1
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Huang L, Zeng X, Xiao K, Tang S, Sun K. Silencing Livin gene expression by RNA interference enhanced the chemotherapeutic sensitivity of drug-resistant osteosarcoma cells to doxorubicin. Acta Histochem 2025; 127:152249. [PMID: 40121921 DOI: 10.1016/j.acthis.2025.152249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Osteosarcoma is one of the most common malignant tumors in children and adolescents. It occurs in the metaphysis of long bones and is a type of aggressive malignant tumor. Although there are treatment methods such as surgery and chemotherapy, the mortality and disability of osteosarcoma patients are still high. With the emergence of more and more chemotherapy resistance, it is necessary to find new therapies to improve the chemotherapy sensitivity of osteosarcoma. METHODS Drug-resistant MG-63 and U2OS cell strain was established in vitro by continuous exposure of human osteosarcoma cells to doxorubicin at gradually increasing concentrations,then determined for resistance index to doxorubicin by MTT method,for transcriptions of Livin mRNA by real-time polymerase chain reaction(RT⁃PCR),and for expressions of Livin proteins by Western blot.The technology of gene recombination was used to construct the eukaryotic expression vector pSilencer3.1-H1 neo-Livin. Then the pSilencer3.1-H1 neo-Livin was transfected into drug-resistant MG-63 cell by using Lipofectmine 2000. Expressions of Livin mRNA and protein in the transfected cells were respectively measured by RT-PCR and Western blot. The distribution of cell cycle phase and apoptosis were determined by flow cytometry. The analysis of chemotherapeutic sensitivity of drug-resistant MG-63 cell to doxorubicin was performed by MTT. RESULTS The recombinant eukaryotic expression vector pSilencer3.1-H1 neo-Livin was successfully constructed. The result of inverted microscope revealed that the drug-resistant MG-63 cell were irregularity and morphological diversity. Compared with those in osteosarcoma cells,the transcription levels of Livin mRNA and protein in drug-resistant osteosarcoma cell increased(P<0.05).The flow cytometry analysis showed there was higher percentage of apoptosis in transfected drug-resistant MG-63 cell. Compared with control groups,the expression of Livin mRNA and protein were both significantly decreased in the transfected drug-resistant osteosarcomacell(P<0.05). We also observed that suppression of Livin expression in osteosarcoma cells increased their chemosensitivity to doxorubicin. CONCLUSION This study showed that Livin shRNA inhibited the proliferation level and increased the sensitivity of drug-resistant osteosarcoma cell to doxorubicin, suggested that Livin is involved in drug resistance of human osteosarcoma and may serve as a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Lei Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Xiaobin Zeng
- Department of Basic nursing, Nanchang Health School, Nanchang 330006, China; Department of Basic nursing, Nanchang Health Vocational And Technical College, Nanchang 330006, China
| | - Kaimin Xiao
- Department of Orthopedic Surgery, the People's Hospital of Jishui County, Jian 344500, China
| | - Sen Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China
| | - Kuo Sun
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
3
|
Gupta G, Afzal M, Moglad E, Goyal A, Almalki WH, Goyal K, Rana M, Ali H, Rekha1 A, Kazmi I, Alzarea SI, Singh SK. Parthanatos and apoptosis: unraveling their roles in cancer cell death and therapy resistance. EXCLI JOURNAL 2025; 24:351-380. [PMID: 40166425 PMCID: PMC11956527 DOI: 10.17179/excli2025-8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Cell death is a fundamental process that needs to be maintained to balance cellular functions and prevent disease. There are several cell death pathways; however, apoptosis and parthanatos are the most prominent and have important roles in cancer biology. As an extremely well-regulated process, apoptosis removes damaged or abnormal cells via caspase activation and mitochondrial involvement. Unlike in the healthy cells, the loss of ability to induce apoptosis in cancer permits tumor cells to survive and multiply out of control and contribute to tumor progression and therapy resistance. On the contrary, parthanatos is a caspase-independent metabolic collapse driven by poly (ADP-ribose) polymerase 1 (PARP1) overactivation, translocation of apoptosis-inducing factor (AIF), and complete DNA damage. Several cancer models are involved with parthanatos. Deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells by excessive ROS generation, PARP1 upregulation, and AIF nuclear translocation. Like in acute myeloid leukemia (AML), the cannabinoid derivative WIN-55 triggers parthanatos, and the effects can be reversed by PARP inhibitors such as olaparib. Developing cancer treatment strategies involving advanced cancer treatment strategies relies on the interplay between apoptosis and parthanatos. However, such apoptosis-based cancer therapies tend to develop resistance, so there is an urgent need to look into alternative pathways like parthanatos, which may not always trigger apoptosis. In overcoming apoptosis resistance, there is evidence that combining apoptosis-inducing agents, such as BH3 mimetics, with PARP inhibitors synergistically enhances cell death. Oxidative stress modulators have been found to promote the execution of parthanatic and apoptotic pathways and allow treatment. In this review, apoptosis and parthanatos are thoroughly compared at the molecular level, and their roles in cancer pathogenesis as related to cancer therapeutic potential are discussed. We incorporate recent findings to demonstrate that not only can parthanatos be used to manage therapy resistance and enhance cancer treatment via the combination of parthanatos and apoptosis but also that immunity and bone deposition can feasibly be employed against long-circulating cancer stem cells to treat diverse forms of metastatic cancers.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arcot Rekha1
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
4
|
Wei S, Han C, Mo S, Huang H, Luo X. Advancements in programmed cell death research in antitumor therapy: a comprehensive overview. Apoptosis 2025; 30:401-421. [PMID: 39487314 DOI: 10.1007/s10495-024-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Cell death is a normal physiological process within cells that involves multiple pathways, such as normal DNA damage, cell cycle arrest, and programmed cell death (PCD). Cell death has been a hot spot of research in tumor-related fields, especially programmed cell death, which is a key form of cell death and is classified into different types according to the mechanism of occurrence, such as apoptosis, autophagy, necroptosis, pyroptosis, ferroptosis, and disulfidptosis. Given the important role of PCD in maintaining tissue homeostasis and inhibiting tumorigenesis and development, more and more basic and clinical studies are devoted to revealing its potential application in anti-tumor strategies. The purpose of this review is to systematically review the regulatory mechanisms of PCD and to summarize the latest research progress of anti-tumor treatment strategies based on PCD.
Collapse
Affiliation(s)
- Shuxin Wei
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Shutian Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hailian Huang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoling Luo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Guangxi Medical University, Nanning, 530021, China.
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
5
|
Mestermann K, Garitano-Trojaola A, Hudecek M. Accelerating CAR-T Cell Therapies with Small-Molecule Inhibitors. BioDrugs 2025; 39:33-51. [PMID: 39589646 PMCID: PMC11750903 DOI: 10.1007/s40259-024-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Chimeric antigen receptor T-cell therapies have markedly improved the survival rates of patients with B-cell malignancies. However, their efficacy in other hematological cancers, such as acute myeloid leukemia, and in solid tumors has been limited. Key obstacles include the downregulation or loss of antigen expression on cancer cells, restricted accessibility to target cells, and the poor persistence of these "living drugs" because of the highly immunosuppressive tumor microenvironment. Additionally, manufacturing these immunotherapies presents significant challenges, and patients frequently experience side effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This review emphasizes the potential of small-molecule inhibitors, many of which are already approved for clinical use, to facilitate chimeric antigen receptor T-cell manufacturing, enhance their anti-tumor efficacy, and mitigate their side effects. Although substantial work remains, the robust pre-clinical data and the growing clinical interest suggest significant promise for using cancer signaling pathway inhibitors to enhance and refine chimeric antigen receptor T-cell therapy for both hematological and solid tumors. Exploring these combination strategies could lead to more effective therapies, offering new hope for patients with resistant forms of cancer.
Collapse
Affiliation(s)
- Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany.
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany.
| | - Andoni Garitano-Trojaola
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany
| |
Collapse
|
6
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
7
|
O'Leary B, Skinner H, Schoenfeld JD, Licitra L, Le Tourneau C, Esdar C, Schroeder A, Salmio S, Psyrri A. Evasion of apoptosis and treatment resistance in squamous cell carcinoma of the head and neck. Cancer Treat Rev 2024; 129:102773. [PMID: 38878677 DOI: 10.1016/j.ctrv.2024.102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 08/18/2024]
Abstract
Combinations of surgery, radiotherapy and chemotherapy can eradicate tumors in patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN), but a significant proportion of tumors progress, recur, or do not respond to therapy due to treatment resistance. The prognosis for these patients is poor, thus new approaches are needed to improve outcomes. Key resistance mechanisms to chemoradiotherapy (CRT) in patients with LA SCCHN are alterations to the pathways that mediate apoptosis, a form of programmed cell death. Targeting dysregulation of apoptotic pathways represents a rational therapeutic strategy in many types of cancer, with a number of proteins, including the pro-survival B-cell lymphoma 2 family and inhibitors of apoptosis proteins (IAPs), having been identified as druggable targets. This review discusses the mechanisms by which apoptosis occurs under physiological conditions, and how this process is abnormally restrained in LA SCCHN tumor cells, with treatment strategies aimed at re-enabling apoptosis in LA SCCHN also considered. In particular, the development of, and future opportunities for, IAP inhibitors in LA SCCHN are discussed, in light of recent encouraging proof-of-concept clinical trial data.
Collapse
Affiliation(s)
| | | | | | - Lisa Licitra
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan and University of Milan, Italy
| | | | | | | | | | - Amanda Psyrri
- Attikon University Hospital, National Kapodistrian University of Athens, Greece
| |
Collapse
|
8
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
9
|
Samuel VP, Moglad E, Afzal M, Kazmi I, Alzarea SI, Ali H, Almujri SS, Abida, Imran M, Gupta G, Chinni SV, Tiwari A. Exploring Ubiquitin-specific proteases as therapeutic targets in Glioblastoma. Pathol Res Pract 2024; 260:155443. [PMID: 38981348 DOI: 10.1016/j.prp.2024.155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Glioblastoma (GB) remains a formidable challenge and requires new treatment strategies. The vital part of the Ubiquitin-proteasome system (UPS) in cellular regulation has positioned it as a potentially crucial target in GB treatment, given its dysregulation oncolines. The Ubiquitin-specific proteases (USPs) in the UPS system were considered due to the garden role in the cellular processes associated with oncolines and their vital function in the apoptotic process, cell cycle regulation, and autophagy. The article provides a comprehensive summary of the evidence base for targeting USPs as potential factors for neoplasm treatment. The review considers the participation of the UPS system in the development, resulting in the importance of p53, Rb, and NF-κB, and evaluates specific goals for therapeutic administration using midnight proteasomal inhibitors and small molecule antagonists of E1 and E2 enzymes. Despite the slowed rate of drug creation, recent therapeutic discoveries based on USP system dynamics hold promise for specialized therapies. The review concludes with an analysis of future wanderers and the feasible effects of targeting USPs on personalized GB therapies, which can improve patient hydration in this current and unattractive therapeutic landscape. The manuscript emphasizes the possibility of USP oncogene therapy as a promising alternative treatment line for GB. It stresses the direct creation of research on the medical effectiveness of the approach.
Collapse
Affiliation(s)
- Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, the United Arab Emirates
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Suresh V Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia
| | - Abhishek Tiwari
- Department of Pharmacy, Pharmacy Academy, IFTM University, Lodhipur-Rajpur, Moradabad 244102, India.
| |
Collapse
|
10
|
Al-Ostoot FH, Salah S, Khanum SA. An Overview of Cancer Biology, Pathophysiological Development and It's Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Invest 2024; 42:559-604. [PMID: 38874308 DOI: 10.1080/07357907.2024.2361295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/22/2021] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Fares Hezam Al-Ostoot
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
- Department of Biochemistry, Faculty of Education & Science, Albaydha University, Al-Baydha, Yemen
| | - Salma Salah
- Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru, India
| |
Collapse
|
11
|
Han L, He J, Xie H, Gong Y, Xie C. Pan-cell death-related signature reveals tumor immune microenvironment and optimizes personalized therapy alternations in lung adenocarcinoma. Sci Rep 2024; 14:15682. [PMID: 38977778 PMCID: PMC11231366 DOI: 10.1038/s41598-024-66662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
This study constructed a comprehensive analysis of cell death modules in eliminating aberrant cells and remodeling tumor microenvironment (TME). Consensus analysis was performed in 490 lung adenocarcinoma (LUAD) patients based on 4 types of cell death prognostic genes. Intersection method divided these LUAD samples into 5 cell death risk (CDR) clusters, and COX regression analysis were used to construct the CDR signature (CDRSig) with risk scores. Significant differences of TME phenotypes, clinical factors, genome variations, radiosensitivity and immunotherapy sensitivity were observed in different CDR clusters. Patients with higher risk scores in the CDRSig tended to be immune-excluded or immune-desert, and those with lower risk scores were more sensitive to radiotherapy and immunotherapy. The results from mouse model showed that intense expression of the high-risk gene PFKP was associated with low CD8+ T cell infiltration upon radiotherapy and anti-PD-L1 treatment. Deficient assays in vitro confirmed that PFKP downregulation enhanced cGAS/STING pathway activation and radiosensitivity in LUAD cells. In conclusion, our studies originally performed a comprehensive cell death analysis, suggesting the importance of CDR patterns in reprogramming TME and providing novel clues for LUAD personalized therapies.
Collapse
Affiliation(s)
- Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingyi He
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Hongxin Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Gauss C, Stone LD, Ghafouri M, Quan D, Johnson J, Fribley AM, Amm HM. Overcoming Resistance to Standard-of-Care Therapies for Head and Neck Squamous Cell Carcinomas. Cells 2024; 13:1018. [PMID: 38920648 PMCID: PMC11201455 DOI: 10.3390/cells13121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Although there have been some advances during in recent decades, the treatment of head and neck squamous cell carcinoma (HNSCC) remains challenging. Resistance is a major issue for various treatments that are used, including both the conventional standards of care (radiotherapy and platinum-based chemotherapy) and the newer EGFR and checkpoint inhibitors. In fact, all the non-surgical treatments currently used for HNSCC are associated with intrinsic and/or acquired resistance. Herein, we explore the cellular mechanisms of resistance reported in HNSCC, including those related to epigenetic factors, DNA repair defects, and several signaling pathways. This article discusses these mechanisms and possible approaches that can be used to target different pathways to sensitize HNSCC to the existing treatments, obtain better responses to new agents, and ultimately improve the patient outcomes.
Collapse
Affiliation(s)
- Chester Gauss
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Logan D. Stone
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Mehrnoosh Ghafouri
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
| | - Daniel Quan
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Jared Johnson
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
| | - Andrew M. Fribley
- Carman and Ann Adams Department of Pediatrics, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (C.G.); (M.G.)
- Department of Otolaryngology Head and Neck Surgery, School of Medicine, Wayne State University, Detroit, MI 48202, USA; (D.Q.)
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| | - Hope M. Amm
- Oral & Maxillofacial Surgery, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
13
|
Dankó B, Hess J, Unger K, Samaga D, Walz C, Walch A, Sun N, Baumeister P, Zeng PYF, Walter F, Marschner S, Späth R, Gires O, Herkommer T, Dazeh R, Matos T, Kreutzer L, Matschke J, Eul K, Klauschen F, Pflugradt U, Canis M, Ganswindt U, Mymryk JS, Wollenberg B, Nichols AC, Belka C, Zitzelsberger H, Lauber K, Selmansberger M. Metabolic pathway-based subtypes associate glycan biosynthesis and treatment response in head and neck cancer. NPJ Precis Oncol 2024; 8:116. [PMID: 38783045 PMCID: PMC11116554 DOI: 10.1038/s41698-024-00602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous malignancy that remains a significant challenge in clinical management due to frequent treatment failures and pronounced therapy resistance. While metabolic dysregulation appears to be a critical factor in this scenario, comprehensive analyses of the metabolic HNSCC landscape and its impact on clinical outcomes are lacking. This study utilized transcriptomic data from four independent clinical cohorts to investigate metabolic heterogeneity in HNSCC and define metabolic pathway-based subtypes (MPS). In HPV-negative HNSCCs, MPS1 and MPS2 were identified, while MPS3 was enriched in HPV-positive cases. MPS classification was associated with clinical outcome post adjuvant radio(chemo)therapy, with MPS1 consistently exhibiting the highest risk of therapeutic failure. MPS1 was uniquely characterized by upregulation of glycan (particularly chondroitin/dermatan sulfate) metabolism genes. Immunohistochemistry and pilot mass spectrometry imaging analyses confirmed this at metabolite level. The histological context and single-cell RNA sequencing data identified the malignant cells as key contributors. Globally, MPS1 was distinguished by a unique transcriptomic landscape associated with increased disease aggressiveness, featuring motifs related to epithelial-mesenchymal transition, immune signaling, cancer stemness, tumor microenvironment assembly, and oncogenic signaling. This translated into a distinct histological appearance marked by extensive extracellular matrix remodeling, abundant spindle-shaped cancer-associated fibroblasts, and intimately intertwined populations of malignant and stromal cells. Proof-of-concept data from orthotopic xenotransplants replicated the MPS phenotypes on the histological and transcriptome levels. In summary, this study introduces a metabolic pathway-based classification of HNSCC, pinpointing glycan metabolism-enriched MPS1 as the most challenging subgroup that necessitates alternative therapeutic strategies.
Collapse
Affiliation(s)
- Benedek Dankó
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Julia Hess
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kristian Unger
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Samaga
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Peter Y F Zeng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, ON, Canada
| | - Franziska Walter
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Marschner
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Richard Späth
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Olivier Gires
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Timm Herkommer
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Ramin Dazeh
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thaina Matos
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lisa Kreutzer
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Essen a partnership between DKFZ and University Hospital, Essen, Germany
| | - Katharina Eul
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Frederick Klauschen
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Ulrike Pflugradt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Ute Ganswindt
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Department of Radiation Oncology, Innsbruck Medical University, Innsbruck, Austria
- Comprehensive Cancer Center Innsbruck, Innsbruck, Austria
| | - Joe S Mymryk
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, ON, Canada
- Department of Microbiology & Immunology, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Barbara Wollenberg
- Comprehensive Cancer Center, Munich, Germany
- Clinic of Otorhinolaryngology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Anthony C Nichols
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, University of Western Ontario, London, ON, Canada
- Department of Oncology, University of Western Ontario, London, ON, Canada
| | - Claus Belka
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Horst Zitzelsberger
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kirsten Lauber
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Cancer Center, Munich, Germany
| | - Martin Selmansberger
- Research Unit Translational Metabolic Oncology, Institute for Diabetes and Cancer, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, " Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
| |
Collapse
|
14
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Fu R, Chang R, Peng A, Feng C, Zhu W, Chen Y, Tian X, Wang R, Yan H, Jia D, Li J. Efficient treatment of colon cancer with codelivery of TRAIL and imatinib by liposomes. Pharm Dev Technol 2024; 29:52-61. [PMID: 38230653 DOI: 10.1080/10837450.2024.2301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
To solve the problem of resistance of tumor cells to TRAIL and the inevitable side effects of imatinib during treatment, we successfully prepared a kind of multifunctional liposome that encapsulated imatinib in its internal water phase and inserted TRAIL on its membrane in this study, which named ITLPs. The liposomes appeared uniform spherical and the particle size was approximately 150 nm. ITLPs showed high accumulation in TRAIL-resistance cells and HT-29 tumor-bearing mice model. In vitro cytotoxicity assay results showed that the killing activity of HT-29 cells treated with ITLPs increased by 50% and confirmed that this killing activity was mediated by the apoptosis pathway. Through mechanism studies, it was found that ITLPs arrested up to 32.3% of cells in phase M to exert anti-tumor effects. In vivo anti-tumor study showed that ITLPs achieved 61.8% tumor suppression and little toxicity in the HT-29 tumor-bearing mice model. Overall results demonstrated that codelivery of imatinib and TRAIL via liposomes may be a prospective method in the treatment of the TRAIL-resistance tumor.
Collapse
Affiliation(s)
- Rongrong Fu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Chang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Andong Peng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Changshun Feng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weifan Zhu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Yi Chen
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Xue Tian
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Hui Yan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
16
|
Pandey R, Bisht P, Wal P, Murti K, Ravichandiran V, Kumar N. SMAC Mimetics for the Treatment of Lung Carcinoma: Present Development and Future Prospects. Mini Rev Med Chem 2024; 24:1334-1352. [PMID: 38275029 DOI: 10.2174/0113895575269644231120104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Uncontrolled cell growth and proliferation, which originate from lung tissue often lead to lung carcinoma and are more likely due to smoking as well as inhaled environmental toxins. It is widely recognized that tumour cells evade the ability of natural programmed death (apoptosis) and facilitates tumour progression and metastasis. Therefore investigating and targeting the apoptosis pathway is being utilized as one of the best approaches for decades. OBJECTIVE This review describes the emergence of SMAC mimetic drugs as a treatment approach, its possibilities to synergize the response along with current limitations as well as future perspective therapy for lung cancer. METHOD Articles were analysed using search engines and databases namely Pubmed and Scopus. RESULT Under cancerous circumstances, the level of Inhibitor of Apoptosis Proteins (IAPs) gets elevated, which suppresses the pathway of programmed cell death, plus supports the proliferation of lung cancer. As it is a major apoptosis regulator, natural drugs that imitate the IAP antagonistic response like SMAC mimetic agents/Diablo have been identified to trigger cell death. SMAC i.e. second mitochondria activators of caspases is a molecule produced by mitochondria, stimulates apoptosis by neutralizing/inhibiting IAP and prevents its potential responsible for the activation of caspases. Various preclinical data have proven that these agents elicit the death of lung tumour cells. Apart from inducing apoptosis, these also sensitize the cancer cells toward other effective anticancer approaches like chemo, radio, or immunotherapies. There are many SMAC mimetic agents such as birinapant, BV-6, LCL161, and JP 1201, which have been identified for diagnosis as well as treatment purposes in lung cancer and are also under clinical investigation. CONCLUSION SMAC mimetics acts in a restorative way in the prevention of lung cancer.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Priya Bisht
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, Bihar, 844102, India
| |
Collapse
|
17
|
Isfahani MB, Mahnam K, Seyedhosseini-Ghaheh H, Sadeghi HMM, Khanahmad H, Akbari V, Varshosaz J. Computational design of newly engineered DARPins as HER2 receptor inhibitors for breast cancer treatment. Res Pharm Sci 2023; 18:626-637. [PMID: 39005564 PMCID: PMC11246109 DOI: 10.4103/1735-5362.389950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 08/26/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Human epidermal growth factor receptor 2 (HER2) is overexpressed in approximately 25% of breast cancer patients; therefore, its inhibition is a therapeutic target in cancer treatment. Experimental approach In this study, two new variants of designed ankyrin repeat proteins (DARPins), designated EG3-1 and EG3-2, were designed to increase their affinity for HER2 receptors. To this end, DARPin G3 was selected as a template, and six-point mutations comprising Q26E, I32V, T49A, L53H, K101R, and G124V were created on its structure. Furthermore, the 3D structures were formed through homology modeling and evaluated using molecular dynamic simulation. Then, both structures were docked to the HER2 receptor using the HADDOCK web tool, followed by 100 ns of molecular dynamics simulation for both DARPins / HER2 complexes. Findings/Results The theoretical result confirmed both structures' stability. Molecular dynamics simulations reveal that the applied mutations on DARPin EG3-2 significantly improve the receptor binding affinity of DARPin. Conclusion and implications The computationally engineered DARPin EG3-2 in this study could provide a hit compound for the design of promising anticancer agents targeting HER2 receptors.
Collapse
Affiliation(s)
- Maryam Beheshti Isfahani
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Mahnam
- Faculty of Science, Department of Biology, Shahrekord University, Shahrekord, Iran
| | | | - Hamid Mir Mohammad Sadeghi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
19
|
Li Y, Tang M, Dang W, Zhu S, Wang Y. Identification of disulfidptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:13995-14014. [PMID: 37543978 DOI: 10.1007/s00432-023-05211-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Colorectal cancer is the second leading cause of cancer-related deaths, which imposes a significant societal burden. Regular screening and emerging molecular tumor markers have important implications for detecting the progression and development of colorectal cancer. Disulfidptosis is a newly defined type of programmed cell death triggered by abnormal accumulation of disulfide compounds in cells that stimulate disulfide stress. Currently, there is no relevant discussion on this mechanism and colorectal cancer. METHODS We classified the disulfidptosis-related subtypes of colorectal cancer using bioinformatics methods. Through secondary clustering of differentially expressed genes between subtypes, we identified characteristic genes of the disulfidptosis subtype, constructed a prognostic model, and searched for potential biomarkers through clinical validation. RESULTS Using disulfidptosis-related genes collected from the literature, we classified colorectal cancer patients from public databases into three subtypes. The differentially expressed genes between subtypes were clustered into three gene subtypes, and eight characteristic genes were screened to construct a prognostic model. CONCLUSION The disulfidptosis mechanism has important value in the classification of colorectal cancer patients, and characteristic genes selected based on this mechanism can serve as a new potential biological marker for colorectal cancer.
Collapse
Affiliation(s)
- Ying Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengyao Tang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Dang
- The First College for Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shu Zhu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| | - Yunpeng Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jingshi Street, Lixia District, Jinan, Shandong, China.
| |
Collapse
|
20
|
Samy A, Hussein MA, Munirathinam G. Eprinomectin: a derivative of ivermectin suppresses growth and metastatic phenotypes of prostate cancer cells by targeting the β-catenin signaling pathway. J Cancer Res Clin Oncol 2023; 149:9085-9104. [PMID: 37171616 DOI: 10.1007/s00432-023-04829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE Prostate cancer (PCa) is the second leading cause of cancer death among men in the USA. The emergence of resistance to androgen deprivation therapy gives rise to metastatic castration-resistant prostate cancer. Eprinomectin (EP) is a member of a family of drugs called avermectins with parasiticide and anticancer properties. The pupose of this study was to evaluate the anticancer effects of EP against metastatic PCa using cellular models. METHODS: In this study, we have investigated the effect of EP's anticancer properties and delineated the underlying mechanisms in the DU145 cellular model using several assays such as cell viability assay, colony formation assay, wound-healing assay, immunofluorescence, apoptosis assay, cell cycle analysis, and immunoblotting. RESULTS Our results indicate that EP significantly inhibits the cell viability, colony formation, and migration capacities of DU145 cells. EP induces cell cycle arrest at the G0/G1 phase, apoptosis via the activation of different caspases, and autophagy through the increase in the generation of reactive oxygen species and endoplasmic reticulum stress. In addition, EP downregulates the expression of cancer stem cell markers and mediates the translocation of β-catenin from the nucleus to the cytoplasm, indicating its role in inhibiting downstream target genes such as c-Myc and cyclin D1. CONCLUSION Our study shows that EP has tremendous potential to target metastatic PCa cells and provides new avenues for therapeutic approaches for advanced PCa.
Collapse
Affiliation(s)
- Angela Samy
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
| | - Mohamed Ali Hussein
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA
- Department of Pharmaceutical Services, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, 1601 Parkview Avenue, Rockford, IL, 61107, USA.
| |
Collapse
|
21
|
Mafi A, Rismanchi H, Gholinezhad Y, Mohammadi MM, Mousavi V, Hosseini SA, Milasi YE, Reiter RJ, Ghezelbash B, Rezaee M, Sheida A, Zarepour F, Asemi Z, Mansournia MA, Mirzaei H. Melatonin as a regulator of apoptosis in leukaemia: molecular mechanism and therapeutic perspectives. Front Pharmacol 2023; 14:1224151. [PMID: 37645444 PMCID: PMC10461318 DOI: 10.3389/fphar.2023.1224151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Leukaemia is a dangerous malignancy that causes thousands of deaths every year throughout the world. The rate of morbidity and mortality is significant despite many advancements in therapy strategies for affected individuals. Most antitumour medications used now in clinical oncology use apoptotic signalling pathways to induce cancer cell death. Accumulated data have shown a direct correlation between inducing apoptosis in cancer cells with higher tumour regression and survival. Until now, the efficacy of melatonin as a powerful antitumour agent has been firmly established. A change in melatonin concentrations has been reported in multiple tumours such as endometrial, hematopoietic, and breast cancers. Findings show that melatonin's anticancer properties, such as its prooxidation function and ability to promote apoptosis, indicate the possibility of utilizing this natural substance as a promising agent in innovative cancer therapy approaches. Melatonin stimulates cell apoptosis via the regulation of many apoptosis facilitators, including mitochondria, cytochrome c, Bcl-2, production of reactive oxygen species, and apoptosis receptors. This paper aimed to further assess the anticancer effects of melatonin through the apoptotic pathway, considering the role that cellular apoptosis plays in the pathogenesis of cancer. The effect of melatonin may mean that it is appropriate for use as an adjuvant, along with other therapeutic approaches such as radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyed Ali Hosseini
- School of Medicine, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health Long School of Medicine, San Antonio, TX, United States
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
22
|
Li J, Yi X, Liu L, Wang X, Ai J. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 2023:10.1007/s10495-023-01851-3. [PMID: 37184582 DOI: 10.1007/s10495-023-01851-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.
Collapse
Affiliation(s)
- Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
| | - Jianzhong Ai
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Xie K, Liu L, Wang M, Li X, Wang B, Yin S, Chen W, Lin Y, Zhu X. IMPA2 blocks cervical cancer cell apoptosis and induces paclitaxel resistance through p53-mediated AIFM2 regulation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:623-632. [PMID: 37140233 DOI: 10.3724/abbs.2023069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Cervical cancer continues to be a concern, and the prognosis of locally advanced cervical cancer remains poor. IMPA2 was previously identified as a potential oncogene and regulator of tumor apoptosis. In this study, we aim to further elucidate the underlying mechanisms of IMPA2 gene in the regulation of cervical cancer apoptosis. First, we identify AIFM2 as an upregulated gene in IMPA2-silenced cervical cancer cells, and inhibition of AIFM2 reverses IMPA2 knockdown-induced apoptosis. Further study reveals that AIFM2 regulates cell apoptosis in a mitochondrial-dependent manner with a redistribution of mitochondrial membrane potential and intracellular Ca2 + levels. However, the analysis of the STRING database and our experimental results show that AIFM2 has little effect on cervical cancer progression and survival. Further mechanistic study demonstrates that IMPA2 and AIFM2 silencing inhibits apoptosis by activating p53. Meanwhile, the knockdown of IMPA2 enhances the chemosensitivity of cervical cancer cells by strengthening paclitaxel-induced apoptosis. Based on the above results, the IMPA2/AIFM2/p53 pathway may be a new molecular mechanism for paclitaxel treatment of cervical cancer and an effective strategy to enhance the sensitivity of cervical cancer cells to paclitaxel. Our findings display a novel function of IMPA2 in regulating cell apoptosis and paclitaxel resistance mediated by a disturbance of AIFM2 and p53 expression, potentially making it a novel therapeutic target for cervical cancer treatment.
Collapse
|
24
|
Iancu DCE, Fulga A, Vesa D, Stan C, Zenovia A, Bujoreanu F, Piraianu AI, Sarbu MI, Tatu AL. Insight on common forms of cutaneous head and neck carcinoma (Review). Mol Clin Oncol 2023; 18:28. [PMID: 36908978 PMCID: PMC9995598 DOI: 10.3892/mco.2023.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023] Open
Abstract
To improve the outcome and quality of life for patients with head and neck carcinoma, an increasing amount of research has been performed on the particularities of this type of cancer and its treatment methods. Starting from clinical aspects, including histology and imaging features, up-to-date studies from different parts of the world have determined new data leading to a better understanding of the mechanisms behind the disease and proposed new treatment protocols. The head and neck areas are predisposed to almost all skin neoplasms, most commonly those related to ultraviolet exposure. Squamous cell carcinoma and basal cell carcinoma account for almost 90% of non-melanoma skin cancers in this region; therefore, reviewing the literature on cutaneous carcinomas of the head and neck area and sharing particular aspects of their physiopathology are beneficial for a great number of patients.
Collapse
Affiliation(s)
- Doriana Cristea-Ene Iancu
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Ana Fulga
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Doina Vesa
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Constantin Stan
- Department of Otorhinolaryngology, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania.,Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Andrei Zenovia
- Department of Otorhinolaryngology, 'Cai Ferate' General Hospital, 800223 Galati, Romania
| | - Florin Bujoreanu
- Department of Dermatology, 'Sfanta Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research (MIC-DIR), 800179 Galati, Romania
| | - Alin Ionut Piraianu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania.,Department of Forensic Medicine, 'Sfantul Andrei' Emergency Clinical Hospital of Galati, 800578 Galati, Romania
| | - Mihaela Ionela Sarbu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania
| | - Alin Laurentiu Tatu
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University of Galati, 800010 Galati, Romania.,Department of Otorhinolaryngology, 'Cai Ferate' General Hospital, 800223 Galati, Romania.,Department of Dermatology, 'Sfanta Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, 800179 Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research (MIC-DIR), 800179 Galati, Romania
| |
Collapse
|
25
|
Toni T, Viswanathan R, Robbins Y, Gunti S, Yang X, Huynh A, Cheng H, Sowers AL, Mitchell JB, Allen CT, Morgan EL, Van Waes C. Combined Inhibition of IAPs and WEE1 Enhances TNFα- and Radiation-Induced Cell Death in Head and Neck Squamous Carcinoma. Cancers (Basel) 2023; 15:1029. [PMID: 36831373 PMCID: PMC9954698 DOI: 10.3390/cancers15041029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) remains a prevalent diagnosis with current treatment options that include radiotherapy and immune-mediated therapies, in which tumor necrosis factor-α (TNFα) is a key mediator of cytotoxicity. However, HNSCC and other cancers often display TNFα resistance due to activation of the canonical IKK-NFκB/RELA pathway, which is activated by, and induces expression of, cellular inhibitors of apoptosis proteins (cIAPs). Our previous studies have demonstrated that the IAP inhibitor birinapant sensitized HNSCC to TNFα-dependent cell death in vitro and radiotherapy in vivo. Furthermore, we recently demonstrated that the inhibition of the G2/M checkpoint kinase WEE1 also sensitized HNSCC cells to TNFα-dependent cell death, due to the inhibition of the pro-survival IKK-NFκB/RELA complex. Given these observations, we hypothesized that dual-antagonist therapy targeting both IAP and WEE1 proteins may have the potential to synergistically sensitize HNSCC to TNFα-dependent cell death. Using the IAP inhibitor birinapant and the WEE1 inhibitor AZD1775, we show that combination treatment reduced cell viability, proliferation and survival when compared with individual treatment. Furthermore, combination treatment enhanced the sensitivity of HNSCC cells to TNFα-induced cytotoxicity via the induction of apoptosis and DNA damage. Additionally, birinapant and AZD1775 combination treatment decreased cell proliferation and survival in combination with radiotherapy, a critical source of TNFα. These results support further investigation of IAP and WEE1 inhibitor combinations in preclinical and clinical studies in HNSCC.
Collapse
Affiliation(s)
- Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angel Huynh
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anastasia L. Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clint T. Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 7N240C, Bethesda, MD 20892, USA
| | - Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Wang X, Lu M, Gu H, Xiao T, Hu G, Luo M, Guo X, Xia Y. Conjugation of the Fn14 Ligand to a SMAC Mimetic Selectively Suppresses Experimental Squamous Cell Carcinoma in Mice. J Invest Dermatol 2023; 143:242-253.e6. [PMID: 36063885 DOI: 10.1016/j.jid.2022.08.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023]
Abstract
The mimetic of SMAC induced cell death in cancers by depleting the inhibitor of apoptosis proteins. Recent studies showed that Fn14 is overexpressed in the cells of squamous cell carcinoma (SCC), providing a promising candidate target for selective antitumor therapy. In this study, we conjugated a small-molecule SMAC mimetic MV1 to the ligand of Fn14, TWEAK. Our results showed that TWEAK‒MV1 conjugate retained adequate binding specificity to Fn14-positive SCC cells in vitro and accumulated selectively in tumor tissue of cutaneous SCC xenografts mice after intraperitoneal administration. This conjugation compound exhibited remarkable effectiveness in suppressing tumor growth and extending overall survival without causing significant side effects in SCC xenograft mice. Moreover, TWEAK‒MV1 conjugate greatly enhanced both apoptotic and necroptotic cell death both in vitro and in vivo, accompanied by a cellular inhibitor of apoptosis proteins degradation as well as activation of receptor-interacting protein kinase. Taken together, our preclinical data suggested that the designed conjugation compound of TWEAK and MV1 might provide a potential therapeutic strategy for cutaneous SCC with improved antitumor efficacy and negligible toxicity.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mai Luo
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennesse, USA
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
27
|
Yang K, Bao T, Zeng J, Wang S, Yuan X, Xiang W, Xu H, Zeng L, Ge J. Research progress on pyroptosis-mediated immune-inflammatory response in ischemic stroke and the role of natural plant components as regulator of pyroptosis: A review. Biomed Pharmacother 2023; 157:113999. [PMID: 36455455 DOI: 10.1016/j.biopha.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke (IS) is one of the leading causes of death and disability. Its pathogenesis is not completely clear, and inflammatory cascade is one of its main pathological processes. The current clinical practice of IS is to restore the blood supply to the ischemic area after IS as soon as possible through thrombolytic therapy to protect the vitality and function of neurons. However, blood reperfusion further accelerates ischemic damage and cause ischemia-reperfusion injury. The pathological process of cerebral ischemia-reperfusion injury involves multiple mechanisms, and the exact mechanism has not been fully elucidated. Pyroptosis, a newly discovered form of inflammatory programmed cell death, plays an important role in the initiation and progression of inflammation. It is a pro-inflammatory programmed death mediated by caspase Caspase-1/4/5/11, which can lead to cell swelling and rupture, release inflammatory factors IL-1β and IL-18, and induce an inflammatory cascade. Recent studies have shown that pyroptosis and its mediated inflammatory response are important factors in aggravating ischemic brain injury, and inhibition of pyroptosis may alleviate the ischemic brain injury. Furthermore, studies have found that natural plant components may have a regulatory effect on pyroptosis. Therefore, this review not only summarizes the molecular mechanism of pyroptosis and its role in ischemic stroke, but also the role of natural plant components as regulator of pyroptosis, in order to provide reference information on pyroptosis for the treatment of IS in the future.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Tingting Bao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde City, Hunan Province, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan Province, China; Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
28
|
Chen PN, Lin CW, Yang SF, Chang YC. CLEFMA Induces the Apoptosis of Oral Squamous Carcinoma Cells through the Regulation of the P38/HO-1 Signalling Pathway. Cancers (Basel) 2022; 14:cancers14225519. [PMID: 36428612 PMCID: PMC9688613 DOI: 10.3390/cancers14225519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
The purpose of this research was to evaluate the impact and the underlying molecular mechanism of CLEFMA-induced cell death in human OSCC. The anti-tumour properties of CLEFMA in oral cancer were explored using colony formation, flow cytometry, human apoptosis array, Western blot, and immunohistochemistry assays. The in vivo anti-tumour effect of CLEFMA administered by oral gavage was evaluated using SCC-9-derived xenograft-bearing nude mouse models. CLEFMA significantly suppressed colony formation and elicited cellular apoptosis in oral cancer cells. CLEFMA treatment remarkably increased phosphorylated p38 and HO-1 along with cleavage of poly ADP-ribose polymerase and activation of caspase-8, -9, and -3 in HSC-3 and SCC-9 cells. Administration of HO-1 small interfering RNA significantly protected the cells from CLEFMA-induced caspase-3, -8, and -9 activation. Attenuation of p38 activity by the pharmacologic inhibitor SB203580 dramatically reduced CLEFMA-induced caspase-3, -8, and -9 activation and HO-1 expression in OSCC. The subcutaneous murine xenograft models showed that CLEFMA in vivo suppressed tumour growth in implanted SCC-9 cells. All of these findings indicated that CLEFMA induced apoptosis through the p38-dependent rise in HO-1 signal transduction cascades in OSCC.
Collapse
Affiliation(s)
- Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Yu-Chao Chang
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan
- Correspondence:
| |
Collapse
|
29
|
Protein Kinase N2 Reduces Hydrogen Peroxide-inducedDamage and Apoptosis in PC12 Cells by AntiOxidative Stress and Activation of the mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2483669. [PMID: 36185087 PMCID: PMC9519335 DOI: 10.1155/2022/2483669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the role and mechanism of protein kinase N2 (PKN2) in hydrogen peroxide (H2O2)-induced injury of PC12 cells. Method s. PC12 cells were transfected with lentivirus to knock down or overexpress PKN2 and then were treated with 300 μM H2O2 to establish a cell model of oxidative stress injury. The cell viability of PC12 cells in each group was determined by the CCK-8 method. Biochemical assays were used to measure reactive oxygen species (ROS), malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activity. Western blot was used to detect the protein expressions of PKN2, caspase-3, cleaved-caspase-3, PARP, cleaved-PARP, p-mTOR, and mTOR in PC12 cells in each group. Results H2O2 treatment could significantly reduce PC12 cell viability and promote cell apoptosis and oxidative stress. PKN2 overexpression inhibited H2O2-induced apoptosis and oxidation damage by increasing PC12 cell viability, SOD activity, and p-mTOR protein expression, reducing intracellular ROS and MDA levels, and cleaved-caspase-3 and cleaved-PARP protein expression. Conclusion PKN2 overexpression can alleviate H2O2-induced oxidative stress injury and apoptosis in PC12 cells by activating the mTOR pathway.
Collapse
|
30
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
31
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
32
|
Evaluation of the Cytotoxicity of Aqueous Extract and Oleo-Essential Oil of Dorema ammoniacum Plant Oleo-Gum Resin in Some Human Cancer Cell Lines. Anal Cell Pathol (Amst) 2022; 2022:9725244. [PMID: 35983460 PMCID: PMC9381248 DOI: 10.1155/2022/9725244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
Results Aqueous extract and essential oil reduced the viability of A549 cancer cells in a concentration-dependent manner. The lowest inhibitory concentrations (IC50) for both samples of D. ammoniacum oleo-gum resin were 10 and 2.5 μg/ml for 24 hours in A549 cell line, respectively. After treatment with extract and essential oil of D. ammoniacum oleo-gum resin, ROS increased significantly compared to the control group. Although changes in caspase-3 did not show a significant increase in extract, the caspase-3 was found to be increased after exposure to essential oil and caspase-9 was downregulated after exposure to essential oil. Also, exposure to essential oil of D. ammoniacum caused a reduction in MMP level. Conclusion Based on results, the cytotoxic effect of essential oil of D. ammoniacum can induce apoptosis toward A549 cell line via induction of oxidative stress, MMP depletion, and caspase-3 activation, which is independent to mitochondrial cytochrome c release and caspase-9 function.
Collapse
|
33
|
Evaluation of a Dual PI3K/mTOR Inhibitor PF-04691502 against Bladder Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8110796. [PMID: 35783514 PMCID: PMC9249467 DOI: 10.1155/2022/8110796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Targeting the phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway is a promising strategy for the treatment of various cancers, including bladder cancer (BC). PF-04691502 is a relatively novel dual PI3K/mTOR inhibitor that exerts inhibitory effects against various cancer cells. However, the effects of PF-04691502 in BC cells have not been clarified thus far. This study aimed to evaluate the antitumour effects of PF-04691502 and the mechanisms underlying these antitumour effects in BC cells. The effects of PF-04691502 on the viabilities of BC cells were examined using the cell counting kit 8 (CCK-8) assay. Cell migration and invasion were measured using the wound healing assay and transwell assay, respectively. Cellular apoptosis was determined using flow cytometry. The change in the cellular protein levels was measured using western blotting. siRNA was used to study the role of PTEN in the antitumour effects of PF-04691502. PF-04691502 inhibited the proliferation, migration, and invasion of BC cells. Additionally, PF-04691502 induced apoptosis of BC cells via the intrinsic pathway. PF-04691502 inhibited the expression of Mcl-1 and the PI3K/Akt/mTOR pathway in BC cells. In addition, PF-04691502 increased the apoptosis induced by various chemotherapeutic agents in BC cells. Taken together, PF-04691502 could be used alone or in combination with other chemotherapeutic agents in the treatment of BC.
Collapse
|
34
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Witkop EM, Wikfors GH, Proestou DA, Lundgren KM, Sullivan M, Gomez-Chiarri M. Perkinsus marinus suppresses in vitro eastern oyster apoptosis via IAP-dependent and caspase-independent pathways involving TNFR, NF-kB, and oxidative pathway crosstalk. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104339. [PMID: 34998862 DOI: 10.1016/j.dci.2022.104339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.
Collapse
Affiliation(s)
- Erin M Witkop
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA
| | - Gary H Wikfors
- NOAA Northeast Fisheries Science Center Milford Laboratory, 212 Rogers Ave, Milford, CT, USA
| | - Dina A Proestou
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | | | - Mary Sullivan
- USDA ARS NEA NCWMAC Shellfish Genetics Program, 120 Flagg Rd, Kingston, RI, USA
| | - Marta Gomez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, 120 Flagg Rd, Kingston, RI, USA.
| |
Collapse
|
36
|
Xia SL, Ma ZY, Wang B, Gao F, Yi CG, Zhou XX, Guo SY, Zhou L. In vitro anti-synovial sarcoma effect of diallyl trisulfide and mRNA profiling. Gene 2022; 816:146172. [PMID: 34995734 DOI: 10.1016/j.gene.2021.146172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Synovial sarcoma (SS) is a malignant soft tissue sarcoma and its natural history is a long, indolent clinical course followed by high rate of local recurrence and distant metastasis. Current therapies are still limited in increasing satisfactory of 5-year survival, especially for patients with recurrence and metastasis. Accordingly, finding new therapeutic drug for SS treatment is clinically urgent need. Diallyl trisulfide (DATS), a bioactive compound derived from garlic, is reported as a promising anti-cancer agent for various carcinomas. However, its effect on anti-SS remains unknown. This study investigated the anti-SS effect of DATS in human synovial sarcoma SW982 cells. METHODS CCK-8 assay were used to examine the cell viability. High-content Imaging System was used to examine the apoptosis, intracellular ROS and autophagy. Flow cytometry was used to detect cell cycle. qPCR and Western blot were used to examine the expression of related mRNA and protein. High-throughput RNA-sequencing and bio-information analysis were used to investigate the mRNA profiling. RESULTS The results showed a suppressive effect of DATS on tumor biology of SW982 cells including inducing apoptosis, triggering G2/M cell cycle arrest, elevating intracellular ROS and damaging mitochondria. Further high-throughput RNA-sequencing analysis clarified a comprehensive molecular portrait for DATS-induced transcriptional regulation. Besides, protein-protein interaction (PPI) analysis demonstrated that a network consisted of FOXM1, CCNA2, CCNB1, MYBL2, PLK1 and CDK1 might be response for DATS-induced G2/M cell cycle arrest and increased intracellular ROS. Notably, protein feature analysis revealed structure enrichment in microtubule network like kinesin motors domain, and tubulin domain. Molecular function analysis suggested that DATS-induced dysfunction of microtubule network might be the major cause for its effect on cell cycle arrest and successive apoptosis. Furthermore, 28 hub genes (including KIF2C, PLK1, CDK1, BIRC5, CCNB2, CENPF, TPX2, TOP2A and so on) were determined. Finally, pathway analysis showed that DATS-induced differentially expressed genes were mainly involved in cell cycle. CONCLUSION Collectively, our findings for the first time provided the DATS-induced cellular response and transcriptional profiling of SW982 cells, which proposes that suppression of DATS on SS is multi-targeted and represent a therapeutic evidence for SS.
Collapse
MESH Headings
- Allyl Compounds/therapeutic use
- Antineoplastic Agents, Phytogenic/therapeutic use
- Autophagy/drug effects
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Databases, Genetic
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Garlic/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mitochondria/drug effects
- Protein Interaction Maps/drug effects
- RNA, Messenger
- RNA, Neoplasm/chemistry
- Reactive Oxygen Species/metabolism
- Sarcoma, Synovial/drug therapy
- Sarcoma, Synovial/genetics
- Sequence Analysis, RNA
- Sulfides/therapeutic use
- Transcriptome
Collapse
Affiliation(s)
- Sheng-Li Xia
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Zi-Yuan Ma
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Bin Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Feng Gao
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Cun-Guo Yi
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Xiao-Xiao Zhou
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Sheng-Yang Guo
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China
| | - Li Zhou
- Department of Oncology and Hematology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, 1500 Zhouyuan Road, Pudong New Area, Shanghai 201318, China.
| |
Collapse
|
37
|
Killing by Degradation: Regulation of Apoptosis by the Ubiquitin-Proteasome-System. Cells 2021; 10:cells10123465. [PMID: 34943974 PMCID: PMC8700063 DOI: 10.3390/cells10123465] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a cell suicide process that is essential for development, tissue homeostasis and human health. Impaired apoptosis is associated with a variety of human diseases, including neurodegenerative disorders, autoimmunity and cancer. As the levels of pro- and anti-apoptotic proteins can determine the life or death of cells, tight regulation of these proteins is critical. The ubiquitin proteasome system (UPS) is essential for maintaining protein turnover, which can either trigger or inhibit apoptosis. In this review, we will describe the E3 ligases that regulate the levels of pro- and anti-apoptotic proteins and assisting proteins that regulate the levels of these E3 ligases. We will provide examples of apoptotic cell death modulations using the UPS, determined by positive and negative feedback loop reactions. Specifically, we will review how the stability of p53, Bcl-2 family members and IAPs (Inhibitor of Apoptosis proteins) are regulated upon initiation of apoptosis. As increased levels of oncogenes and decreased levels of tumor suppressor proteins can promote tumorigenesis, targeting these pathways offers opportunities to develop novel anti-cancer therapies, which act by recruiting the UPS for the effective and selective killing of cancer cells.
Collapse
|
38
|
Zhang J, Luo B, Liu J, Waqas M, Kulyar MFEA, Guo K, Li J. Chlorogenic acid inhibits apoptosis in thiram-induced tibial dyschondroplasia via intrinsic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68288-68299. [PMID: 34268698 DOI: 10.1007/s11356-021-15286-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Tibial dyschondroplasia (TD) is a common skeletal disease occurred in growth plate of fast-growing broilers. Thiram is a sort of chemical used for pesticide and fungicide. The excessive use of thiram increased the threat to animal and human health. In this study, we aimed to investigate the therapeutic mechanism of chlorogenic acid (CGA) on thiram-induced tibial dyschondroplasia. Broiler chickens were divided into three different groups, e.g., control, TD, and CGA. CGA was administrated after the induction of TD from 4th day to 7th day. Biochemical analysis was performed to detect the content of calcium (Ca) and phosphorus (P). Histological changes and degradation of extracellular matrix were observed through hematoxylin-eosin (H & E) and Masson staining. To further determine the mechanism, TUNEL staining and western blot were also performed to detect the apoptosis changes in growth plate of all groups. The results showed the disproportionation of Ca and P content and upregulation of apoptosis during the development of TD. But, after the administration of CGA, the ratio of Ca:P was upregulated, and the apoptosis was also downregulated. The current study shows the toxic effect of thiram on chickens and suggests that CGA is associated with a mechanism that plays a significant role in apoptosis induced by thiram in poultry industry.
Collapse
Affiliation(s)
- Jialu Zhang
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, Tibet, People's Republic of China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bihao Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Juanjuan Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Waqas
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, 12350, Pakistan
| | | | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jiakui Li
- College of Animal Husbandry and Veterinary Medicine, Tibet Agricultural and Animal Husbandry University, Nyingchi, 860000, Tibet, People's Republic of China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
39
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
40
|
Xie Y, Wang B, Du L, Wang Y, Xu C, Zhang H, Wen K, Liu Q, Katsube T. ANTP-SMACN7 fusion peptide alone induced high linear energy transfer irradiation radiosensitization in non-small cell lung cancer cell lines. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0569. [PMID: 34546667 PMCID: PMC9334756 DOI: 10.20892/j.issn.2095-3941.2020.0569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/12/2021] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the mechanisms responsible for the radiation-sensitizing effect of antennapedia proteins, ANTP-SMACN7, on lung cancer cells treated with accelerated carbon and Fe particle irradiation. METHODS The ANTP-SMACN7 fusion peptide was synthesized and linked to fluorescein isothiocyanate to determine its ability to penetrate cells. A549 and NCI-H460 cells, human non-small cell lung cancer (NSCLC) cell lines, were irradiated with X-ray or high linear energy transfer (LET) irradiation with or without ANTP-SMACN7 treatment. Cellular survival, apoptosis, and protein expression were studied by colony formation assays, flow cytometry, and western blot analyses, respectively. RESULTS ANTP-SMACN7 fusion proteins entered the cells and promoted A549 and NCI-H460 cell high LET irradiation radiosensitization. High LET irradiation was more efficient for clonogenic cell killing and the induction of apoptosis (P < 0.05). Treatment with ANTP-SMACN7 significantly reduced the A549 and NCI-H460 cell clone-forming percentages and increased apoptosis through inhibition of the X-linked inhibitor of apoptosis protein and the activation of caspase-3 and caspase-9. CONCLUSIONS Regarding pharmaceutical radiosensitization, these findings provided a way to improve high-LET clinical radiotherapy for NSCLC patients.
Collapse
Grants
- 2018YFE0205100 National Key R&D Program of China
- 2018YFE0205101 National Key R&D Program of China
- 11605260 National Natural Science Foundation of China
- 31670859 National Natural Science Foundation of China
- 201903D321115 Key Research and Development Projects of Shanxi Province
- 2018-RC-66 Science and Technology Talent Project in Lanzhou
- 2020RCCX0038 Science and Technology Project of Chengguan District of Lanzhou
- 2017-I2M-1-016 CAMS Innovation Fund for Medical Science
- JP15K21745 Ministry of Education, Culture, Sports, and Science Technology Grant-in-Aid for Scientific Research on Innovative Areas with Heavy Ions at NIRS-HIMAC, Japan
- 15H05944 Ministry of Education, Culture, Sports, and Science Technology Grant-in-Aid for Scientific Research on Innovative Areas with Heavy Ions at NIRS-HIMAC, Japan
- 15H05935 (Living in Space) Ministry of Education, Culture, Sports, and Science Technology Grant-in-Aid for Scientific Research on Innovative Areas with Heavy Ions at NIRS-HIMAC, Japan
- 14J313 Research Project
Collapse
Affiliation(s)
- Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
| | - Kaixue Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan 030031, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
41
|
Song A, Wang Y, Jiang F, Yan E, Zhou J, Ye J, Zhang H, Ding X, Li G, Wu Y, Zheng Y, Song X. Ubiquitin D Promotes Progression of Oral Squamous Cell Carcinoma via NF-Kappa B Signaling. Mol Cells 2021; 44:468-480. [PMID: 34230226 PMCID: PMC8334351 DOI: 10.14348/molcells.2021.2229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023] Open
Abstract
Ubiquitin D (UBD) is highly upregulated in many cancers, and plays a pivotal role in the pathophysiological processes of cancers. However, its roles and underlying mechanisms in oral squamous cell carcinoma (OSCC) are still unclear. In the present study, we investigated the role of UBD in patients with OSCC. Quantitative real-time polymerase chain reaction and Western blot were used to measure the expression of UBD in OSCC tissues. Immunohistochemistry assay was used to detect the differential expressions of UBD in 244 OSCC patients and 32 cases of normal oral mucosae. In addition, CCK-8, colony formation, wound healing and Transwell assays were performed to evaluate the effect of UBD on the cell proliferation, migration, and invasion in OSCC. Furthermore, a xenograft tumor model was established to verify the role of UBD on tumor formation in vivo. We found that UBD was upregulated in human OSCC tissues and cell lines and was associated with clinical and pathological features of patients. Moreover, the overexpression of UBD promoted the proliferation, migration and invasion of OSCC cells; however, the knockdown of UBD exerted the opposite effects. In this study, our results also suggested that UBD promoted OSCC progression through NF-κB signaling. Our findings indicated that UBD played a critical role in OSCC and may serve as a prognostic biomarker and potential therapeutic target for OSCC treatment.
Collapse
Affiliation(s)
- An Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yi Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Feng Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Enshi Yan
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing 210000, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No. 1 Peoples Hospital, Xuzhou 221000, China
| | - Xu Ding
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yunong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Yang Zheng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| | - Xiaomeng Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210000, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210000, China
| |
Collapse
|
42
|
Liu L, Wang M, Li X, Yin S, Wang B. An Overview of Novel Agents for Cervical Cancer Treatment by Inducing Apoptosis: Emerging Drugs Ongoing Clinical Trials and Preclinical Studies. Front Med (Lausanne) 2021; 8:682366. [PMID: 34395473 PMCID: PMC8355560 DOI: 10.3389/fmed.2021.682366] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 01/16/2023] Open
Abstract
As the leading cause of cancer death, cervical cancer ranks fourth for both incidence and mortality. Cervical cancer incidence and mortality rates have reportedly decreased over the last decades thanks to extensive screening and widespread vaccination against human papilloma virus. However, there have been no major improvements concerning platinum-based chemotherapy on the survival of advanced cervical cancer. Thus, novel agents are urgently needed for the improvement of therapeutic effect. With the development of molecular biology and genomics, targeted therapy research has achieved a breakthrough development, including anti-angiogenesis, immune checkpoint inhibitors, and other treatments that are efficient for treatment of cervical cancer. Apoptosis is a crucial process for tumor progression. Drugs directed at inducing tumor-cell apoptosis are regarded as important treatment modalities. Besides, a number of novel compounds synthesized or derived from plants or microorganisms exhibited prominent anti-cancer activity by changing the apoptotic balance in cervical cancer. In this review, we summarized new target therapy drugs ongoing clinical trials that are used for treatment of cervical cancer. Further, we classified novel agents with a focus on improvement of therapeutic effect pre-clinically. To summarize, we also discussed application prospects of the new uses of old drugs and drug combinations, to provide researchers with new ideas for cervical cancer treatment.
Collapse
Affiliation(s)
- Lei Liu
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianping Li
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Yin
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bingqi Wang
- Department of Laboratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Paramasivam A, George R, Priyadharsini JV. Genomic and transcriptomic alterations in m6A regulatory genes are associated with tumorigenesis and poor prognosis in head and neck squamous cell carcinoma. Am J Cancer Res 2021; 11:3688-3697. [PMID: 34354868 PMCID: PMC8332867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 06/13/2023] Open
Abstract
Genetic alterations in N6-methyladenosine (m6A) regulatory genes are observed in many cancers. Recent studies have shown that newly identified m6A regulatory gene family (IGF2BPs; IGF2BP1, IGF2BP2, and IGF2BP3) were highly expressed in various types of cancer that stabilize and promote translation of multiple oncogenes, resulting in tumor development, survival and drug resistance. However, the oncogenic roles and prognostic values of IGF2BPs in head and neck squamous cell carcinoma (HNSCC) remain largely unknown. In this study, we examined the m6A regulatory genes alteration, their mRNAs expression and the prognostic values in HNSCC. We also analyzed the interaction network and functional enrichment of m6A regulators. Our results showed that m6A regulatory genes were altered in 41% (205/504) of HNSCC patients, of which IGF2BP2 was amplified in 20% (101/504) of HNSCC patents and positively correlated with its mRNA expression. Importantly, we have validated the expression of IGF2BP2 in HNSCC and normal tissue samples. Interestingly, we also found that the IGF2BP2 was frequently co-amplified with the most common oncogenes in HNSCC patients. In addition, this study found that other m6A regulatory genes such as METTL3, METTL14, WTAP, KIAA1429, ZC3H13, RBM15, ALKBH5, FTO, YTHDF1, YTHDF2, YTHDF3, YTHDC1, IGF2BP1, and IGF2BP3 were significantly upregulated in HNSCC samples. Moreover, patients with high expression of IGF2BP1, IGF2BP2, and IGF2BP3 had poor overall survival (OS) than those with low expression. Therefore, it is evident that IGF2BP family plays a key role in the oncogenesis of HNSCC and might serve as novel prognostic biomarkers and potential therapeutic targets in HNSCC.
Collapse
Affiliation(s)
- Arumugam Paramasivam
- Cellular and Molecular Research Centre, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha UniversityChennai, India
| | - Rinku George
- Department of Oral Oncology, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha UniversityChennai, India
| | - Jayaseelan Vijayashree Priyadharsini
- Cellular and Molecular Research Centre, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha UniversityChennai, India
| |
Collapse
|
44
|
Shen B, Dong X, Yuan B, Zhang Z. Molecular Markers of MDR of Chemotherapy for HSCC: Proteomic Screening With High-Throughput Liquid Chromatography-Tandem Mass Spectrometry. Front Oncol 2021; 11:687320. [PMID: 34262870 PMCID: PMC8274423 DOI: 10.3389/fonc.2021.687320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background Hypopharyngeal squamous cell cancer (HSCC) is a head and neck tumor with a poor prognosis. Chemotherapy lacks effectiveness because of multidrug resistance (MDR), which has increased toxic side effects. Thus, there is an urgent need to identify the molecular markers of MDR of chemotherapy for HSCC. Methods Fifty clinical samples of HSCC were derived from patients including 12 sensitive or resistant to chemotherapy drugs. Proteomic screening was performed using liquid chromatography-tandem mass spectrometry (LC-MS), which was based on data-independent acquisition. Molecular markers of MDR of chemotherapy in patients with HSCC were identified with clinical data and validated with ELISA. Results A total of 673 differentially expressed proteins were identified in HSCC samples, where 172 were upregulated and 501 were downregulated. A total of 183 differentially expressed proteins including 102 upregulated and 81 downregulated proteins, were identified by comparing cancer sensitive to chemotherapy with cancer resistant to chemotherapy. Clinical HSCC samples had significantly higher expression of FADD and significantly lower expression of RIPK1. Expressions of FADD and RIPK1 proteins were significantly lower in the chemotherapy-sensitive group. These expression differences were not correlated with clinical data. RIPK1 and FADD are involved in necroptosis and the signaling pathway of PRRs. Using ELISA, the low expression of RIPK1 and FADD was found in the patients sensitive to chemotherapy. Conclusion LC-MS proteomics is an effective method to identify the molecular markers of HSCC. FADD and RIPK1 can act as molecular markers of MDR of chemotherapy in patients with HSCC and may function through necroptosis and the PRR signaling pathway.
Collapse
Affiliation(s)
- Bin Shen
- Department of Otolaryngology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuelin Dong
- Department of Otolaryngology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Yuan
- Department of Otolaryngology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijun Zhang
- Department of Otolaryngology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
45
|
Hsieh MC, Lo YS, Chuang YC, Lin CC, Ho HY, Hsieh MJ, Lin JT. Dehydrocrenatidine extracted from Picrasma quassioides induces the apoptosis of nasopharyngeal carcinoma cells through the JNK and ERK signaling pathways. Oncol Rep 2021; 46:166. [PMID: 34165177 PMCID: PMC8218301 DOI: 10.3892/or.2021.8117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an indicator disease in Asia due to its unique geographical and ethnic distribution. Dehydrocrenatidine (DC) is a β-carboline alkaloid abundantly present in Picrasma quassioides (D. Don) Benn, a deciduous shrub or small tree native to temperate regions of southern Asia, and β-carboline alkaloids play anti-inflammatory and antiproliferative roles in various cancers. However, the mechanism and function of DC in human NPC cells remain only partially explored. The present study aimed to examine the cytotoxicity and biochemical role of DC in human NPC cells. The MTT method, cell cycle analysis, DAPI determination, Annexin V/PI double staining, and mitochondrial membrane potential examination were performed to evaluate the effects of DC treatment on human NPC cell lines. In addition, western blotting analysis was used to explore the effect of DC on apoptosis and signaling pathways in related proteins. The analysis results confirmed that DC significantly reduced the viability of NPC cell lines in a dose- and time-dependent manner and induced apoptosis through internal and external apoptotic pathways (including cell cycle arrest, altered mitochondrial membrane potential, and activated death receptors). Western blot analysis illustrated that DC's effect on related proteins in the mitogen-activated protein kinase pathway can induce apoptosis by enhancing ERK phosphorylation and inhibiting Janus kinase (JNK) phosphorylation. Notably, DC induced apoptosis by affecting the phosphorylation of JNK and ERK, and DC and inhibitors (SP600125 and U0126) in combination restored the overexpression of p-JNK and p-ERK. To date, this is the first study to confirm the apoptosis pathway induced by DC phosphorylation of p-JNK and p-REK in human NPC. On the basis of evidence obtained from this study, DC targeting the inhibition of NPC cell lines may be a promising future strategy for NPC treatment.
Collapse
Affiliation(s)
- Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Jen-Tsun Lin
- Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
46
|
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98:107895. [PMID: 34171623 DOI: 10.1016/j.intimp.2021.107895] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/17/2022]
Abstract
Tumor resistance to therapy modalities is one of the major challenges to the eradication of cancer cells and complete treatment. Tumor includes a wide range of cancer and non-cancer cells that play key roles in the proliferation of cancer cells and suppression of anti-tumor immunity. For overcoming tumor resistance to therapy, it is important to have in-depth knowledge relating to intercellular communications within the tumor microenvironment (TME). TME includes various types of immune cells such as CD4 + T lymphocytes, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, macrophages, and T regulatory cells (Tregs). Furthermore, some non-immune cells like cancer stem cells (CSCs), mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs) are involved in the promotion of tumor growth. The interactions between these cells with cancer cells play a key role in tumor growth or inhibition. Resveratrol as a natural agent has shown the ability to modulate the immune system to potentiate anti-tumor immunity and also help to attenuate cancer cells and CSCs resistance. Thus, this review explains how resveratrol can modulate interactions within TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
47
|
Roehle K, Qiang L, Ventre KS, Heid D, Ali LR, Lenehan P, Heckler M, Crowley SJ, Stump CT, Ro G, Godicelj A, Bhuiyan AM, Yang A, Quiles Del Rey M, Biary T, Luoma AM, Bruck PT, Tegethoff JF, Nopper SL, Li J, Byrne KT, Pelletier M, Wucherpfennig KW, Stanger BZ, Akin JJ, Mancias JD, Agudo J, Dougan M, Dougan SK. cIAP1/2 antagonism eliminates MHC class I-negative tumors through T cell-dependent reprogramming of mononuclear phagocytes. Sci Transl Med 2021; 13:eabf5058. [PMID: 34011631 PMCID: PMC8406785 DOI: 10.1126/scitranslmed.abf5058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023]
Abstract
Loss of major histocompatibility complex (MHC) class I and interferon-γ (IFN-γ) sensing are major causes of primary and acquired resistance to checkpoint blockade immunotherapy. Thus, additional treatment options are needed for tumors that lose expression of MHC class I. The cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) regulate classical and alternative nuclear factor κB (NF-κB) signaling. Induction of noncanonical NF-κB signaling with cIAP1/2 antagonists mimics costimulatory signaling, augmenting antitumor immunity. We show that induction of noncanonical NF-κB signaling induces T cell-dependent immune responses, even in β2-microglobulin (β2M)-deficient tumors, demonstrating that direct CD8 T cell recognition of tumor cell-expressed MHC class I is not required. Instead, T cell-produced lymphotoxin reprograms both mouse and human macrophages to be tumoricidal. In wild-type mice, but not mice incapable of antigen-specific T cell responses, cIAP1/2 antagonism reduces tumor burden by increasing phagocytosis of live tumor cells. Efficacy is augmented by combination with CD47 blockade. Thus, activation of noncanonical NF-κB stimulates a T cell-macrophage axis that curtails growth of tumors that are resistant to checkpoint blockade because of loss of MHC class I or IFN-γ sensing. These findings provide a potential mechanism for controlling checkpoint blockade refractory tumors.
Collapse
Affiliation(s)
- Kevin Roehle
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Li Qiang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine S Ventre
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Daniel Heid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Lenehan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Max Heckler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie J Crowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Courtney T Stump
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gabrielle Ro
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anže Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Annan Yang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Maria Quiles Del Rey
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tamara Biary
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jana F Tegethoff
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Svenja L Nopper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katelyn T Byrne
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc Pelletier
- Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Akin
- Novartis Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Wu YW, Chao MW, Tu HJ, Chen LC, Hsu KC, Liou JP, Yang CR, Yen SC, HuangFu WC, Pan SL. A novel dual HDAC and HSP90 inhibitor, MPT0G449, downregulates oncogenic pathways in human acute leukemia in vitro and in vivo. Oncogenesis 2021; 10:39. [PMID: 33986242 PMCID: PMC8119482 DOI: 10.1038/s41389-021-00331-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Acute leukemia is a highly heterogeneous disease; therefore, combination therapy is commonly used for patient treatment. Drug–drug interaction is a major concern of combined therapy; hence, dual/multi-target inhibitors have become a dominant approach for cancer drug development. HDACs and HSP90 are involved in the activation of various oncogenic signaling pathways, including PI3K/AKT/mTOR, JAK/STAT, and RAF/MEK/ERK, which are also highly enriched in acute leukemia gene expression profiles. Therefore, we suggest that dual HDAC and HSP90 inhibitors could represent a novel therapeutic approach for acute leukemia. MPT0G449 is a dual effect inhibitor, and it showed cytotoxic effectiveness in acute leukemia cells. Molecular docking analysis indicated that MPT0G449 possessed dual HDAC and HSP90 inhibitory abilities. Furthermore, MPT0G449 induced G2 arrest and caspase-mediated cell apoptosis in acute leukemia cells. The oncogenic signaling molecules AKT, mTOR, STAT3, STAT5, MEK, and ERK were significantly downregulated after MPT0G449 treatment in HL-60 and MOLT-4 cells. In vivo xenograft models confirmed the antitumor activity and showed the upregulation of acetyl-histone H3 and HSP70, biomarkers of pan-HDAC and HSP90 inhibition, with MPT0G449 treatment. These findings suggest that the dual inhibition of HDAC and HSP90 can suppress the expression of oncogenic pathways in acute leukemia, and MPT0G449 represents a novel therapeutic for anticancer treatment.
Collapse
Affiliation(s)
- Yi-Wen Wu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chung Yen
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Huang X, Ou C, Shu Y, Wang Y, Gong S, Luo R, Chen S, Wu Q, Gong C. A self-sustained nanoplatform reverses TRAIL-resistance of pancreatic cancer through coactivating of exogenous and endogenous apoptotic pathway. Biomaterials 2021; 272:120795. [PMID: 33836292 DOI: 10.1016/j.biomaterials.2021.120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Since the 5-year survival rate of pancreatic cancer is only 10.0%, new therapies are urgently needed. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis specifically on tumor cells, nevertheless its clinical application was seriously restricted by resistance and short in vivo half-life. Herein, a novel multifunctional R6ST protein equipped with cell penetrating peptides R6, intrinsic apoptosis inducing tetrapeptide AVPI and soluble TRAIL was designed and constructed. Then, it was recruited to prepare self-sustained nanoplatform (SSN) to reverse TRAIL-resistance of pancreatic cancer through simultaneously promoting extrinsic and intrinsic apoptotic pathway, as well to elongate circulation time. Once administrated, high tumor accumulation and cellular uptake of SSN were achieved through prolonged circulation time, targeting ability of soluble TRAIL to death receptors and positive-charged R6, and further enhanced through reversed upregulation of death receptors on TRAIL-resistant tumor cells by the cumulated artesunate released in cytoplasm as a positive feedback loop. Furthermore, this loop simultaneously promoted extrinsic apoptosis of TRAIL fragment via the upregulated death receptors on TRAIL-resistant pancreatic cancer cells and intrinsic apoptosis of AVPI tetrapeptide via the efficient accumulation and uptake of R6ST on SSN. Hence, SSN exhibited synergistic antitumor effect and provided a new strategy for TRAIL-resistant pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xianzhou Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaqian Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songlin Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shouchun Chen
- Chengdu Huachuang Biotechnology Co. Ltd., Chengdu, 610041, China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
50
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|