1
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
2
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
3
|
Zak J, Pratumchai I, Marro BS, Marquardt KL, Zavareh RB, Lairson LL, Oldstone MBA, Varner JA, Hegerova L, Cao Q, Farooq U, Kenkre VP, Bachanova V, Teijaro JR. JAK inhibition enhances checkpoint blockade immunotherapy in patients with Hodgkin lymphoma. Science 2024; 384:eade8520. [PMID: 38900864 PMCID: PMC11283877 DOI: 10.1126/science.ade8520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
Unleashing antitumor T cell activity by checkpoint inhibitor immunotherapy is effective in cancer patients, but clinical responses are limited. Cytokine signaling through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway correlates with checkpoint immunotherapy resistance. We report a phase I clinical trial of the JAK inhibitor ruxolitinib with anti-PD-1 antibody nivolumab in Hodgkin lymphoma patients relapsed or refractory following checkpoint inhibitor immunotherapy. The combination yielded a best overall response rate of 53% (10/19). Ruxolitinib significantly reduced neutrophil-to-lymphocyte ratios and percentages of myeloid suppressor cells but increased numbers of cytokine-producing T cells. Ruxolitinib rescued the function of exhausted T cells and enhanced the efficacy of immune checkpoint blockade in preclinical solid tumor and lymphoma models. This synergy was characterized by a switch from suppressive to immunostimulatory myeloid cells, which enhanced T cell division.
Collapse
Affiliation(s)
- Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Brett S. Marro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Kristi L. Marquardt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | | | - Luke L. Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| | - Judith A. Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, USA
| | - Livia Hegerova
- Division of Hematology, University of Washington School of Medicine, Seattle, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, USA
| | - Umar Farooq
- Division of Hematology and Oncology and Bone Marrow Transplantation, University of Iowa, Iowa City, USA
| | | | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, USA
| |
Collapse
|
4
|
Han X, Wang X, Yan J, Song P, Wang Y, Shang C, Wu Y, Zhang H, Wang Z, Zhang H, Li X. Bacterial Magnetosome-Hitchhiked Quick-Frozen Neutrophils for Targeted Destruction of Pre-Metastatic Niche and Prevention of Tumor Metastasis. Adv Healthc Mater 2023; 12:e2301343. [PMID: 37586109 DOI: 10.1002/adhm.202301343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Indexed: 08/18/2023]
Abstract
Premetastatic niche (PMN) is a prerequisite for tumor metastasis. Destruction of PMN can significantly suppress the tumor metastasis. Bone marrow-derived cells are usually recruited into the premetastatic organs to support PMN formation, which can be orchestrated by tumor-derived secreted factors. Neutrophils can chemotactically migrate towards the inflammatory sites and consume tumor-derived secreted factors, capable of acting as therapeutic agents for a broad-spectrum suppression of PMN formation and metastasis. However, neutrophils in response to inflammatory signals can release neutrophil extracellular traps (NETs), promoting the tumor metastasis. Herein, live neutrophils are converted into dead neutrophils (C NE) through a quick-frozen process to maintain PMN-targeting and tumor-derived secreted factor-consuming abilities but eliminate NET-releasing shortcomings. Considering macrophages-regulated remodeling of the extracellular matrix in PMN, bacterial magnetosomes (Mag) are further hitchhiked on the surface of C NE to form C NEMag , which can repolarize macrophages from M2 to M1 phenotype for further disruption of PMN formation. A series of in vitro and in vivo assessments have been applied to confirm the effectiveness of C NEMag in suppression of PMN formation and metastasis. This study presents a promising strategy for targeted anti-metastatic therapy in clinics.
Collapse
Affiliation(s)
- Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xingbo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Shang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| | - Hua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, China
| |
Collapse
|
5
|
Canella A, Nazzaro M, Rajendran S, Schmitt C, Haffey A, Nigita G, Thomas D, Lyberger JM, Behbehani GK, Amankulor NM, Mardis ER, Cripe TP, Rajappa P. Genetically modified IL2 bone-marrow-derived myeloid cells reprogram the glioma immunosuppressive tumor microenvironment. Cell Rep 2023; 42:112891. [PMID: 37516967 DOI: 10.1016/j.celrep.2023.112891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.
Collapse
Affiliation(s)
- Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Claire Schmitt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Diana Thomas
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Justin M Lyberger
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Gregory K Behbehani
- Department of Medicine, Division of Hematology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Nduka M Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy P Cripe
- Center for Childhood Cancer, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Zhu X, Fang Y, Chen Y, Chen Y, Hong W, Wei W, Tu J. Interaction of tumor-associated microglia/macrophages and cancer stem cells in glioma. Life Sci 2023; 320:121558. [PMID: 36889666 DOI: 10.1016/j.lfs.2023.121558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Glioma is the most common tumor of the primary central nervous system, and its malignant phenotype has been shown to be closely related to glioma stem cells (GSCs). Although temozolomide has significantly improved the therapeutic outcome of glioma with a high penetration rate of the blood-brain barrier, resistance is often present in patients. Moreover, evidence has shown that the crosstalk between GSCs and tumor-associated microglia/macrophages (TAMs) affect the clinical occurrence, growth, and multi-tolerance of chemoradiotherapy in gliomas. Here, we highlight its vital roles in the maintenance of the stemness of GSCs and the ability of GSCs to recruit TAMs to the tumor microenvironment and promote their polarization into tumor-promoting macrophages, hence providing groundwork for future research into new treatment strategies of cancer.
Collapse
Affiliation(s)
- Xiangling Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Wenming Hong
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Rajendran S, Hu Y, Canella A, Peterson C, Gross A, Cam M, Nazzaro M, Haffey A, Serin-Harmanci A, Distefano R, Nigita G, Wang W, Kreatsoulas D, Li Z, Sepeda JA, Sas A, Hester ME, Miller KE, Elemento O, Roberts RD, Holland EC, Rao G, Mardis ER, Rajappa P. Single-cell RNA sequencing reveals immunosuppressive myeloid cell diversity during malignant progression in a murine model of glioma. Cell Rep 2023; 42:112197. [PMID: 36871221 DOI: 10.1016/j.celrep.2023.112197] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Recent studies have shown the importance of the dynamic tumor microenvironment (TME) in high-grade gliomas (HGGs). In particular, myeloid cells are known to mediate immunosuppression in glioma; however, it is still unclear if myeloid cells play a role in low-grade glioma (LGG) malignant progression. Here, we investigate the cellular heterogeneity of the TME using single-cell RNA sequencing in a murine glioma model that recapitulates the malignant progression of LGG to HGG. LGGs show increased infiltrating CD4+ and CD8+ T cells and natural killer (NK) cells in the TME, whereas HGGs abrogate this infiltration. Our study identifies distinct macrophage clusters in the TME that show an immune-activated phenotype in LGG but then evolve to an immunosuppressive state in HGG. We identify CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Targeting these intra-tumoral macrophages in the LGG stage may attenuate their immunosuppressive properties and impair malignant progression.
Collapse
Affiliation(s)
- Sakthi Rajendran
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alessandro Canella
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Clayton Peterson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Amy Gross
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Maren Cam
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Matthew Nazzaro
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Abigail Haffey
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Rosario Distefano
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wesley Wang
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Daniel Kreatsoulas
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zihai Li
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jesse A Sepeda
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Andrew Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Mark E Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Eric C Holland
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Canella A, Rajappa P. Therapeutic utility of engineered myeloid cells in the tumor microenvironment. Cancer Gene Ther 2023:10.1038/s41417-023-00600-7. [PMID: 36854896 DOI: 10.1038/s41417-023-00600-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Despite promising results shown in hematologic tumors, immunotherapies for the treatment of solid tumors have mostly failed so far. The immunosuppressive tumor microenvironment and phenotype of tumor infiltrating macrophages are among the more prevalent reasons for this failure. Tumor associated macrophages (TAMs, M2-macrophages) are circulating myeloid cells recruited to the local tumor microenvironment, and together with regulatory T cells (T-regs), are reprogrammed to become immune suppressive. This results in the inactivation or hampered recruitment of cytotoxic CD8 + T and Natural Killer (NK) cells. Recently, attempts have been made to try to leverage specific myeloid functions and properties, including their ability to reach the TME and to mediate the phagocytosis of cancer cells. Additionally, myeloid cells have been used for drug delivery and reprogramming the tumor microenvironment in cancer patients. This approach, together with the advancements in genome editing, paved the way for the development of novel cell-mediated immunotherapies. This article focuses on the latest studies that detail the therapeutic properties of genetically engineered or pharmacologically modulated myeloid cells in cancer preclinical models, limitations, pitfalls, and evaluations of these approaches in patients with cancer.
Collapse
Affiliation(s)
- Alessandro Canella
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA.
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
9
|
Hartmann K, Sadée CY, Satwah I, Carrillo-Perez F, Gevaert O. Imaging genomics: data fusion in uncovering disease heritability. Trends Mol Med 2023; 29:141-151. [PMID: 36470817 PMCID: PMC10507799 DOI: 10.1016/j.molmed.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
Sequencing of the human genome in the early 2000s enabled probing of the genetic basis of disease on a scale previously unimaginable. Now, two decades later, after interrogating millions of markers in thousands of individuals, a significant portion of disease heritability still remains hidden. Recent efforts to unravel this 'missing heritability' have focused on garnering new insight from merging different data types, including medical imaging. Imaging offers promising intermediate phenotypes to bridge the gap between genetic variation and disease pathology. In this review we outline this fusion and provide examples of imaging genomics in a range of diseases, from oncology to cardiovascular and neurodegenerative disease. Finally, we discuss how ongoing revolutions in data science and sharing are primed to advance the field.
Collapse
Affiliation(s)
- Katherine Hartmann
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Christoph Y Sadée
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ishan Satwah
- College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Francisco Carrillo-Perez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Granada, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Myeloid cell heterogeneity in the tumor microenvironment and therapeutic implications for childhood central nervous system (CNS) tumors. J Neuroimmunol 2023; 374:578009. [PMID: 36508930 DOI: 10.1016/j.jneuroim.2022.578009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/08/2022]
Abstract
Central nervous system (CNS) tumors are the most common type of solid tumors in children and the leading cause of cancer deaths in ages 0-14. Recent advances in the field of tumor biology and immunology have underscored the disparate nature of these distinct CNS tumor types. In this review, we briefly introduce pediatric CNS tumors and discuss various components of the TME, with a particular focus on myeloid cells. Although most studies regarding myeloid cells have been done on adult CNS tumors and animal models, we discuss the role of myeloid cell heterogeneity in pediatric CNS tumors and describe how these cells may contribute to tumorigenesis and treatment response. In addition, we present studies within the last 5 years that highlight human CNS tumors, the utility of various murine CNS tumor models, and the latest multi-dimensional tools that can be leveraged to investigate myeloid cell infiltration in young adults and children diagnosed with select CNS tumors.
Collapse
|
11
|
Rajappa P, Eng KW, Bareja R, Bander ED, Yuan M, Dua A, Maachani UB, Snuderl M, Pan H, Zhang T, Tosi U, Ivasyk I, Souweidane MM, Elemento O, Sboner A, Greenfield JP, Pisapia DJ. Utility of Multimodality Molecular Profiling for Pediatric Patients with Central Nervous System Tumors. Neurooncol Adv 2022; 4:vdac031. [PMID: 35475276 PMCID: PMC9034114 DOI: 10.1093/noajnl/vdac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
As our molecular understanding of pediatric central nervous system (CNS) tumors evolves, so too do diagnostic criteria, prognostic biomarkers, and clinical management decision-making algorithms. Here, we explore the clinical utility of wide-breadth assays including whole-exome sequencing (WES), RNA sequencing (RNAseq), and methylation array profiling as an addition to more conventional diagnostic tools for pediatric CNS tumors.
Methods
This study comprises an observational, prospective cohort followed at a single academic medical center over three years. Paired tumor and normal control specimens from 53 enrolled pediatric patients with CNS tumors underwent WES. A subset of cases also underwent RNAseq (n=28) and/or methylation array analysis (n=27).
Results
RNAseq identified driver and/or targetable fusions in 7/28 cases, including potentially targetable NTRK fusions, and uncovered possible rationalized treatment options based on outlier gene expression in 23/28 cases. Methylation profiling added diagnostic confidence (8/27 cases) or diagnostic subclassification endorsed by the WHO (10/27 cases). WES detected clinically pertinent Tier 1 or Tier 2 variants in 36/53 patients. Of these, 16/17 SNVs/indels and 10/19 copy number alterations would have been detected by current in-house conventional tests including targeted sequencing panels.
Conclusions
Over a heterogeneous set of pediatric tumors, RNAseq and methylation profiling frequently yielded clinically relevant information orthogonal to conventional methods while WES demonstrated clinically-relevant added-value primarily via copy number assessment. Longitudinal cohorts comparing targeted molecular pathology workup versus broader genomic approaches including therapeutic selection based on RNA-expression data will be necessary to further evaluate the clinical benefits of these modalities in practice.
Collapse
Affiliation(s)
- Prajwal Rajappa
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Kenneth W Eng
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Rohan Bareja
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Evan D Bander
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Melissa Yuan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Alisha Dua
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | | | - Matija Snuderl
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Heng Pan
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Tuo Zhang
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Iryna Ivasyk
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
| | - Olivier Elemento
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Andreas Sboner
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
12
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
13
|
Clément F, Nougarède A, Combe S, Kermarrec F, Dey AK, Obeid P, Millet A, Navarro FP, Marche PN, Sulpice E, Gidrol X. Therapeutic siRNAs Targeting the JAK/STAT Signalling Pathway in Inflammatory Bowel Diseases. J Crohns Colitis 2021; 16:286-300. [PMID: 34286840 PMCID: PMC8864631 DOI: 10.1093/ecco-jcc/jjab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases are highly debilitating conditions that require constant monitoring and life-long medication. Current treatments are focused on systemic administration of immunomodulatory drugs, but they have a broad range of undesirable side-effects. RNA interference is a highly specific endogenous mechanism that regulates the expression of the gene at the transcript level, which can be repurposed using exogenous short interfering RNA [siRNA] to repress expression of the target gene. While siRNA therapeutics can offer an alternative to existing therapies, with a high specificity critical for chronically administrated drugs, evidence of their potency compared to chemical kinase inhibitors used in clinics is still lacking in alleviating an adverse inflammatory response. METHODS We provide a framework to select highly specific siRNA, with a focus on two kinases strongly involved in pro-inflammatory diseases, namely JAK1 and JAK3. Using western-blot, real-time quantitative PCR and large-scale analysis, we assessed the specificity profile of these siRNA drugs and compared their efficacy to the most recent and promising kinase inhibitors for Janus kinases [Jakinibs], tofacitinib and filgotinib. RESULTS siRNA drugs can reach higher efficiency and selectivity at lower doses [5 pM vs 1 µM] than Jakinibs. Moreover, JAK silencing lasted up to 11 days, even with 6 h pulse transfection. CONCLUSIONS The siRNA-based drugs developed hold the potential to develop more potent therapeutics for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Flora Clément
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Adrien Nougarède
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Stéphanie Combe
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | | | - Arindam K Dey
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Patricia Obeid
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Arnaud Millet
- Univ. Grenoble Alpes, Inserm U1209, CNRS UMR5309, Team Mechanobiology, immunity and Cancer, Institute for Advanced Biosciences, La Tronche, France
| | - Fabrice P Navarro
- Univ. Grenoble Alpes, CEA, Leti, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, Grenoble, France
| | - Patrice N Marche
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR5309, IAB, La Tronche, France
| | - Eric Sulpice
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France
| | - Xavier Gidrol
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, Grenoble, France,Corresponding author: Xavier Gidrol, Univ. Grenoble Alpes, CEA, INSERM, IRIG, Biomics, F-38000, Grenoble, France. Tel: +(33)4 38 78 22 36; Fax: +(33)4 38 78 59 17;
| |
Collapse
|
14
|
Preclinical ImmunoPET Imaging of Glioblastoma-Infiltrating Myeloid Cells Using Zirconium-89 Labeled Anti-CD11b Antibody. Mol Imaging Biol 2021; 22:685-694. [PMID: 31529407 DOI: 10.1007/s11307-019-01427-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Glioblastoma is a lethal brain tumor, heavily infiltrated by tumor-associated myeloid cells (TAMCs). TAMCs are emerging as a promising therapeutic target as they suppress anti-tumor immune responses and promote tumor cell growth. Quantifying TAMCs using non-invasive immunoPET could facilitate patient stratification for TAMC-targeted treatments and monitoring of treatment efficacy. As TAMCs uniformly express the cell surface marker, integrin CD11b, we evaluated a Zr-89 labeled anti-CD11b antibody for non-invasive imaging of TAMCs in a syngeneic orthotopic mouse glioma model. PROCEDURES A human/mouse cross-reactive anti-CD11b antibody (clone M1/70) was conjugated to a DFO chelator and radiolabeled with Zr-89. PET/CT and biodistribution with or without a blocking dose of anti-CD11b Ab were performed 72 h post-injection (p.i.) of [89Zr]anti-CD11b Ab in mice bearing established orthotopic syngeneic GL261 gliomas and in non tumor-bearing mice. Flow cytometry and immunohistochemistry of dissected GL261 tumors were conducted to confirm the presence of CD11b+ TAMCs. RESULTS Significant uptake of [89Zr]anti-CD11b Ab was detected at the tumor site (SUVmean = 2.60 ± 0.24) compared with the contralateral hemisphere (SUVmean = 0.6 ± 0.11). Blocking with a 10-fold lower specific activity of [89Zr]anti-CD11b Ab markedly reduced the SUV in the right brain (SUVmean = 0.11 ± 0.06), demonstrating specificity. Spleen and lymph nodes (myeloid cell rich organs) also showed high uptake of the tracer, and biodistribution analysis correlated with the imaging results. CD11b expression within the tumor was validated using flow cytometry and immunohistochemistry, which showed high CD11b expression primarily in the tumoral hemisphere compared with the contralateral hemisphere with very minimal accumulation in non tumor-bearing brain. CONCLUSION These data establish that [89Zr]anti-CD11b Ab immunoPET targets CD11b+ cells (TAMCs) with high specificity in a mouse model of GBM, demonstrating the potential for non-invasive quantification of tumor-infiltrating CD11b+ immune cells during disease progression and immunotherapy in patients with GBM.
Collapse
|
15
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
17
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
18
|
Long Y, Lu Z, Xu S, Li M, Wang X, Zhang Z, He Q. Self-Delivery Micellar Nanoparticles Prevent Premetastatic Niche Formation by Interfering with the Early Recruitment and Vascular Destruction of Granulocytic Myeloid-Derived Suppressor Cells. NANO LETTERS 2020; 20:2219-2229. [PMID: 31823615 DOI: 10.1021/acs.nanolett.9b03883] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Distal metastases of tumors result from the interaction between "seeds" (circulating tumor cells, CTCs) and "soil" (premetastatic niche, PMN). Various strategies focus on CTC inhibition, but only a few strategies inhibit PMN formation. The main predisposition of PMN formation in melanoma lies in the pulmonary recruitment of granulocytic myeloid-derived suppressor cells (G-MDSCs, CD11b+Ly6G+ cells) induced by tumors, which increase vascular permeability by secreting matrix metalloproteinase-9 (MMP-9) and result in immunosuppression by secreting interleukin-10 (IL-10) in premetastatic lungs. Here, a micellar hypotoxic low molecular weight heparin-tocopherol succinate nanoparticle (LMWH-TOS nanoparticle, LT NP) was established and investigated for its influence on PMN formation in this study. We first demonstrated that the hydrophilic segment LMWH in LT NPs can inhibit early pulmonary recruitment of G-MDSCs through interrupting their extravasation by inhibiting P-selectin/PSGL-1-mediated adhesion between vascular endothelial cells and G-MDSCs. In addition, the hydrophobic segment (TOS) in LT NPs significantly inhibited the expression of MMP-9 in G-MDSCs. As a result, the drug-free nanoparticles could maintain the normal microenvironment of lungs, thus effectively inhibiting implantation and colonization of CTCs. Further, phenylboronic acid (PBA)-modified and doxorubicin/immunopotentiator α-galactosylceramide (αGC)-coloaded nanoparticles (PLT/DOX/αGC NPs) were exploited. PBA modification achieved targeted chemotherapy by binding to overexpressed sialic acid residues on the tumor cell surface. This nanosystem effectively inhibited the postoperative metastasis and tumor recurrence simultaneously. Our work provides a proof of concept that the prevention of PMN formation through interfering G-MDSCs with self-delivery nanosystems is a safe and effective antimetastasis strategy.
Collapse
Affiliation(s)
- Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, Kandpal M, O’Rourke DM, Greenfield JP, Greene CS, Davuluri RV, Dahmane N. Immune landscapes associated with different glioblastoma molecular subtypes. Acta Neuropathol Commun 2019; 7:203. [PMID: 31815646 PMCID: PMC6902522 DOI: 10.1186/s40478-019-0803-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Recent work has highlighted the tumor microenvironment as a central player in cancer. In particular, interactions between tumor and immune cells may help drive the development of brain tumors such as glioblastoma multiforme (GBM). Despite significant research into the molecular classification of glioblastoma, few studies have characterized in a comprehensive manner the immune infiltrate in situ and within different GBM subtypes. In this study, we use an unbiased, automated immunohistochemistry-based approach to determine the immune phenotype of the four GBM subtypes (classical, mesenchymal, neural and proneural) in a cohort of 98 patients. Tissue Micro Arrays (TMA) were stained for CD20 (B lymphocytes), CD5, CD3, CD4, CD8 (T lymphocytes), CD68 (microglia), and CD163 (bone marrow derived macrophages) antibodies. Using automated image analysis, the percentage of each immune population was calculated with respect to the total tumor cells. Mesenchymal GBMs displayed the highest percentage of microglia, macrophage, and lymphocyte infiltration. CD68+ and CD163+ cells were the most abundant cell populations in all four GBM subtypes, and a higher percentage of CD163+ cells was associated with a worse prognosis. We also compared our results to the relative composition of immune cell type infiltration (using RNA-seq data) across TCGA GBM tumors and validated our results obtained with immunohistochemistry with an external cohort and a different method. The results of this study offer a comprehensive analysis of the distribution and the infiltration of the immune components across the four commonly described GBM subgroups, setting the basis for a more detailed patient classification and new insights that may be used to better apply or design immunotherapies for GBM.
Collapse
|
20
|
Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat Commun 2019; 10:2541. [PMID: 31186414 PMCID: PMC6559986 DOI: 10.1038/s41467-019-10493-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Reactive astrocytes evolve after brain injury, inflammatory and degenerative diseases, whereby they undergo transcriptomic re-programming. In malignant brain tumors, their function and crosstalk to other components of the environment is poorly understood. Here we report a distinct transcriptional phenotype of reactive astrocytes from glioblastoma linked to JAK/STAT pathway activation. Subsequently, we investigate the origin of astrocytic transformation by a microglia loss-of-function model in a human organotypic slice model with injected tumor cells. RNA-seq based gene expression analysis of astrocytes reveals a distinct astrocytic phenotype caused by the coexistence of microglia and astrocytes in the tumor environment, which leads to a large release of anti-inflammatory cytokines such as TGFβ, IL10 and G-CSF. Inhibition of the JAK/STAT pathway shifts the balance of pro- and anti-inflammatory cytokines towards a pro-inflammatory environment. The complex interaction of astrocytes and microglia cells promotes an immunosuppressive environment, suggesting that tumor-associated astrocytes contribute to anti-inflammatory responses. Astrocytes play important roles in neuroinflammatory diseases. Here the authors characterize human glioblastoma-associated astrocytes by gene expression and demonstrate their immunosuppressive role promoted by interactions with tumor and microglia cells in an organotypic model.
Collapse
|
21
|
Abstract
Glioma cells diffusely infiltrate the surrounding brain tissue where they intermingle with nonneoplastic brain cells, including astrocytes, microglia, oligodendrocytes and neurons. The infiltrative margins of glioma represent the structural and functional interface between neoplastic and nonneoplastic brain tissue that underlies neurologic alterations associated with glioma, including epilepsy and neurologic deficits. Technological advancements in molecular analysis, including single cell sequencing, now allow us to assess alterations in specific cell types in the brain tumor microenvironment, which can enhance the development of novel therapies that target glioma growth and glioma-induced neurologic symptoms.
Collapse
|
22
|
Steenbeek SC, Pham TV, de Ligt J, Zomer A, Knol JC, Piersma SR, Schelfhorst T, Huisjes R, Schiffelers RM, Cuppen E, Jimenez CR, van Rheenen J. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles. EMBO J 2018; 37:embj.201798357. [PMID: 29907695 PMCID: PMC6068466 DOI: 10.15252/embj.201798357] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre‐LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi‐faceted biological response including cell migration.
Collapse
Affiliation(s)
- Sander C Steenbeek
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep de Ligt
- Division Biomedical Genetics, Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anoek Zomer
- Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander R Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Tim Schelfhorst
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Division Biomedical Genetics, Center for Molecular Medicine, Oncode Institute, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Connie R Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacco van Rheenen
- Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands .,Oncode Institute, Hubrecht Institute-KNAW & University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|