1
|
Tang P, Shen X, Gao J, Zhang J, Feng Y, Zhang J, Huang Z, Wang X. Distinct characteristics of BTLA/HVEM axis expression on Tregs and its impact on the expansion and attributes of Tregs in patients with active pulmonary tuberculosis. Front Cell Infect Microbiol 2024; 14:1437207. [PMID: 39386167 PMCID: PMC11461443 DOI: 10.3389/fcimb.2024.1437207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Pulmonary tuberculosis (PTB) remains one of the deadliest infectious diseases. Understanding PTB immunity is of potential value for exploring immunotherapy for treating chemotherapy-resistant PTB. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are key players that impair immune responses to Mycobacteria tuberculosis (MTB). Currently, the intrinsic factors governing Treg expansion and influencing the immunosuppressive attributes of Tregs in PTB patients are far from clear. Methods Here, we employed flow cytometry to determine the frequency of Tregs and the expression of B and T lymphocyte attenuator (BTLA) and its ligand, herpesvirus entry mediator (HVEM), on Tregs in patients with active PTB. Furthermore, the expression of conventional T cells and of programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) on Tregs in patients with active PTB was determined. We then examined the characteristics of BTLA/HVEM expression and its correlation with Treg frequency and PD-L1 and PD-1 expression on Tregs in PTB patients. Results The frequency of Tregs was increased in PTB patients and it had a relevance to PTB progression. Intriguingly, the axis of cosignal molecules, BTLA and HVEM, were both downregulated on the Tregs of PTB patients compared with healthy controls (HCs), which was the opposite of their upregulation on conventional T cells. Unexpectedly, their expression levels were positively correlated with the frequency of Tregs, respectively. These seemingly contradictory results may be interpreted as follows: the downregulation of BTLA and HVEM may alleviate BTLA/HVEM cis-interaction-mediated coinhibitory signals pressing on naïve Tregs, helping their activation, while the BTLA/HVEM axis on effector Tregs induces a costimulatory signal, promoting their expansion. Certainly, the mechanism underlying such complex effects remains to be explored. Additionally, PD-L1 and PD-1, regarded as two of the markers characterizing the immunosuppressive attributes and differentiation potential of Tregs, were upregulated on the Tregs of PTB patients. Further analysis revealed that the expression levels of BTLA and HVEM were positively correlated with the frequency of PD-1+Tregs and PD-L1+Tregs, respectively. Conclusion Our study illuminated distinct characteristics of BTLA/HVEM axis expression on Tregs and uncovered its impact on the expansion and attributes of Tregs in patients with active PTB. Therefore, blockade of the BTLA/HVEM axis may be a promising potential pathway to reduce Treg expansion for the improvement of anti-MTB immune responses.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Xinghua Shen
- Department of Critical Care Medicine, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Zhang
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Yanjun Feng
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuefeng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Liu FQ, Qu QY, Lei Y, Chen Q, Chen YX, Li ML, Sun XY, Wu YJ, Huang QS, Fu HX, Kong Y, Li YY, Wang QF, Huang XJ, Zhang XH. High dimensional proteomic mapping of bone marrow immune characteristics in immune thrombocytopenia. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1635-1647. [PMID: 38644444 DOI: 10.1007/s11427-023-2520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 04/23/2024]
Abstract
To investigate the role of co-stimulatory and co-inhibitory molecules on immune tolerance in immune thrombocytopenia (ITP), this study mapped the immune cell heterogeneity in the bone marrow of ITP at the single-cell level using Cytometry by Time of Flight (CyTOF). Thirty-six patients with ITP and nine healthy volunteers were enrolled in the study. As soluble immunomodulatory molecules, more sCD25 and sGalectin-9 were detected in ITP patients. On the cell surface, co-stimulatory molecules like ICOS and HVEM were observed to be upregulated in mainly central memory and effector T cells. In contrast, co-inhibitory molecules such as CTLA-4 were significantly reduced in Th1 and Th17 cell subsets. Taking a platelet count of 30×109 L-1 as the cutoff value, ITP patients with high and low platelet counts showed different T cell immune profiles. Antigen-presenting cells such as monocytes and B cells may regulate the activation of T cells through CTLA-4/CD86 and HVEM/BTLA interactions, respectively, and participate in the pathogenesis of ITP. In conclusion, the proteomic and soluble molecular profiles brought insight into the interaction and modulation of immune cells in the bone marrow of ITP. They may offer novel targets to develop personalized immunotherapies.
Collapse
Affiliation(s)
- Feng-Qi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qing-Yuan Qu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yu-Xiu Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Meng-Lin Li
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Xue-Yan Sun
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Ye-Jun Wu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Qiu-Sha Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
| | - Yue-Ying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100074, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China.
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, 100044, China.
- National Clinical Research Center for Hematologic Disease, Beijing, 100044, China.
- Collaborative Innovation Centre of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
3
|
Arifin MZ, Leitner J, Egan D, Waidhofer-Söllner P, Kolch W, Zhernovkov V, Steinberger P. BTLA and PD-1 signals attenuate TCR-mediated transcriptomic changes. iScience 2024; 27:110253. [PMID: 39021788 PMCID: PMC11253514 DOI: 10.1016/j.isci.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
T cell co-inhibitory immune checkpoints, such as PD-1 or BTLA, are bona fide targets in cancer therapy. We used a human T cell reporter line to measure transcriptomic changes mediated by PD-1- and BTLA-induced signaling. T cell receptor (TCR)-complex stimulation resulted in the upregulation of a large number of genes but also in repression of a similar number of genes. PD-1 and BTLA signals attenuated transcriptomic changes mediated by TCR-complex signaling: upregulated genes tended to be suppressed and the expression of a significant number of downregulated genes was higher during PD-1 or BTLA signaling. BTLA was a significantly stronger attenuator of TCR-complex-induced transcriptome changes than PD-1. A strong overlap between genes that were regulated indicated quantitative rather than qualitative differences between these receptors. In line with their function as attenuators of TCR-complex-mediated changes, we found strongly regulated genes to be prime targets of PD-1 and BTLA signaling.
Collapse
Affiliation(s)
- Muhammad Zainul Arifin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Donagh Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Guruprasad P, Carturan A, Zhang Y, Cho JH, Kumashie KG, Patel RP, Kim KH, Lee JS, Lee Y, Kim JH, Chung J, Joshi A, Cohen I, Shestov M, Ghilardi G, Harris J, Pajarillo R, Angelos M, Lee YG, Liu S, Rodriguez J, Wang M, Ballard HJ, Gupta A, Ugwuanyi OH, Hong SJA, Bochi-Layec AC, Sauter CT, Chen L, Paruzzo L, Kammerman S, Shestova O, Liu D, Vella LA, Schuster SJ, Svoboda J, Porazzi P, Ruella M. The BTLA-HVEM axis restricts CAR T cell efficacy in cancer. Nat Immunol 2024; 25:1020-1032. [PMID: 38831106 DOI: 10.1038/s41590-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Mice, Knockout
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Puneeth Guruprasad
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki-Hyun Kim
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Jong-Seo Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Yoon Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | | | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Akshita Joshi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Shan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Albert Hong
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey C Bochi-Layec
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher T Sauter
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Kammerman
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Laura A Vella
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Wojciechowicz K, Kuncewicz K, Lisowska KA, Wardowska A, Spodzieja M. Peptides targeting the BTLA-HVEM complex can modulate T cell immune response. Eur J Pharm Sci 2024; 193:106677. [PMID: 38128840 DOI: 10.1016/j.ejps.2023.106677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Immune checkpoints secure the proper function of the immune system and the maintenance of the BTLA-HVEM complex, an inhibitory immune checkpoint, is one of the pathways vital for T cell responsiveness to various stimuli. The present study reports the immunomodulatory potential of five peptides targeting the BTLA-HVEM complex on the activity of human T cells. Isolated T cells were exposed to the peptides alone or combined with CD3/CD28 mAb for 72 h or 120 h. The flow cytometry was used to evaluate the activation markers (CD69, CD62L, CD25), changes within the T cell memory compartment, proliferation rate, and apoptosis of T cells. The immunomodulatory effect of the peptides was visible as an increase in the percentage of CD4+ and CD8+ T cells expressing CD69 or CD25, a boost in T cell proliferation, and shifts in the T cell memory compartment. Pep(2) and Pep(5) were the most promising compounds, displaying a putative immune-restoring function.
Collapse
Affiliation(s)
- Karolina Wojciechowicz
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Katarzyna Kuncewicz
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland
| | - Katarzyna A Lisowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Poland.
| | - Marta Spodzieja
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Poland.
| |
Collapse
|
6
|
Small A, Lowe K, Wechalekar MD. Immune checkpoints in rheumatoid arthritis: progress and promise. Front Immunol 2023; 14:1285554. [PMID: 38077329 PMCID: PMC10704353 DOI: 10.3389/fimmu.2023.1285554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune inflammatory conditions, and while the mechanisms driving pathogenesis are yet to be completely elucidated, self-reactive T cells and immune checkpoint pathways have a clear role. In this review, we provide an overview of the importance of checkpoint pathways in the T cell response and describe the involvement of these in RA development and progression. We discuss the relationship between immune checkpoint therapy in cancer and autoimmune adverse events, draw parallels with the involvement of immune checkpoints in RA pathobiology, summarise emerging research into some of the lesser-known pathways, and the potential of targeting checkpoint-related pathways in future treatment approaches to RA management.
Collapse
Affiliation(s)
- Annabelle Small
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Katie Lowe
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- Department of Rheumatology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Rheumatology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
7
|
Mohamed AH, Obeid RA, Fadhil AA, Amir AA, Adhab ZH, Jabouri EA, Ahmad I, Alshahrani MY. BTLA and HVEM: Emerging players in the tumor microenvironment and cancer progression. Cytokine 2023; 172:156412. [PMID: 39492110 DOI: 10.1016/j.cyto.2023.156412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Immunotherapy has emerged as a revolutionary cancer treatment, particularly with the introduction of immune checkpoint inhibitors (ICIs). ICIs target specific proteins that restrain the immune system from attacking cancer cells. Prominent examples of checkpoint proteins that ICIs block include PD-1, PD-L1, and CTLA-4. The success of PD-1/L1 and CTLA-4 blockade has prompted further research on other inhibitory mechanisms that could aid in the treatment of cancer. One such mechanism is the BTLA/HVEM checkpoint, which regulates immune responses in a similar manner to CTLA-4 and PD-1. BTLA, a member of the Ig superfamily, binds to HVEM, a member of the TNF receptor superfamily. While BTLA is essential for maintaining immunological self-tolerance and preventing autoimmune diseases, overexpression of BTLA and HVEM has been observed in various malignancies such as lung, ovarian, glioblastoma, gastric cancer, and non-Hodgkin's lymphoma. The function of the BTLA/HVEM checkpoint in various malignancies has been extensively studied, revealing its significant role in immunotherapy for cancer. This review study aims to explain the BTLA/HVEM checkpoint and its functions in different types of cancers. In conclusion, the development of new immunotherapies such as ICIs has revolutionized cancer treatment. The discovery of the BTLA/HVEM checkpoint and its role in various malignancies provides opportunities for advancing cancer treatment through immunotherapy.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, 51001 Hilla, Babylon, Iraq
| | - Ruaa Ali Obeid
- College of Pharmacy, Department of Pharmaceutics, University of Al-Ameed, Iraq
| | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Zainab H Adhab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Enaam Anad Jabouri
- Department of Medical Laboratory Technics, AlNoor University College, Nineveh, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
8
|
Sordo-Bahamonde C, Lorenzo-Herrero S, Granda-Díaz R, Martínez-Pérez A, Aguilar-García C, Rodrigo JP, García-Pedrero JM, Gonzalez S. Beyond the anti-PD-1/PD-L1 era: promising role of the BTLA/HVEM axis as a future target for cancer immunotherapy. Mol Cancer 2023; 22:142. [PMID: 37649037 PMCID: PMC10466776 DOI: 10.1186/s12943-023-01845-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Recent introduction of monoclonal antibodies targeting immune checkpoints to harness antitumor immunity has revolutionized the cancer treatment landscape. The therapeutic success of immune checkpoint blockade (ICB)-based therapies mainly relies on PD-1/PD-L1 and CTLA-4 blockade. However, the limited overall responses and lack of reliable predictive biomarkers of patient´s response are major pitfalls limiting immunotherapy success. Hence, this reflects the compelling need of unveiling novel targets for immunotherapy that allow to expand the spectrum of ICB-based strategies to achieve optimal therapeutic efficacy and benefit for cancer patients. This review thoroughly dissects current molecular and functional knowledge of BTLA/HVEM axis and the future perspectives to become a target for cancer immunotherapy. BTLA/HVEM dysregulation is commonly found and linked to poor prognosis in solid and hematological malignancies. Moreover, circulating BTLA has been revealed as a blood-based predictive biomarker of immunotherapy response in various cancers. On this basis, BTLA/HVEM axis emerges as a novel promising target for cancer immunotherapy. This prompted rapid development and clinical testing of the anti-BTLA blocking antibody Tifcemalimab/icatolimab as the first BTLA-targeted therapy in various ongoing phase I clinical trials with encouraging results on preliminary efficacy and safety profile as monotherapy and combined with other anti-PD-1/PD-L1 therapies. Nevertheless, it is anticipated that the intricate signaling network constituted by BTLA/HVEM/CD160/LIGHT involved in immune response regulation, tumor development and tumor microenvironment could limit therapeutic success. Therefore, in-depth functional characterization in different cancer settings is highly recommended for adequate design and implementation of BTLA-targeted therapies to guarantee the best clinical outcomes to benefit cancer patients.
Collapse
Affiliation(s)
- Christian Sordo-Bahamonde
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Seila Lorenzo-Herrero
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rocío Granda-Díaz
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Martínez-Pérez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Candelaria Aguilar-García
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan P Rodrigo
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M García-Pedrero
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Otolaryngology-Head and Neck Surgery, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Segundo Gonzalez
- Department of Functional Biology, Immunology, Universidad de Oviedo, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
| |
Collapse
|
9
|
You S, Wang MJ, Hou ZY, Wang WD, Du TT, Xue NN, Ji M, Chen XG. Chlorogenic Acid Induced Neuroblastoma Cells Differentiation via the ACAT1-TPK1-PDH Pathway. Pharmaceuticals (Basel) 2023; 16:877. [PMID: 37375824 DOI: 10.3390/ph16060877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chlorogenic acid (CHA) has been shown to have substantial biological activities, including anti-inflammatory, antioxidant, and antitumor effects. However, the pharmacological role of CHA in neuroblastoma has not yet been assessed. Neuroblastoma is a type of cancer that develops in undifferentiated sympathetic ganglion cells. This study aims to assess the antitumor activity of CHA against neuroblastoma and reveal its mechanism of action in cell differentiation. METHODS Be(2)-M17 and SH-SY5Y neuroblastoma cells were used to confirm the differentiation phenotype. Subcutaneous and orthotopic xenograft mouse models were also used to evaluate the antitumor activity of CHA. Seahorse assays and metabolomic analyses were further performed to investigate the roles of CHA and its target ACAT1 in mitochondrial metabolism. RESULTS CHA induced the differentiation of Be(2)-M17 and SH-SY5Y neuroblastoma cells in vivo and in vitro. The knockdown of mitochondrial ACAT1, which was inhibited by CHA, also resulted in differentiation characteristics in vivo and in vitro. A metabolomic analysis revealed that thiamine metabolism was involved in the differentiation of neuroblastoma cells. CONCLUSIONS These results provide evidence that CHA shows good antitumor activity against neuroblastoma via the induction of differentiation, by which the ACAT1-TPK1-PDH pathway is involved. CHA is a potential drug candidate for neuroblastoma therapy.
Collapse
Affiliation(s)
- Shen You
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Jin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Yan Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei-Da Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ting-Ting Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ni-Na Xue
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Xiao-Guang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, Kang Y, Ganesan S, Sabaawy HE, Pine SR. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 2023:10.1038/s41388-023-02715-5. [PMID: 37258742 DOI: 10.1038/s41388-023-02715-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Zhong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wen Lu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143-0795, USA
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gregory Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hatim E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Tang Y, Cao J, Peng R, Mao X, Su B, Tang H, Tu D, Zhou J, Jiang G, Jin S, Wang Q, Zhang C, Liu R, Zhang C, Bai D. Screening and Verification of Key Ubiquitination Genes Related to Immune Infiltration in Stage III/IV Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:765-781. [PMID: 37250505 PMCID: PMC10216869 DOI: 10.2147/jhc.s407536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Immune checkpoint therapy (ICIs) effectively improves the prognosis of advanced (stage III/IV) hepatocellular carcinoma (HCC) patients. However, its objective response rate (ORR) is below 20%, significantly limiting ICI use in advanced HCC patients. The level of tumour immune infiltration influences ICI response rate. Recent studies have found ubiquitinase to be an important factor that regulates tumour immune infiltration. Therefore, the aim of this study is to explore the key ubiquitination genes that regulate immune infiltration in advanced HCC and further validate them. Methods A biotechnological process was performed as a means of classifying 90 advanced HCC patients into three immune subtypes and identifying associations with immune infiltration in the co-expressed modules. Ubiquitination-related genes were then screened with WGCNA. Gene enrichment analysis was performed for the target module and 30 hub genes were screened out by protein-protein interaction network (PPI). ssGSEA, single-gene sequencing and the MCP counter were used for exploring immune infiltration. TIDE score was applied for predicting drug efficacy and GSEA was used for exploring potential pathways. Finally, GRB2 expression in HCC tissue was validated by in vitro experiments. Results GRB2 expression was found to have a significant correlation with the pathological stage and prognosis of HCC patients and a positive correlation with immune infiltration and tumour mutation burden (TMB). In addition, significant correlations with the efficacy of ICIs, sorafenib and transarterial chemoembolization (TACE) were identified. GRB2 was found to be most significantly associated with the JAK-STAT signalling pathway and cytosolic DNA sensing pathway. Finally, it was found that GRB2 expression is closely related to the prognosis, tumour size and TMN stage. Conclusion A significant association was observed between the ubiquitinated gene GRB2 and the prognosis and immune infiltration of advanced HCC patients and it may potentially be used for predicting therapy efficacy in advanced HCC patients in the future.
Collapse
Affiliation(s)
- Yuhong Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xingkang Mao
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hao Tang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qian Wang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chen Zhang
- The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Renjie Liu
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, People’s Republic of China
- General Surgery Institute of Yangzhou, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
12
|
Cheng TY, Liu YJ, Yan H, Xi YB, Duan LQ, Wang Y, Zhang TT, Gu YM, Wang XD, Wu CX, Gao S. Tumor Cell-Intrinsic BTLA Receptor Inhibits the Proliferation of Tumor Cells via ERK1/2. Cells 2022; 11:cells11244021. [PMID: 36552785 PMCID: PMC9777428 DOI: 10.3390/cells11244021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immune checkpoint molecule that mediates the escape of tumor cells from immunosurveillance. Consequently, BTLA and its ligand herpesvirus entry mediator (HVEM) are potentially immunotherapeutic targets. However, the potential effects of BTLA on tumor cells remain incompletely unknown. Here, we show that BTLA is expressed across a broad range of tumor cells. The depletion of BTLA or HVEM promotes cell proliferation and colony formation, which is reversed by the overexpression of BTLA in BTLA knockout cells. In contrast, overexpression of BTLA or HVEM inhibits tumor cell proliferation and colony formation. Furthermore, the proliferation of a subpopulation with high BTLA was also significantly slower than that of the low BTLA subpopulation. Mechanistically, the coordination of BTLA and HVEM inhibits its major downstream extracellular regulated protein kinase (ERK1/2) signaling pathway, thus preventing tumor cell growth. This study demonstrates that tumor cell-intrinsic BTLA/HVEM is a potential tumor suppressor and is likely to have a potential antagonist for immunotherapy, thus representing a potential biomarker for the optimal cancer immunotherapeutic treatment.
Collapse
Affiliation(s)
- Tian-You Cheng
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Ya-Juan Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Hong Yan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yi-Bo Xi
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Li-Qiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yang Wang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Tian-Tian Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Yin-Min Gu
- Zhongda Hospital, Medical School, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Xiao-Dong Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chang-Xin Wu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Shan Gao
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
- Correspondence:
| |
Collapse
|
13
|
Rush-Kittle J, Gámez-Díaz L, Grimbacher B. Inborn errors of immunity associated with defects of self-tolerance checkpoints: The CD28 family. Pediatr Allergy Immunol 2022; 33:e13886. [PMID: 36564875 DOI: 10.1111/pai.13886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/11/2022]
Abstract
One of the causes of inborn errors of immunity is immune dysregulation. The inability of the immune system to regulate the extent of its activity has several deleterious effects, including autoimmunity, recurrent infections, and malignancy. In recent years, many proteins in the CD28 family - CD28, ICOS, CTLA-4, PD-1, and BTLA - have come into the focus of several research areas for their consequential role in the upregulation or downregulation of the immune response. In this review, we will discuss the structure and function of these proteins, as well as provide an overview of the clinical picture of patients with genetic defects.
Collapse
Affiliation(s)
- Jorrell Rush-Kittle
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Xu F, Bian K, Wang S, Yao F, Chen J, Cao Y, Qin Y. B and T lymphocyte attenuator as a C-reactive protein and IgA associated auxiliary diagnostic marker for pulmonary tuberculosis: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1370. [PMID: 36660715 PMCID: PMC9843424 DOI: 10.21037/atm-22-6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Background Screening and identification of hematologic molecular indicators of pulmonary tuberculosis (PTB) is crucial for its diagnose and therapy. Therefore, our work aims to detect the diagnostic value of blood marker B and T lymphocyte attenuator (BTLA) in PTB, and provide a certain theoretical basis for the auxiliary diagnosis of PTB. Methods Based on the inclusion criteria, 56 Patients with clinically confirmed pulmonary TB by clinical between January 2020 and December 2021 at our hospital were selected as the research objects of this study. Fifty-two matched healthy population at our hospital was used as the control group. Clinical characteristics were got from clinical laboratory. Real-time polymerase chain reaction (RT-PCR) was used to analyze changes in BTLA along with its ligand in peripheral blood. Changes in BTLA on the surface of different cells were analyzed by flow cytometry. The correlation test was used to determine the associations between BTLA and clinical indicators. Receiver operating characteristic (ROC) curve analysis was used to evaluate the auxiliary diagnostic value in PTB of BTLA expression from different sources. Results Compared with the control, changes in peripheral blood BTLA in the PTB group were significantly increased (P=0.0187) rather than its ligand. Changes in BTLA on the surface of CD68 and antigen-presenting cell (APC) CD11c were significantly increased in the PTB group (P=0.0004, P<0.0001), while changes in BTLA on the surface of CD4+ T and CD8+ T cells were not significantly different (P=0.0792, P=0.8706). The expression of BTLA+CD11c+ was negatively correlated with the expression of immunoglobulin A (IgA) (r=-0.2934, P=0.0282) and positively related to C-reactive protein (r=0.3277, P=0.0137). ROC curve analysis suggested that the area under the curve (AUC), sensitivity and specificity of BTLA RT-PCR detection were 0.6315, 53.57%, 57.69% while for BTLA+CD11c+ detection were 0.8039, 88.46% and 73.21% and for BTLA+CD68+ detection were 0.6973, 60.71% and 61.54%. Conclusions BTLA is highly expressed in peripheral blood and specific cell types of patients with PTB and is correlated with specific clinical indicators, which may be an important molecular marker for the auxiliary diagnosis of PTB.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Keyun Bian
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Microbiology Laboratory, Disease Control and Prevention Center of Rugao, Nantong, China
| | - Shouwei Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Fan Yao
- Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yali Cao
- Department of Preventive Health Care, The Third People’s Hospital of Nantong, Nantong, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
15
|
Zhu Y, Zhou J, Zhu L, Hu W, Liu B, Xie L. Adoptive tumor infiltrating lymphocytes cell therapy for cervical cancer. Hum Vaccin Immunother 2022; 18:2060019. [PMID: 35468048 PMCID: PMC9897649 DOI: 10.1080/21645515.2022.2060019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is one of the most common malignancies among females. As a virus-related cancer, cervical cancer has attracted a lot of attention to develop virus-targeted immune therapy, including vaccine and adoptive immune cell therapy (ACT). Adoptive tumor infiltrating lymphocytes (TILs) cell therapy has been found to be able to control advanced disease progression in some cervical cancer patients who have received several lines of treatment in a pilot clinical trial. In addition, sustainable therapeutic effect has been identified in some cases. The safety risks of TIL therapy for patients are minimal or at least manageable. In this review, we focused on the versatility of TILs and tried to summarize potential strategies to improve the therapeutic effect of TILs and discuss related perspectives.
Collapse
Affiliation(s)
- Yahui Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Zhou
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lijing Zhu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China,CONTACT Li Xie No. 321, Zhongshan Road, Gulou District, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Inflammatory Cytokines That Enhance Antigen Responsiveness of Naïve CD8 + T Lymphocytes Modulate Chromatin Accessibility of Genes Impacted by Antigen Stimulation. Int J Mol Sci 2022; 23:ijms232214122. [PMID: 36430600 PMCID: PMC9698886 DOI: 10.3390/ijms232214122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Naïve CD8+ T lymphocytes exposed to certain inflammatory cytokines undergo proliferation and display increased sensitivity to antigens. Such 'cytokine priming' can promote the activation of potentially autoreactive and antitumor CD8+ T cells by weak tissue antigens and tumor antigens. To elucidate the molecular mechanisms of cytokine priming, naïve PMEL-1 TCR transgenic CD8+ T lymphocytes were stimulated with IL-15 and IL-21, and chromatin accessibility was assessed using the assay for transposase-accessible chromatin (ATAC) sequencing. PMEL-1 cells stimulated by the cognate antigenic peptide mgp10025-33 served as controls. Cytokine-primed cells showed a limited number of opening and closing chromatin accessibility peaks compared to antigen-stimulated cells. However, the ATACseq peaks in cytokine-primed cells substantially overlapped with those of antigen-stimulated cells and mapped to several genes implicated in T cell signaling, activation, effector differentiation, negative regulation and exhaustion. Nonetheless, the expression of most of these genes was remarkably different between cytokine-primed and antigen-stimulated cells. In addition, cytokine priming impacted the expression of several genes following antigen stimulation in a synergistic or antagonistic manner. Our findings indicate that chromatin accessibility changes in cytokine-primed naïve CD8+ T cells not only underlie their increased antigen responsiveness but may also enhance their functional fitness by reducing exhaustion without compromising regulatory controls.
Collapse
|
17
|
Battin C, Leitner J, Waidhofer-Söllner P, Grabmeier-Pfistershammer K, Olive D, Steinberger P. BTLA inhibition has a dominant role in the cis-complex of BTLA and HVEM. Front Immunol 2022; 13:956694. [PMID: 36081508 PMCID: PMC9446882 DOI: 10.3389/fimmu.2022.956694] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
The engagement of the herpesvirus entry mediator (HVEM, TNFRSF14) by the B and T lymphocyte attenuator (BTLA) represents a unique interaction between an activating receptor of the TNFR-superfamily and an inhibitory receptor of the Ig-superfamily. BTLA and HVEM have both been implicated in the regulation of human T cell responses, but their role is complex and incompletely understood. Here, we have used T cell reporter systems to dissect the complex interplay of HVEM with BTLA and its additional ligands LIGHT and CD160. Co-expression with LIGHT or CD160, but not with BTLA, induced strong constitutive signaling via HVEM. In line with earlier reports, we observed that in cis interaction of BTLA and HVEM prevented HVEM co-stimulation by ligands on surrounding cells. Intriguingly, our data indicate that BTLA mediated inhibition is not impaired in this heterodimeric complex, suggesting a dominant role of BTLA co-inhibition. Stimulation of primary human T cells in presence of HVEM ligands indicated a weak costimulatory capacity of HVEM potentially owed to its in cis engagement by BTLA. Furthermore, experiments with T cell reporter cells and primary T cells demonstrate that HVEM antibodies can augment T cell responses by concomitantly acting as checkpoint inhibitors and co-stimulation agonists.
Collapse
Affiliation(s)
- Claire Battin
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm, U1068; Centre National de la Recherche Scientifique (CNRS), UMR7258; Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
19
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
20
|
Romain G, Strati P, Rezvan A, Fathi M, Bandey IN, Adolacion JR, Heeke DS, Liadi I, Marques-Piubelli ML, Solis Soto LM, Mahendra A, Vega F, Cooper LJ, Singh H, Mattie M, Bot A, Neelapu S, Varadarajan N. Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses. J Clin Invest 2022; 132:159402. [PMID: 35881486 PMCID: PMC9433104 DOI: 10.1172/jci159402] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The in vivo persistence of adoptively transferred T cells is predictive of antitumor response. Identifying functional properties of infused T cells that lead to in vivo persistence and tumor eradication has remained elusive. We profiled CD19-specific chimeric antigen receptor (CAR) T cells as the infusion products used to treat large B cell lymphomas using high-throughput single-cell technologies based on time-lapse imaging microscopy in nanowell grids (TIMING), which integrates killing, cytokine secretion, and transcriptional profiling. Our results show that the directional migration of CD19-specific CAR T cells is correlated with multifunctionality. We showed that CD2 on T cells is associated with directional migration and that the interaction between CD2 on T cells and CD58 on lymphoma cells accelerates killing and serial killing. Consistent with this, we observed that elevated CD58 expression on pretreatment tumor samples in patients with relapsed or refractory large B cell lymphomas treated with CD19-specific CAR T cell therapy was associated with complete clinical response and survival. These results highlight the importance of studying dynamic T cell–tumor cell interactions in identifying optimal antitumor responses.
Collapse
Affiliation(s)
- Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | | | - Irfan N Bandey
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | - Jay Rt Adolacion
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | - Darren S Heeke
- Kite, Gilead company, Santa Monica, United States of America
| | - Ivan Liadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Ankit Mahendra
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| | - Francisco Vega
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | | | - Harjeet Singh
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Mike Mattie
- Kite, a Gilead company, Santa Monica, United States of America
| | - Adrian Bot
- Chief Scientific Officer, Kite, a Gilead company, Santa Monica, United States of America
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, United States of America
| |
Collapse
|
21
|
James NE, Valenzuela AD, Emerson JB, Woodman M, Miller K, Hovanesian V, Ou J, Ribeiro JR. Intratumoral expression analysis reveals that OX40 and TIM-3 are prominently expressed and have variable associations with clinical outcomes in high grade serous ovarian cancer. Oncol Lett 2022; 23:188. [PMID: 35527785 PMCID: PMC9073576 DOI: 10.3892/ol.2022.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with ovarian cancer exhibit low response rates to anti-programmed cell death protein-1 (PD-1) based therapies, despite ovarian tumors demonstrating measurable immune responses. Therefore, the aim of the present study was to comparatively examine expression of notable immune co-stimulatory and co-inhibitory receptors in order identify the most abundant receptors that could potentially serve as therapeutic targets to enhance immunotherapy response in high grade serous ovarian cancer (HGSOC). The Cancer Genome Atlas (TCGA) was employed to compare levels of various HGSOC and pan-cancer cohorts. To confirm these findings at the protein level, immunofluorescence of select receptors was performed in 29 HGSOC patient tissue samples. TCGA and Kaplan Meier analysis was employed to determine the association of highly expressed immune receptors with clinical outcomes. TIM-3 and OX40 exhibited the highest expression in HGSOC at both the gene and protein level, with TIM-3 demonstrating highest levels on both CD8+ and CD4+ T cell subsets. Pan-cancer analysis determined that TIM-3 and OX40 levels were similar to those in immunotherapy-responsive cancers, while PD-1 exhibited much lower expression in HGSOC. Finally, OX40 was most strongly associated with improved patient survival. Overall, the current study suggested that TIM-3 and OX40 are frequently expressed intratumoral immune receptors in HGSOC and thus represent promising immune targets. Furthermore, the present analysis strongly suggested that OX40 was significantly associated with a longer survival and could potentially be utilized as a prognostic factor for improved patient outcomes in HGSOC.
Collapse
Affiliation(s)
- Nicole E. James
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Ashley D. Valenzuela
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Jenna B. Emerson
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Morgan Woodman
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Katherine Miller
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Virginia Hovanesian
- Rhode Island Hospital, Core Research Laboratories, Women and Infants Hospital, Providence, RI 02903, USA
| | - Joyce Ou
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Department of Pathology, Women and Infants Hospital, Providence, RI 02903, USA
| | - Jennifer R. Ribeiro
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
22
|
Stienne C, Virgen-Slane R, Elmén L, Veny M, Huang S, Nguyen J, Chappell E, Balmert MO, Shui JW, Hurchla MA, Kronenberg M, Peterson SN, Murphy KM, Ware CF, Šedý JR. Btla signaling in conventional and regulatory lymphocytes coordinately tempers humoral immunity in the intestinal mucosa. Cell Rep 2022; 38:110553. [PMID: 35320716 PMCID: PMC9032671 DOI: 10.1016/j.celrep.2022.110553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The Btla inhibitory receptor limits innate and adaptive immune responses, both preventing the development of autoimmune disease and restraining anti-viral and anti-tumor responses. It remains unclear how the functions of Btla in diverse lymphocytes contribute to immunoregulation. Here, we show that Btla inhibits activation of genes regulating metabolism and cytokine signaling, including Il6 and Hif1a, indicating a regulatory role in humoral immunity. Within mucosal Peyer's patches, we find T-cell-expressed Btla-regulated Tfh cells, while Btla in T or B cells regulates GC B cell numbers. Treg-expressed Btla is required for cell-intrinsic Treg homeostasis that subsequently controls GC B cells. Loss of Btla in lymphocytes results in increased IgA bound to intestinal bacteria, correlating with altered microbial homeostasis and elevations in commensal and pathogenic bacteria. Together our studies provide important insights into how Btla functions as a checkpoint in diverse conventional and regulatory lymphocyte subsets to influence systemic immune responses.
Collapse
Affiliation(s)
- Caroline Stienne
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Richard Virgen-Slane
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lisa Elmén
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marisol Veny
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sarah Huang
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jennifer Nguyen
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Elizabeth Chappell
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mary Olivia Balmert
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jr-Wen Shui
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Michelle A Hurchla
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | | | - Scott N Peterson
- Tumor Microenvironment and Cancer Immunology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Carl F Ware
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - John R Šedý
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
23
|
Jin CY, Su N, Hu CB, Shao T, Ji JF, Qin LL, Fan DD, Lin AF, Xiang LX, Shao JZ. Regulatory role of BTLA and HVEM checkpoint inhibitors in T cell activation in a perciform fish Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 128:104312. [PMID: 34767880 DOI: 10.1016/j.dci.2021.104312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The BTLA and HVEM are two well-characterized immune checkpoint inhibitors in humans and other mammalian species. However, the occurrence and functionality of these two molecules in non-mammalian species remain poorly understood. In the present study, we identified the BTLA and HVEM homologs from large yellow croaker (Larimichthys crocea), an economically important marine species of the perciform fish family. The Larimichthys crocea BTLA and HVEM (LcBTLA and LcHVEM) share conserved structural features to their mammalian counterparts, and they were expressed in various tissues and cells examined at different transcriptional levels, with particular abundance in immune-relevant tissues and splenic leukocytes. Immunofluorescence staining and flow cytometry analysis showed that LcHVEM and LcBTLA proteins were distributed on MHC-II+ APCs and CD4-2+ T cells, and a strong interaction between LcBTLA and LcHVEM was detected in splenic leukocytes in the mixed lymphocyte reaction (MLR). By blockade assays using anti-LcBTLA and anti-LcHVEM Abs as well as recombinant soluble LcBTLA and LcHVEM proteins in different combinations, it was found that LcBTLA-LcHVEM interactions play an important inhibitory role in the activation of alloreactive T cells using MLR as a model, and APC-initiated antigen-specific CD4-2+ T cells in response to A. hydrophila (A. h) stimulation. These observations highlight the extensive functional roles of LcBTLA and LcHVEM immune-checkpoint inhibitors in allogeneic T cell reactions, and CD4-2+ T cell-mediated adaptive immune responses in Larimichthys crocea. Thus, the BTLA-HVEM checkpoint may represent an ancient coinhibitory pathway, which was originated in fish and was conserved from fish to mammals throughout the vertebrate evolution.
Collapse
Affiliation(s)
- Chun-Yu Jin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ning Su
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Chong-Bin Hu
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Tong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Jian-Fei Ji
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Lu-Lu Qin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Dong-Dong Fan
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Ai-Fu Lin
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China
| | - Li-Xin Xiang
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Jian-Zhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
24
|
Song HF, Chen XJ, Tang PJ, Xu P, Huang ZY, Wang XF. Clinical Significance of BTLA and HVEM Expression on Circulating CD4 + T and CD8 + T Cells in Chronic Hepatitis B Virus Infection. Viral Immunol 2022; 35:291-302. [PMID: 35196150 DOI: 10.1089/vim.2021.0134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, B and T lymphocyte attenuator (BTLA) and herpesvirus entry mediator (HVEM) expression on the surface of circulating CD4+ T and CD8+ T cells of patients with chronic hepatitis B (CHB) was investigated to explore their relationship with hepatitis B virus (HBV) clinical parameters. Both BTLA and HVEM were significantly upregulated on CD4+ T and CD8+ T cells of CHB patients compared with healthy controls (p < 0.01). Intriguingly, in CHB patients, the percentage of BTLA expression was positively correlated with that of HVEM (CD4+ T cells: r = 0.5461, p < 0.001 and CD8+ T cells: r = 0.4206, p < 0.01). Moreover, the percentage of BTLA expression was positively correlated with the levels of aspartate aminotransferase (AST) (CD4+ T cells: r = 0.3136, p < 0.05 and CD8+ T cells: r = 0.3159, p < 0.05) and alanine aminotransaminase (ALT) (CD4+ T cells: r = 0.3177, p < 0.05 and CD8+ T cells: r = 0.3311, p < 0.05). At the same time, the percentage of HVEM expression was also positively correlated with AST levels (CD4+ T cells: r = 0.3721, p < 0.05 and CD8+ T cells: r = 0.3325, p < 0.05) and ALT (CD4+ T cells: r = 0.3689, p < 0.05 and CD8+ T cells: r = 0.3476, p < 0.05). However, the percentage of BTLA and HVEM expression did not show significant relevance to HBV viral load. Further study demonstrated that BTLA inhibitory signaling could significantly inhibit T cell proliferation, activation, and cytokine production under optimal T cell receptor signaling (p < 0.05). Thereby, our findings indicate that the increased BTLA and HVEM expression on the surface of CD4+ and CD8+ T cells might represent a certain clinical significance and be involved in CHB progression during T cell exhaustion.
Collapse
Affiliation(s)
- Hua-Feng Song
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Central Lab, The Affiliated Infectious Hospital of Soochow University, Suzhou, China
| | - Xiao-Juan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pei-Jun Tang
- Central Lab, The Affiliated Infectious Hospital of Soochow University, Suzhou, China
| | - Ping Xu
- Central Lab, The Affiliated Infectious Hospital of Soochow University, Suzhou, China
| | - Zi-Yi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Gastrointestinal tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Feng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Yu Y, Tang H, Franceschi D, Mujagond P, Acharya A, Deng Y, Lethaus B, Savkovic V, Zimmerer R, Ziebolz D, Li S, Schmalz G. Immune Checkpoint Gene Expression Profiling Identifies Programmed Cell Death Ligand-1 Centered Immunologic Subtypes of Oral and Squamous Cell Carcinoma With Favorable Survival. Front Med (Lausanne) 2022; 8:759605. [PMID: 35127742 PMCID: PMC8810827 DOI: 10.3389/fmed.2021.759605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Objective This study aimed to identify the programmed death ligand-1 (PDL1, also termed as CD274) and its positively correlated immune checkpoint genes (ICGs) and to determine the immune subtypes of CD274-centered ICG combinations in oral and squamous cell carcinoma (OSCC). Materials and Methods Firstly, the 95 ICGs obtained via literature reviews were identified in the Cancer Genome Atlas (TCGA) database in relation to OSCC, and such 88 ICG expression profiles were extracted. ICGs positively correlated with CD274 were utilized for subsequent analysis. The relationship between ICGs positively correlated with CD274 and immunotherapy biomarkers (tumor mutation burden (TMB), and adaptive immune resistance pathway genes) was investigated, and the relationships of these genes with OSCC clinical features were explored. The prognostic values of CD274 and its positively correlated ICGs and also their associated gene pairs were revealed using the survival analysis. Results Eight ICGs, including CTLA4, ICOS, TNFRSF4, CD27, B- and T-lymphocyte attenuator (BTLA), ADORA2A, CD40LG, and CD28, were found to be positively correlated with CD274. Among the eight ICGs, seven ICGs (CTLA4, ICOS, TNFRSF4, CD27, BTLA, CD40LG, and CD28) were significantly negatively correlated with TMB. The majority of the adaptive immune resistance pathway genes were positively correlated with ICGs positively correlated with CD274. The survival analysis utilizing the TCGA-OSCC data showed that, although CD274 was not significantly associated with overall survival (OS), the majority of ICGs positively correlated with CD274 (BTLA, CD27, CTLA4, CD40LG, CD28, ICOS, and TNFRSF4) were significantly correlated with OS, whereby their low-expression predicted a favorable prognosis. The survival analysis based on the gene pair subtypes showed that the combination subtypes of CD274_low/BTLA_low, CD274_low/CD27_low, CD274_low/CTLA4_low, CD8A_high/BTLA_low, CD8A_high/CD27_low, and CD8A_high/CTLA4_low predicted favorable OS. Conclusion The results in this study provide a theoretical basis for prognostic immune subtyping of OSCC and highlight the importance of developing future immunotherapeutic strategies for treating oral cancer.
Collapse
Affiliation(s)
- Yang Yu
- Department of Stomatology, Qunli Branch, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yang Yu
| | - Huiwen Tang
- Department of Stomatology, Qunli Branch, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Debora Franceschi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Prabhakar Mujagond
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, India
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Yupei Deng
- Laboratory of Molecular Cell Biology, China Tibetology Research Center, Beijing Tibetan Hospital, Beijing, China
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
26
|
Zhou B, Gao Y, Zhang P, Chu Q. Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms and Potential Strategies. Front Immunol 2021; 12:693609. [PMID: 34194441 PMCID: PMC8236848 DOI: 10.3389/fimmu.2021.693609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/28/2021] [Indexed: 01/05/2023] Open
Abstract
The immune checkpoint blockade therapy has completely transformed cancer treatment modalities because of its unprecedented and durable clinical responses in various cancers. With the increasing use of immune checkpoint blockades in clinical practice, a large number of patients develop acquired resistance. However, the knowledge about acquired resistance to immune checkpoint blockades is limited and poorly summarized. In this review, we clarify the principal elements of acquired resistance to immune checkpoint blockades. The definition of acquired resistance is heterogeneous among groups or societies, but the expert consensus of The Society for Immunotherapy of Cancer can be referred. Oligo-progression is the main pattern of acquired resistance. Acquired resistance can be derived from the selection of resistant cancer cell clones that exist in the tumor mass before therapeutic intervention or gradual acquisition in the sensitive cancer cells. Specifically, tumor intrinsic mechanisms include neoantigen depletion, defects in antigen presentation machinery, aberrations of interferon signaling, tumor-induced exclusion/immunosuppression, and tumor cell plasticity. Tumor extrinsic mechanisms include upregulation of other immune checkpoints. Presently, a set of treatment modalities is applied to patients with similar clinical characteristics or resistance mechanisms for overcoming acquired resistance, and hence, further research is required.
Collapse
Affiliation(s)
- Binghan Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Kumar S, Singh SK, Rana B, Rana A. Tumor-infiltrating CD8 + T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov Today 2021; 26:951-967. [PMID: 33450394 PMCID: PMC8131230 DOI: 10.1016/j.drudis.2021.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Host immunity has an essential role in the clinical management of cancers. Therefore, it is advantageous to choose therapies that can promote tumor cell death and concurrently boost host immunity. The dynamic tumor microenvironment (TME) determines whether an antineoplastic drug will elicit favorable or disparaging immune responses from tumor-infiltrating lymphocytes (TILs). CD8+ T cells are one of the primary tumor-infiltrating immune cells that deliver antitumor responses. Here, we review the influence of various factors in the TME on CD8+ T cell exhaustion and survival, and possible strategies for restoring CD8+ T cell effector function through immunotherapy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol 2021; 12:654960. [PMID: 33859648 PMCID: PMC8043046 DOI: 10.3389/fimmu.2021.654960] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is one of the most important cosignaling molecules. It belongs to the CD28 superfamily and is similar to programmed cell death-1 (PD-1) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) in terms of its structure and function. BTLA can be detected in most lymphocytes and induces immunosuppression by inhibiting B and T cell activation and proliferation. The BTLA ligand, herpesvirus entry mediator (HVEM), does not belong to the classic B7 family. Instead, it is a member of the tumor necrosis factor receptor (TNFR) superfamily. The association of BTLA with HVEM directly bridges the CD28 and TNFR families and mediates broad and powerful immune effects. Recently, a large number of studies have found that BTLA participates in numerous physiopathological processes, such as tumor, inflammatory diseases, autoimmune diseases, infectious diseases, and transplantation rejection. Therefore, the present work aimed to review the existing knowledge about BTLA in immunity and summarize the diverse functions of BTLA in various immune disorders.
Collapse
Affiliation(s)
- Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
29
|
Dong X, Song J, Chen B, Qi Y, Jiang W, Li H, Zheng D, Wang Y, Zhang X, Liu H. Exploration of the Prognostic and Immunotherapeutic Value of B and T Lymphocyte Attenuator in Skin Cutaneous Melanoma. Front Oncol 2021; 10:592811. [PMID: 33718105 PMCID: PMC7953043 DOI: 10.3389/fonc.2020.592811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
B and T lymphocyte attenuator (BTLA) is a newly identified immune checkpoint molecular belonging to the CD28 immunoglobulin superfamily. However, the expression and clinical value of BTLA in skin cutaneous melanoma (SKCM) has not been widely characterized. We found that BTLA levels were upregulated in metastatic melanoma compared to normal skin tissues and primary melanoma. Higher BTLA was also correlated with improved prognosis in SKCM based on several datasets. The multivariate Cox regression model revealed that BTLA was an independent survival indicator in metastatic melanoma. Tumor microenvironment analysis indicated BTLA was positively associated with the infiltrating levels of different immune cells and the activity of the anti-cancer immunity cycle. Importantly, BTLA accurately predicted the outcome of melanoma patients treated with MAGE-A3 blocker or first-line anti-PD-1. The present findings disclose that BTLA is a reliable biomarker for prognosis and immunotherapeutic response and might contribute to developing novel SKCM immunological treatment strategies.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Children’s Health Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Buran Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yufeng Qi
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Jiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Danni Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiguang Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Mysona DP, Tran L, Bai S, dos Santos B, Ghamande S, Chan J, She JX. Tumor-intrinsic and -extrinsic (immune) gene signatures robustly predict overall survival and treatment response in high grade serous ovarian cancer patients. Am J Cancer Res 2021; 11:181-199. [PMID: 33520368 PMCID: PMC7840710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023] Open
Abstract
In the present study, we developed a transcriptomic signature capable of predicting prognosis and response to primary therapy in high grade serous ovarian cancer (HGSOC). Proportional hazard analysis was performed on individual genes in the TCGA RNAseq data set containing 229 HGSOC patients. Ridge regression analysis was performed to select genes and develop multigenic models. Survival analysis identified 120 genes whose expression levels were associated with overall survival (OS) (HR = 1.49-2.46 or HR = 0.48-0.63). Ridge regression modeling selected 38 of the 120 genes for development of the final Ridge regression models. The consensus model based on plurality voting by 68 individual Ridge regression models classified 102 (45%) as low, 23 (10%) as moderate and 104 patients (45%) as high risk. The median OS was 31 months (HR = 7.63, 95% CI = 4.85-12.0, P < 1.0-10) and 77 months (HR = ref) in the high and low risk groups, respectively. The gene signature had two components: intrinsic (proliferation, metastasis, autophagy) and extrinsic (immune evasion). Moderate/high risk patients had more partial and non-responses to primary therapy than low risk patients (odds ratio = 4.54, P < 0.001). We concluded that the overall survival and response to primary therapy in ovarian cancer is best assessed using a combination of gene signatures. A combination of genes which combines both tumor intrinsic and extrinsic functions has the best prediction. Validation studies are warranted in the future.
Collapse
Affiliation(s)
- David P Mysona
- University of North CarolinaChapel Hill, NC 27517, USA
- Jinfiniti Precision Medicine, Inc.Augusta, GA 30907, USA
| | - Lynn Tran
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA 30912, USA
| | - Shan Bai
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA 30912, USA
| | | | - Sharad Ghamande
- Department of OBGYN, Medical College of Georgia at Augusta UniversityAugusta, GA 30912, USA
| | - John Chan
- Palo Alto Medical Foundation Research InstitutePalo Alto, CA 94301, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta UniversityAugusta, GA 30912, USA
- Department of OBGYN, Medical College of Georgia at Augusta UniversityAugusta, GA 30912, USA
| |
Collapse
|
31
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
32
|
Ma B, Meng H, Tian Y, Wang Y, Song T, Zhang T, Wu Q, Cui Y, Li H, Zhang W, Li Q. High expression of HVEM is associated with improved prognosis in intrahepatic cholangiocarcinoma. Oncol Lett 2020; 21:69. [PMID: 33365080 PMCID: PMC7716701 DOI: 10.3892/ol.2020.12330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023] Open
Abstract
Herpesvirus entry mediator (HVEM) displays dual signals in T-cell activation according to the ligands and intracytoplasmic effectors it interacts with. High HVEM expression may play an immunosuppressive role in several malignancies. The present study investigated the clinical impact of HVEM on intrahepatic cholangiocarcinoma (ICC), including its prognostic value, and association with clinicopathological features and immune status. The clinical data of 102 consecutive patients with ICC who underwent surgical treatment from January 2012 to December 2017 were collected. The expression of HVEM and different types of tumor-infiltrating lymphocytes (TILs) were investigated in ICC tissue samples by immunohistochemical staining. HVEM expression was detected in the tumor tissues of 92 (90.2%) patients with ICC. Patients with high HVEM expression were more likely to have increased peripheral blood lymphocyte (PBL) concentrations (P=0.031), decreased CEA (P=0.036), low TNM stage (P=0.043) and high frequencies of small-duct histological type (P=0.021) and BAP1 retained expression (P=0.010). Survival analysis showed that high HVEM expression was a favorable independent predictor of overall postoperative survival (P=0.034, hazard ratio=0.486, 95% confidence interval=0.249–0.945). In addition, no significant association of HVEM expression with CD4+ (P=0.512), CD8+ (P=0.750) or CD45RO+ (P=0.078) TILs was identified in the ICC tissues. These results indicate that HVEM may serve as a favorable prognostic marker for ICC. Furthermore, co-stimulatory signals from HVEM may play a dominant role in the progression of ICCs, which can be explained by an increase in the number of PBLs rather than a change in the number of TILs. However, the function of the HVEM network in ICC progression is complex and requires further study.
Collapse
Affiliation(s)
- Bingqi Ma
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China.,Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Huijuan Meng
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ye Tian
- Department of Senior Ward, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yingying Wang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Tianqiang Song
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiang Wu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Huikai Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| |
Collapse
|
33
|
Reese B, Silwal A, Daugherity E, Daugherity M, Arabi M, Daly P, Paterson Y, Woolford L, Christie A, Elias R, Brugarolas J, Wang T, Karbowniczek M, Markiewski MM. Complement as Prognostic Biomarker and Potential Therapeutic Target in Renal Cell Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 205:3218-3229. [PMID: 33158953 DOI: 10.4049/jimmunol.2000511] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies demonstrated that complement promotes tumor growth. Therefore, we sought to determine the best target for complement-based therapy among common human malignancies. High expression of 11 complement genes was linked to unfavorable prognosis in renal cell carcinoma. Complement protein expression or deposition was observed mainly in stroma, leukocytes, and tumor vasculature, corresponding to a role of complement in regulating the tumor microenvironment. Complement abundance in tumors correlated with a high nuclear grade. Complement genes clustered within an aggressive inflammatory subtype of renal cancer characterized by poor prognosis, markers of T cell dysfunction, and alternatively activated macrophages. Plasma levels of complement proteins correlated with response to immune checkpoint inhibitors. Corroborating human data, complement deficiencies and blockade reduced tumor growth by enhancing antitumor immunity and seemingly reducing angiogenesis in a mouse model of kidney cancer resistant to PD-1 blockade. Overall, this study implicates complement in the immune landscape of renal cell carcinoma, and notwithstanding cohort size and preclinical model limitations, the data suggest that tumors resistant to immune checkpoint inhibitors might be suitable targets for complement-based therapy.
Collapse
Affiliation(s)
- Britney Reese
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Ashok Silwal
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Elizabeth Daugherity
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Michael Daugherity
- Department of Engineering and Physics, Abilene Christian University, Abilene, TX 79601
| | - Mahshid Arabi
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Pierce Daly
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Yvonne Paterson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Layton Woolford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Alana Christie
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Roy Elias
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - James Brugarolas
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern, Dallas, TX 75390.,Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and.,The Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601
| | - Maciej M Markiewski
- Department of Immunotherapeutics and Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601;
| |
Collapse
|
34
|
Abstract
Therapeutic targeting of immune checkpoints has garnered significant attention in the area of cancer immunotherapy, in which efforts have focused in particular on cytotoxic T lymphocyte antigen 4 (CTLA4) and PD1, both of which are members of the CD28 family. In autoimmunity, these same pathways can be targeted to opposite effect: to curb the over-exuberant immune response. The CTLA4 checkpoint serves as an exemplar, whereby CTLA4 activity is blocked by antibodies in cancer immunotherapy and augmented by the provision of soluble CTLA4 in autoimmunity. Here, we review the targeting of co-stimulatory molecules in autoimmune diseases, focusing in particular on agents directed at members of the CD28 or tumour necrosis factor receptor families. We present the state of the art in co-stimulatory blockade approaches, including rational combinations of immune inhibitory agents, and discuss the future opportunities and challenges in this field.
Collapse
|
35
|
Song J, Wu L. Friend or Foe: Prognostic and Immunotherapy Roles of BTLA in Colorectal Cancer. Front Mol Biosci 2020; 7:148. [PMID: 32793631 PMCID: PMC7385242 DOI: 10.3389/fmolb.2020.00148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Background B and T lymphocyte attenuator (BTLA) is a co-signaling protein belonging to the CD28 immunoglobulin superfamily. However, the role of BTLA in prognosis and immunotherapy of colorectal cancer (CRC) remains unclear. Methods We evaluated the expression of BTLA via the Oncomine and the cancer genome atlas (TCGA) database. We research the outcome among different BTLA expression patients by Kaplan–Meier curve. We used the Chi-Squared test and Cox regression analysis to identify potential risk factors. Besides, the correlations between BTLA and cancer immune infiltration were investigated via CIBERSORT. Results Various cohorts showed that BTLA expression was lower in CRC compared to corresponding normal tissue. Moreover, low BTLA expression was correlated with poor overall survival in TCGA cohorts and Gene Expression Omnibus cohorts (GSE29623 and GSE17536). Low BTLA expression was associated with less lymph node metastasis (p = 0.0123). In the Cox proportional hazards model, BTLA was identified as a favorable prognostic factor. Naive B cells, memory B cells, CD8 T cells, CD4 memory resting T cells, follicular helper T (Tfh) cells, monocytes, resting natural killing (NK) cells, M0 macrophages, M1 macrophages, resting mast cells, and activated mast cells were affected by BTLA expression (all p < 0.01). Correlated immune markers and functional enrichment analysis revealed BTLA functioned in the T cell receptor signaling pathway, B cell receptor signaling pathway, and NK cell-mediated cytotoxicity pathway. Conclusion These analyses suggest BTLA is a potential factor for extended survival and closely related to CD8 T cells, Tfh cells, B cells, and NK cells in CRC. We summarize these results that BTLA can be used as a prognostic biomarker and might contribute to developing novel CRC immunological treatment strategies.
Collapse
Affiliation(s)
- Jingjing Song
- Department of Children's Health Care, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lihui Wu
- Department of Children's Health Care, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
36
|
Wang J, Hasan F, Frey AC, Li HS, Park J, Pan K, Haymaker C, Bernatchez C, Lee DA, Watowich SS, Yee C. Histone Deacetylase Inhibitors and IL21 Cooperate to Reprogram Human Effector CD8 + T Cells to Memory T Cells. Cancer Immunol Res 2020; 8:794-805. [PMID: 32213626 PMCID: PMC7269845 DOI: 10.1158/2326-6066.cir-19-0619] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/27/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Clinical response rates after adoptive cell therapy (ACT) are highly correlated with in vivo persistence of the infused T cells. However, antigen-specific T cells found in tumor sites are often well-differentiated effector cells with limited persistence. Central memory CD8+ T cells, capable of self-renewal, represent desirable ACT products. We report here that exposure to a histone deacetylase inhibitor (HDACi) and IL21 could reprogram differentiated human CD8+ T cells into central memory-like T cells. Dedifferentiation of CD8+ T cells was initiated by increased H3 acetylation and chromatin accessibility at the CD28 promoter region. This led to IL21-mediated pSTAT3 binding to the CD28 region, and subsequent upregulation of surface CD28 and CD62L (markers of central memory T cells). The reprogrammed cells exhibited enhanced proliferation in response to both IL2 and IL15, and a stable memory-associated transcriptional signature (increased Lef1 and Tcf7). Our findings support the application of IL21 and HDACi for the in vitro generation of highly persistent T-cell populations that can augment the efficacy of adoptively transferred T cells.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farah Hasan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda C Frey
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jungsun Park
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ke Pan
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dean A Lee
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie S Watowich
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
37
|
Hao J, Li M, Zhang T, Yu H, Liu Y, Xue Y, An R, Wang S. Prognostic Value of Tumor-Infiltrating Lymphocytes Differs Depending on Lymphocyte Subsets in Esophageal Squamous Cell Carcinoma: An Updated Meta-Analysis. Front Oncol 2020; 10:614. [PMID: 32411602 PMCID: PMC7198736 DOI: 10.3389/fonc.2020.00614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Tumor-infiltrating lymphocytes (TILs) play a role in the anti-tumor immune response, and are often found in esophageal squamous cell carcinoma (ESCC). Methods: We performed a systematic review and meta-analysis, aiming to establish pooled estimates for survival outcomes of TILs based on their abundance and infiltrating location. A literature search of PubMed/Medline, Embase, Web of Science and the Cochrane Library was conducted. Studies that investigated the prognostic significance of generalized, CD8+, CD4+, FoxP3+, CD3+, and CD45O+ TILs in ESCC patients were included. Results: In pooled analysis, generalized TILs infiltrating the entire tumor mass were positively associated with disease-free survival (DFS), with a univariate-related hazard ratio (HR) of 0.630 [95% confidence interval (CI) 0.415-0.955], and also positively associated with overall survival (OS), with a univariate-related HR of 0.586 (0.447-0.770) and a multivariate-related HR of 0.621 (0.439-0.878). The pan-tumor, intra-tumor and peri-tumor CD8+ TILs had a favorable effect on OS, with univariate-related HRs of 0.733 (0.555-0.968), 0.797 (0.660-0.962), and 0.776 (0.635-0.948), respectively. Similar results were observed in CD8+ TILs that infiltrated the whole tumor mass, with a multivariate-related HR of 0.705 (0.524-0.947). CD4+, FoxP3+, CD3+, and CD45O+ TILs were not linked to DFS or OS. Subtypes and spatial locations of TILs seemed to influence study outcomes. Conclusions: Experimental and analytical methods of future studies should be carefully designed to avoid overestimating the effect of TILs on prognosis. Our meta-analysis confirms the prognostic efficacy of generalized TILs and CD8+ TILs in esophageal squamous cell carcinoma (ESCC) patients.
Collapse
Affiliation(s)
- Jiatao Hao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,General Department, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Meng Li
- Neurology Department, Baoji Central Hospital, Baoji, China
| | - Taohong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Xue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruifang An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zhang JA, Lu YB, Wang WD, Liu GB, Chen C, Shen L, Luo HL, Xu H, Peng Y, Luo H, Huang GX, Wu DD, Zheng BY, Yi LL, Chen ZW, Xu JF. BTLA-Expressing Dendritic Cells in Patients With Tuberculosis Exhibit Reduced Production of IL-12/IFN-α and Increased Production of IL-4 and TGF-β, Favoring Th2 and Foxp3 + Treg Polarization. Front Immunol 2020; 11:518. [PMID: 32296431 PMCID: PMC7136538 DOI: 10.3389/fimmu.2020.00518] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Little is known about how tuberculosis (TB) impairs dendritic cell (DC) function and anti-TB immune responses. We previously showed that the B and T lymphocyte attenuator (BTLA), an immune inhibitory receptor, is involved in TB pathogenesis. Here, we examined whether BTLA expression in TB affects phenotypic and functional aspects of DCs. Active TB patients exhibited higher expression of BTLA in myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) subsets compared with healthy controls (HCs). BTLA expression was similarly high in untreated TB, TB relapse, and sputum-bacillus positive TB, but anti-TB therapy reduced TB-driven increases in frequencies of BTLA+ DCs. BTLA+ DCs in active TB showed decreased expression of the DC maturation marker CD83, with an increased expression of CCR7 in mDCs. BTLA+ DCs in active TB displayed a decreased ability to express HLA-DR and to uptake foreign antigen, with a reduced expression of the co-stimulatory molecule CD80, but not CD86. Functionally, BTLA+ DCs in active TB showed a decreased production of IL-12 and IFN-α as well as a reduced ability to stimulate allogeneic T-cell proliferative responses. BTLA+ mDCs produced larger amounts of IL-4 and TGF-β than BTLA− mDCs in both HCs and APT patients. BTLA+ DCs from active TB patients showed a reduced ability to stimulate Mtb antigen-driven Th17 and Th22 polarizations as compared to those from HCs. Conversely, these BTLA+ DCs more readily promoted the differentiation of T regulatory cells (Treg) and Th2 than those from HCs. These findings suggest that TB-driven BTLA expression in DCs impairs the expression of functional DC surrogate markers and suppress the ability of DCs to induce anti-TB Th17 and Th22 response while promoting Th2 and Foxp3+ Tregs.
Collapse
Affiliation(s)
- Jun-Ai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuan-Bin Lu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Wan-Dang Wang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Gan-Bin Liu
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Chen Chen
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ling Shen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Hou-Long Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Huan Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Ying Peng
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Hong Luo
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Gui-Xian Huang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Du-Du Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Bi-Ying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Lai-Long Yi
- Department of Respiration, Dongguan 6th Hospital, Dongguan, China
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
39
|
Araujo B de Lima V, Borch A, Hansen M, Draghi A, Spanggaard I, Rohrberg K, Reker Hadrup S, Lassen U, Svane IM. Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Cytotherapy 2020; 22:204-213. [PMID: 32201034 DOI: 10.1016/j.jcyt.2020.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the cancer therapeutic landscape and our perception of interactions between the immune system and tumor cells. Despite remarkable progress, disease relapse and primary resistance are not uncommon. Understanding the biological processes that tumor-infiltrating lymphocytes (TILs) undergo during ICI, how this affects the tumor microenvironment (TME) and, ultimately, clinical outcome is, therefore, necessary to further improve treatment efficacy. AIM In the current study, we sought to characterize TILs from patients with metastatic solid tumors undergoing ICI correlating flowcytometric findings with clinical outcome. METHODS In total, 20 patients with 10 different metastatic solid tumors treated with ICIs targeting programmed-cell death-1 (PD-1)/PD-L1 axis were included in this study. The phenotype of T cells deriving from biopsies obtained prior to treatment initiation and on-treatment was investigaded. Analyses were focused on T cells' degree of differentiation and activity and how they correlate with transcriptomic changes in the TME. RESULTS Data indicate that patients benefitting from ICIs accumulate CD8+central memory T cells. TILs developed an effector-like phenotype over time, which was also associated with a cytolytic gene signature. In terms of modulation of T-cell responses, we observed that high expression of checkpoint molecules pre-treatment (i.e., PD-1, lymphocyte activation gene-3 [LAG-3], B and T-lymphocyte attenuator [BTLA] and T-cell immunoglobulin and mucin domain containing-3 [TIM-3]) was associated with similar gene signature and correlated to treatment benefit. Increasing expression of LAG-3 and BTLA in the CD8 compartment and their co-expression with PD-1 during treatment were, however, a common feature for patients who failed to respond to ICIs. CONCLUSIONS Besides identifying immune profiles suggestive of response to ICI, our results provide a more nuanced picture regarding expression of checkpoint molecules that goes beyond T-cell anergy.
Collapse
Affiliation(s)
| | - Annie Borch
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Iben Spanggaard
- Rigshospitalet, Department of Oncology, Phase 1 Unit, Copenhagen, Denmark
| | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Ulrik Lassen
- Rigshospitalet, Department of Oncology, Phase 1 Unit, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev Hospital, Herlev, Denmark
| |
Collapse
|
40
|
Liu M, Li Z, Yao W, Zeng X, Wang L, Cheng J, Ma B, Zhang R, Min W, Wang H. IDO inhibitor synergized with radiotherapy to delay tumor growth by reversing T cell exhaustion. Mol Med Rep 2019; 21:445-453. [PMID: 31746428 DOI: 10.3892/mmr.2019.10816] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/26/2019] [Indexed: 11/05/2022] Open
Abstract
Previous studies suggest that radiotherapy (RT) can induce immune activation, which not only reduces the progression of tumors, but also causes the release of tumor antigens. The combination of RT and immune checkpoint blockade, such as the inhibition of programmed cell death 1 (PD‑1) and programmed cell death ligand 1 (PD‑L1), has been demonstrated to yield impressive response rates. However, a substantial proportion of patients develop resistance such therapies. Previous studies have shown that indoleamine 2,3‑dioxygenase (IDO) causes T cell exhaustion and increased formation of regulatory T cells (Tregs), upregulating the expression of inhibitory receptors and ligands. Therefore, the application of IDO inhibitors combined with RT may have a synergistic effect by relieving immunosuppression. Lewis lung cancer cell‑bearing mice were treated with the IDO inhibitor 1‑methyl‑tryptophan (1MT) and/or 10 Gy RT. Tumor size was measured every day, flow cytometry was performed to measure the expression of dendritic cell (DC) maturation markers, inhibitory receptors, ligands, cytotoxic T cells and Treg phenotypic markers. Reverse transcription‑quantitative PCR was used to evaluate the mRNA expression levels of IDO, PD‑L1, PD‑1, T cell immunoglobulin domain and mucin domain 3 (TIM‑3), B‑ and T‑lymphocyte attenuator (BTLA) and galectin‑9. Compared with the control group, treatment with 1MT or RT reduced tumor growth, however, the combination therapy was more effective than either treatment alone. Flow cytometry showed the upregulation of CD80, CD86 and the major histocompatibility complex II in spleen DCs and the concurrent downregulation of CD4, CD25 and forkhead box protein P3 in lymphocytes in the treatment groups. Compared with the control group, inhibitory receptors and ligands that affect DCs and T cells were observed, expression levels of PD‑L1, PD‑1, TIM‑3, BTLA and galectin‑9 are decreased in treatment group compared with control. IDO inhibition synergized with RT to downregulate Tregs, inhibitory receptors and ligands to prevent T cell exhaustion. By activating DCs and T cells, this combination therapy may strongly enhance antitumor immunity and inhibit tumor progression.
Collapse
Affiliation(s)
- Meng Liu
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ziyang Li
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weirong Yao
- Department of Oncology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoping Zeng
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyun Wang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Cheng
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bingyu Ma
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ruiqian Zhang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Weiping Min
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hongmei Wang
- Departments of Pathophysiology and Immunology, School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
41
|
Sakellariou-Thompson D, Forget MA, Hinchcliff E, Celestino J, Hwu P, Jazaeri AA, Haymaker C, Bernatchez C. Potential clinical application of tumor-infiltrating lymphocyte therapy for ovarian epithelial cancer prior or post-resistance to chemotherapy. Cancer Immunol Immunother 2019; 68:1747-1757. [PMID: 31602489 DOI: 10.1007/s00262-019-02402-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/20/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Immunotherapy has become a powerful treatment option for several solid tumor types. The presence of tumor-infiltrating lymphocytes (TIL) is correlated with better prognosis in ovarian cancer, pointing at the possibility to benefit from harnessing their anti-tumor activity. This preclinical study explores the feasibility of adoptive cell therapy (ACT) with TIL using an improved culture method. METHODS TIL from high-grade serous ovarian cancer were cultured using a combination of IL-2 with agonistic antibodies targeting 4-1BB and CD3. The cells were phenotyped using flow cytometry in the fresh tissue and after expansion. Tumor reactivity was assessed against HLA-matched ovarian cancer cell lines via IFN-γ ELISPOT. RESULTS Ovarian cancer is highly infiltrated with CD8+ TIL that are preferentially and robustly expanded with the addition of the agonistic antibodies. With a 95% success rate, the TIL are grown to ≥ 100 × 106 cells in 2-3 weeks without over differentiation. In addition, the CD8+ TIL grown with this method showed HLA-restricted tumor recognition. CONCLUSIONS These results indicate the viability of TIL ACT for refractory ovarian cancer by allowing for the large expansion of anti-tumor TIL in a short time and consistent manner.
Collapse
Affiliation(s)
- Donastas Sakellariou-Thompson
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Emily Hinchcliff
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Joseph Celestino
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, UTMDACC, Houston, TX, USA
| | - Cara Haymaker
- Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (UT MDACC), Unit 904, 7455 Fannin, Houston, TX, 77054, USA. .,Department of Translational Molecular Pathology, UT MDACC, Unit 2951, 2130 W. Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Shi W, Shao T, Li JY, Fan DD, Lin AF, Xiang LX, Shao JZ. BTLA-HVEM Checkpoint Axis Regulates Hepatic Homeostasis and Inflammation in a ConA-Induced Hepatitis Model in Zebrafish. THE JOURNAL OF IMMUNOLOGY 2019; 203:2425-2442. [PMID: 31562209 DOI: 10.4049/jimmunol.1900458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
The BTLA-HVEM checkpoint axis plays extensive roles in immunomodulation and diseases, including cancer and autoimmune disorders. However, the functions of this checkpoint axis in hepatitis remain limited. In this study, we explored the regulatory role of the Btla-Hvem axis in a ConA-induced hepatitis model in zebrafish. Results showed that Btla and Hvem were differentially expressed on intrahepatic Cd8+ T cells and hepatocytes. Knockdown of Btla or Hvem significantly promoted hepatic inflammation. Btla was highly expressed in Cd8+ T cells in healthy liver but was downregulated in inflamed liver, as evidenced by a disparate proportion of Cd8+Btla+ and Cd8+Btla- T cells in individuals without or with ConA stimulation. Cd8+Btla+ T cells showed minimal cytotoxicity to hepatocytes, whereas Cd8+Btla- T cells were strongly reactive. The depletion of Cd8+Btla- T cells reduced hepatitis, whereas their transfer enhanced hepatic inflammation. These observations indicate that Btla endowed Cd8+Btla+ T cells with self-tolerance, thereby preventing them from attacking hepatocytes. Btla downregulation deprived this tolerization. Mechanistically, Btla-Hvem interaction contributed to Cd8+Btla+ T cell tolerization, which was impaired by Hvem knockdown but rescued by soluble Hvem protein administration. Notably, Light was markedly upregulated on Cd8+Btla- T cells, accompanied by the transition of Cd8+Btla+Light- to Cd8+Btla-Light+ T cells during hepatitis, which could be modulated by Cd4+ T cells. Light blockade attenuated hepatitis, thereby suggesting the positive role of Light in hepatic inflammation. These findings provide insights into a previously unrecognized Btla-Hvem-Light regulatory network in hepatic homeostasis and inflammation, thus adding a new potential therapeutic intervention for hepatitis.
Collapse
Affiliation(s)
- Wei Shi
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Tong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jiang-Yuan Li
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Dong-Dong Fan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ai-Fu Lin
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Li-Xin Xiang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Jian-Zhong Shao
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; and .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| |
Collapse
|
43
|
Malissen N, Macagno N, Granjeaud S, Granier C, Moutardier V, Gaudy-Marqueste C, Habel N, Mandavit M, Guillot B, Pasero C, Tartour E, Ballotti R, Grob JJ, Olive D. HVEM has a broader expression than PD-L1 and constitutes a negative prognostic marker and potential treatment target for melanoma. Oncoimmunology 2019; 8:e1665976. [PMID: 31741766 PMCID: PMC6844309 DOI: 10.1080/2162402x.2019.1665976] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/27/2022] Open
Abstract
HVEM (Herpes Virus Entry Mediator) engagement of BTLA (B and T Lymphocyte Attenuator) triggers inhibitory signals in T cells and could play a role in evading antitumor immunity. Here, HVEM expression levels in melanoma metastases were analyzed by immunohistochemistry, correlated with overall survival (OS) in 116 patients, and validated by TCGA transcriptomic data. Coincident expression of HVEM and its ligand BTLA was studied in tumor cells and tumor-infiltrating lymphocytes (TILs) by flow cytometry (n = 21) and immunofluorescence (n = 5). Candidate genes controlling HVEM expression in melanoma were defined by bioinformatics studies and validated by siRNA gene silencing. We found that in patients with AJCC stage III and IV melanoma, OS was poorer in those with high HVEM expression on melanoma cells, than in those with a low expression, by immunohistochemistry (p = .0160) or TCGA transcriptomics (p = .0282). We showed a coincident expression of HVEM at the surface of melanoma cells and of BTLA on TILs. HVEM was more widely expressed than PD-L1 in melanoma cells. From a mechanistic perspective, in contrast to PDL1, HVEM expression did not correlate with an IFNγ signature but with an aggressive gene signature. Interestingly, this signature contained MITF, a key player in melanoma biology, whose expression correlated strongly with HVEM. Finally, siRNA gene silencing validated MITF control of HVEM expression. In conclusion, HVEM expression seems to be a prognosis marker and targeting this axis by checkpoint-inhibitors may be of interest in metastatic melanoma.
Collapse
Affiliation(s)
- Nausicaa Malissen
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, APHM, CHU Timone, Department of Pathology, Aix Marseille University, Marseille, France
| | - Samuel Granjeaud
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Clémence Granier
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Vincent Moutardier
- APHM, CHU Nord, Department of Digestive surgery, Aix Marseille University, Marseille, France
| | - Caroline Gaudy-Marqueste
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Nadia Habel
- INSERM U 1065, Team 1 Nice, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marion Mandavit
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Bernard Guillot
- Department of Dermatology, CHU Montpellier, Montpellier, France
| | - Christine Pasero
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Eric Tartour
- UMR_S970, HEGP, Centre de recherche cardio-vasculaire, Paris, France
| | - Robert Ballotti
- INSERM U 1065, Team 1 Nice, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Jean-Jacques Grob
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France.,INSERM, CRCM, APHM, CHU Timone, Department of Dermatology and Skin Cancer, Aix Marseille University, Marseille, France
| | - Daniel Olive
- Tumor Immunology Team, IBISA Immunomonitoring platform, Cancer Research Center of Marseille, INSERM U1068, CNRS U7258, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
44
|
Mintz MA, Felce JH, Chou MY, Mayya V, Xu Y, Shui JW, An J, Li Z, Marson A, Okada T, Ware CF, Kronenberg M, Dustin ML, Cyster JG. The HVEM-BTLA Axis Restrains T Cell Help to Germinal Center B Cells and Functions as a Cell-Extrinsic Suppressor in Lymphomagenesis. Immunity 2019; 51:310-323.e7. [PMID: 31204070 PMCID: PMC6703922 DOI: 10.1016/j.immuni.2019.05.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/29/2019] [Indexed: 01/22/2023]
Abstract
The tumor necrosis factor receptor superfamily member HVEM is one of the most frequently mutated surface proteins in germinal center (GC)-derived B cell lymphomas. We found that HVEM deficiency increased B cell competitiveness during pre-GC and GC responses. The immunoglobulin (Ig) superfamily protein BTLA regulated HVEM-expressing B cell responses independently of B-cell-intrinsic signaling via HVEM or BTLA. BTLA signaling into T cells through the phosphatase SHP1 reduced T cell receptor (TCR) signaling and preformed CD40 ligand mobilization to the immunological synapse, thus diminishing the help delivered to B cells. Moreover, T cell deficiency in BTLA cooperated with B cell Bcl-2 overexpression, leading to GC B cell outgrowth. These results establish that HVEM restrains the T helper signals delivered to B cells to influence GC selection outcomes, and they suggest that BTLA functions as a cell-extrinsic suppressor of GC B cell lymphomagenesis.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Cell Proliferation
- Germinal Center/immunology
- Immunological Synapses
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mice, Transgenic
- Paracrine Communication
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
Collapse
Affiliation(s)
- Michelle A Mintz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - James H Felce
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marissa Y Chou
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Viveka Mayya
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ying Xu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jinping An
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Zhongmei Li
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Takaharu Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Penter L, Dietze K, Ritter J, Lammoglia Cobo MF, Garmshausen J, Aigner F, Bullinger L, Hackstein H, Wienzek-Lischka S, Blankenstein T, Hummel M, Dornmair K, Hansmann L. Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology 2019; 8:e1586409. [PMID: 31069154 PMCID: PMC6492980 DOI: 10.1080/2162402x.2019.1586409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/12/2022] Open
Abstract
The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and TUM occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1- TIM-3-. To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Kerstin Dietze
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Julia Ritter
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Fernanda Lammoglia Cobo
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Josefin Garmshausen
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Felix Aigner
- Department of Surgery, Charité - Universitätsmedizin Berlin (CCM and CVK), Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Holger Hackstein
- Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany.,Institute for Immunology Charité - Universitätsmedizin Berlin, Berlin, Germany.,Molecular Immunology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin, Berlin, Germany
| | - Michael Hummel
- Institute for Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and Hospital of the LMU, Munich, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner site Berlin, Berlin, Germany
| |
Collapse
|
46
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
47
|
Abstract
Somatic mutations in cancer cells may influence tumor growth, survival, or immune interactions in their microenvironment. The tumor necrosis factor receptor family member HVEM (TNFRSF14) is frequently mutated in cancers and has been attributed a tumor suppressive role in some cancer contexts. HVEM functions both as a ligand for the lymphocyte checkpoint proteins BTLA and CD160, and as a receptor that activates NF-κB signaling pathways in response to BTLA and CD160 and the TNF ligands LIGHT and LTα. BTLA functions to inhibit lymphocyte activation, but has also been ascribed a role in stimulating cell survival. CD160 functions to co-stimulate lymphocyte function, but has also been shown to activate inhibitory signaling in CD4+ T cells. Thus, the role of HVEM within diverse cancers and in regulating the immune responses to these tumors is likely context specific. Additionally, development of therapeutics that target proteins within this network of interacting proteins will require a deeper understanding of how these proteins function in a cancer-specific manner. However, the prominent role of the HVEM network in anti-cancer immune responses indicates a promising area for drug development.
Collapse
|
48
|
De Sousa Linhares A, Leitner J, Grabmeier-Pfistershammer K, Steinberger P. Not All Immune Checkpoints Are Created Equal. Front Immunol 2018; 9:1909. [PMID: 30233564 PMCID: PMC6127213 DOI: 10.3389/fimmu.2018.01909] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Antibodies that block T cell inhibition via the immune checkpoints CTLA-4 and PD-1 have revolutionized cancer therapy during the last 15 years. T cells express additional inhibitory surface receptors that are considered to have potential as targets in cancer immunotherapy. Antibodies against LAG-3 and TIM-3 are currently clinically tested to evaluate their effectiveness in patients suffering from advanced solid tumors or hematologic malignancies. In addition, blockade of the inhibitory BTLA receptors on human T cells may have potential to unleash T cells to effectively combat cancer cells. Much research on these immune checkpoints has focused on mouse models. The analysis of animals that lack individual inhibitory receptors has shed some light on the role of these molecules in regulating T cells, but also immune responses in general. There are current intensive efforts to gauge the efficacy of antibodies targeting these molecules called immune checkpoint inhibitors alone or in different combinations in preclinical models of cancer. Differences between mouse and human immunology warrant studies on human immune cells to appreciate the potential of individual pathways in enhancing T cell responses. Results from clinical studies are not only highlighting the great benefit of immune checkpoint inhibitors for treating cancer but also yield precious information on their role in regulating T cells and other cells of the immune system. However, despite the clinical relevance of CTLA-4 and PD-1 and the high potential of the emerging immune checkpoints, there are still substantial gaps in our understanding of the biology of these molecules, which might prevent the full realization of their therapeutic potential. This review addresses PD-1, CTLA-4, BTLA, LAG-3, and TIM-3, which are considered major inhibitory immune checkpoints expressed on T cells. It provides summaries of our current conception of the role of these molecules in regulating T cell responses, and discussions about major ambiguities and gaps in our knowledge. We emphasize that each of these molecules harbors unique properties that set it apart from the others. Their distinct functional profiles should be taken into account in therapeutic strategies that aim to exploit these pathways to enhance immune responses to combat cancer.
Collapse
Affiliation(s)
- Annika De Sousa Linhares
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| | - Katharina Grabmeier-Pfistershammer
- Division of Clinical and Experimental Immunology, Center for Pathophysiology, Infectiology, and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Single-cell technologies for profiling T cells to enable monitoring of immunotherapies. Curr Opin Chem Eng 2018; 19:142-152. [PMID: 31131208 DOI: 10.1016/j.coche.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Immunotherapy relies on the reinvigoration of immune system to combat diseases and has transformed the landscape of cancer treatments. Clinical trials using immune checkpoint inhibitors (ICI), and adoptive transfer of genetically modified T cells have demonstrated durable remissions in subsets of cancer patients. A comprehensive understanding of the polyfunctionality of T lymphocytes in ICI or adoptive cell transfer (ACT), at single-cell resolution, will quantify T-cell properties that are essential for therapeutic benefit. We briefly highlight several emerging integrated single-cell technologies focusing on the profiling of multiple properties/functionalities of T cells. We envision that these tools have the potential to provide valuable experimental and clinical insights on T-cell biology, and eventually pave the road for the discovery of surrogate T-cell biomarkers for immunotherapy.
Collapse
|