1
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong SG, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex-vivo-generated 89Zr-oxine-labeled plasma cells by PET in a non-human primate model. Mol Ther 2024:S1525-0016(24)00842-6. [PMID: 39741408 DOI: 10.1016/j.ymthe.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody-secreting cells. Zirconium-89-oxine-labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 h of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting possibly a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
Affiliation(s)
- David J Young
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Kevin G Quiroz Caceda
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - So Gun Hong
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Peter L Choyke
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Noriko Sato
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Pham TT, Chenoweth A, Patel N, Banu A, Osborn G, Blower PJ, Karagiannis SN, Ma MT. In Vivo PET Imaging of 89Zr-Labeled Natural Killer Cells and the Modulating Effects of a Therapeutic Antibody. J Nucl Med 2024; 65:1035-1042. [PMID: 38844362 PMCID: PMC11218727 DOI: 10.2967/jnumed.124.267876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 07/03/2024] Open
Abstract
Natural killer (NK) cells can kill cancer cells via antibody-dependent cell-mediated cytotoxicity (ADCC): a tumor-associated IgG antibody binds to the Fcγ receptor CD16 on NK cells via the antibody Fc region and activates the cytotoxic functions of the NK cell. Here, we used PET imaging to assess NK cell migration to human epidermal growth factor receptor 2 (HER2)-positive HCC1954 breast tumors, examining the influence of HER2-targeted trastuzumab antibody treatment on NK cell tumor accumulation. Methods: Human NK cells from healthy donors were expanded ex vivo and labeled with [89Zr]Zr-oxine. In vitro experiments compared the phenotypic markers, viability, proliferation, migration, degranulation, and ADCC behaviors of both labeled (89Zr-NK) and unlabeled NK cells. Female mice bearing orthotopic human breast HCC1954 tumors were administered 89Zr-NK cells alongside trastuzumab treatment or a sham treatment and then scanned using PET/CT imaging over 7 d. Flow cytometry and γ-counting were used to analyze the presence of 89Zr-NK cells in liver and spleen tissues. Results: 89Zr cell radiolabeling yields measured 42.2% ± 8.0%. At an average specific activity of 16.7 ± 4.7 kBq/106 cells, 89Zr-NK cells retained phenotypic and functional characteristics including CD56 and CD16 expression, viability, migration, degranulation, and ADCC capabilities. In vivo PET/CT studies indicated predominant accumulation of 89Zr-NK cells in the liver and spleen. Ex vivo analyses of liver and spleen tissues indicated that the administered human 89Zr-NK cells retained their radioactivity in vivo and that 89Zr did not transfer to cells of murine soft tissues, thus validating this 89Zr PET method for NK cell tracking. Notably, 89Zr-NK cells migrated to HER2-positive tumors, both with and without trastuzumab treatment. Trastuzumab treatment was associated with an increased 89Zr-NK cell signal at days 1 and 3 after injection. Conclusion: In vitro, 89Zr-NK cells maintained key cellular and cytotoxic functions. In vivo, 89Zr-NK cells trafficked to HER2-postive tumors, with trastuzumab treatment correlating with enhanced 89Zr-NK infiltration. This study demonstrates the feasibility of using PET to image 89Zr-NK cell infiltration into solid tumors.
Collapse
Affiliation(s)
- Truc T Pham
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom;
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Natasha Patel
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Arshiya Banu
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
| | - Philip J Blower
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, United Kingdom; and
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Michelle T Ma
- Department of Imaging Chemistry and Biology, School of Bioengineering and Imaging Sciences, King's College London, London, United Kingdom;
| |
Collapse
|
3
|
Young DJ, Edwards AJ, Quiroz Caceda KG, Liberzon E, Barrientos J, Hong S, Turner J, Choyke PL, Arlauckas S, Lazorchak AS, Morgan RA, Sato N, Dunbar CE. In vivo tracking of ex vivo generated 89 Zr-oxine labeled plasma cells by PET in a non-human primate model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595782. [PMID: 38903108 PMCID: PMC11188104 DOI: 10.1101/2024.05.24.595782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
B cells are an attractive platform for engineering to produce protein-based biologics absent in genetic disorders, and potentially for the treatment of metabolic diseases and cancer. As part of pre-clinical development of B cell medicines, we demonstrate a method to collect, ex vivo expand, differentiate, radioactively label, and track adoptively transferred non-human primate (NHP) B cells. These cells underwent 10- to 15-fold expansion, initiated IgG class switching, and differentiated into antibody secreting cells. Zirconium-89-oxine labeled cells were infused into autologous donors without any preconditioning and tracked by PET/CT imaging. Within 24 hours of infusion, 20% of the initial dose homed to the bone marrow and spleen and distributed stably and equally between the two. Interestingly, approximately half of the dose homed to the liver. Image analysis of the bone marrow demonstrated inhomogeneous distribution of the cells. The subjects experienced no clinically significant side effects or laboratory abnormalities. A second infusion of B cells into one of the subjects resulted in an almost identical distribution of cells, suggesting a non-limiting engraftment niche and feasibility of repeated infusions. This work supports the NHP as a valuable model to assess the potential of B cell medicines as potential treatment for human diseases.
Collapse
|
4
|
Jia X, Xi J, Tian B, Zhang Y, Wang Z, Wang F, Li Z, Long J, Wang J, Fan GH, Li Q. The Tautomerase Activity of Tumor Exosomal MIF Promotes Pancreatic Cancer Progression by Modulating MDSC Differentiation. Cancer Immunol Res 2024; 12:72-90. [PMID: 37956411 DOI: 10.1158/2326-6066.cir-23-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/28/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Pancreatic cancer is a deadly disease that is largely resistant to immunotherapy, in part because of the accumulation of immunosuppressive cells in the tumor microenvironment (TME). Much evidence suggests that tumor-derived exosomes (TDE) contribute to the immunosuppressive activity mediated by myeloid-derived suppressor cells (MDSC) within the pancreatic cancer TME. However, the underlying mechanisms remain elusive. Herein, we report that macrophage migration inhibitory factor (MIF) in TDEs has a key role in inducing MDSC formation in pancreatic cancer. We identified MIF in both human and murine pancreatic cancer-derived exosomes. Upon specific shRNA-mediated knockdown of MIF, the ability of pancreatic cancer-derived exosomes to promote MDSC differentiation was abrogated. This phenotype was rescued by reexpression of the wild-type form of MIF rather than a tautomerase-null mutant or a thiol-protein oxidoreductase-null mutant, indicating that both MIF enzyme activity sites play a role in exosome-induced MDSC formation in pancreatic cancer. RNA sequencing data indicated that MIF tautomerase regulated the expression of genes required for MDSC differentiation, recruitment, and activation. We therefore developed a MIF tautomerase inhibitor, IPG1576. The inhibitor effectively inhibited exosome-induced MDSC differentiation in vitro and reduced tumor growth in an orthotopic pancreatic cancer model, which was associated with decreased numbers of MDSCs and increased infiltration of CD8+ T cells in the TME. Collectively, our findings highlight a pivotal role for MIF in exosome-induced MDSC differentiation in pancreatic cancer and underscore the potential of MIF tautomerase inhibitors to reverse the immunosuppressive pancreatic cancer microenvironment, thereby augmenting anticancer immune responses.
Collapse
Affiliation(s)
- Xuebing Jia
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbei Xi
- Department of Medicinal Chemistry, Immunophage Biotech Co., Ltd., Shanghai, China
| | - Binle Tian
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Oncology, Immunophage Biotech Co., Ltd., Shanghai, China
| | - Zhilong Wang
- Department of Oncology, Immunophage Biotech Co., Ltd., Shanghai, China
| | - Fan Wang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Department of Autoimmune Disease, Immunophage Biotech Co., Ltd., Shanghai, China
| | - Jiang Long
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - JianFei Wang
- Excecutive Office, Immunophage Biotech Co., Ltd., Shanghai, China
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Guo-Huang Fan
- Excecutive Office, Immunophage Biotech Co., Ltd., Shanghai, China
| | - Qi Li
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
de Lima MR, Campbell DCDP, da Cunha-Madeira MR, Bomfim BCM, de Paula Ayres-Silva J. Animal Welfare in Radiation Research: The Importance of Animal Monitoring System. Vet Sci 2023; 10:651. [PMID: 37999474 PMCID: PMC10674294 DOI: 10.3390/vetsci10110651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
Long-term research into radiation exposure significantly expanded following World War II, driven by the increasing number of individuals falling ill after the detonation of two atomic bombs in Japan. Consequently, researchers intensified their efforts to investigate radiation's effects using animal models and to study disease models that emerged post-catastrophe. As a result, several parameters have been established as essential in these models, encompassing radiation doses, regimens involving single or multiple irradiations, the injection site for transplantation, and the quantity of cells to be injected. Nonetheless, researchers have observed numerous side effects in irradiated animals, prompting the development of scoring systems to monitor these animals' well-being. The aim of this review is to delve into the historical context of using animals in radiation research and explore the ethical considerations related to animal welfare, which has become an increasingly relevant topic in recent years. These concerns have prompted research groups to adopt measures aimed at reducing animal suffering. Consequently, for animal welfare, the implementation of a scoring system for clinical and behavioral monitoring is essential. This represents one of the primary challenges and hurdles in radiation studies. It is concluded that implementing standardized criteria across all institutions is aimed at ensuring result reproducibility and fostering collaboration within the scientific community.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Center for Animal Experimentation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil; (M.R.d.L.)
| | - Daiani Cotrim de Paiva Campbell
- Center for Animal Experimentation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil; (M.R.d.L.)
| | | | - Barbara Cristina Marcollino Bomfim
- Laboratory of Experimental Medicine and Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| | - Jackline de Paula Ayres-Silva
- Laboratory of Experimental Medicine and Health, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21041-250, Brazil
| |
Collapse
|
6
|
Kheyrolahzadeh K, Tohidkia MR, Tarighatnia A, Shahabi P, Nader ND, Aghanejad A. Theranostic chimeric antigen receptor (CAR)-T cells: Insight into recent trends and challenges in solid tumors. Life Sci 2023; 328:121917. [PMID: 37422069 DOI: 10.1016/j.lfs.2023.121917] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/15/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Cell therapy has reached significant milestones in various life-threatening diseases, including cancer. Cell therapy using fluorescent and radiolabeled chimeric antigen receptor (CAR)-T cell is a successful strategy for diagnosing or treating malignancies. Since cell therapy approaches have different results in cancers, the success of hematological cancers has yet to transfer to solid tumor therapy, leading to more casualties. Therefore, there are many areas for improvement in the cell therapy platform. Understanding the therapeutic barriers associated with solid cancers through cell tracking and molecular imaging may provide a platform for effectively delivering CAR-T cells into solid tumors. This review describes CAR-T cells' role in treating solid and non-solid tumors and recent advances. Furthermore, we discuss the main obstacles, mechanism of action, novel strategies and solutions to overcome the challenges from molecular imaging and cell tracking perspectives.
Collapse
Affiliation(s)
- Keyvan Kheyrolahzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Polyak A, Képes Z, Trencsényi G. Implant Imaging: Perspectives of Nuclear Imaging in Implant, Biomaterial, and Stem Cell Research. Bioengineering (Basel) 2023; 10:bioengineering10050521. [PMID: 37237591 DOI: 10.3390/bioengineering10050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Until now, very few efforts have been made to specifically trace, monitor, and visualize implantations, artificial organs, and bioengineered scaffolds for tissue engineering in vivo. While mainly X-Ray, CT, and MRI methods have been used for this purpose, the applications of more sensitive, quantitative, specific, radiotracer-based nuclear imaging techniques remain a challenge. As the need for biomaterials increases, so does the need for research tools to evaluate host responses. PET (positron emission tomography) and SPECT (single photon emission computer tomography) techniques are promising tools for the clinical translation of such regenerative medicine and tissue engineering efforts. These tracer-based methods offer unique and inevitable support, providing specific, quantitative, visual, non-invasive feedback on implanted biomaterials, devices, or transplanted cells. PET and SPECT can improve and accelerate these studies through biocompatibility, inertivity, and immune-response evaluations over long investigational periods at high sensitivities with low limits of detection. The wide range of radiopharmaceuticals, the newly developed specific bacteria, and the inflammation of specific or fibrosis-specific tracers as well as labeled individual nanomaterials can represent new, valuable tools for implant research. This review aims to summarize the opportunities of nuclear-imaging-supported implant research, including bone, fibrosis, bacteria, nanoparticle, and cell imaging, as well as the latest cutting-edge pretargeting methods.
Collapse
Affiliation(s)
- Andras Polyak
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - György Trencsényi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
8
|
Evaluation of different 89Zr-labeled synthons for direct labeling and tracking of white blood cells and stem cells in healthy athymic mice. Sci Rep 2022; 12:15646. [PMID: 36123386 PMCID: PMC9485227 DOI: 10.1038/s41598-022-19953-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022] Open
Abstract
Cell based therapies are evolving as an effective new approach to treat various diseases. To understand the safety, efficacy, and mechanism of action of cell-based therapies, it is imperative to follow their biodistribution noninvasively. Positron-emission-tomography (PET)-based non-invasive imaging of cell trafficking offers such a potential. Herein, we evaluated and compared three different ready-to-use direct cell radiolabeling synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA for PET imaging-based trafficking of white blood cells (WBCs) and stem cells (SCs) up to 7 days in athymic nude mice. We compared the degree of 89Zr complexation and percentage of cell radiolabeling efficiencies with each. All three synthons, [89Zr]Zr-DFO-Bn-NCS, [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA, were successfully prepared, and used for radiolabeling of WBCs and SCs. The highest cell radiolabeling yield was found for [89Zr]Zr-DFO-Bn-NCS, followed by [89Zr]Zr-Hy3ADA5-NCS, and [89Zr]Zr-Hy3ADA5-SA. In terms of biodistribution, WBCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS, were primarily accumulated in liver and spleen, whereas SCs radiolabeled with [89Zr]Zr-DFO-Bn-NCS or [89Zr]Zr-Hy3ADA5-NCS were found in lung, liver and spleen. A high bone uptake was observed for both WBCs and SCs radiolabeled with [89Zr]Zr-Hy3ADA5-SA, suggesting in-vivo instability of [89Zr]Zr-Hy3ADA5-SA synthon. This study offers an appropriate selection of ready-to-use radiolabeling synthons for noninvasive trafficking of WBCs, SCs and other cell-based therapies.
Collapse
|
9
|
Wang S, Wang Y, Xu B, Qin T, Lv Y, Yan H, Shao Y, Fang Y, Zheng S, Qiu Y. Biodistribution of 89Zr-oxine-labeled human bone marrow-derived mesenchymal stem cells by micro-PET/computed tomography imaging in Sprague-Dawley rats. Nucl Med Commun 2022; 43:834-846. [PMID: 35438673 PMCID: PMC9177155 DOI: 10.1097/mnm.0000000000001562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To develop a method for labeling human bone marrow mesenchymal stem cells (hMSCs) with 89Zr-oxine to characterize the biodistribution characteristics of hMSCs in normal Sprague-Dawley (SD) rats in real-time by micro-PET-computed tomography (micro-PET/CT) imaging. METHODS 89Zr-oxine complex was synthesized from 89Zr-oxalate and 8-hydroxyquinoline (oxine). After hMSCs were labeled with the 89Zr-oxine complex, the radioactivity retention, viability, proliferation, apoptosis, differentiation, morphology, and phenotype of labeled cells were assessed. The biodistribution of 89Zr-oxine-labeled hMSCs in SD rats was tracked in real-time by micro-PET/CT imaging. RESULTS The cell labeling efficiency was 52.6 ± 0.01%, and 89Zr-oxine was stably retained in cells (66.7 ± 0.9% retention on 7 days after labeling). Compared with the unlabeled hMSCs, 89Zr-oxine labeling did not affect the biological characteristics of cells. Following intravenous administration in SD rats, labeled hMSCs mainly accumulated in the liver (7.35 ± 1.41% ID/g 10 days after labeling, n = 6) and spleen (8.48 ± 1.20% ID/g 10 days after labeling, n = 6), whereas intravenously injected 89Zr-oxalate mainly accumulated in the bone (4.47 ± 0.35% ID/g 10 days after labeling, n = 3). CONCLUSION 89Zr-oxine labeling and micro-PET/CT imaging provide a useful and non-invasive method of assessing the biodistribution of cell therapy products in SD rats. The platform provides a foundation for us to further understand the mechanism of action and migration dynamics of cell therapy products.
Collapse
Affiliation(s)
- Shuzhe Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Yan Wang
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| | - Bohua Xu
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Tian Qin
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yupeng Lv
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Heng Yan
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yifei Shao
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Yangyang Fang
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
| | - Shaoqiu Zheng
- Radiographic Evaluation Department of InnoStar Biotechnology Nantong Co. Ltd, Nantong
- Jiangxi University of Traditional Chinese Medicine, Nanchang
- Yangtze Delta Advanced Research Institute, Yangtze Delta Pharmaceutical College Nantong, Jiangsu, China
| | - Yunliang Qiu
- Toxicology Department of China Academy of Pharmaceutical Industry Shanghai InnoStar Biotechnology Co. Ltd, Shanghai
| |
Collapse
|
10
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
11
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Sato N, Choyke PL. Whole-Body Imaging to Assess Cell-Based Immunotherapy: Preclinical Studies with an Update on Clinical Translation. Mol Imaging Biol 2022; 24:235-248. [PMID: 34816284 PMCID: PMC8983636 DOI: 10.1007/s11307-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B406, 10 Center Dr, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B69F, 10 Center Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Sočan A. Radiolabeling of red blood cells and platelets and quality controls. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Sato N, Szajek LP, Choyke PL. Tracking of NK Cells by Positron Emission Tomography Using 89Zr-Oxine Ex Vivo Cell Labeling. Methods Mol Biol 2022; 2463:153-161. [PMID: 35344173 DOI: 10.1007/978-1-0716-2160-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A 89Zr-oxine ex vivo cell labeling method for tracking various cells by positron emission tomography (PET) imaging has recently been developed. 89Zr-oxine is synthesized from oxine and 89Zr-chloride, which was converted from 89Zr-oxalate, with neutralization. To track migration of natural killer (NK) cells in vivo in real time by PET imaging, NK cells are labeled with 89Zr-oxine ex vivo and infused to a recipient. The labeling is performed by mixing 89Zr-oxine solution to NK cell suspension at room temperature, followed by washing. Care should be taken to label the cells at optimal radioactivity doses that maintain their viability and functionality. 89Zr-oxine labeled NK cells can be tracked for their migration and distribution by PET/computed tomography imaging for at least 7 days. Of note, this protocol is applicable to other types of cells.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lawrence P Szajek
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Kamiyama Y, Naritomi Y, Moriya Y, Yamamoto S, Kitahashi T, Maekawa T, Yahata M, Hanada T, Uchiyama A, Noumaru A, Koga Y, Higuchi T, Ito M, Komatsu H, Miyoshi S, Kimura S, Umeda N, Fujita E, Tanaka N, Sugita T, Takayama S, Kurogi A, Yasuda S, Sato Y. Biodistribution studies for cell therapy products: Current status and issues. Regen Ther 2021; 18:202-216. [PMID: 34307798 PMCID: PMC8282960 DOI: 10.1016/j.reth.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 01/01/2023] Open
Abstract
Information on the biodistribution (BD) of cell therapy products (CTPs) is essential for prediction and assessment of their efficacy and toxicity profiles in non-clinical and clinical studies. To conduct BD studies, it is necessary to understand regulatory requirements, implementation status, and analytical methods. This review aimed at surveying international and Japanese trends concerning the BD study for CTPs and the following subjects were investigated, which were considered particularly important: 1) comparison of guidelines to understand the regulatory status of BD studies in a global setting; 2) case studies of the BD study using databases to understand its current status in cell therapy; 3) case studies on quantitative polymerase chain reaction (qPCR) used primarily in non-clinical BD studies for CTPs; and 4) survey of imaging methods used for non-clinical and clinical BD studies. The results in this review will be a useful resource for implementing BD studies.
Collapse
Affiliation(s)
- Yoshiteru Kamiyama
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yoichi Naritomi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Yuu Moriya
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Tsukasa Kitahashi
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Toshihiko Maekawa
- Bioscience & Engineering Laboratory, FUJIFILM Corp., 577 Ushijima, Kaisei-Machi, Ashigarakami-gun, Kanagawa, Japan
| | - Masahiro Yahata
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, Japan
| | - Takeshi Hanada
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo.Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Asako Uchiyama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Kagoshima, Japan
| | - Akari Noumaru
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Yoshiyuki Koga
- Kumamoto Laboratories, LSIM Safety Institute Corporation, 1285 Kurisaki-machi, Uto, Kumamoto, Japan
| | - Tomoaki Higuchi
- Non-clinical Development, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Masahiko Ito
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Komatsu
- Science BD Department, CMIC Pharma Science Co., Ltd., 1-1-1 Shibaura, Minato-ku, Tokyo, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Sadaaki Kimura
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Umeda
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Eriko Fujita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, Japan
| | - Naoko Tanaka
- Evaluation Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa, Japan
| | - Taku Sugita
- Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Satoru Takayama
- Cell Therapy Technology, Healthcare R&D Center, Asahi Kasei Corporation, 2-1 Samejima, Fuji-Shi, Shizuoka, Japan
| | - Akihiko Kurogi
- Regenerative Medicine Research & Planning Division, ROHTO Pharmaceutical Co., Ltd., Osaka, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
16
|
Friberger I, Jussing E, Han J, Goos JACM, Siikanen J, Kaipe H, Lambert M, Harris RA, Samén E, Carlsten M, Holmin S, Tran TA. Optimisation of the Synthesis and Cell Labelling Conditions for [ 89Zr]Zr-oxine and [ 89Zr]Zr-DFO-NCS: a Direct In Vitro Comparison in Cell Types with Distinct Therapeutic Applications. Mol Imaging Biol 2021; 23:952-962. [PMID: 34231103 PMCID: PMC8578071 DOI: 10.1007/s11307-021-01622-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND There is a need to better characterise cell-based therapies in preclinical models to help facilitate their translation to humans. Long-term high-resolution tracking of the cells in vivo is often impossible due to unreliable methods. Radiolabelling of cells has the advantage of being able to reveal cellular kinetics in vivo over time. This study aimed to optimise the synthesis of the radiotracers [89Zr]Zr-oxine (8-hydroxyquinoline) and [89Zr]Zr-DFO-NCS (p-SCN-Bn-Deferoxamine) and to perform a direct comparison of the cell labelling efficiency using these radiotracers. PROCEDURES Several parameters, such as buffers, pH, labelling time and temperature, were investigated to optimise the synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS in order to reach a radiochemical conversion (RCC) of >95 % without purification. Radio-instant thin-layer chromatography (iTLC) and radio high-performance liquid chromatography (radio-HPLC) were used to determine the RCC. Cells were labelled with [89Zr]Zr-oxine or [89Zr]Zr-DFO-NCS. The cellular retention of 89Zr and the labelling impact was determined by analysing the cellular functions, such as viability, proliferation, phagocytotic ability and phenotypic immunostaining. RESULTS The optimised synthesis of [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS resulted in straightforward protocols not requiring additional purification. [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS were synthesised with an average RCC of 98.4 % (n = 16) and 98.0 % (n = 13), respectively. Cell labelling efficiencies were 63.9 % (n = 35) and 70.2 % (n = 30), respectively. 89Zr labelling neither significantly affected the cell viability (cell viability loss was in the range of 1-8 % compared to its corresponding non-labelled cells, P value > 0.05) nor the cells' proliferation rate. The phenotype of human decidual stromal cells (hDSC) and phagocytic function of rat bone-marrow-derived macrophages (rMac) was somewhat affected by radiolabelling. CONCLUSIONS Our study demonstrates that [89Zr]Zr-oxine and [89Zr]Zr-DFO-NCS are equally effective in cell labelling. However, [89Zr]Zr-oxine was superior to [89Zr]Zr-DFO-NCS with regard to long-term stability, cellular retention, minimal variation between cell types and cell labelling efficiency.
Collapse
Affiliation(s)
- Ida Friberger
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jinming Han
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jeroen A C M Goos
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Siikanen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mélanie Lambert
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Robert A Harris
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Carlsten
- Department of Medicine in Huddinge, Karolinska Institutet, Stockholm, Sweden
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Thuy A Tran
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
- Department of Radiopharmacy, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Spatio-temporal biodistribution of 89Zr-oxine labeled huLym-1-A-BB3z-CAR T-cells by PET imaging in a preclinical tumor model. Sci Rep 2021; 11:15077. [PMID: 34302002 PMCID: PMC8302724 DOI: 10.1038/s41598-021-94490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Quantitative in vivo monitoring of cell biodistribution offers assessment of treatment efficacy in real-time and can provide guidance for further optimization of chimeric antigen receptor (CAR) modified cell therapy. We evaluated the utility of a non-invasive, serial 89Zr-oxine PET imaging to assess optimal dosing for huLym-1-A-BB3z-CAR T-cell directed to Lym-1-positive Raji lymphoma xenograft in NOD Scid-IL2Rgammanull (NSG) mice. In vitro experiments showed no detrimental effects in cell health and function following 89Zr-oxine labeling. In vivo experiments employed simultaneous PET/MRI of Raji-bearing NSG mice on day 0 (3 h), 1, 2, and 5 after intravenous administration of low (1.87 ± 0.04 × 106 cells), middle (7.14 ± 0.45 × 106 cells), or high (16.83 ± 0.41 × 106 cells) cell dose. Biodistribution (%ID/g) in regions of interests defined over T1-weighted MRI, such as blood, bone, brain, liver, lungs, spleen, and tumor, were analyzed from PET images. Escalating doses of CAR T-cells resulted in dose-dependent %ID/g biodistributions in all regions. Middle and High dose groups showed significantly higher tumor %ID/g compared to Low dose group on day 2. Tumor-to-blood ratios showed the enhanced extravascular tumor uptake by day 2 in the Low dose group, while the Middle dose showed significant tumor accumulation starting on day 1 up to day 5. From these data obtained over time, it is apparent that intravenously administered CAR T-cells become trapped in the lung for 3–5 h and then migrate to the liver and spleen for up to 2–3 days. This surprising biodistribution data may be responsible for the inactivation of these cells before targeting solid tumors. Ex vivo biodistributions confirmed in vivo PET-derived biodistributions. According to these studies, we conclude that in vivo serial PET imaging with 89Zr-oxine labeled CAR T-cells provides real-time monitoring of biodistributions crucial for interpreting efficacy and guiding treatment in patient care.
Collapse
|
18
|
Oliveira FA, Nucci MP, Mamani JB, Alves AH, Rego GNA, Kondo AT, Hamerschlak N, Junqueira MS, de Souza LEB, Gamarra LF. Multimodal Tracking of Hematopoietic Stem Cells from Young and Old Mice Labeled with Magnetic-Fluorescent Nanoparticles and Their Grafting by Bioluminescence in a Bone Marrow Transplant Model. Biomedicines 2021; 9:biomedicines9070752. [PMID: 34209598 PMCID: PMC8301491 DOI: 10.3390/biomedicines9070752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
This study proposes an innovative way to evaluate the homing and tracking of hematopoietic stem cells from young and old mice labeled with SPIONNIRF-Rh conjugated with two types of fluorophores (NIRF and Rhodamine), and their grafting by bioluminescence (BLI) in a bone marrow transplant (BMT) model. In an in vitro study, we isolated bone marrow mononuclear cells (BM-MNC) from young and old mice, and analyzed the physical-chemical characteristics of SPIONNIRF-Rh, their internalization, cell viability, and the iron quantification by NIRF, ICP-MS, and MRI. The in vivo study was performed in a BMT model to evaluate the homing, tracking, and grafting of young and old BM-MNC labeled with SPIONNIRF-Rh by NIRF and BLI, as well as the hematological reconstitution for 120 days. 5FU influenced the number of cells isolated mainly in young cells. SPIONNIRF-Rh had adequate characteristics for efficient internalization into BM-MNC. The iron load quantification by NIRF, ICP-MS, and MRI was in the order of 104 SPIONNIRF-Rh/BM-MNC. In the in vivo study, the acute NIRF evaluation showed higher signal intensity in the spinal cord and abdominal region, and the BLI evaluation allowed follow-up (11-120 days), achieving a peak of intensity at 30 days, which remained stable around 108 photons/s until the end. The hematologic evaluation showed similar behavior until 30 days and the histological results confirm that iron is present in almost all tissue evaluated. Our results on BM-MNC homing and tracking in the BMT model did not show a difference in migration or grafting of cells from young or old mice, with the hemogram analysis trending to differentiation towards the myeloid lineage in mice that received cells from old animals. The cell homing by NIRF and long term cell follow-up by BLI highlighted the relevance of the multimodal nanoparticles and combined techniques for evaluation.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of Sao Paulo—ICESP, São Paulo 01246-000, SP, Brazil;
| | - Lucas E. B. de Souza
- Hemocentro de Ribeirão Preto, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14051-060, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (F.A.O.); (M.P.N.); (J.B.M.); (A.H.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
19
|
Massicano AVF, Bartels JL, Jeffers CD, Crenshaw BK, Houson H, Mueller C, Younger JW, Knapp P, McConathy JE, Lapi SE. Production of [ 89 Zr]Oxinate 4 and cell radiolabeling for human use. J Labelled Comp Radiopharm 2021; 64:209-216. [PMID: 33326139 DOI: 10.1002/jlcr.3901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 01/11/2023]
Abstract
[89 Zr]Oxinate4 is a Positron Emission Tomography (PET) tracer for cell radiolabeling that can enable imaging techniques to help better understand cell trafficking in various diseases. Although several groups have synthetized this compound for use in preclinical studies, there is no available data regarding the production of [89 Zr]Oxinate4 for human use. In this report, we describe the detailed production of [89 Zr]Oxinate4 under USP <823> and autologous leukocyte radiolabeling under USP <797>. The final product presented high radiochemical purity and stability at 24 h post synthesis (>99%) and passed in all quality control assays required for clinical use. [89 Zr]Oxinate4 did not compromise the white blood cells viability and did not show considerable cellular efflux up to 3 h post labeling. The translation of this technique into human use can provide insight into several disease mechanisms since [89 Zr]Oxinate4 has the potential to label any cell subset of interest.
Collapse
Affiliation(s)
- Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L Bartels
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charlotte D Jeffers
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bryant K Crenshaw
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hailey Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christina Mueller
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jarred W Younger
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Knapp
- Nuclear and Precision Health Solutions, Cardinal Health, Dublin, Ohio, USA
| | - Jonathan E McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
20
|
Glucocorticoid-induced eosinopenia results from CXCR4-dependent bone marrow migration. Blood 2021; 136:2667-2678. [PMID: 32659786 DOI: 10.1182/blood.2020005161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/26/2020] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids are considered first-line therapy in a variety of eosinophilic disorders. They lead to a transient, profound decrease in circulating human eosinophils within hours of administration. The phenomenon of glucocorticoid-induced eosinopenia has been the basis for the use of glucocorticoids in eosinophilic disorders, and it has intrigued clinicians for 7 decades, yet its mechanism remains unexplained. To investigate, we first studied the response of circulating eosinophils to in vivo glucocorticoid administration in 3 species and found that the response in rhesus macaques, but not in mice, closely resembled that in humans. We then developed an isolation technique to purify rhesus macaque eosinophils from peripheral blood and performed live tracking of zirconium-89-oxine-labeled eosinophils by serial positron emission tomography/computed tomography imaging, before and after administration of glucocorticoids. Glucocorticoids induced rapid bone marrow homing of eosinophils. The kinetics of glucocorticoid-induced eosinopenia and bone marrow migration were consistent with those of the induction of the glucocorticoid-responsive chemokine receptor CXCR4, and selective blockade of CXCR4 reduced or eliminated the early glucocorticoid-induced reduction in blood eosinophils. Our results indicate that glucocorticoid-induced eosinopenia results from CXCR4-dependent migration of eosinophils to the bone marrow. These findings provide insight into the mechanism of action of glucocorticoids in eosinophilic disorders, with implications for the study of glucocorticoid resistance and the development of more targeted therapies. The human study was registered at ClinicalTrials.gov as #NCT02798523.
Collapse
|
21
|
Zheng B, Yuan M, Ma Q, Wang S, Tan Y, Xu Y, Ye J, Gao Y, Sun X, Yang Z, Xu P, Kong L, Wu X, Xu Q. Landscape of SARS-CoV-2 spike protein-interacting cells in human tissues. Int Immunopharmacol 2021; 95:107567. [PMID: 33756225 PMCID: PMC7945790 DOI: 10.1016/j.intimp.2021.107567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. However, the mechanism of tissue tropism of SARS-CoV-2 remains unclear. Here, recombinant receptor-binding subdomain 1 of spike protein of SARS-CoV-2 (RBD-SD1) was used as a probe to investigate the potential tropism of SARS-CoV-2 in thirty-three types of normal human tissues. RBD-SD1 probe was observed to interact with cells in reported SARS-CoV-2 infected organs. Interestingly, the RBD-SD1 probe strongly interacted with bone marrow cells in an angiotensin-converting enzyme 2 (ACE2)-independent manner. In addition, SARS-CoV-2 induced the ACE2 mRNA expression in human primary bone marrow cells, suggesting human bone marrow cells may be sensitive to SARS-CoV-2 infection. Therefore, human bone marrow cells could be strongly infected by SARS-CoV-2, which may play an important role in the pathogenesis of COVID-19. These findings provide a deeper understanding of SARS-CoV-2 infection routes, thus contributing to the treatment of COVID-19.
Collapse
Affiliation(s)
- Bingfeng Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Manman Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shenglan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yizhu Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yanjie Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xueqing Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peipei Xu
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
22
|
Kurebayashi Y, Choyke PL, Sato N. Imaging of cell-based therapy using 89Zr-oxine ex vivo cell labeling for positron emission tomography. Nanotheranostics 2021; 5:27-35. [PMID: 33391973 PMCID: PMC7738941 DOI: 10.7150/ntno.51391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
With the rapid development of anti-cancer cell-based therapies, such as adoptive T cell therapies using tumor-infiltrating T cells, T cell receptor transduced T cells, and chimeric antigen receptor T cells, there has been a growing interest in imaging technologies to non-invasively track transferred cells in vivo. Cell tracking using ex vivo cell labeling with positron emitting radioisotopes for positron emission tomography (PET) imaging has potential advantages over single-photon emitting radioisotopes. These advantages include intrinsically higher resolution, higher sensitivity, and higher signal-to-background ratios. Here, we review the current status of recently developed Zirconium-89 (89Zr)-oxine ex vivo cell labeling with PET imaging focusing on its applications and future perspectives. Labeling of cells with 89Zr-oxine is completed in a series of relatively simple steps, and its low radioactivity doses required for imaging does not interfere with the proliferation or function of the labeled immune cells. Preclinical studies have revealed that 89Zr-oxine PET allows high-resolution in vivo tracking of labeled cells for 1-2 weeks after cell transfer both in mice and non-human primates. These results provide a strong rationale for the clinical translation of 89Zr-oxine PET-based imaging of cell-based therapy.
Collapse
Affiliation(s)
| | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Man F, Khan AA, Carrascal-Miniño A, Blower PJ, T M de Rosales R. A kit formulation for the preparation of [ 89Zr]Zr(oxinate) 4 for PET cell tracking: White blood cell labelling and comparison with [ 111In]In(oxinate) 3. Nucl Med Biol 2020; 90-91:31-40. [PMID: 32979725 PMCID: PMC7116765 DOI: 10.1016/j.nucmedbio.2020.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Advances in immunology and cell-based therapies are creating a need to track individual cell types, such as immune cells (neutrophils, eosinophils, chimeric antigen receptor (CAR) T cells, etc.) and stem cells. As the fate of administered cells remains largely unknown, nuclear imaging could determine the migration and survival of cells in patients. [89Zr]Zr(oxinate)4, or [89Zr]Zr-oxine, is a radiotracer for positron emission tomography (PET) that has been evaluated in preclinical models of cell tracking and could improve on [111In]In-oxine, the current gold standard radiotracer for cell tracking by scintigraphy and single-photon emission computed tomography (SPECT), because of the better sensitivity, spatial resolution and quantification of PET. However, a clinically usable formulation of [89Zr]Zr-oxine is lacking. This study demonstrates a 1-step procedure for preparing [89Zr]Zr-oxine and evaluates it against [111In]In-oxine in white blood cell (WBC) labelling. METHODS Commercial [89Zr]Zr-oxalate was added to a formulation containing oxine, a buffering agent, a base and a surfactant or organic solvent. WBC isolated from 10 human volunteers were radiolabelled with [89Zr]Zr-oxine following a clinical radiolabelling protocol. Labelling efficiency, cell viability, chemotaxis and DNA damage were evaluated in vitro, in an intra-individual comparison against [111In]In-oxine. RESULTS An optimised formulation of [89Zr]Zr-oxine containing oxine, polysorbate 80 and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) was developed. This enabled 1-step radiolabelling of oxine with commercial [89Zr]Zr-oxalate (0.1-25 MBq) in 5 min and radiotracer stability for 1 week. WBC labelling efficiency was 48.7 ± 6.3%, compared to 89.1 ± 9.5% (P < 0.0001, n = 10) for [111In]In-oxine. Intracellular retention of 89Zr and cell viability after radiolabelling were comparable to 111In. There were no significant differences in leukocyte chemotaxis or DNA damage between [89Zr]Zr-oxine or [111In]In-oxine. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: Our results demonstrate that [89Zr]Zr-oxine is a suitable PET alternative to [111In]In-oxine for WBC imaging. Our formulation allows rapid, stable, high-yield, single-step preparation of [89Zr]Zr-oxine from commercially available 89Zr. This will facilitate the clinical translation of cell tracking using [89Zr]Zr-oxine.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK.
| | - Azalea A Khan
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
24
|
Bansal A, Pandey MK, Yamada S, Goyal R, Schmit NR, Jeon R, Nesbitt JJ, Witt TA, Singh RD, Gunderson TM, Boroumand S, Li M, Crespo-Diaz RJ, Hillestad ML, Terzic A, Behfar A, DeGrado TR. [ 89Zr]Zr-DBN labeled cardiopoietic stem cells proficient for heart failure. Nucl Med Biol 2020; 90-91:23-30. [PMID: 32957056 PMCID: PMC7736260 DOI: 10.1016/j.nucmedbio.2020.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Radiolabeling of stem cells with a positron emitting radioisotope represents a major advancement in regenerative biotherapy enabling non-invasive imaging. To assess the value of such an approach in a clinically relevant scenario, the tolerability and therapeutic aptitude of [89Zr]zirconium-p-isothiocyanatobenzyl-desferrioxamine ([89Zr]Zr-DBN) labeled human cardiopoietic stem cells (CPs) were evaluated in a model of ischemic heart failure. METHODS AND RESULTS [89Zr]Zr-DBN based radiolabeling of human CPs yielded [89Zr]Zr-DBN-CPs with radioactivity yield of 0.70 ± 0.20 MBq/106 cells and excellent label stability. Compared to unlabeled cell counterparts, [89Zr]Zr-DBN-CPs maintained morphology, viability, and proliferation capacity with characteristic expression of mesodermal and pro-cardiogenic transcription factors defining the cardiopoietic phenotype. Administered in chronically infarcted murine hearts, [89Zr]Zr-DBN-CPs salvaged cardiac pump failure, documented by improved left ventricular ejection fraction not inferior to unlabeled CPs and notably superior to infarcted hearts without cell treatment. CONCLUSION The present study establishes that [89Zr]Zr-DBN labeling does not compromise stem cell identity or efficacy in the setting of heart failure, offering a non-invasive molecular imaging platform to monitor regenerative biotherapeutics post-transplantation.
Collapse
Affiliation(s)
- Aditya Bansal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | | | - Satsuki Yamada
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ribu Goyal
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Ryounghoon Jeon
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonathan J Nesbitt
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tyra A Witt
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Raman D Singh
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tina M Gunderson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Soulmaz Boroumand
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark Li
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ruben J Crespo-Diaz
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Hillestad
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Van Cleve Cardiac Regenerative Medicine Program, Marriott Heart Disease Research Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
25
|
Humanized Mice Are Precious Tools for Preclinical Evaluation of CAR T and CAR NK Cell Therapies. Cancers (Basel) 2020; 12:cancers12071915. [PMID: 32679920 PMCID: PMC7409195 DOI: 10.3390/cancers12071915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a revolutionary treatment for hematological malignancies. However, improvements in CAR T-cell therapies are urgently needed since CAR T cell application is associated with toxicities, exhaustion, immune suppression, lack of long-term persistence, and low CAR T-cell tumor infiltration. Major efforts to overcome these hurdles are currently on the way. Incrementally improved xenograft mouse models, supporting the engraftment and development of a human hemato-lymphoid system and tumor tissue, represent an important fundamental and preclinical research tool. We will focus here on several CAR T and CAR NK therapies that have benefited from evaluation in humanized mice. These models are of great value for the cancer therapy field as they provide a more reliable understanding of sometimes complicated therapeutic interventions. Additionally, they are considered the gold standard with regard to assessment of new CAR technologies in vivo for safety, efficacy, immune response, design, combination therapies, exhaustion, persistence, and mechanism of action prior to starting a clinical trial. They help to expedite the critical translation from proof-of-concept to clinical CAR T-cell application. In this review, we discuss innovative developments in the CAR T-cell therapy field that benefited from evaluation in humanized mice, illustrated by multiple examples.
Collapse
|
26
|
Lechermann LM, Manavaki R, Attili B, Lau D, Jarvis LB, Fryer TD, Bird N, Aloj L, Patel N, Basu B, Cleveland M, Aigbirhio FI, Jones JL, Gallagher FA. Detection limit of 89Zr-labeled T cells for cellular tracking: an in vitro imaging approach using clinical PET/CT and PET/MRI. EJNMMI Res 2020; 10:82. [PMID: 32666311 PMCID: PMC7360010 DOI: 10.1186/s13550-020-00667-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Tracking cells in vivo using imaging can provide non-invasive information to understand the pharmacology, efficacy, and safety of novel cell therapies. Zirconium-89 (t1/2 = 78.4 h) has recently been used to synthesize [89Zr]Zr(oxinate)4 for cell tracking using positron emission tomography (PET). This work presents an in vitro approach to estimate the detection limit for in vivo PET imaging of Jurkat T cells directly labeled with [89Zr]Zr(oxinate)4 utilizing clinical PET/CT and PET/MRI. METHODS Jurkat T cells were labeled with varying concentrations of [89Zr]Zr(oxinate)4 to generate different cell-specific activities (0.43-31.91 kBq/106 cells). Different concentrations of labeled cell suspensions (104, 105, and 106 cells) were seeded on 6-well plates and into a 3 × 3 cubic-well plate with 1 cm3 cubic wells as a gel matrix. Plates were imaged on clinical PET/CT and PET/MRI scanners for 30 min. The total activity in each well was determined by drawing volumes of interest over each well on PET images. The total cell-associated activity was measured using a well counter and correlated with imaging data. Simulations for non-specific signal were performed to model the effect of non-specific radioactivity on detection. RESULTS Using this in vitro model, the lowest cell number that could be visualized on 6-well plate images was 6.8 × 104, when the specific activity was 27.8 kBq/106 cells. For the 3 × 3 cubic-well, a plate of 3.3 × 104 cells could be detected on images with a specific activity of 15.4 kBq/106 cells. CONCLUSION The results show the feasibility of detecting [89Zr]Zr(oxinate)4-labeled Jurkat T cells on clinical PET systems. The results provide a best-case scenario, as in vivo detection using PET/CT or PET/MRI will be affected by cell number, specific activity per cell, the density of cells within the target volume, and non-specific signal. This work has important implications for cell labeling studies in patients, particularly when using radiosensitive cells (e.g., T cells), which require detection of low cell numbers while minimizing radiation dose per cell.
Collapse
Affiliation(s)
- Laura M Lechermann
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | - Roido Manavaki
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Lorna B Jarvis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Nick Bird
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Neel Patel
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Bristi Basu
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | - Franklin I Aigbirhio
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
27
|
Patrick PS, Kolluri KK, Zaw Thin M, Edwards A, Sage EK, Sanderson T, Weil BD, Dickson JC, Lythgoe MF, Lowdell M, Janes SM, Kalber TL. Lung delivery of MSCs expressing anti-cancer protein TRAIL visualised with 89Zr-oxine PET-CT. Stem Cell Res Ther 2020; 11:256. [PMID: 32586403 PMCID: PMC7318529 DOI: 10.1186/s13287-020-01770-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/01/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MSCTRAIL is a cell-based therapy consisting of human allogeneic umbilical cord-derived MSCs genetically modified to express the anti-cancer protein TRAIL. Though cell-based therapies are typically designed with a target tissue in mind, delivery is rarely assessed due to a lack of translatable non-invasive imaging approaches. In this preclinical study, we demonstrate 89Zr-oxine labelling and PET-CT imaging as a potential clinical solution for non-invasively tracking MSCTRAIL biodistribution. Future implementation of this technique should improve our understanding of MSCTRAIL during its evaluation as a therapy for metastatic lung adenocarcinoma. METHODS MSCTRAIL were radiolabelled with 89Zr-oxine and assayed for viability, phenotype, and therapeutic efficacy post-labelling. PET-CT imaging of 89Zr-oxine-labelled MSCTRAIL was performed in a mouse model of lung cancer following intravenous injection, and biodistribution was confirmed ex vivo. RESULTS MSCTRAIL retained the therapeutic efficacy and MSC phenotype in vitro at labelling amounts up to and above those required for clinical imaging. The effect of 89Zr-oxine labelling on cell proliferation rate was amount- and time-dependent. PET-CT imaging showed delivery of MSCTRAIL to the lungs in a mouse model of lung cancer up to 1 week post-injection, validated by in vivo bioluminescence imaging, autoradiography, and fluorescence imaging on tissue sections. CONCLUSIONS 89Zr-oxine labelling and PET-CT imaging present a potential method of evaluating the biodistribution of new cell therapies in patients, including MSCTRAIL. This offers to improve understanding of cell therapies, including mechanism of action, migration dynamics, and inter-patient variability.
Collapse
Affiliation(s)
- P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adam Edwards
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Elizabeth K Sage
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tom Sanderson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Benjamin D Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
| | - John C Dickson
- Institute of Nuclear Medicine, University College London, London, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free Hospital, London, UK
- Department of Haematology, Cancer Institute, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
| |
Collapse
|
28
|
Evidence of Accumulated Endothelial Progenitor Cells in the Lungs of Rats with Pulmonary Arterial Hypertension by 89Zr-oxine PET Imaging. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1108-1117. [PMID: 32490032 PMCID: PMC7256434 DOI: 10.1016/j.omtm.2020.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Endothelial progenitor cells (EPCs) play a major role in regulating pulmonary vascular remodeling during pulmonary arterial hypertension (PAH) development. Several preclinical and clinical trials of EPCs transplantation have been performed for the treatment of PAH. However, there is no reliable method to monitor real-time cell trafficking and quantify transplanted EPCs. Here in this paper we isolated EPCs from human peripheral blood, identified their functional integrity, and efficiently labeled the EPCs with 89Zr-oxine and DiO. Labeled EPCs were injected into the tail vein of normal and PAH rats to be tracked in vivo. From the microPET/CT images, we found EPCs were distributed primarily in the lung at 1 h and then migrated to the liver and spleen. We could observe the 3,3′ dioctadecyloxacarbocyanine perchlorate (DiO)-labeled EPCs binding in the pulmonary vasculature by CellVizio confocal. The result of quantitative analysis revealed significantly higher accumulation of EPCs in the lungs of PAH rats than in those of healthy rats. The distribution and higher accumulation of EPCs in the lungs of PAH rats could help to evaluate the safety and provide evidence of effectiveness of EPC therapy.
Collapse
|
29
|
McCarthy CE, White JM, Viola NT, Gibson HM. In vivo Imaging Technologies to Monitor the Immune System. Front Immunol 2020; 11:1067. [PMID: 32582173 PMCID: PMC7280489 DOI: 10.3389/fimmu.2020.01067] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time. A variety of anatomical and molecular imaging modalities have been applied for this purpose, with each option providing specific advantages and drawbacks. Anatomical methods including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound provide sharp tissue resolution, which can be further enhanced with contrast agents, including super paramagnetic ions (for MRI) or nanobubbles (for ultrasound). Conjugation of the contrast material to an antibody allows for specific targeting of a cell population or protein of interest. Protein platforms including antibodies, cytokines, and receptor ligands are also popular choices as molecular imaging agents for positron emission tomography (PET), single-photon emission computerized tomography (SPECT), scintigraphy, and optical imaging. These tracers are tagged with either a radioisotope or fluorescent molecule for detection of the target. During the design process for immune-monitoring imaging tracers, it is important to consider any potential downstream physiologic impact. Antibodies may deplete the target cell population, trigger or inhibit receptor signaling, or neutralize the normal function(s) of soluble proteins. Alternatively, the use of cytokines or other ligands as tracers may stimulate their respective signaling pathways, even in low concentrations. As in vivo immune imaging is still in its infancy, this review aims to describe the modalities and immunologic targets that have thus far been explored, with the goal of promoting and guiding the future development and application of novel imaging technologies.
Collapse
Affiliation(s)
- Claire E McCarthy
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Jordan M White
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
30
|
Sato N, Stringaris K, Davidson-Moncada JK, Reger R, Adler SS, Dunbar C, Choyke PL, Childs RW. In Vivo Tracking of Adoptively Transferred Natural Killer Cells in Rhesus Macaques Using 89Zirconium-Oxine Cell Labeling and PET Imaging. Clin Cancer Res 2020; 26:2573-2581. [PMID: 32034075 PMCID: PMC7269806 DOI: 10.1158/1078-0432.ccr-19-2897] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/21/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Trials of adoptive natural killer (NK)-cell immunotherapy for hematologic malignancies have thus far shown only marginal effects, despite the potent in vitro antitumor activity of these cells. Homing of infused cells to tumor microenvironments is critical for efficacy, but has not been well characterized. We established a novel method to track and quantify the distribution of adoptively transferred NK cells using rhesus macaques (RM) as a clinically relevant preclinical model. EXPERIMENTAL DESIGN RM NK cells were expanded ex vivo for 14-21 days, labeled with 89Zr-oxine complex, and assessed for phenotype, function, and survival. Trafficking of 89Zr-labeled ex vivo-expanded NK cells infused into RMs was monitored and quantitated by serial positron emission tomography (PET)/CT (n = 3, 2.05 ± 0.72 MBq, 23.5 ± 2.0 × 106 NK cells/kg) and compared with that of 89Zr-labeled nonexpanded NK cells, apoptotic NK cells, and hematopoietic stem and progenitor cells (HSPC). RESULTS NK cells retained sufficient levels of 89Zr for accurate in vivo tracking for 7 days. 89Zr labeling did not alter cellular phenotype, viability, or function. PET/CT showed NK cells initially localized in the lungs, followed by their migration to the liver, spleen, and, at low levels, bone marrow. One day following transfer, only 3.4% of infused NK cells localized to the BM versus 22.1% of HSPCs. No clinical side effects were observed, and dosimetry analysis indicated low organ radioexposures of 6.24 mSv/MBq (spleen) or lower. CONCLUSIONS These data support translation of this technique to humans to track the distribution of adoptively infused cells and to develop novel techniques to improve immune cell homing to tumor microenvironments.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Program, NCI, NIH, Bethesda, Maryland.
| | - Kate Stringaris
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Jan K Davidson-Moncada
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
- Center for Human Immunology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Robert Reger
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Stephen S Adler
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the NCI, Frederick, Maryland
| | - Cynthia Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | | | - Richard W Childs
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| |
Collapse
|
31
|
Oliveira FA, Nucci MP, Filgueiras IS, Ferreira JM, Nucci LP, Mamani JB, Alvieri F, Souza LEB, Rego GNA, Kondo AT, Hamerschlak N, Gamarra LF. Noninvasive Tracking of Hematopoietic Stem Cells in a Bone Marrow Transplant Model. Cells 2020; 9:cells9040939. [PMID: 32290257 PMCID: PMC7226958 DOI: 10.3390/cells9040939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
The hematopoietic stem cell engraftment depends on adequate cell numbers, their homing, and the subsequent short and long-term engraftment of these cells in the niche. We performed a systematic review of the methods employed to track hematopoietic reconstitution using molecular imaging. We searched articles indexed, published prior to January 2020, in PubMed, Cochrane, and Scopus with the following keyword sequences: (Hematopoietic Stem Cell OR Hematopoietic Progenitor Cell) AND (Tracking OR Homing) AND (Transplantation). Of 2191 articles identified, only 21 articles were included in this review, after screening and eligibility assessment. The cell source was in the majority of bone marrow from mice (43%), followed by the umbilical cord from humans (33%). The labeling agent had the follow distribution between the selected studies: 14% nanoparticle, 29% radioisotope, 19% fluorophore, 19% luciferase, and 19% animal transgenic. The type of graft used in the studies was 57% allogeneic, 38% xenogeneic, and 5% autologous, being the HSC receptor: 57% mice, 9% rat, 19% fish, 5% for dog, porcine and salamander. The imaging technique used in the HSC tracking had the following distribution between studies: Positron emission tomography/single-photon emission computed tomography 29%, bioluminescence 33%, fluorescence 19%, magnetic resonance imaging 14%, and near-infrared fluorescence imaging 5%. The efficiency of the graft was evaluated in 61% of the selected studies, and before one month of implantation, the cell renewal was very low (less than 20%), but after three months, the efficiency was more than 50%, mainly in the allogeneic graft. In conclusion, our review showed an increase in using noninvasive imaging techniques in HSC tracking using the bone marrow transplant model. However, successful transplantation depends on the formation of engraftment, and the functionality of cells after the graft, aspects that are poorly explored and that have high relevance for clinical analysis.
Collapse
Affiliation(s)
- Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil;
| | - Igor S. Filgueiras
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - João M. Ferreira
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Leopoldo P. Nucci
- Centro Universitário do Planalto Central, Brasília DF 72445-020, Brazil;
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Fernando Alvieri
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lucas E. B. Souza
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14049-900, Brazil;
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Andrea T. Kondo
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Nelson Hamerschlak
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-900, Brazil; (F.A.O.); (I.S.F.); (J.M.F.); (J.B.M.); (F.A.); (G.N.A.R.); (A.T.K.); (N.H.)
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
32
|
Wang F, Wang Z, Wang F, Dong K, Zhang J, Sun YJ, Liu CF, Xing MJ, Cheng X, Wei S, Zheng JW, Zhao XF, Wang XM, Fu J, Song HF. Comparative strategies for stem cell biodistribution in a preclinical study. Acta Pharmacol Sin 2020; 41:572-580. [PMID: 31705124 PMCID: PMC7470780 DOI: 10.1038/s41401-019-0313-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapy represents the potential alternative effective strategy for some diseases that lack effective treatment currently. Correspondingly, it is crucial to establish high-sensitive and reliable quantification assay for tracing exogenous cell migration. In the present study, we first used both bioluminescence imaging (BLI) indirect labeling (human norepinephrine transporter-luciferase reporter system) and 89zirconium (89Zr)-hNSCs direct labeling combined with positron emission tomography/computer tomography (PET/CT) system for tracking human neural stem cells (hNSCs) migration into the brain via nasal administration in preclinical study. But the above two methods failed to give the biodistribution profile due to their low sensitivity. Considering its superior sensitivity and absolute quantitation capability, we developed and validated the droplet digital PCR (ddPCR) targeting species-specific gene in frozen and paraffin sections, slices, and whole blood with the sensitivity of 100–200 hNSCs. Accurate and high throughput quantification could be performed using ddPCR with the coefficient of variation (CVs) of lower quality control (LQC) below 30%. In combination with immunohistochemistry and ddPCR, we confirmed the migration of hNSCs into the brain via nasal administration, which supported the efficacy of hNSCs in MPTP-treated mice, an animal model of Parkinson’s disease. In conclusion, the present study is the first to report the application of ddPCR in the pharmacokinetics profile description of tracking of hNSCs in preclinical studies.
Collapse
|
33
|
Perrin J, Capitao M, Mougin-Degraef M, Guérard F, Faivre-Chauvet A, Rbah-Vidal L, Gaschet J, Guilloux Y, Kraeber-Bodéré F, Chérel M, Barbet J. Cell Tracking in Cancer Immunotherapy. Front Med (Lausanne) 2020; 7:34. [PMID: 32118018 PMCID: PMC7033605 DOI: 10.3389/fmed.2020.00034] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.
Collapse
Affiliation(s)
- Justine Perrin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marisa Capitao
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie Mougin-Degraef
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - François Guérard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | | |
Collapse
|
34
|
Preparation of Zirconium-89 Solutions for Radiopharmaceutical Purposes: Interrelation Between Formulation, Radiochemical Purity, Stability and Biodistribution. Molecules 2019; 24:molecules24081534. [PMID: 31003494 PMCID: PMC6514948 DOI: 10.3390/molecules24081534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Zirconium-89 is a promising radionuclide for nuclear medicine. The aim of the present work was to find a suitable method for obtaining zirconium-89 solutions for radiopharmaceutical purposes. For this purpose, the ion exchange behavior of zirconium-89 solutions was studied. Radio-TLC (thin layer chromatography) and biodistribution studies were carried out to understand speciation of zirconium-89 complexes and their role in the development of new radiopharmaceuticals. Three methods of zirconium-89 isolation were studied using ZR (hydroxamate) and Chelex-100 resins. It was found that ZR-resin alone is not enough to obtain stable zirconium-89 formulations. An easy and effective method of reconstitution of [89Zr]Zr-oxalate to [89Zr]Zr-citrate using Chelex-100 resin was developed. Developed procedures allow obtaining [89Zr]Zr-oxalate (in 0.1 M sodium oxalate solution) and [89Zr]Zr-citrate (in 0.1–1.0 M sodium citrate solution). These solutions are perfectly suitable and convenient for radiopharmaceutical purposes. Our results prove [89Zr]Zr-citrate to be advantageous over [89Zr]Zr-oxalate. During evaluation of speciation of zirconium-89 complexes, a new TLC method was developed, since it was proved that there is no comprehensive method for analysis or zirconium-89 preparations. The new method provides valuable insights about the content of “active” ionic form of zirconium-89. The interrelation of the chromatographic behavior of zirconium-89 preparations and their biodistribution was studied.
Collapse
|
35
|
Socan A, Petrik M, Kolenc Peitl P, Krošelj M, Rangger C, Novy Z, Svajger U, Gmeiner T, Decristoforo C. On-cartridge preparation and evaluation of 68Ga-, 89Zr- and 64Cu-precursors for cell radiolabelling. Nucl Med Biol 2019; 71:23-31. [PMID: 31128475 DOI: 10.1016/j.nucmedbio.2019.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/17/2019] [Accepted: 04/05/2019] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Indium-111 when formulated as indium-111 oxine remains the gold standard for long term cell tracking, whereas radiometals for improved PET applications still have to be established. We here describe the on-cartridge formation of gallium-68, zirconium-89 and copper-64 complexes in small volumes suitable for cell labelling, including labelling of red blood cells (RBC) and white blood cells (WBC) and their biological evaluation in vivo. METHODS Small volumes (1-2 mL) of tracers (oxine, tropolone) were directly prepared on an anion exchange cartridge (Sep-Pak QMA). Cells were radiolabelled and the labelling efficiency and efflux were evaluated. The in vivo biodistribution of copper-64-labelled WBC using [64Cu][Cu(oxinate)2] and [64Cu][Cu(tropolonate)2] was monitored in an infection and inflammation animal model using BALB/c mice. RESULTS On-cartridge concentration of gallium-68, zirconium-89 and copper-64 enabled formation of oxine and tropolone tracers in small volumes with good yields (≥50%) and quality (extraction ≥90%). Prepared tracers radiolabelled the RBC comparable to indium-111 tracers and in vivo biodistribution of copper-64 labelled WBC showed clear accumulation of cells at the site of infection and inflammation. CONCLUSIONS This on-cartridge preparation method enables simple formation of various PET tracers for cell radiolabelling. Zirconium-89 and copper-64 tracers radiolabelled cells with sufficient stability. Due to their longer half-life this approach could be promising for routine applications where longer evaluation periods for cell tracking are needed. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This novel approach for on-cartridge concentration and preparation of oxine and tropolone precursors with different positron emitters, in small volume and suitable pH, offers a versatile tool towards cell labelling for preclinical and clinical PET applications.
Collapse
Affiliation(s)
- A Socan
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - P Kolenc Peitl
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - M Krošelj
- Department of Nuclear Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - C Rangger
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Novy
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - U Svajger
- Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - T Gmeiner
- Institue of Pharmacy, Faculty of Pharmacy, Ljubljana, Slovenia
| | - C Decristoforo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
36
|
Asiedu KO, Ferdousi M, Ton PT, Adler SS, Choyke PL, Sato N. Bone marrow cell homing to sites of acute tibial fracture: 89Zr-oxine cell labeling with positron emission tomographic imaging in a mouse model. EJNMMI Res 2018; 8:109. [PMID: 30547233 PMCID: PMC6292830 DOI: 10.1186/s13550-018-0463-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Bone fracture healing is dependent upon the rapid migration and engraftment of bone marrow (BM) progenitor and stem cells to the site of injury. Stromal cell-derived factor-1 plays a crucial role in recruiting BM cells expressing its receptor CXCR4. Recently, a CXCR4 antagonist, plerixafor, has been used to mobilize BM cells into the blood in efforts to enhance cell migration to sites of injury presumably improving healing. In this study, we employed zirconium-89 (89Zr)-oxine-labeled BM cells imaged with positron emission tomography (PET)/computed tomography (CT) to visualize and quantitate BM cell trafficking following acute bone injury and to investigate the effect of plerixafor on BM cell homing. Unilateral 1-mm incisions were created in the distal tibia of mice either on the same day (d0) or 24 h (d1) after 89Zr-oxine-labeled BM cell transfer (n = 4–6, 2–2.3 × 107 cells at 9.65–15.7 kBq/106 cells). Serial microPET/CT imaging was performed and migration of 89Zr-labeled cells to the bone injury was quantified. The effects of three daily doses of plerixafor on cell trafficking were evaluated beginning on the day of fracture generation (n = 4–6). The labeled cells localizing to the fracture were analyzed by flow cytometry and immunohistochemistry. Results In d0- and d1-fracture groups, 0.7% and 1.7% of administered BM cells accumulated within the fracture, respectively. Plerixafor treatment reduced BM cell migration to the fracture by approximately one-third (p < 0.05 for both fracture groups). Flow cytometry analysis of donor cells collected from the injured site revealed a predominance of CD45+ stem/progenitor cell populations and subsequent histological analysis demonstrated the presence of donor cells engrafted within sites of fracture repair. Conclusion 89Zr-oxine labeling enabled visualization and quantitation of BM cell recruitment to acute fractures and further demonstrated that plerixafor plays an inhibitory role in this recruitment. Electronic supplementary material The online version of this article (10.1186/s13550-018-0463-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kingsley O Asiedu
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Munira Ferdousi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Phuongnga T Ton
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Stephen S Adler
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA
| | - Noriko Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 10, Room B3B406, Bethesda, MD, 20892-1002, USA.
| |
Collapse
|
37
|
Gawne P, Man F, Fonslet J, Radia R, Bordoloi J, Cleveland M, Jimenez-Royo P, Gabizon A, Blower PJ, Long N, de Rosales RTM. Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Trans 2018; 47:9283-9293. [PMID: 29796500 PMCID: PMC6049564 DOI: 10.1039/c8dt00100f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
The ionophore 8-hydroxyquinoline (oxine) has been used to radiolabel cells and liposomal medicines with 111In and, more recently, 89Zr, for medical nuclear imaging applications. Oxine has also shown promising ionophore activity for the positron-emitting radionuclide 52Mn that should allow imaging of labelled cells and nanomedicines for long periods of time (>14 days). However, to date, the radiometal complex formed and its full labelling capabilities have not been fully characterised. Here, we provide supporting evidence of the formation of [52Mn]Mn(oxinate)2 as the metastable complex responsible for its ionophore activity. The cell labelling properties of [52Mn]Mn(oxinate)2 were investigated with various cell lines. The liposomal nanomedicine, DOXIL® (Caelyx) was also labelled with [52Mn]Mn(oxinate)2 and imaged in vivo using PET imaging. [52Mn]Mn(oxinate)2 was able to label various cell lines with moderate efficiency (15-53%), however low cellular retention of 52Mn (21-25% after 24 h) was observed which was shown not to be due to cell death. PET imaging of [52Mn]Mn-DOXIL at 1 h and 24 h post-injection showed the expected pharmacokinetics and biodistribution of this stealth liposome, but at 72 h post-injection showed a profile matching that of free 52Mn, consistent with drug release. We conclude that oxine is an effective ionophore for 52Mn, but high cellular efflux of the isotope limits its use for prolonged cell tracking. [52Mn]Mn(oxinate)2 is effective for labelling and tracking DOXIL in vivo. The release of free radionuclide after liposome extravasation could provide a non-invasive method to monitor drug release in vivo.
Collapse
Affiliation(s)
- Peter Gawne
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| | - Francis Man
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| | - Jesper Fonslet
- The Hevesy Lab
, Technical University of Denmark
,
4000 Roskilde
, Denmark
| | - Riya Radia
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| | - Jayanta Bordoloi
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| | - Matthew Cleveland
- GSK Medicines Research Centre
,
Gunnels Wood Road
, Stevenage
, Hertfordshire
, SG1 2NY
, UK
| | - Pilar Jimenez-Royo
- GSK Medicines Research Centre
,
Gunnels Wood Road
, Stevenage
, Hertfordshire
, SG1 2NY
, UK
| | - Alberto Gabizon
- Oncology Institute
, Shaare Zedek Medical Center and Hebrew University-School of Medicine
,
Jerusalem 9103102
, Israel
| | - Philip J. Blower
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| | - Nicholas Long
- Department of Chemistry
, Imperial College London
,
South Kensington Campus
, London SW7 2AZ
, UK
| | - Rafael T. M. de Rosales
- School of Biomedical Engineering & Imaging Sciences
, King's College London
, St Thomas’ Hospital
,
London
, SE1 7EH
, UK
.
| |
Collapse
|
38
|
Weist MR, Starr R, Aguilar B, Chea J, Miles JK, Poku E, Gerdts E, Yang X, Priceman SJ, Forman SJ, Colcher D, Brown CE, Shively JE. PET of Adoptively Transferred Chimeric Antigen Receptor T Cells with 89Zr-Oxine. J Nucl Med 2018; 59:1531-1537. [PMID: 29728514 DOI: 10.2967/jnumed.117.206714] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising clinical approach for reducing tumor progression and prolonging patient survival. However, improvements in both the safety and the potency of CAR T cell therapy demand quantitative imaging techniques to determine the distribution of cells after adoptive transfer. The purpose of this study was to optimize 89Zr-oxine labeling of CAR T cells and evaluate PET as a platform for imaging adoptively transferred CAR T cells. Methods: CAR T cells were labeled with 0-1.4 MBq of 89Zr-oxine per 106 cells and assessed for radioactivity retention, viability, and functionality. In vivo trafficking of 89Zr-oxine-labeled CAR T cells was evaluated in 2 murine xenograft tumor models: glioblastoma brain tumors with intracranially delivered IL13Rα2-targeted CAR T cells, and subcutaneous prostate tumors with intravenously delivered prostate stem cell antigen (PSCA)-targeted CAR T cells. Results: CAR T cells were efficiently labeled (75%) and retained more than 60% of the 89Zr over 6 d. In vitro cytokine production, migration, and tumor cytotoxicity, as well as in vivo antitumor activity, were not significantly reduced when labeled with 70 kBq/106 cells. IL13Rα2-CAR T cells delivered intraventricularly were detectable by PET for at least 6 d throughout the central nervous system and within intracranial tumors. When intravenously administered, PSCA-CAR T cells also showed tumor tropism, with a 9-fold greater tumor-to-muscle ratio than for CAR-negative T cells. Conclusion: 89Zr-oxine can be used for labeling and imaging CAR T cells while maintaining cell viability and function. On the basis of these studies, we conclude that 89Zr-oxine is a clinically translatable platform for real-time assessment of cell therapies.
Collapse
Affiliation(s)
- Michael R Weist
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California.,Irell and Manella Graduate School of Biological Sciences, City of Hope Medical Center, Duarte, California; and
| | - Renate Starr
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Brenda Aguilar
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Junie Chea
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Joshua K Miles
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Erasmus Poku
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Ethan Gerdts
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Xin Yang
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Saul J Priceman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - Stephen J Forman
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - David Colcher
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| | - Christine E Brown
- Department of Hematology, City of Hope Medical Center, Duarte, California
| | - John E Shively
- Department of Molecular Immunology, Beckman Research Institute, City of Hope Medical Center, Duarte, California
| |
Collapse
|
39
|
Park J, Andrade B, Seo Y, Kim MJ, Zimmerman SC, Kong H. Engineering the Surface of Therapeutic "Living" Cells. Chem Rev 2018; 118:1664-1690. [PMID: 29336552 DOI: 10.1021/acs.chemrev.7b00157] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological cells are complex living machines that have garnered significant attention for their potential to serve as a new generation of therapeutic and delivery agents. Because of their secretion, differentiation, and homing activities, therapeutic cells have tremendous potential to treat or even cure various diseases and injuries that have defied conventional therapeutic strategies. Therapeutic cells can be systemically or locally transplanted. In addition, with their ability to express receptors that bind specific tissue markers, cells are being studied as nano- or microsized drug carriers capable of targeted transport. Depending on the therapeutic targets, these cells may be clustered to promote intercellular adhesion. Despite some impressive results with preclinical studies, there remain several obstacles to their broader development, such as a limited ability to control their transport, engraftment, secretion and to track them in vivo. Additionally, creating a particular spatial organization of therapeutic cells remains difficult. Efforts have recently emerged to resolve these challenges by engineering cell surfaces with a myriad of bioactive molecules, nanoparticles, and microparticles that, in turn, improve the therapeutic efficacy of cells. This review article assesses the various technologies developed to engineer the cell surfaces. The review ends with future considerations that should be taken into account to further advance the quality of cell surface engineering.
Collapse
Affiliation(s)
| | | | | | - Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University , Seoul 110-749, Korea
| | | | | |
Collapse
|
40
|
Jalilian AR, Osso JA. Production, applications and status of zirconium-89 immunoPET agents. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5358-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|