Instituto de Quimica Medica (IQM, CSIC) c/Juan de la Cierva 3, 28006 Madrid, Spain; (M.G.); (N.d.R.); (E.-M.P.)
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (L.P.); (D.D.)
| | - Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic;
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/Juan de la Cierva 3, 28006 Madrid, Spain; (M.G.); (N.d.R.); (E.-M.P.)
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; (L.P.); (D.D.)
| | - Eva-María Priego
- Instituto de Quimica Medica (IQM, CSIC) c/Juan de la Cierva 3, 28006 Madrid, Spain; (M.G.); (N.d.R.); (E.-M.P.)
| | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic;
| | - María-Jesús Pérez-Pérez
- Instituto de Quimica Medica (IQM, CSIC) c/Juan de la Cierva 3, 28006 Madrid, Spain; (M.G.); (N.d.R.); (E.-M.P.)
| |
Collapse
|
21
|
Kumbhar P, Kole K, Yadav T, Bhavar A, Waghmare P, Bhokare R, Manjappa A, Jha NK, Chellappan DK, Shinde S, Singh SK, Dua K, Salawi A, Disouza J, Patravale V. Drug repurposing: An emerging strategy in alleviating skin cancer. Eur J Pharmacol 2022; 926:175031. [PMID: 35580707 DOI: 10.1016/j.ejphar.2022.175031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Skin cancer is one of the most common forms of cancer. Several million people are estimated to have affected with this condition worldwide. Skin cancer generally includes melanoma and non-melanoma with the former being the most dangerous. Chemotherapy has been one of the key therapeutic strategies employed in the treatment of skin cancer, especially in advanced stages of the disease. It could be also used as an adjuvant with other treatment modalities depending on the type of skin cancer. However, there are several shortfalls associated with the use of chemotherapy such as non-selectivity, tumour resistance, life-threatening toxicities, and the exorbitant cost of medicines. Furthermore, new drug discovery is a lengthy and costly process with minimal likelihood of success. Thus, drug repurposing (DR) has emerged as a new avenue where the drug approved formerly for the treatment of one disease can be used for the treatment of another disease like cancer. This approach is greatly beneficial over the de novo approach in terms of time and cost. Moreover, there is minimal risk of failure of repurposed therapeutics in clinical trials. There are a considerable number of studies that have reported on drugs repurposed for the treatment of skin cancer. Thus, the present manuscript offers a comprehensive overview of drugs that have been investigated as repurposing candidates for the efficient treatment of skin cancers mainly melanoma and its oncogenic subtypes, and non-melanoma. The prospects of repurposing phytochemicals against skin cancer are also discussed. Furthermore, repurposed drug delivery via topical route and repurposed drugs in clinical trials are briefed. Based on the findings from the reported studies discussed in this manuscript, drug repurposing emerges to be a promising approach and thus is expected to offer efficient treatment at a reasonable cost in devitalizing skin cancer.
Collapse
Affiliation(s)
- Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Kapil Kole
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Tejashree Yadav
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Ashwini Bhavar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Pramod Waghmare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Rajdeep Bhokare
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Arehalli Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sunita Shinde
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur Maharashtra, 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
22
|
Sultana T, Jan U, Lee JI. Double Repositioning: Veterinary Antiparasitic to Human Anticancer. Int J Mol Sci 2022; 23:ijms23084315. [PMID: 35457127 PMCID: PMC9029030 DOI: 10.3390/ijms23084315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Drug repositioning, the approach of discovering different uses for existing drugs, has gained enormous popularity in recent years in the anticancer drug discovery field due to the increasing demand for anticancer drugs. Additionally, the repurposing of veterinary antiparasitic drugs for the treatment of cancer is gaining traction, as supported by existing literature. A prominent example is the proposal to implement the use of veterinary antiparasitics such as benzimidazole carbamates and halogenated salicylanilides as novel anticancer drugs. These agents have revealed pronounced anti-tumor activities and gained special attention for “double repositioning”, as they are repurposed for different species and diseases simultaneously, acting via different mechanisms depending on their target. As anticancer agents, these compounds employ several mechanisms, including the inhibition of oncogenic signal transduction pathways of mitochondrial respiration and the inhibition of cellular stress responses. In this review, we summarize and provide valuable information about the experimental, preclinical, and clinical trials of veterinary antiparasitic drugs available for the treatment of various cancers in humans. This review suggests the possibility of new treatment options that could improve the quality of life and outcomes for cancer patients in comparison to the currently used treatments.
Collapse
Affiliation(s)
- Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (T.S.); (U.J.)
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-2049-6234
| |
Collapse
|
23
|
Treese C, Hartl K, Pötzsch M, Dahlmann M, von Winterfeld M, Berg E, Hummel M, Timm L, Rau B, Walther W, Daum S, Kobelt D, Stein U. S100A4 Is a Strong Negative Prognostic Marker and Potential Therapeutic Target in Adenocarcinoma of the Stomach and Esophagus. Cells 2022; 11:cells11061056. [PMID: 35326507 PMCID: PMC8947340 DOI: 10.3390/cells11061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Deregulated Wnt-signaling is a key mechanism driving metastasis in adenocarcinoma of the gastroesophageal junction and stomach (AGE/S). The oncogene S100A4 was identified as a Wnt-signaling target gene and is known to promote metastasis. In this project, we illuminate the role of S100A4 for metastases development and disease prognosis of AGE/S. Five gastric cancer cell lines were assessed for S100A4 expression. Two cell lines with endogenous high S100A4 expression were used for functional phenotyping including analysis of proliferation and migration after stable S100A4 knock-down. The prognostic value of S100A4 was evaluated by analyzing the S100A4 expression of tissue microarrays with samples of 277 patients with AGE/S. S100A4 knock-down induced lower migration in FLO1 and NCI-N87 cells. Treatment with niclosamide in these cells led to partial inhibition of S100A4 and to reduced migration. Patients with high S100A4 expression showed lower 5-year overall and disease-specific survival. In addition, a larger share of patients in the S100A4 high expressing group suffered from metachronous metastasis. This study identifies S100A4 as a negative prognostic marker for patients with AGE/S. The strong correlation between S100A4 expression, metastases development and patient survival might open opportunities to use S100A4 to improve the prognosis of these patients and as a therapeutic target for intervention in this tumor entity.
Collapse
Affiliation(s)
- Christoph Treese
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
- Berlin Institute of Health (BIH), 10115 Berlin, Germany
| | - Kimberly Hartl
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Michelle Pötzsch
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Matthias Dahlmann
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Moritz von Winterfeld
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Erika Berg
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.v.W.); (E.B.); (M.H.)
| | - Lena Timm
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Beate Rau
- Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
| | - Severin Daum
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany; (M.P.); (L.T.); (S.D.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 10115 Berlin, Germany; (C.T.); or (K.H.); (M.D.); (W.W.); (D.K.)
- German Cancer Consortium (DKTK), 69126 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
24
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
25
|
Yan Y, Ding X, Han C, Gao J, Liu Z, Liu Y, Wang K. Involvement of TMEM16A/ANO1 upregulation in the oncogenesis of colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166370. [PMID: 35231545 DOI: 10.1016/j.bbadis.2022.166370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
|
26
|
Niclosamide Suppresses Migration and Invasion of Human Osteosarcoma Cells by Repressing TGFBI Expression via the ERK Signaling Pathway. Int J Mol Sci 2022; 23:ijms23010484. [PMID: 35008910 PMCID: PMC8745393 DOI: 10.3390/ijms23010484] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a highly common malignant bone tumor. Its highly metastatic properties are the leading cause of mortality for cancer. Niclosamide, a salicylanilide derivative, is an oral antihelminthic drug of known anticancer potential. However, the effect of niclosamide on osteosarcoma cell migration, invasion and the mechanisms underlying have not been fully clarified. Therefore, this study investigated niclosamide’s underlying pathways and antimetastatic effects on osteosarcoma. In this study, U2OS and HOS osteosarcoma cell lines were treated with niclosamide and then subjected to assays for determining cell migration ability. The results indicated that niclosamide, at concentrations of up to 200 nM, inhibited the migration and invasion of human osteosarcoma U2OS and HOS cells and repressed the transforming growth factor beta-induced protein (TGFBI) expression of U2OS cells, without cytotoxicity. After TGFBI knockdown occurred, cellular migration and invasion behaviors of U2OS cells were significantly reduced. Moreover, niclosamide significantly decreased the phosphorylation of ERK1/2 in U2OS cells and the combination treatment of the MEK inhibitor (U0126) and niclosamide resulted in the intensive inhibition of the TGFBI expression and the migratory ability in U2OS cells. Therefore, TGFBI derived from osteosarcoma cells via the ERK pathway contributed to cellular migration and invasion and niclosamide inhibited these processes. These findings indicate that niclosamide may be a powerful preventive agent against the development and metastasis of osteosarcoma.
Collapse
|
27
|
Huang FL, Yu SJ, Liao EC, Li LY, Shen PW, Li CL. Niclosamide suppresses T‑cell acute lymphoblastic leukemia growth through activation of apoptosis and autophagy. Oncol Rep 2021; 47:30. [PMID: 34913075 PMCID: PMC8717126 DOI: 10.3892/or.2021.8241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a common pediatric malignancy, characterized by the abnormal presence of immature T-cell progenitors. Conventional treatments for T-ALL fail to prevent or cure the disease, with a high-risk of recurrence after the first remission. Thus, medical options are in demand to develop novel therapies for patients suffering with T-ALL. Niclosamide, a traditional oral anti-helminthic drug, has been reported to be a potential anticancer agent that regulates intracellular signaling pathways. Few studies have yet investigated the effects of niclosamide on the development of T-ALL. Here, the present study aimed to investigate the anti-leukemia effects of niclosamide on T-ALL. We first hypothesized that the suppressive effects of niclosamide on the tumor growth of T-ALL are exerted by regulating autophagy and apoptosis. Following niclosamide treatment, T-ALL cell viability was evaluated using MTT assay, and apoptosis with Annexin V/propidium iodide staining. In T-ALL cells treated with niclosamide, changes in apoptosis- and autophagy-related proteins were analyzed by western blotting. In addition, in an in vivo model, T-ALL xenograft mice were used to study the anti-leukemia effects of niclosamide. The results showed that niclosamide significantly reduced the viability of Jurkat and CCRF-CEM T-ALL cells in both a dose- and time-dependent manner. Niclosamide significantly activated the early and late phases of apoptosis in Jurkat (at 2 µM) and CCRF-CEM cells (at 1 µM). Furthermore, niclosamide upregulated protein expression of cleaved caspase-3 and LC3B, while downregulated those of Bcl-2 and p62, in a dose-dependent manner in both Jurkat and CCRF-CEM cells. The in vivo results showed that niclosamide treatment significantly suppressed tumor growth and the disease progression in T-ALL xenograft mice by activating cleaved caspase-3 and LC3B. We conclude that niclosamide plays an anti-leukemia role, and that it represents a novel approach for the treatment of T-ALL.
Collapse
Affiliation(s)
- Fang-Liang Huang
- Children's Medical Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| | - Sheng-Jie Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan, R.O.C
| | - En-Chih Liao
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan, R.O.C
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Pei-Wen Shen
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan, R.O.C
| | - Chia-Ling Li
- Children's Medical Center, Taichung Veterans General Hospital, Taichung 40705, Taiwan, R.O.C
| |
Collapse
|
28
|
Morris A, Pagare PP, Li J, Zhang Y. Drug discovery efforts toward inhibitors of canonical Wnt/β-catenin signaling pathway in the treatment of cancer: A composition-of-matter review (2010-2020). Drug Discov Today 2021; 27:1115-1127. [PMID: 34800684 DOI: 10.1016/j.drudis.2021.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
The Wnt/β-catenin pathway has a crucial role in the proliferation and differentiation of normal cells as well as the self-renewal and pluripotency of stem cells, including cancer stem cells (CSCs). Targeting this pathway with small-molecule chemotherapeutics, discovered via conventional efforts, has proved difficult. Recently, computer-aided drug discovery efforts have produced promising chemotherapeutics. A concerted effort to develop inhibitors of this pathway through more efficient and cost-effective drug discovery methods could lead to a significant increase in clinically relevant therapeutics. Herein, patents from 2010 to 2020 are reviewed to identify those that have disclosed composition of matter for small-molecule inhibitors of the Wnt/ β-catenin pathway for cancer. We believe that such efforts will provide insights for future therapeutic candidate discovery and development in this field.
Collapse
Affiliation(s)
- Andrew Morris
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; The Institute for Structural Biology, Drug Discovery, and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
29
|
Ngai TW, Elfar GA, Yeo P, Phua N, Hor JH, Chen S, Ho YS, Cheok CF. Nitro-Deficient Niclosamide Confers Reduced Genotoxicity and Retains Mitochondrial Uncoupling Activity for Cancer Therapy. Int J Mol Sci 2021; 22:10420. [PMID: 34638761 PMCID: PMC8508655 DOI: 10.3390/ijms221910420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Niclosamide is an oral anthelmintic drug, approved for use against tapeworm infections. Recent studies suggest however that niclosamide may have broader clinical applications in cancers, spurring increased interest in the functions and mechanisms of niclosamide. Previously, we reported that niclosamide targets a metabolic vulnerability in p53-deficient tumours, providing a basis for patient stratification and personalised treatment strategies. In the present study, we functionally characterised the contribution of the aniline 4'-NO2 group on niclosamide to its cellular activities. We demonstrated that niclosamide induces genome-wide DNA damage that is mechanistically uncoupled from its antitumour effects mediated through mitochondrial uncoupling. Elimination of the nitro group in ND-Nic analogue significantly reduced γH2AX signals and DNA breaks while preserving its antitumour mechanism mediated through a calcium signalling pathway and arachidonic acid metabolism. Lipidomics profiling further revealed that ND-Nic-treated cells retained a metabolite profile characteristic of niclosamide-treated cells. Notably, quantitative scoring of drug sensitivity suggests that elimination of its nitro group enhanced the target selectivity of niclosamide against p53 deficiency. Importantly, the results also raise concern that niclosamide may impose a pleiotropic genotoxic effect, which limits its clinical efficacy and warrants further investigation into alternative drug analogues that may ameliorate any potential unwanted side effects.
Collapse
Affiliation(s)
- Tsz Wai Ngai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Gamal Ahmed Elfar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Pearlyn Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Nicholas Phua
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Jin Hui Hor
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
| | - Shuwen Chen
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Ying Swan Ho
- Analytical Science and Technology (Metabolomics), Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (S.C.); (Y.S.H.)
| | - Chit Fang Cheok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; (T.W.N.); (G.A.E.); (P.Y.); (N.P.); (J.H.H.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| |
Collapse
|
30
|
Shrestha R, Johnson E, Byrne FL. Exploring the therapeutic potential of mitochondrial uncouplers in cancer. Mol Metab 2021; 51:101222. [PMID: 33781939 PMCID: PMC8129951 DOI: 10.1016/j.molmet.2021.101222] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mitochondrial uncouplers are well-known for their ability to treat a myriad of metabolic diseases, including obesity and fatty liver diseases. However, for many years now, mitochondrial uncouplers have also been evaluated in diverse models of cancer in vitro and in vivo. Furthermore, some mitochondrial uncouplers are now in clinical trials for cancer, although none have yet been approved for the treatment of cancer. SCOPE OF REVIEW In this review we summarise published studies in which mitochondrial uncouplers have been investigated as an anti-cancer therapy in preclinical models. In many cases, mitochondrial uncouplers show strong anti-cancer effects both as single agents, and in combination therapies, and some are more toxic to cancer cells than normal cells. Furthermore, the mitochondrial uncoupling mechanism of action in cancer cells has been described in detail, with consistencies and inconsistencies between different structural classes of uncouplers. For example, many mitochondrial uncouplers decrease ATP levels and disrupt key metabolic signalling pathways such as AMPK/mTOR but have different effects on reactive oxygen species (ROS) production. Many of these effects oppose aberrant phenotypes common in cancer cells that ultimately result in cell death. We also highlight several gaps in knowledge that need to be addressed before we have a clear direction and strategy for applying mitochondrial uncouplers as anti-cancer agents. MAJOR CONCLUSIONS There is a large body of evidence supporting the therapeutic use of mitochondrial uncouplers to treat cancer. However, the long-term safety of some uncouplers remains in question and it will be critical to identify which patients and cancer types would benefit most from these agents.
Collapse
Affiliation(s)
- Riya Shrestha
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Edward Johnson
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Frances L Byrne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia.
| |
Collapse
|
31
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
32
|
Repurposing Niclosamide for Targeting Pancreatic Cancer by Inhibiting Hh/Gli Non-Canonical Axis of Gsk3β. Cancers (Basel) 2021; 13:cancers13133105. [PMID: 34206370 PMCID: PMC8269055 DOI: 10.3390/cancers13133105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The current obstacles for discovering new drugs for cancer therapy have necessitated the development of the alternative strategy of drug repurposing, the identification of new uses for approved or investigational drugs for new therapeutic purposes. Niclosamide (Nic) is a Food and Drug Administration (FDA)-approved anti-helminthic drug, reported to have anti-cancer effects, and is being assessed in various clinical trials. In the current study, we assessed the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. Our results revealed mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. This study provided a novel mechanistic insight for anti-cancer efficacy of Nic by increasing p-Gsk3β that modulates molecular signaling(s), including inhibition of hedgehog (Hh) signaling-mediated cellular proliferation and increased apoptosis through mTORC1-dependent autophagy may prove helpful for the development of novel PC therapies. Abstract Niclosamide (Nic), an FDA-approved anthelmintic drug, is reported to have anti-cancer efficacy and is being assessed in clinical trials for various solid tumors. Based on its ability to target multiple signaling pathways, in the present study, we evaluated the therapeutic efficacy of Nic on pancreatic cancer (PC) in vitro. We observed an anti-cancerous effect of this drug as shown by the G0/G1 phase cell cycle arrest, inhibition of PC cell viability, colony formation, and migration. Our results revealed the involvement of mitochondrial stress and mTORC1-dependent autophagy as the predominant players of Nic-induced PC cell death. Significant reduction of Nic-induced reactive oxygen species (ROS) and cell death in the presence of a selective autophagy inhibitor spautin-1 demonstrated autophagy as a major contributor to Nic-mediated cell death. Mechanistically, Nic inhibited the interaction between BCL2 and Beclin-1 that supported the crosstalk of autophagy and apoptosis. Further, Nic treatment resulted in Gsk3β inactivation by phosphorylating its Ser-9 residue leading to upregulation of Sufu and Gli3, thereby negatively impacting hedgehog signaling and cell survival. Nic induced autophagic cell death, and p-Gsk3b mediated Sufu/Gli3 cascade was further confirmed by Gsk3β activator, LY-294002, by rescuing inactivation of Hh signaling upon Nic treatment. These results suggested the involvement of a non-canonical mechanism of Hh signaling, where p-Gsk3β acts as a negative regulator of Hh/Gli1 cascade and a positive regulator of autophagy-mediated cell death. Overall, this study established the therapeutic efficacy of Nic for PC by targeting p-Gsk3β mediated non-canonical Hh signaling and promoting mTORC1-dependent autophagy and cell death.
Collapse
|
33
|
Alyateem G, Nilubol N. Current Status and Future Targeted Therapy in Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:613248. [PMID: 33732213 PMCID: PMC7957049 DOI: 10.3389/fendo.2021.613248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The current treatment standards include complete surgical resection for localized resectable disease and systemic therapy with mitotane alone or in combination with etoposide, doxorubicin, and cisplatin in patients with advanced ACC. However, the efficacy of systemic therapy in ACC is very limited, with high rates of toxicities. The understanding of altered molecular pathways is critically important to identify effective treatment options that currently do not exist. In this review, we discuss the results of recent advanced in molecular profiling of ACC with the focus on dysregulated pathways from various genomic and epigenetic dysregulation. We discuss the potential translational therapeutic implication of molecular alterations. In addition, we review and summarize the results of recent clinical trials and ongoing trials.
Collapse
|
34
|
GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3. Oncotarget 2020; 11:3354-3370. [PMID: 32934779 PMCID: PMC7486697 DOI: 10.18632/oncotarget.27703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/14/2020] [Indexed: 02/01/2023] Open
Abstract
Recent evidence has implicated APOBEC3B (Apolipoprotein B mRNA editing enzyme catalytic subunit 3B) as a source of mutations in breast, bladder, cervical, lung, head, and neck cancers. However, the role of APOBEC3B in adrenocortical carcinoma (ACC) and the mechanisms through which its expression is regulated in cancer are not fully understood. Here, we report that APOBEC3B is overexpressed in ACC and it regulates cell proliferation by inducing S phase arrest. We show high APOBEC3B expression is associated with a higher copy number gain/loss at chromosome 4 and 8 and TP53 mutation rate in ACC. GATA3 was identified as a positive regulator of APOBEC3B expression and directly binds the APOBEC3B promoter region. Both GATA3 and APOBEC3B expression levels were associated with patient survival. Our study provides novel insights into the function and regulation of APOBEC3B expression in addition to its known mutagenic ability.
Collapse
|
35
|
Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells. J Bioenerg Biomembr 2020; 52:383-395. [DOI: 10.1007/s10863-020-09849-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/06/2020] [Indexed: 01/02/2023]
|
36
|
Wei W, Liu H, Yuan J, Yao Y. Targeting Wnt/β‐catenin by anthelmintic drug niclosamide overcomes paclitaxel resistance in esophageal cancer. Fundam Clin Pharmacol 2020; 35:165-173. [PMID: 32579788 DOI: 10.1111/fcp.12583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Wei Wei
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Hongfang Liu
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Jia Yuan
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| | - Yang Yao
- Department of Oncology Xiangyang Central Hospital Affiliated Hospital of Hubei University of Arts and Science Xiangyang China
| |
Collapse
|
37
|
A computational drug repositioning method applied to rare diseases: Adrenocortical carcinoma. Sci Rep 2020; 10:8846. [PMID: 32483162 PMCID: PMC7264316 DOI: 10.1038/s41598-020-65658-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/08/2020] [Indexed: 01/12/2023] Open
Abstract
Rare or orphan diseases affect only small populations, thereby limiting the economic incentive for the drug development process, often resulting in a lack of progress towards treatment. Drug repositioning is a promising approach in these cases, due to its low cost. In this approach, one attempts to identify new purposes for existing drugs that have already been developed and approved for use. By applying the process of drug repositioning to identify novel treatments for rare diseases, we can overcome the lack of economic incentives and make concrete progress towards new therapies. Adrenocortical Carcinoma (ACC) is a rare disease with no practical and definitive therapeutic approach. We apply Heter-LP, a new method of drug repositioning, to suggest novel therapeutic avenues for ACC. Our analysis identifies innovative putative drug-disease, drug-target, and disease-target relationships for ACC, which include Cosyntropin (drug) and DHCR7, IGF1R, MC1R, MAP3K3, TOP2A (protein targets). When results are analyzed using all available information, a number of novel predicted associations related to ACC appear to be valid according to current knowledge. We expect the predicted relations will be useful for drug repositioning in ACC since the resulting ranked lists of drugs and protein targets can be used to expedite the necessary clinical processes.
Collapse
|
38
|
Kar A, Wierman ME, Kiseljak-Vassiliades K. Update on in-vivo preclinical research models in adrenocortical carcinoma. Curr Opin Endocrinol Diabetes Obes 2020; 27:170-176. [PMID: 32304391 PMCID: PMC8103733 DOI: 10.1097/med.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize recent advances on development of in vivo preclinical models of adrenocortical carcinoma (ACC). RECENT FINDINGS Significant progress has been achieved in the underlying molecular mechanisms of adrenocortical tumorigenesis over the last decade, and recent comprehensive profiling analysis of ACC tumors identified several genetic and molecular drivers of this disease. Therapeutic breakthroughs, however, have been limited because of the lack of preclinical models recapitulating the molecular features and heterogeneity of the tumors. Recent publications on genetically engineered mouse models and development of patient-derived ACC xenografts in both nude mice and humanized mice now provide researchers with novel tools to explore therapeutic targets in the context of heterogeneity and tumor microenvironment in human ACC. SUMMARY We review current in-vivo models of ACC and discuss potential therapeutic opportunities that have emerged from these studies.
Collapse
Affiliation(s)
- Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, USA
| |
Collapse
|
39
|
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) highlights an urgent need for therapeutics. Through a series of drug repurposing screening campaigns, niclosamide, an FDA-approved anthelminthic drug, was found to be effective against various viral infections with nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV, HCV, and human adenovirus, indicating its potential as an antiviral agent. In this brief review, we summarize the broad antiviral activity of niclosamide and highlight its potential clinical use in the treatment of COVID-19.
Collapse
Affiliation(s)
| | | | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | | |
Collapse
|
40
|
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19) highlights an urgent need for therapeutics. Through a series of drug repurposing screening campaigns, niclosamide, an FDA-approved anthelminthic drug, was found to be effective against various viral infections with nanomolar to micromolar potency such as SARS-CoV, MERS-CoV, ZIKV, HCV, and human adenovirus, indicating its potential as an antiviral agent. In this brief review, we summarize the broad antiviral activity of niclosamide and highlight its potential clinical use in the treatment of COVID-19.
Collapse
Affiliation(s)
| | | | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Avenue, Albany, New York 12208, United States
| | | |
Collapse
|
41
|
Altieri B, Ronchi CL, Kroiss M, Fassnacht M. Next-generation therapies for adrenocortical carcinoma. Best Pract Res Clin Endocrinol Metab 2020; 34:101434. [PMID: 32622829 DOI: 10.1016/j.beem.2020.101434] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost one decade ago, etoposide, doxorubicin, cisplatin and mitotane (EDP-M) has been established as first-line systemic therapy of metastatic adrenocortical carcinoma (ACC). Although heterogeneous, the prognosis of advanced stage ACC is still poor and novel treatments are urgently needed. This article provides a short summary of current systemic ACC treatment and provides a comprehensive overview of new therapeutic approaches that have been investigated in the past years, including drugs targeting the IGF pathway, tyrosine kinase inhibitors, radionuclide treatment, and immunotherapy. The results of most of these trials were disappointing and we will discuss possible reasons why these drugs failed (e.g. drug interactions with mitotane, disease heterogeneity with exceptional responses in very few patients, and resistance mechanisms to immunotherapy). We then will present potential new drug targets that have emerged from many molecular studies (e.g. wnt/β-catenin, cyclin-dependent kinases, PARP1) that may be the foundation of next-generation therapies of ACC.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Mainfranken, University of Würzburg, Würzburg, Germany; Central Laboratory, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
42
|
Armando RG, Gómez DLM, Gomez DE. New drugs are not enough‑drug repositioning in oncology: An update. Int J Oncol 2020; 56:651-684. [PMID: 32124955 PMCID: PMC7010222 DOI: 10.3892/ijo.2020.4966] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/16/2019] [Indexed: 11/24/2022] Open
Abstract
Drug repositioning refers to the concept of discovering novel clinical benefits of drugs that are already known for use treating other diseases. The advantages of this are that several important drug characteristics are already established (including efficacy, pharmacokinetics, pharmacodynamics and toxicity), making the process of research for a putative drug quicker and less costly. Drug repositioning in oncology has received extensive focus. The present review summarizes the most prominent examples of drug repositioning for the treatment of cancer, taking into consideration their primary use, proposed anticancer mechanisms and current development status.
Collapse
Affiliation(s)
- Romina Gabriela Armando
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Diego Luis Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| | - Daniel Eduardo Gomez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
| |
Collapse
|
43
|
Lee MC, Chen YK, Hsu YJ, Lin BR. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol Rep 2019; 43:549-561. [PMID: 31894334 PMCID: PMC6967135 DOI: 10.3892/or.2019.7449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug, and may elicit antineoplastic effects through direct STAT3 inhibition, which has been revealed in numerous human cancer cells. Chemotherapy is the standard treatment for advanced esophageal cancers, but also causes severe systemic side effects. The present study represents the first study evaluating the anticancer efficacy of niclosamide in esophageal cancers. Through western blot assay, it was demonstrated that niclosamide suppressed the STAT3 signaling pathway in esophageal adenocarcinoma cells (BE3) and esophageal squamous cell carcinoma cells (CE48T and CE81T). In addition, niclosamide inhibited cell proliferation as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and soft agar colony forming assay, and induced cell apoptosis as determined by Annexin V and PI staining. The induction of p21 and G1 arrest of the cell cycle also was revealed in niclosamide-treated CE81T cells by qPCR and flow cytometric assays, respectively. Furthermore, in the combination analysis of niclosamide and chemotherapeutic agents by MTS assay, low IC50 values were detected in cells co-treated with niclosamide, with the exception of cisplatin-treated CE81T cells. To confirm the results using an apoptosis assay, the apoptotic enhancement of niclosamide was only demonstrated in CE48T cells co-treated with 5-FU, cisplatin, or paclitaxel, and in BE3 cells co-treated with paclitaxel, but not in CE81T cells. These findings indicate a future clinical application of niclosamide in esophageal cancers.
Collapse
Affiliation(s)
- Ming-Cheng Lee
- Department of Research and Development, DrSignal BioTechnology Ltd., New Taipei City 23143, Taiwan, R.O.C
| | - Yin-Kai Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan, R.O.C
| | - Yih-Jen Hsu
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| | - Bor-Ru Lin
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| |
Collapse
|
44
|
Zhu Y, Zuo W, Chen L, Bian S, Jing J, Gan C, Wu X, Liu H, Su X, Hu W, Guo Y, Wang Y, Ye T. Repurposing of the anti-helminthic drug niclosamide to treat melanoma and pulmonary metastasis via the STAT3 signaling pathway. Biochem Pharmacol 2019; 169:113610. [PMID: 31465777 DOI: 10.1016/j.bcp.2019.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/14/2019] [Indexed: 02/05/2023]
Abstract
The incidence of melanoma is increasing rapidly worldwide. Additionally, new and effective candidates for treating melanoma are needed because of the increase in drug resistance and the high metastatic potential of this cancer. The STAT3 signaling pathway plays a pivotal role in pathogenesis of melanoma, making STAT3 a promising anticancer target for melanoma therapy. Niclosamide, an FDA-approved anti-helminthic drug, has been identified as a potent STAT3 inhibitor that suppresses STAT3 phosphorylation at Tyr705 and its transcript activity. In this study, we evaluated the biological activities of niclosamide in melanoma in vitro and in vivo. Niclosamide potently inhibited the growth of four melanoma cell lines and induced the apoptosis of melanoma cells via the mitochondrial apoptotic pathway. Further, western blot analysis indicated that cell apoptosis was correlated with activation of Bax and cleaved caspase-3 and decreased expression of Bcl-2. Moreover, niclosamide markedly impaired melanoma cell migration and invasion, reduced phosphorylated STAT3Tyr705 levels, and inhibited matrix metalloproteinase-2 and -9 expression. Additionally, in a xenograft model of A375, intraperitoneal administration of niclosamide inhibited tumor growth and tumor weight in a dose-dependent manner without obvious side effects. Histological and immunohistochemical analyses revealed a decrease in Ki-67-positive cells and p-STAT3Try705-positive cells and increase in cleaved caspase-3-positive cells. Notably, niclosamide significantly inhibited pulmonary metastasis in a B16-F10 melanoma lung metastasis model, including the number of lung metastatic nodules and lung/body coefficient. Importantly, a marked reduction in myeloid-derived suppressor cells (Gr1+CD11b+) infiltration in the pulmonary metastasis tissue was observed. Taken together, these results demonstrate that niclosamide is a promising candidate for treating melanoma.
Collapse
Affiliation(s)
- Yongxia Zhu
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Weiqiong Zuo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lijuan Chen
- Department of Radiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Shasha Bian
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Jiayu Jing
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Cailin Gan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xiuli Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hongyao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingping Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Wanglai Hu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yuqi Guo
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou 450003, China.
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
45
|
Huo Y, Chen WS, Lee J, Feng GS, Newton IG. Stress Conditions Induced by Locoregional Therapies Stimulate Enrichment and Proliferation of Liver Cancer Stem Cells. J Vasc Interv Radiol 2019; 30:2016-2025.e5. [PMID: 31208945 DOI: 10.1016/j.jvir.2019.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study tested the hypothesis that stress conditions that simulated percutaneous thermal ablation (PTA), transarterial embolization (TAE), or transarterial chemoembolization stimulated enrichment of hepatocellular carcinoma (HCC) cancer stem cells (hCSCs) and that hCSC inhibitors can suppress this effect. MATERIALS AND METHODS Human HCC cell lines HepG2 and PLC/PRF/5 were subjected to a 46.5°C heat bath for 10 minutes or to 1% hypoxia for 72 hours without fetal bovine serum and with or without doxorubicin. Cells were then treated with a β-catenin inhibitor (FH535 or XAV939), a PI3 kinase inhibitor (Ly294002), or niclosamide, a US Food and Drug Administration-approved antihelminthic drug that acts as a mitochondrial decoupler and mixed inhibitor. Surviving cells were analyzed for hCSC markers by flow cytometry, for stemness by colony-forming assay or sphere-forming assay, and for proliferative capacity by MTT assay (where MTT is 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide). Expression of proteins related to CSC renewal and proliferation were analyzed by immunoblotting and immunostaining. RESULTS Conditions that simulated PTA, TAE, and transarterial chemoembolization resulted in an enrichment of cells bearing hCSC markers (CD133, CD44, and EpCAM). Cells surviving heat stress exhibited higher colony- or sphere-forming capacity and a greater proliferative state. These effects could be suppressed by niclosamide and inhibitors of β-catenin and PI3 kinase. CONCLUSIONS Stress conditions induced by locoregional therapies stimulated hCSC enrichment and proliferation, which could be suppressed by niclosamide and inhibitors of pathways important for hCSC renewal. Future studies will determine whether combining locoregional therapies with adjuvant hCSC inhibitors reduces HCC recurrence.
Collapse
Affiliation(s)
- Yuchen Huo
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Wendy S Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Jin Lee
- Division of Biological Sciences, University of California San Diego, La Jolla, California
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California
| | - Isabel G Newton
- Department of Radiology, University of California San Diego, La Jolla, California; Veterans Affairs San Diego Healthcare System, San Diego, California.
| |
Collapse
|
46
|
Pereira SS, Monteiro MP, Antonini SR, Pignatelli D. Apoptosis regulation in adrenocortical carcinoma. Endocr Connect 2019; 8:R91-R104. [PMID: 30978697 PMCID: PMC6510712 DOI: 10.1530/ec-19-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis evading is a hallmark of cancer. Tumor cells are characterized by having an impaired apoptosis signaling, a fact that deregulates the balance between cell death and survival, leading to tumor development, invasion and resistance to treatment. In general, patients with adrenocortical carcinomas (ACC) have an extremely bad prognosis, which is related to disease progression and significant resistance to treatments. In this report, we performed an integrative review about the disruption of apoptosis in ACC that may underlie the characteristic poor prognosis in these patients. Although the apoptosis has been scarcely studied in ACC, the majority of the deregulation phenomena already described are anti-apoptotic. Most importantly, in a near future, targeting apoptosis modulation in ACC patients may become a promising therapeutic.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
- Correspondence should be addressed to D Pignatelli:
| |
Collapse
|
47
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
48
|
Grafting of niclosamide and salicylanilide onto hydrophilic polyurethane for the control of fungal and barnacle growth. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-018-2481-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Han Z, Li Q, Wang Y, Wang L, Li X, Ge N, Wang Y, Guo C. Niclosamide Induces Cell Cycle Arrest in G1 Phase in Head and Neck Squamous Cell Carcinoma Through Let-7d/CDC34 Axis. Front Pharmacol 2019; 9:1544. [PMID: 30687101 PMCID: PMC6333743 DOI: 10.3389/fphar.2018.01544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023] Open
Abstract
Niclosamide is a traditional anti-tapeworm drug that exhibits potent anti-cancer activity. Our previous study showed that niclosamide induces cell cycle arrest in G1 phase. Nevertheless, the underlying mechanism remains unknown. The following study investigated the molecular mechanism through which niclosamide induced G1 arrest in head and neck squamous cell carcinoma (HNSCC) cell lines. The effect of niclosamide on human HNSCC cell line WSU-HN6 and CNE-2Z were analyzed using IncuCyte ZOOMTM assay, flow cytometry (FCM), real-time PCR and western blot. Luciferase assay was conducted to demonstrate the interaction between let-7d (a let-7 family member which functions as a tumor suppressor by regulating cell cycle) and 3′UTR of CDC34 mRNA. Xenografts tumor model was established to evaluate the niclosamide treatment efficacy in vivo. Briefly, an exposure to niclosamide treatment led to an increased let-7d expression and a decreased expression of cell cycle regulator CDC34, finally leading to G1 phase arrest. Moreover, an overexpression of let-7d induced G1 phase arrest and downregulated CDC34, while the knockdown of let-7d partially rescued the niclosamide-induced G1 phase arrest. Luciferase assay confirmed the direct inhibition of CDC34 through the targeting of let-7d. Furthermore, niclosamide markedly inhibited the xenografts growth through up-regulation of let-7d and down-regulation of CDC34. To sum up, our findings suggest that niclosamide induces cell cycle arrest in G1 phase in HNSCC through let-7d/CDC34 axis, which enriches the anti-cancer mechanism of niclosamide.
Collapse
Affiliation(s)
- Zewen Han
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoxu Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Na Ge
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
50
|
Targeting Mitochondria for Treatment of Chemoresistant Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20010229. [PMID: 30626133 PMCID: PMC6337358 DOI: 10.3390/ijms20010229] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.
Collapse
|