1
|
Zhao Z, Hu C, Li L, Zhang J, Zhang L. Main chemical constituents and mechanism of anti-tumor action of Solanum nigrum L. Cancer Med 2024; 13:e7314. [PMID: 39155844 PMCID: PMC11331249 DOI: 10.1002/cam4.7314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE Solanum nigrum L. (SNL) is a natural drugwith diverse bioactive components and multi-targeted anti-tumor effects, gaining increasing attention in clinical application. METHOD AND RESULTS This paper reviews the studies on SNL by searching academic databases (Google Scholar, PubMed, Science Direct,and Web of Science, among others), analyzing its chemical compositions (alkaloids, saponins, polysaccharides, and polyphenols, among others), andbriefly describes the anti-tumor mechanisms of the main components. DISCUSSION This paper discusses the shortcomings of the current research on SNL and proposes corresponding solutions, providing theoretical support for further research on its biological functions and clinical efficacy.
Collapse
Affiliation(s)
- Zhen‐duo Zhao
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Hu
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM‐Integrated Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐qi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li‐chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Singh R, Ray A. Therapeutic potential of hedgehog signaling in advanced cancer types. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:49-80. [PMID: 38782501 DOI: 10.1016/bs.ircmb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States.
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
3
|
Jan S, Iram S, Bashir O, Shah SN, Kamal MA, Rahman S, Kim J, Jan AT. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. PLANTS (BASEL, SWITZERLAND) 2024; 13:724. [PMID: 38475570 DOI: 10.3390/plants13050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Sana Iram
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Ommer Bashir
- Department of School Education, Srinagar 190001, Jammu and Kashmir, India
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin AbdulAziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
4
|
Huang A, Xu T, Lu X, Ma L, Ma H, Yu Y, Yao L. Shh-Gli2-Runx2 inhibits vascular calcification. Nephrol Dial Transplant 2024; 39:305-316. [PMID: 37451818 DOI: 10.1093/ndt/gfad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND In patients with chronic kidney disease (CKD), vascular calcification (VC) is common and is associated with a higher risk of all-cause mortality. Shh, one ligand for Hedgehog (Hh) signaling, participates in osteogenesis and several cardiovascular diseases. However, it remains unclear whether Shh is implicated in the development of VC. METHODS Inorganic phosphorus 2.6 mM was used to induce vascular smooth muscle cells (VSMCs) calcification. Mice were fed with adenine diet supplement with 1.2% phosphorus to induce VC. RESULTS Shh was decreased in VSMCs exposed to inorganic phosphorus, calcified arteries in mice fed with an adenine diet, as well as radial arteries from patients with CKD presenting VC. Overexpression of Shh inhibited VSMCs ostosteoblastic differentiation and calcification, whereas its silencing accelerated these processes. Likewise, mice treated with smoothened agonist (SAG; Hh signaling agonist) showed alleviated VC, and mice treated with cyclopamine (CPN; Hh signaling antagonist) exhibited severe VC. Additionally, overexpression of Gli2 significantly reversed the pro-calcification effect of Shh silencing on VSMCs, suggesting that Shh inhibited VC via Gli2. Mechanistically, Gli2 interacted with Runx2 and promoted its ubiquitin proteasomal degradation, therefore protecting against VC. Of interest, the pro-degradation effect of Gli2 on Runx2 was independent of Smurf1 and Cullin4B. CONCLUSIONS Our study provided deeper insight to the pathogenesis of VC, and Shh might be a novel potential target for VC treatment.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhua Xu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ling Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Haiying Ma
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, China
- Shenyang Engineering Technology R&D Center of Cell Therapy Co. Ltd, Shenyang, China
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Shen M, Liu S, Wei Q, Zhang X, Wen S, Qiu R, Li Y, Fan H. Extract of Astragali Radix and Solanum nigrum Linne regulates microglia and macrophage polarization and inhibits the growth and infiltration of C6 glioblastoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117067. [PMID: 37619857 DOI: 10.1016/j.jep.2023.117067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The polarization of glioma-associated microglia/macrophages (GAMs) affects the growth and infiltration of glioma. Astragali Radix (AR) and Solanum nigrum L. (SN) are traditional antitumor combinations in Chinese herbal medicine, but their roles and mechanisms against glioma are not yet clear. AIM OF THE STUDY The effects of AR and SN compound (ARSN) on the polarization of GAMs and glioma cells in vitro and in vivo were studied, providing new ideas for the treatment of glioma. MATERIALS AND METHODS The UPLC-QTOF-MS method was used to examine the quality of ARSN extracts. The effects of ARSN on proliferation, migration and apoptosis of C6 cells were investigated using CCK-8 assay, colony-forming assay, wound healing assay and flow cytometry. The impact of ARSN on the polarization of GAMs was verified by PCR, ELISA, and flow cytometry. In addition, a rat glioma model was established to assess the effects of ARSN on glioma growth, infiltration, and polarization of GAMs. RESULTS In vitro experiments, ARSN can effectively inhibit the proliferation and migration of C6 cells and promote apoptosis. In the rat orthotopic tumor model, ARSN also effectively inhibited tumor growth and infiltration. The SN part of ARSN has strong cytotoxicity. Meanwhile the AR part can effectively inhibit the M2 polarization of GAMs and chemokine production induced by tumor, promote the M1 phenotype of GAMs, and regulate the tumor immune microenvironment to indirectly kill glioma. CONCLUSIONS ARSN inhibited glioma growth both in vitro and in vivo. SN takes effect through direct cytotoxicity, while AR works by regulating GAMs polarization. ARSN extracts can be used as a potential agent for glioma treatment.
Collapse
Affiliation(s)
- Mingxue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Suo Liu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Qin Wei
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Xiong Zhang
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Shiyu Wen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
6
|
Liu Y, Jiang B, Li Y, Zhang X, Wang L, Yao Y, Zhu B, Shi H, Chai X, Hu X, Zhang B, Li H. Effect of traditional Chinese medicine in osteosarcoma: Cross-interference of signaling pathways and potential therapeutic targets. Medicine (Baltimore) 2024; 103:e36467. [PMID: 38241548 PMCID: PMC10798715 DOI: 10.1097/md.0000000000036467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/14/2023] [Indexed: 01/21/2024] Open
Abstract
Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/β-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-β (TGF-β)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.
Collapse
Affiliation(s)
- Yuezhen Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yanqiang Li
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaoshou Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Lijun Wang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yasai Yao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Baohong Zhu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hengwei Shi
- The Second Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiping Chai
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xingrong Hu
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Bangneng Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Hongzhuan Li
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
7
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Yin L, Cao R, Liu Z, Luo G, Li Y, Zhou X, Chen X, Wu Y, He J, Zu X, Shen Y. FUNDC2, a mitochondrial outer membrane protein, mediates triple-negative breast cancer progression via the AKT/GSK3β/GLI1 pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1770-1783. [PMID: 37700593 PMCID: PMC10679879 DOI: 10.3724/abbs.2023142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/12/2023] [Indexed: 09/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks effective therapeutic targets and has a poor prognosis, easy recurrence and metastasis. It is urgent and important to explore TNBC treatment targets. Through mass spectrometry combined with qRT-PCR validation in luminal A cells and TNBC cells, high-content screening and clinical sample analysis, FUNDC2 was discovered as a novel target. The function of the outer mitochondrial membrane protein FUNDC2 in breast cancer is still unclear. In this study, we find that FUNDC2 expression in TNBC tissues is significantly higher than that in luminal subtype breast cancer tissues. FUNDC2 silencing in TNBC cells significantly reduces cell proliferation, migration and invasion. As demonstrated in vivo using subcutaneous tumor xenografts in mice, FUNDC2 suppression significantly inhibits tumor growth. The underlying mechanism might be mediated by inactivating its downstream signal AKT/GSK3β and GLI1, a key factor of the Hedgehog signaling pathway. Therefore, FUNDC2 may promote TNBC progression and provide a therapeutic target for treating TNBC.
Collapse
Affiliation(s)
- Liyang Yin
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Renxian Cao
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Zhuoqing Liu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Gang Luo
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yu Li
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiaolong Zhou
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xiguang Chen
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Ying Wu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Jun He
- Nanhua Affiliated HospitalDepartment of Spine SurgeryHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Xuyu Zu
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| | - Yingying Shen
- The First Affiliated HospitalCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyang421001China
| |
Collapse
|
10
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
11
|
Li T, Tan Q, Wei C, Zou H, Liu X, Mei Z, Zhang P, Cheng J, Fu J. Design, Synthesis, and Acute Toxicity Assays for Novel Thymoquinone Derivative TQFL12 in Mice and the Mechanism of Resistance to Toxicity. Molecules 2023; 28:5149. [PMID: 37446810 DOI: 10.3390/molecules28135149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
TQFL12 is a novel derivative designed and synthesized on the basis of Thymoquinone (TQ) which is extracted from Nigella sativa seeds. We have demonstrated that TQFL12 was more effective in the treatment of TNBC than TQ. In order to directly reflect the acute toxicity of TQFL12 in vivo, in this study, we designed, synthesized, and compared it with TQ. The mice were administered drugs with different concentration gradients intraperitoneally, and death was observed within one week. The 24 h median lethal dose (LD50) of TQ was calculated to be 33.758 mg/kg, while that of TQFL12 on the 7th day was 81.405 mg/kg, and the toxicity was significantly lower than that of TQ. The liver and kidney tissues of the dead mice were observed by H&E staining. The kidneys of the TQ group had more severe renal damage, while the degree of the changes in the TQFL12 group was obviously less than that in the TQ group. Western blotting results showed that the expressions of phosphorylated levels of adenylate-activated protein kinase AMPKα were significantly up-regulated in the kidneys of the TQFL12 group. Therefore, it can be concluded that the acute toxicity of TQFL12 in vivo is significantly lower than that of TQ, and its anti-toxicity mechanism may be carried out through the AMPK signaling pathway, which has a good prospect for drug development.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Basic Medical School, Southwest Medical University, Luzhou 646000, China
| | - Qi Tan
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Basic Medical School, Southwest Medical University, Luzhou 646000, China
| | - Chunli Wei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Hui Zou
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhiqiang Mei
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Central South University, Changsha 410008, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
12
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
13
|
Yang L, Liu J, Liu S. Clinical significance and immune landscape of a novel ferroptosis-related prognosis signature in osteosarcoma. BMC Cancer 2023; 23:229. [PMID: 36899330 PMCID: PMC10007778 DOI: 10.1186/s12885-023-10688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant tumor that usually occurs in adolescents aged 10-20 years and is associated with poor prognosis. Ferroptosis is an iron-dependent cell death mechanism that plays a vital role in cancer. METHODS Osteosarcoma transcriptome data were downloaded from the public database TARGET and from previous studies. A prognostic risk score signature was constructed using bioinformatics analysis, and its efficacy was determined by analyzing typical clinical features. The prognostic signature was then validated with external data. Differences in immune cell infiltration between high- and low-risk groups were analyzed. The potential of the prognostic risk signature as a predictor of immunotherapy response was evaluated using the GSE35640 (melanoma) dataset. Five key genes expression were measured by real-time PCR and western blot in human normal osteoblasts and osteosarcoma cells. Moreover, malignant biological behaviors of osteosarcoma cells were tested by modulating gene expression level. RESULTS We obtained 268 ferroptosis-related genes from the online database FerrDb and published articles. Transcriptome data and clinical information of 88 samples in the TARGET database were used to classify genes into two categories using clustering analysis, and significant differences in survival status were identified. Differential ferroptosis-related genes were screened, and functional enrichment showed that they were associated with HIF-1, T cells, IL17, and other inflammatory signaling pathways. Prognostic factors were identified by univariate Cox regression and LASSO analysis, and a 5-factor prognostic risk score signature was constructed, which was also applicable for external data validation. Experimental validation indicated that the mRNA and protein expression level of MAP3K5, LURAP1L, HMOX1 and BNIP3 decreased significantly, though meanwhile MUC1 increased in MG-63 and SAOS-2 cells compared with hFOB1.19 cells. Cell proliferation and migration ability of SAOS-2 were affected based on alterations of signature genes. CONCLUSIONS Significant differences in immune cell infiltration between high- and low-risk groups indicated that the five ferroptosis-related prognostic signature was constructed and could be used to predict the response to immunotherapy in osteosarcoma.
Collapse
Affiliation(s)
- Liyu Yang
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Jiamei Liu
- Department of Pathology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shengye Liu
- Department of Orthopedics, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
14
|
Zhou S, Zhuang C, Liu R. KPNA2 promotes osteosarcoma growth and metastasis in a c-Myc-dependent manner via the hedgehog /GLI1 signaling pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
15
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
16
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
17
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
18
|
Qu X, Xie J, Zhang Y, Wang Z. Solamargine Alleviates Proliferation and Metastasis of Cervical Cancer Cells by Blocking the CXCL3-Mediated Erk Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7634754. [PMID: 36345403 PMCID: PMC9637034 DOI: 10.1155/2022/7634754] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 07/30/2023]
Abstract
Solamargine has unique antitumor efficacy in a variety of cancers. The study is to explore the role of solamargine in cervical cancer. HeLa and SiHa cells were exposed to solamargine treatment at divergent concentrations (0, 5, 10, and 20 μM). The antitumor role of solamargine in cervical cancer cells was determined by cell counting kit 8 (CCK-8), colony formation, scratch test, transwell assay, and western blot. The expression of mRNAs regulating the extracellular regulated protein kinases (Erk) pathway in solamargine-treated cells was detected by qRT-PCR. Rescue experiments were conducted to explore the effect of C-X-C motif chemokine ligand 3 (CXCL3). Following that, we inhibited Erk1/2 by PD98059 to investigate the interplay between CXCL3 and Erk pathway in solamargine-treated cells by measuring migration, invasion, and related matrix metalloproteinase (MMP) expressions. Solamargine inhibited the viability, proliferation, migration, and invasion of cervical cancer cells in a dose-dependent manner. The expression of p-Erk1/2 was downregulated by solamargine. CXCL3 overexpression abrogated the antitumor effect of solamargine on cervical cancer cells. The inhibition of the Erk signaling pathway restored the inhibiting role of solamargine which interfered with CXCL3 overexpression, in invasion, migration, and expressions of MMP-2 and MMP-9 in cervical cancer cells. Moreover, solamargine inhibited the growth of tumor in vivo xenograft model. Solamargine alleviated proliferation and metastasis of cervical cancer cells by blocking the CXCL3-mediated Erk signaling pathway.
Collapse
Affiliation(s)
- Xiangdong Qu
- Department of Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jirong Xie
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Youyang Zhang
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zhimin Wang
- Department of Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
19
|
Geiparvarin Inhibits OS Metastasis through Upregulation of ANGPTL4 Expression by Inhibiting miRNA-3912-3p Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4663684. [PMID: 35463073 PMCID: PMC9019413 DOI: 10.1155/2022/4663684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
Background Geiparvarin (GN) is a natural compound with anticancer activity. However, the effect of GN on osteosarcoma (OS) and the anticancer mechanism of GN are still unclear. Methods Cell viability was measured by MTT assay. Invasion and migration were measured by transwell assay. The miRNAs, genes, and signaling pathways affected by GN were confirmed by whole-genome sequencing and bioinformatics analysis. The expression level of mRNA and protein was measured by qRT-PCR and western blot. Animal experiment was performed for confirming the GN anticancer effect and side effect in vivo. Results Our results show that GN significantly inhibits OS cell growth and metastasis in vitro. In vivo experiment also showed that GN dramatically suppressed OS lung metastasis and no side effects were found. GN treatment inhibited OS metastasis through upregulating the ANGPTL4 expression. In addition, GN inhibited the expression of miR-3912-3p, which targets ANGPTL4. Conclusion Our data clearly indicate that GN is a candidate drug for OS treatment, and GN plays its role through miR-3912-3p/ANGPTL4 in OS.
Collapse
|
20
|
Kowalczyk T, Merecz-Sadowska A, Rijo P, Mori M, Hatziantoniou S, Górski K, Szemraj J, Piekarski J, Śliwiński T, Bijak M, Sitarek P. Hidden in Plants-A Review of the Anticancer Potential of the Solanaceae Family in In Vitro and In Vivo Studies. Cancers (Basel) 2022; 14:1455. [PMID: 35326606 PMCID: PMC8946528 DOI: 10.3390/cancers14061455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Many of the anticancer agents that are currently in use demonstrate severe side effects and encounter increasing resistance from the target cancer cells. Thus, despite significant advances in cancer therapy in recent decades, there is still a need to discover and develop new, alternative anticancer agents. The plant kingdom contains a range of phytochemicals that play important roles in the prevention and treatment of many diseases. The Solanaceae family is widely used in the treatment of various diseases, including cancer, due to its bioactive ingredient content. The purpose of this literature review is to highlight the antitumour activity of Solanaceae extracts-single isolated compounds and nanoparticles with extracts-and their synergistic effect with chemotherapeutic agents in various in vitro and in vivo cancer models. In addition, the biological properties of many plants of the Solanaceae family have not yet been investigated, which represents a challenge and an opportunity for future anticancer therapy.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Patricia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisbon, Portugal;
- iMed.ULisboa—Research Institute for Medicines, Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Karol Górski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Janusz Piekarski
- Department of Surgical Oncology, Chair of Oncology, Medical University in Lodz, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, 93-513 Lodz, Poland;
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
21
|
An R, Zhang W, Huang X. Developments in the Antitumor Activity, Mechanisms of Action, Structural Modifications, and Structure-Activity Relationships of Steroidal Saponins. Mini Rev Med Chem 2022; 22:2188-2212. [PMID: 35176980 DOI: 10.2174/1389557522666220217113719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
Steroidal saponins, a class of natural products formed by the combination of spirosteranes with sugars, are widely distributed in plants and have various biological activities, such as anti-tumor, anti-inflammatory, anti-bacterial, anti-Alzheimer's, anti-oxidation, etc. Particularly, extensive researches on the antitumor property of steroidal saponins have been received. Steroidal sapogenins, the aglycones of steroidal saponins, also have attracted much attention due to a vast range of pharmacological activities similar to steroidal saponins. In the past few years, structural modifications on the aglycones and sugar chains of steroidal saponins have been carried out and some achievements have been made. In this mini-review, the antitumor activity, action mechanisms, and structural modifications along with the structure-activity relationships of steroidal saponins and their derivatives are summarized.
Collapse
Affiliation(s)
- Renfeng An
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Wenjin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| | - Xuefeng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu Province, P.R. China
| |
Collapse
|
22
|
Karati D, Shaoo KK, Mahadik K, Kumr D. Glycogen synthase kinase-3β inhibitors as a novel promising target in the treatment of cancer: Medicinal chemistry perspective. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Lv M, Xu Q, Zhang B, Yang Z, Xie J, Guo J, He F, Wang W. Imperatorin induces autophagy and G0/G1 phase arrest via PTEN-PI3K-AKT-mTOR/p21 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cancer Cell Int 2021; 21:689. [PMID: 34923996 PMCID: PMC8684670 DOI: 10.1186/s12935-021-02397-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Osteosarcoma is the third most common cancer in adolescence and the first common primary malignant tumor of bone. The long-term prognosis of osteosarcoma still remains unsatisfactory in the past decades. Therefore, development of novel therapeutic agents which are effective to osteosarcoma and are safe to normal tissue simultaneously is quite essential and urgent. METHODS Firstly, MTT assay, cell colony formation assay, cell migration and invasion assays were conducted to evaluate the inhibitory effects of imperatorin towards human osteosarcoma cells. RNA-sequence assay and bioinformatic analysis were then performed to filtrate and assume the potential imperatorin-induced cell death route and signaling pathway. Moreover, quantitative real-time PCR assay, western blot assay and rescue experiments were conducted to confirm the assumptions of bioinformatic analysis. Finally, a subcutaneous tumor-transplanted nude mouse model was established and applied to evaluate the internal effect of imperatorin on osteosarcoma by HE and immunohistochemistry staining. RESULTS Imperatorin triggered time-dependent and dose-dependent inhibition of tumor growth mainly by inducing autophagy promotion and G0/G1 phase arrest in vitro and in vivo. Besides, imperatorin treatment elevated the expression level of PTEN and p21, down-regulated the phosphorylation of AKT and mTOR. In contrast, the inhibition of PTEN using Bpv (HOpic), a potential and selective inhibitor of PTEN, concurrently rescued imperatorin-induced autophagy promotion, cell cycle arrest and inactivation of PTEN-PI3K-AKT-mTOR/p21 pathway. CONCLUSIONS This work firstly revealed that imperatorin induced autophagy and cell cycle arrest through PTEN-PI3K-AKT-mTOR/p21 signaling pathway by targeting and up-regulating PTEN in human osteosarcoma cells. Hence, imperatorin is a desirable candidate for clinical treatments of osteosarcoma.
Collapse
Affiliation(s)
- Minchao Lv
- Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No.100, Minjiang Avenue, Quzhou, Zhejiang, China
| | - Qingxin Xu
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Chashan Educational District, Wenzhou, Zhejiang, China
| | - Bei Zhang
- First Clinical Medicine College, Zhejiang Chinese Medical University, No. 548, Bingwen Road, Hangzhou, Zhejiang, China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, No. 169, Donghu Road, Wuhan, Hubei, China
| | - Jun Xie
- Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No.100, Minjiang Avenue, Quzhou, Zhejiang, China
| | - Jinku Guo
- Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No.100, Minjiang Avenue, Quzhou, Zhejiang, China
| | - Feixiong He
- Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No.100, Minjiang Avenue, Quzhou, Zhejiang, China.
| | - Wei Wang
- Department of Orthopedics, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, No.100, Minjiang Avenue, Quzhou, Zhejiang, China.
| |
Collapse
|
24
|
Ban J, Fock V, Aryee DNT, Kovar H. Mechanisms, Diagnosis and Treatment of Bone Metastases. Cells 2021; 10:2944. [PMID: 34831167 PMCID: PMC8616226 DOI: 10.3390/cells10112944] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bone and bone marrow are among the most frequent metastatic sites of cancer. The occurrence of bone metastasis is frequently associated with a dismal disease outcome. The prevention and therapy of bone metastases is a priority in the treatment of cancer patients. However, current therapeutic options for patients with bone metastatic disease are limited in efficacy and associated with increased morbidity. Therefore, most current therapies are mainly palliative in nature. A better understanding of the underlying molecular pathways of the bone metastatic process is warranted to develop novel, well-tolerated and more successful treatments for a significant improvement of patients' quality of life and disease outcome. In this review, we provide comparative mechanistic insights into the bone metastatic process of various solid tumors, including pediatric cancers. We also highlight current and innovative approaches to biologically targeted therapy and immunotherapy. In particular, we discuss the role of the bone marrow microenvironment in the attraction, homing, dormancy and outgrowth of metastatic tumor cells and the ensuing therapeutic implications. Multiple signaling pathways have been described to contribute to metastatic spread to the bone of specific cancer entities, with most knowledge derived from the study of breast and prostate cancer. However, it is likely that similar mechanisms are involved in different types of cancer, including multiple myeloma, primary bone sarcomas and neuroblastoma. The metastatic rate-limiting interaction of tumor cells with the various cellular and noncellular components of the bone-marrow niche provides attractive therapeutic targets, which are already partially exploited by novel promising immunotherapies.
Collapse
Affiliation(s)
- Jozef Ban
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Valerie Fock
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
| | - Dave N. T. Aryee
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (J.B.); (V.F.); (D.N.T.A.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
25
|
Nie JH, Yang T, Li H, Ye HS, Zhong GQ, Li TT, Zhang C, Huang WH, Xiao J, Li Z, He JL, Du BL, Zhang Y, Liu J. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target. J Bone Oncol 2021; 30:100391. [PMID: 34611509 PMCID: PMC8476350 DOI: 10.1016/j.jbo.2021.100391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022] Open
Abstract
GPC3 mutation in primary osteosarcoma becomes abundant in its metastasis. Mutant GPC3 is over-produced in metastatic spheroids with multidrug resistance. Anti-GPC3 antibody effectively commits metastatic spheroids to apoptosis. GPC3 would be a promising therapeutic target of osteosarcomas.
Background Drug resistance and the lack of molecular therapeutic target are the main challenges in the management of osteosarcomas (OSs). Identification of novel genetic alteration(s) related with OS recurrence and chemotherapeutic resistance would be of scientific and clinical significance. Methods To identify potential genetic alterations related with OS recurrence and chemotherapeutic resistance, the biopsies of a 20-year-old male osteosarcoma patient were collected at primary site (p-OS) and from its metastatic tumor (m-OS) formed after 5 months of adjuvant chemotherapy. Both OS specimens were subjected to cancer-targeted next generation sequencing (NGS) and their cell suspensions were cultured under three-dimensional condition to establish spheroid therapeutic model. Transcript-oriented Sanger sequencing for GPC3, the detected mutated gene, was performed on RNA samples of p-OS and m-OS tissues and spheroids. The effects of anti-GPC3 antibody and its combination with cisplatin on m-OS spheroids were elucidated. Results NGS revealed 4 mutations (GPC3, SOX10, MDM4 and MAPK8) and 6 amplifications (MDM2, CDK4, CCND3, RUNX2, GLI1 and FRS2) in p-OS, and 3 mutations (GPC3, SOX10 and EGF) and 10 amplifications (CDK4, CCND3, MDM2, RUNX2, GLI1, FRS2, CARD11, RAC1, SLC16A7 and PMS2) in m-OS. Among those alterations, the mutation abundance of GPC3 was the highest (56.49%) in p-OS and showed 1.54 times increase in m-OS. GPC3 transcript-oriented Sanger sequencing confirmed the mutation at 1046 in Exon 4, and immunohistochemical staining showed increased GPC3 production in m-OS tissues and its spheroids. EdU cell proliferation and Calcein/PI cell viability assays revealed that of the anti-OS first line drugs (doxorubicin, cisplatin, methotrexate, ifosfamide and carboplatin), 10 μM carboplatin exerted the best inhibitory effects on the p-OS but not the m-OS spheroids. 2 μg/mL anti-GPC3 antibody effectively committed m-OS spheroids to death by itself (76.43%) or in combination with cisplatin (92.93%). Conclusion This study demonstrates increased abundance and up-regulated expression of mutant GPC3 in metastatic osteosarcoma and its spheroids with multidrug resistance. As GPC3-targeting therapy has been used to treat hepatocellular carcinomas and it is also effective to OS PDSs, GPC3 would be a novel prognostic parameter and therapeutic target of osteosarcomas.
Collapse
Key Words
- Anti-GPC3 targeted therapy
- CBP, carboplatin
- CDDP, cisplatin
- DOX, doxorubicin
- FFPE, formalin-fixed, paraffin- embedded
- GPC3 mutation
- GPC3-Ab, anti-GPC3 antibody
- Gene upregulation
- H/E, hematoxylin and eosin
- IHC, immunohistochemistry
- MA, mutation abundance
- MSS, microsatellite stable
- MTX, methotrexate
- Multidrug resistance
- NAC, neoadjuvant chemotherapy
- NGS, next generation sequencing
- Next generation sequencing
- OS, osteosarcoma
- Osteosarcoma
- PDS, patient-derived spheroids
- Patient-derived spheroids
- SNV, single-nucleotide variant
- m-OS, metastatic osteosarcoma
- p-OS, primary osteosarcoma
Collapse
Affiliation(s)
- Jun-Hua Nie
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Tao Yang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Hong Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Hai-Shan Ye
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Guo-Qing Zhong
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Ting-Ting Li
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Chi Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Wen-Han Huang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jin Xiao
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jian-Li He
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Bo-Le Du
- Jingkeson BioMed Laboratory, Guangzhou Jingke Institute of Life Sciences, Guangzhou 510005, China
| | - Yu Zhang
- Department of Orthopedic Oncology, Guangdong Provincial People's Hospital Affiliated to South China University of Technology School of Medicine, Guangzhou 510030, China
| | - Jia Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Wei C, Zou H, Xiao T, Liu X, Wang Q, Cheng J, Fu S, Peng J, Xie X, Fu J. TQFL12, a novel synthetic derivative of TQ, inhibits triple-negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J Cell Mol Med 2021; 25:10101-10110. [PMID: 34609056 PMCID: PMC8572774 DOI: 10.1111/jcmm.16945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/26/2021] [Accepted: 09/19/2021] [Indexed: 12/23/2022] Open
Abstract
Thymoquinone (TQ) has been reported as an anti‐tumour drug widely studied in various tumours, and its mechanism and effect of which has become a focus of current research. However, previous studies from our laboratory and other groups found that TQ showed weak anti‐tumour effects in many cancer cell lines and animal models. Therefore, it is necessary to modify and optimize the structure of TQ to obtain new chemical entities with high efficiency and low toxicity as candidates for development of new drugs in treating cancer. Therefore, we designed and synthesized several TQ derivatives. Systematic analysis, including in vitro and in vivo, was conducted on a panel of triple‐negative breast cancer (TNBC) cells and mouse model to demonstrate whether TQFL12, a new TQ derivative, is more efficient than TQ. We found that the anti‐proliferative effect of TQFL12 against TNBC cells is significantly stronger than TQ. We also demonstrated TQFL12 affects different aspects in breast cancer development including cell proliferation, migration, invasion and apoptosis. Moreover, TQFL12 inhibited tumour growth and metastasis in cancer cell–derived xenograft mouse model, with less toxicity compared with TQ. Finally, mechanism research indicated that TQFL12 increased AMPK/ACC activity by stabilizing AMPKα, while molecular docking supported the direct interaction between TQFL12 and AMPKα. Taken together, our findings suggest that TQFL12, as a novel chemical entity, possesses a better inhibitory effect on TNBC cells and less toxicity in both in vitro and in vivo studies. As such, TQFL12 could serve as a potential therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Chunli Wei
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Hui Zou
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Ting Xiao
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaoyan Liu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Shangyi Fu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,School of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xin Xie
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Structure, Bioactivity and Analytical Methods for the Determination of Yucca Saponins. Molecules 2021; 26:molecules26175251. [PMID: 34500685 PMCID: PMC8433717 DOI: 10.3390/molecules26175251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
Yucca is one of the main sources of steroidal saponins, hence different extracts are commercialized for use as surfactant additives by beverage, animal feed, cosmetics or agricultural products. For a deeper understanding of the potential of the saponins that can be found in this genus, an exhaustive review of the structural characteristics, bioactivities and analytical methods that can be used with these compounds has been carried out, since there are no recent reviews on the matter. Thus, a total of 108 saponins from eight species of the genus Yucca have been described. Out of these, the bioactivity of 68 saponins derived from the isolation of Yucca or other genera has been evaluated. Regarding the evaluation and quality control of the saponins from this genus LC-MS technique is the most often used. Nevertheless, the development of methods for their routine analysis in commercial preparations are needed. Moreover, most of the studies found in the literature have been carried out on Y. schidigera extract, since is the most often used for commercial purposes. Only eight of the 50 species that belong to this genus have been studied, which clearly indicates that the identification of saponins present in Yucca genus is still an unresolved question.
Collapse
|
28
|
Wang C, Jing J, Hu X, Yu S, Yao F, Li Z, Cheng L. Gankyrin activates the hedgehog signalling to drive metastasis in osteosarcoma. J Cell Mol Med 2021; 25:6232-6241. [PMID: 34089292 PMCID: PMC8366451 DOI: 10.1111/jcmm.16576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gankyrin is a regulatory subunit of the 26-kD proteasome complex and promotes the occurrence and progression of many malignancies. However, the role of gankyrin in osteosarcoma (OS) metastasis remains unclear. Hedgehog signalling has been shown to regulate stem cell homeostasis and cancer metastasis, but the mechanisms that activate this pathway in OS are still poorly understood. Here, a series of in vitro and in vivo assays were carried out to explore the function and mechanism of gankyrin regulating Hedgehog signalling in OS. We demonstrated that gankyrin promotes migration, invasion and regulates the expression of some stemness factors by up-regulating Gli1 in OS. Importantly, our data showed an interaction between gankyrin and Gli1. Moreover, gankyrin suppresses the ubiquitin-mediated degradation of Gli1 protein in OS. Gankyrin also significantly promotes the lung metastasis of OS in vivo. Our findings suggest that gankyrin drives metastasis and regulates the expression of some stemness factors in osteosarcoma by activating Hedgehog signalling, indicating that drug screening for compounds targeting gankyrin may contribute to the development of novel and effective therapies for OS.
Collapse
Affiliation(s)
- Chongchong Wang
- Department of OncologyThe Fourth Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Juehua Jing
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xuyang Hu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Shuisheng Yu
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Fei Yao
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Ziyu Li
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Li Cheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Anhui Medical UniversityHefeiChina
- School of pharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
29
|
Li JH, Li SY, Shen MX, Qiu RZ, Fan HW, Li YB. Anti-tumor effects of Solanum nigrum L. extraction on C6 high-grade glioma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114034. [PMID: 33746002 DOI: 10.1016/j.jep.2021.114034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum L. (SN) is a traditional Chinese medicine with anti-tumor effects, has been used in cancer for centuries, but the role on high-grade gliomas (HGG) is not clear. AIM OF THE STUDY This work was to investigate the anti-tumor effects of SN extract on rat C6 glioma in vitro and in vivo, providing a new medium for the treatment of HGG. MATERIALS AND METHODS After identification and quality inspection of SN medicinal materials by HPLC-MS/MS and HPLC, CCK8 and colony formation assay were conducted to study the effects of SN on vitality and proliferation of C6 cells. Cell morphology was evaluated by HE staining, and flow cytometry was used for apoptosis analysis. The effects on cell migration and invasion were determined by transwell and wound healing assay. Western blot was used to further investigate the influence of SN on migration, invasion and apoptosis of tumor cells. In addition, the rat intracranial transplanted tumor model was used to evaluate the effects of SN on growth and infiltration of tumor and proliferation of transplanted tumor cells. RESULTS SN extract suppressed the viability of C6 cells in a dose-dependent manner. The extract attenuated cell cloning, migration and invasion, and induced cell Annexin V+ PI+ late-stage apoptosis. Besides, SN induced the expression of apoptotic proteins including Bax and Cleaved Caspase-3, downregulated anti-apoptotic protein Bcl-2, and decreased the level of migratory proteins MMP-2 and MMP-9. Moreover, SN reduced the growth and infiltration of C6 glioma tissue and suppressed the proliferation of tumor cells in rat brain. CONCLUSIONS SN extract has significant inhibitory activity on the growth and invasion of C6 HGG in vivo and in vitro.
Collapse
Affiliation(s)
- Jia-Hui Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Song-Ya Li
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Ming-Xue Shen
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Run-Ze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China
| | - Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China.
| | - Ying-Bin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, China.
| |
Collapse
|
30
|
Zhang GZ, Wu ZL, Li CY, Ren EH, Yuan WH, Deng YJ, Xie QQ. Development of a Machine Learning-Based Autophagy-Related lncRNA Signature to Improve Prognosis Prediction in Osteosarcoma Patients. Front Mol Biosci 2021; 8:615084. [PMID: 34095215 PMCID: PMC8176230 DOI: 10.3389/fmolb.2021.615084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma is a frequent bone malignancy in children and young adults. Despite the availability of some prognostic biomarkers, most of them fail to accurately predict prognosis in osteosarcoma patients. In this study, we used bioinformatics tools and machine learning algorithms to establish an autophagy-related long non-coding RNA (lncRNA) signature to predict the prognosis of osteosarcoma patients. Methods We obtained expression and clinical data from osteosarcoma patients in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene Expression Omnibus (GEO) databases. We acquired an autophagy gene list from the Human Autophagy Database (HADb) and identified autophagy-related lncRNAs by co-expression analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the autophagy-related lncRNAs were conducted. Univariate and multivariate Cox regression analyses were performed to assess the prognostic value of the autophagy-related lncRNA signature and validate the relationship between the signature and osteosarcoma patient survival in an independent cohort. We also investigated the relationship between the signature and immune cell infiltration. Results We initially identified 69 autophagy-related lncRNAs, 13 of which were significant predictors of overall survival in osteosarcoma patients. Kaplan-Meier analyses revealed that the 13 autophagy-related lncRNAs could stratify patients based on their outcomes. Receiver operating characteristic curve analyses confirmed the superior prognostic value of the lncRNA signature compared to clinically used prognostic biomarkers. Importantly, the autophagy-related lncRNA signature predicted patient prognosis independently of clinicopathological characteristics. Furthermore, we found that the expression levels of the autophagy-related lncRNA signature were significantly associated with the infiltration levels of different immune cell subsets, including T cells, NK cells, and dendritic cells. Conclusion The autophagy-related lncRNA signature established here is an independent and robust predictor of osteosarcoma patient survival. Our findings also suggest that the expression of these 13 autophagy-related lncRNAs may promote osteosarcoma progression by regulating immune cell infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Guang-Zhi Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Lintao County Traditional Chinese Medicine Hospital of Gansu Province, Lintao, China
| | - Zuo-Long Wu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Ying Li
- The Fourth People's Hospital of Qinghai Province, Xining, China
| | - En-Hui Ren
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Xining First People's Hospital, Xining, China
| | - Wen-Hua Yuan
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Ya-Jun Deng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Qi-Qi Xie
- Affiliated Hospital of Qinghai University, Xining, China.,Affiliated Cancer Hospital of Qinghai University, Xining, China.,Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, China
| |
Collapse
|
31
|
Fernandes I, Melo-Alvim C, Lopes-Brás R, Esperança-Martins M, Costa L. Osteosarcoma Pathogenesis Leads the Way to New Target Treatments. Int J Mol Sci 2021; 22:E813. [PMID: 33467481 PMCID: PMC7831017 DOI: 10.3390/ijms22020813] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is a rare condition with very poor prognosis in a metastatic setting. Basic research has enabled a better understanding of OS pathogenesis and the discovery of new potential therapeutic targets. Phase I and II clinical trials are already ongoing, with some promising results for these patients. This article reviews OS pathogenesis and new potential therapeutic targets.
Collapse
Affiliation(s)
- Isabel Fernandes
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Raquel Lopes-Brás
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
| | - Miguel Esperança-Martins
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
- Sérgio Dias Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| | - Luís Costa
- Medical Oncology Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1600 Lisbon, Portugal; (C.M.-A.); (R.L.-B.); (M.E.-M.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600 Lisbon, Portugal
| |
Collapse
|
32
|
Wang Y, Hong T, Chen L, Chu C, Zhu J, Zhang J, Wang C, Zheng J, Jiang N, Cui X. The natural extract degalactotigonin exerts antitumor effects on renal cell carcinoma cells through repressing YAP. Transl Cancer Res 2020; 9:7550-7561. [PMID: 35117355 PMCID: PMC8798755 DOI: 10.21037/tcr-20-1864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Background The pervasive progression of renal cell carcinoma (RCC) after treatment demands more effective drugs with few side effects. In the present study, we determined whether degalactotigonin (DGT) extracted from Solanum nigrum L. could exert antitumoral effects on RCC and examined the related molecular mechanisms. Methods The effects of DGT on RCC cells were assessed by cell counting kit-8 (CCK-8) assay, flow cytometry, invasion and migration assays and subcutaneous tumor xenograft experiments in nude mice. The related molecular mechanisms were delineated by RNA sequencing (RNA-seq), real-time polymerase chain reaction (PCR), western blotting, coimmunoprecipitation (co-IP) and plasmid transfection. Results DGT induced apoptosis and suppressed the proliferation, invasion, migration, and tumorigenicity of RCC cells. Mechanistically, yes-associated protein (YAP) signaling was inactivated, and the expression of YAP and its target genes was reduced in degalactotigonin-treated RCC cells. Additionally, DGT activated phosphorylated large tumor suppressor 1/2 (p-LATS1/2) to phosphorylate YAP, which increased YAP retention in the cytoplasm but decreased the amount of YAP that entered the nuclei of RCC cells. Moreover, DGT impaired the increased aggressive features of RCC cells induced by YAP overexpression. Conclusions DGT is an effective therapeutic agent, which facilitates the apoptosis and inhibits the proliferation, invasion, migration, and tumorigenicity of RCC cells in a YAP-dependent manner.
Collapse
Affiliation(s)
- Yuning Wang
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Tianyu Hong
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Linbao Chen
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Chuanmin Chu
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| | - Jiangbo Zhu
- Tai Zhou the First People's Hospital (Wen Zhou Medical University Huangyan Hospital), Taizhou, China
| | - Jing Zhang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Chao Wang
- Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.,Department of Urology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jingcun Zheng
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Ning Jiang
- Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Urinary Surgery, Gongli Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xingang Cui
- Department of Urinary Surgery, The Third Affiliated Hospital of Second Military Medical University (Eastern Hepatobiliary Surgery Hospital), Shanghai, China
| |
Collapse
|
33
|
Bone Microenvironment and Osteosarcoma Metastasis. Int J Mol Sci 2020; 21:ijms21196985. [PMID: 32977425 PMCID: PMC7582690 DOI: 10.3390/ijms21196985] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
The bone microenvironment is an ideal fertile soil for both primary and secondary tumors to seed. The occurrence and development of osteosarcoma, as a primary bone tumor, is closely related to the bone microenvironment. Especially, the metastasis of osteosarcoma is the remaining challenge of therapy and poor prognosis. Increasing evidence focuses on the relationship between the bone microenvironment and osteosarcoma metastasis. Many elements exist in the bone microenvironment, such as acids, hypoxia, and chemokines, which have been verified to affect the progression and malignance of osteosarcoma through various signaling pathways. We thoroughly summarized all these regulators in the bone microenvironment and the transmission cascades, accordingly, attempting to furnish hints for inhibiting osteosarcoma metastasis via the amelioration of the bone microenvironment. In addition, analysis of the cross-talk between the bone microenvironment and osteosarcoma will help us to deeply understand the development of osteosarcoma. The cellular and molecular protagonists presented in the bone microenvironment promoting osteosarcoma metastasis will accelerate the exploration of novel therapeutic strategies towards osteosarcoma.
Collapse
|
34
|
Weber M, Söder S, Sander J, Ries J, Geppert C, Kesting M, Wehrhan F. Craniofacial Osteosarcoma-Pilot Study on the Expression of Osteobiologic Characteristics and Hypothesis on Metastasis. Front Oncol 2020; 10:745. [PMID: 32656074 PMCID: PMC7325581 DOI: 10.3389/fonc.2020.00745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/20/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Craniofacial osteosarcomas (COS) and extracranial osteosarcomas (EOS) show distinct clinical differences. COS show a remarkably lower incidence of metastases and a better survival. However, in contrast to EOS, they show a poor response to neoadjuvant chemotherapy. Tumor-associated macrophages and their polarization as well as developmental biological signaling pathways are possible candidates for explaining the clinical differences between COS and EOS. The aim of the study was to analyze differential expression of macrophage markers and important regulators of these pathways. Methods: Twenty osteosarcoma cases (10 COS and 10 EOS) were immunohistochemically stained to assess CD68, CD11c, CD163, MRC1, Gli1, and Gli2 expression. Statistical differences between COS and EOS were tested using the Mann–Whitney U test. Additionally, the paper describes an example of multidisciplinary treatment of a patient suffering from COS and discusses the surgical challenges in treatment and rehabilitation of COS. Results: COS showed a significantly (p < 0.05) increased infiltration of CD11c-positive M1 macrophages and a shift toward M1 polarization compared to EOS. Additionally, COS revealed a significantly (p < 0.05) lower Gli1 expression than EOS. Conclusion: The reduced Gli1 expression in COS can be interpreted as reduced activation of the Hedgehog (Hh) signaling pathway. The increased M1 polarization and reduced Hh activation in COS could explain the low incidence of metastases in these osteosarcomas.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Janina Sander
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carol Geppert
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Falk Wehrhan
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
35
|
Chen X, Li X, Hu X, Jiang F, Shen Y, Xu R, Wu L, Wei P, Shen X. LUM Expression and Its Prognostic Significance in Gastric Cancer. Front Oncol 2020; 10:605. [PMID: 32500021 PMCID: PMC7242722 DOI: 10.3389/fonc.2020.00605] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/02/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Lumican (LUM) is a member of the small leucine-rich proteoglycan family and plays dual roles as an oncogene and a tumor suppressor gene. The effect of LUM on tumors is still controversial. Methods: Gene expression profiles and clinical data of gastric cancer (GC) were downloaded from The Cancer Genome Atlas (TCGA) database. The expression difference of LUM in GC tissues and adjacent nontumor tissues was analyzed by R software and verified by quantitative real-time polymerase chain reaction (qRT-PCR) and comprehensive meta-analysis. The relationship between LUM expression and clinicopathological parameters was assessed by chi-square test and logistic regression. Kaplan-Meier survival analysis and Cox proportional hazards regression model were chosen to assess the effect of LUM expression on survival. Gene set enrichment analysis (GSEA) was used to screen the signaling pathways involved in GC between the low and the high LUM expression datasets. Results: The expression of LUM in GC tissues was significantly higher than that in adjacent nontumor tissues (P < 0.001) from the TCGA database. qRT-PCR (P = 0.022) and comprehensive meta-analysis (standard mean difference = 0.90, 95% CI: 0.34-1.46) demonstrated that LUM was upregulated in GC. The chi-square test showed that the high expression of LUM was correlated with tumor differentiation (P = 0.024) and T stage (P = 0.004). Logistic regression analysis showed that high LUM expression was significantly correlated with tumor differentiation (OR = 1.543 for poor vs. well or moderate, P = 0.043), pathological stage (OR = 3.149 for stage II vs. stage I, P = 0.001; OR = 2.505 for stage III vs. stage I, P = 0.007), and T classification (OR = 13.304 for T2 vs. T1, P = 0.014; OR = 18.434 for T3 vs. T1, P = 0.005; OR = 30.649 for T4 vs. T1, P = 0.001). The Kaplan-Meier curves suggested that patients with high LUM expression had a poor prognosis. Multivariate analysis showed that a high expression of LUM was an important independent predictor of poor overall survival (HR, 1.189; 95% CI, 1.011-1.400; P = 0.037). GSEA indicated that 14 signaling pathways were evidently enriched in samples with the high-LUM expression phenotype. Conclusions: LUM might act as an oncogene in the progression of GC and could be regarded as a potential prognostic indicator and therapeutic target for GC.
Collapse
Affiliation(s)
- Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xueju Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Leilei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Probing the Antitumor Mechanism of Solanum nigrum L. Aqueous Extract against Human Breast Cancer MCF7 Cells. Bioengineering (Basel) 2019; 6:bioengineering6040112. [PMID: 31835887 PMCID: PMC6955812 DOI: 10.3390/bioengineering6040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022] Open
Abstract
Solanum nigrum L. is one of the major medicinal plants used to treat cancer. However, the functional mechanism of S. nigrum L. extract is still unknown in spite of numerous studies on its active components. In this study, we probed the potential anticancer mechanism of the aqueous extract of S. nigrum L. (AESN) towards human breast cancer cell line MCF7. At a concentration of 10 g/L, AESN caused 43% cytotoxicity, inhibited the migration, and suppressed the activities of hexokinase and pyruvate kinase by about 30% and 40%, respectively, towards the MCF7 cells. RT2-PCR analysis of a panel of 89 caner-related genes identified 13 upregulated and eight downregulated genes (>2-folds) in MCF7 cells upon AESN treatment. Gene ontology (GO) and functional disease ontology (FunDO) analyses show that the antitumor function of S. nigrum L. involves multiple genes and these genes are shared across other diseases or disorders.
Collapse
|
37
|
Wang S, Hu H, Zhong B, Shi D, Qing X, Cheng C, Deng X, Zhang Z, Shao Z. Bruceine D inhibits tumor growth and stem cell-like traits of osteosarcoma through inhibition of STAT3 signaling pathway. Cancer Med 2019; 8:7345-7358. [PMID: 31631559 PMCID: PMC6885873 DOI: 10.1002/cam4.2612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Patients with osteosarcoma exhibiting resistance to chemotherapy or presenting with metastasis usually have a poor prognosis. Osteosarcoma stem cells (OSCs) are a potential cause of tumor metastasis, relapse, and chemotherapy resistance. Therefore, it is necessary to develop novel therapeutic drugs, which not only kill osteosarcoma cells but also target OSCs. This study aims to explore the anti‐osteosarcoma effects of Bruceine D (BD), a natural compound derived from Brucea javanica, and investigate its underlying mechanisms. Results demonstrated that BD could significantly inhibit cell proliferation and migration, induce cell cycle arrest, and promote apoptosis in osteosarcoma cells. Besides, BD could also suppress the sphere‐forming and self‐renewal ability of OSCs. Mechanistically, the inhibitory role of BD on osteosarcoma cell growth and migration including OSC stemness was partially executed through the inhibition of STAT3 signaling pathway. More importantly, BD showed significant anti‐osteosarcoma activity without obvious side effects in vivo. Collectively, the results of this study demonstrated that BD exerts a strong inhibitory effect on tumor growth and stem cell like traits of osteosarcoma which may be partially due to STAT3 inhibition, suggesting that BD maybe a promising therapeutic candidate against osteosarcoma.
Collapse
Affiliation(s)
- Shangyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangcheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Gao L, Liu H, Yin N, Zuo S, Jin G, Hu Y, Hu D, Li Y, Song Q, Fei X. BNIPL‑2 expression is correlated with the prognosis and regulates the proliferation of colorectal cancer through CD44. Mol Med Rep 2019; 20:4073-4080. [PMID: 31485655 PMCID: PMC6797997 DOI: 10.3892/mmr.2019.10633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) currently leads to many deaths worldwide. The regulatory mechanism, however, remains largely unclear. In the present study, bioinformatics methods were used to identify genes associated with CRC prognosis and to detect the molecular signals regulating the cell cycle in two CRC cell lines. It was revealed that BNIPL-2 expression was higher in CRC tissues than in adjacent tissue samples. Upregulation of BNIPL-2 was correlated with poor prognosis and the adverse malignant stages T and M. BNIPL-2 was also associated with signaling pathways involved in cancer cell growth. BNIPL-2 overexpression promoted cell proliferation and increased the proportion of cells in the G2/M phase. Knockdown of BNIPL-2 inhibited cell proliferation. CD44 was regulated by BNIPL-2 and promoted cell proliferation. Downregulation of CD44 suppressed cell proliferation and rescued the cell proliferation promoted by BNIPL-2. Overexpression of CD44 restored the cell proliferation suppressed by BNIPL-2 knockdown. The present study not only suggested that BNIPL-2 may be a potential biomarker of CRC but also indicated that BNIPL-2 regulates CRC cancer proliferation via CD44, which could be a diagnostic and clinical treatment target.
Collapse
Affiliation(s)
- Lei Gao
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Hansong Liu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ningwei Yin
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Shanshan Zuo
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Guangli Jin
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Yangxi Hu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Desheng Hu
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Ying Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Qiong Song
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated with Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Xuejie Fei
- Department of Hospital Infections, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai 200021, P.R. China
| |
Collapse
|
39
|
Wang W, Li J, Ding Z, Li Y, Wang J, Chen S, Miao J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J Cell Mol Med 2019; 23:6454-6465. [PMID: 31293090 PMCID: PMC6714145 DOI: 10.1111/jcmm.14539] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/26/2019] [Accepted: 06/20/2019] [Indexed: 01/27/2023] Open
Abstract
Tanshinone I (Tan I) is a widely used diterpene compound derived from the traditional Chinese herb Danshen. Increasing evidence suggests that it exhibits anti-cancer activity in various human cancers. However, the in vitro and in vivo effects of Tan I on osteosarcoma (OS) remain inadequately elucidated, especially those against tumour metastasis. Our results showed that Tan I significantly inhibited OS cancer cell proliferation, migration and invasion and induced cell apoptosis in vitro. Moreover, treatment with 10 and 20 mg/kg Tan I effectively suppressed tumour growth in subcutaneous xenografts and orthotopic xenograft mouse models. In addition, Tan I significantly inhibited tumour metastasis in intracardiac inoculation xenograft models. The results also showed that Tan I-induced increased expression of the proapoptotic gene Bax and decreased expression of the anti-apoptotic gene Bcl-2 is the possible mechanism of its anti-cancer effects. Tan I was also found to abolish the IL-6-mediated activation of the JAK/STAT3 signalling pathway. Conclusively, this study is the first to show that Tan I suppresses OS growth and metastasis in vitro and in vivo, suggesting it may be a potential novel and efficient drug candidate for the treatment of OS progression.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuezhan Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinglei Miao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
40
|
Wei C, Yao X, Jiang Z, Wang Y, Zhang D, Chen X, Fan X, Xie C, Cheng J, Fu J, Leung ELH. Cordycepin Inhibits Drug-resistance Non-small Cell Lung Cancer Progression by Activating AMPK Signaling Pathway. Pharmacol Res 2019; 144:79-89. [PMID: 30974169 DOI: 10.1016/j.phrs.2019.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most commonly diagnosed cancer worldwide and it is also the most leading cause of cancer-related deaths. Although multiple generations of targeted therapeutic drugs such as gefitinib and afatinib specifically targeting the epidermal growth factor receptor (EGFR) pathway are currently available for lung cancer treatment, none of them can escape their eventual drug-resistance. As a key component of Cordyceps Sinensis and widely used in traditional Chinese medicines (TCM), cordycepin (CD) has attracted increasing attention to both scientists and clinicians. We aimed to explore the potential in developing cordycepin (CD) as an anti-lung cancer drug. A systematic analysis was conducted on a panel of non-small cell lung cancer (NSCLC) cell lines to identify the cells sensitive to CD. We found that CD can affect different aspects of lung cancer development including proliferation, migration, invasion, cell cycle, and apoptosis. We then explored the underlying molecular mechanisms of CD-mediated NSCLC cell apoptosis by conducting a series of in vitro and in vivo experiments. We found that in addition to affecting different stages of NSCLC development including tumor growth, migration, and invasion, the CD is capable of inhibiting NSCLC cell cycle progression and inducing cancer cell apoptosis without apparent adverse effect on normal lung cells. Furthermore, we found that the cells containing EGFR mutations are more sensitive to CD treatment than those without. Mechanistically, CD induces NSCLC cell apoptosis by interacting with and activating AMP-activated protein kinase (AMPK). More importantly, we found that the potency of CD's anticancer effect both in vitro and in vivo is comparable to afatinib and even better than gefitinib. Our findings suggest that CD either by itself or in combination with the currently available targeted therapeutic drugs might be additional therapeutic options for drug-resistance NSCLC treatment.
Collapse
Affiliation(s)
- Chunli Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Zebo Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Dianzheng Zhang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, PA, 19131, USA
| | - Xi Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Department of Pathology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Chun Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Junjiang Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China.
| |
Collapse
|
41
|
Taş İ, Han J, Park SY, Yang Y, Zhou R, Gamage CDB, Van Nguyen T, Lee JY, Choi YJ, Yu YH, Moon KS, Kim KK, Ha HH, Kim SK, Hur JS, Kim H. Physciosporin suppresses the proliferation, motility and tumourigenesis of colorectal cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 56:10-20. [PMID: 30668330 DOI: 10.1016/j.phymed.2018.09.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lichens, which represent symbiotic associations of fungi and algae, are potential sources of numerous natural products. Physciosporin (PHY) is a potent secondary metabolite found in lichens and was recently reported to inhibit the motility of lung cancer cells via novel mechanisms. PURPOSE The present study investigated the anticancer potential of PHY on colorectal cancer (CRC) cells. METHODS PHY was isolated from lichen extract by preparative TLC. The effect of PHY on cell viability, motility and tumourigenicity was elucidated by MTT assay, hoechst staining, flow cytometric analysis, transwell invasion and migration assay, soft agar colony formation assay, Western blotting, qRT-PCR and PCR array in vitro as well as tumorigenicity study in vivo. RESULTS PHY decreased the viability of various CRC cell lines (Caco2, CT26, DLD1, HCT116 and SW620). Moreover, PHY elicited cytotoxic effects by inducing apoptosis at toxic concentrations. At non-toxic concentrations, PHY dose-dependently suppressed the invasion, migration and colony formation of CRC cells. PHY inhibited the motility of CRC cells by suppressing epithelial-mesenchymal transition and downregulating actin-based motility markers. In addition, PHY downregulated β-catenin and its downstream target genes cyclin-D1 and c-Myc. Moreover, PHY modulated KAI1 C-terminal-interacting tetraspanin and KAI1 expression, and downregulated the downstream transcription factors c-jun and c-fos. Finally, PHY administration showed considerable bioavailability and effectively decreased the growth of CRC xenografts in mice without causing toxicity. CONCLUSION PHY suppresses the growth and motility of CRC cells via novel mechanisms.
Collapse
Affiliation(s)
- İsa Taş
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Jin Han
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Rui Zhou
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Chathurika D B Gamage
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea; Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Tru Van Nguyen
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Ji-Yoon Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young Hyun Yu
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kyung Keun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyung-Ho Ha
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea.
| | - Hangun Kim
- Collage of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
42
|
Deng LJ, Qi M, Peng QL, Chen MF, Qi Q, Zhang JY, Yao N, Huang MH, Li XB, Peng YH, Liu JS, Fu DR, Chen JX, Ye WC, Zhang DM. Arenobufagin induces MCF-7 cell apoptosis by promoting JNK-mediated multisite phosphorylation of Yes-associated protein. Cancer Cell Int 2018; 18:209. [PMID: 30574018 PMCID: PMC6299615 DOI: 10.1186/s12935-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
Background It has been demonstrated that bufadienolides exert potent anti-cancer activity in various tumor types. However, the mechanisms that underlie their anti-cancer properties remain unclear. Yes-associated protein, a key effector of Hippo signaling, functions as a transcription coactivator, plays oncogenic and tumor suppressor roles under different conditions. Here, we report that arenobufagin (ABF), a representative bufadienolide, induced breast cancer MCF-7 cells to undergo apoptosis, which occurred through the JNK-mediated multisite phosphorylation of YAP. Methods Cytotoxicity was examined using an MTT assay. ABF-induced apoptosis was measured with a TUNEL assay and Annexin V-FITC/PI double staining assay. Western blotting, immunofluorescence, qRT-PCR and coimmunoprecipitation were employed to assess the expression levels of the indicated molecules. Lose-of-function experiments were carried out with siRNA transfection and pharmacological inhibitors. ABF-induced phosphopeptides were enriched with Ti4+-IMAC chromatography and further subjected to reverse-phase nano-LC–MS/MS analysis. Results ABF significantly reduced the viability of MCF-7 cells and increased the percentage of early and late apoptotic cells in a concentration- and time-dependent manner. Following ABF treatment, YAP accumulated in the nucleus and bound to p73, which enhanced the transcription of the pro-apoptotic genes Bax and p53AIP1. YAP knock-down significantly attenuated ABF-induced apoptotic cell death. Importantly, we found that the mobility shift of YAP was derived from its phosphorylation at multiple sites, including Tyr357. Moreover, mass spectrometry analysis identified 19 potential phosphorylation sites in YAP, with a distribution of 14 phosphoserine and 5 phosphothreonine residues. Furthermore, we found that the JNK inhibitor SP600125 completely diminished the mobility shift of YAP and its phosphorylation at Tyr357, the binding of YAP and p73, the transcription of Bax and p53AIP1 as well as the apoptosis induced by ABF. These data indicate that ABF induced YAP multisite phosphorylation, which was associated with p73 binding, and that apoptosis was mediated by the JNK signaling pathway. Conclusions Our data demonstrate that ABF suppresses MCF-7 breast cancer proliferation by triggering the pro-apoptotic activity of YAP, which is mediated by JNK signaling-induced YAP multisite phosphorylation as well as its association with p73. The present work not only provides additional information on the use of ABF as an anti-breast cancer drug, but also offers evidence that the induction of the tumor suppressor role of YAP may be a therapeutic strategy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0706-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Juan Deng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,2Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Ming Qi
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Qun-Long Peng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Min-Feng Chen
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Qi Qi
- 4Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Jia-Yan Zhang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Nan Yao
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Mao-Hua Huang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Xiao-Bo Li
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Yin-Hui Peng
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Jun-Shan Liu
- 5School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Deng-Rui Fu
- Guangzhou Yucai Middle School, Fujin Road 2#, Dongshan District, Guangzhou, China
| | - Jia-Xu Chen
- 2Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Wen-Cai Ye
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| | - Dong-Mei Zhang
- 1Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, 510632 China.,3College of Pharmacy, Jinan University, Guangzhou, 510632 People's Republic of China
| |
Collapse
|
43
|
Degalactotigonin, a Steroidal Glycoside from Solanum nigrum, Induces Apoptosis and Cell Cycle Arrest via Inhibiting the EGFR Signaling Pathways in Pancreatic Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3120972. [PMID: 30643798 PMCID: PMC6311251 DOI: 10.1155/2018/3120972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/04/2018] [Indexed: 12/28/2022]
Abstract
Degalactotigonin (1) and three other steroidal compounds solasodine (2), O-acetyl solasodine (3), and soladulcoside A (4) were isolated from the methanolic extract of Solanum nigrum, and their chemical structures were elucidated by spectroscopic analyses. The isolated compounds were evaluated for cytotoxic activity against human pancreatic cancer cell lines (PANC1 and MIA-PaCa2) and lung cancer cell lines (A549, NCI-H1975, and NCI-H1299). Only degalactotigonin (1) showed potent cytotoxicity against these cancer cell lines. Compound 1 induced apoptosis in PANC1 and A549 cells. Further study on its mechanism of action in PANC1 cells demonstrated that 1 significantly inhibited EGF-induced proliferation and migration in a concentration-dependent manner. Treatment of PANC1 cells with degalactotigonin induced cell cycle arrest at G0/G1 phase. Compound 1 induced downregulation of cyclin D1 and upregulation of p21 in a time- and concentration-dependent manner and inhibited EGF-induced phosphorylation of EGFR, as well as activation of EGFR downstream signaling molecules such as Akt and ERK.
Collapse
|
44
|
Pseudolaric acid B exhibits anti-cancer activity on human hepatocellular carcinoma through inhibition of multiple carcinogenic signaling pathways. PHYTOMEDICINE 2018; 59:152759. [PMID: 31004883 DOI: 10.1016/j.phymed.2018.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pseudolaric acid B (PAB), a diterpene acid isolated from the root bark of Pseudolarix kaempferi, exhibits a potent anti-cancer activity in a variety of tumor cells. PURPOSE The present study was designed to evaluate the anti-cancer effects of PAB on hepatocellular carcinoma (HCC) cell lines in vitro, and to explore the underlying mechanism. METHODS The anti-proliferative activity of PAB on HCC cells were assessed via sulforhodamine B staining, colony formation, cell cycle analysis, respectively. Apoptosis was detected using Annexin V/propidium iodide double staining and diamidino-phenyl-indole staining, respectively. Protein expression regulated by PAB treatment was tested by western blotting. RESULTS The present results showed that PAB significantly inhibited the proliferation of HepG2, SK-Hep-1, and Huh-7 HCC cell lines in vitro with IC50 values of 1.58, 1.90, and 2.06 μM, respectively. Furthermore, PAB treatment repressed the colony formation in HepG2, SK-Hep-1, and Huh-7 HCC cell lines. Flow cytometry analysis revealed that PAB caused an obvious cell cycle arrest in G2/M phase and induced apoptosis with the induction of p21, Bax, cleaved-caspase-3, and cleaved-PARP in human HepG2 and SK-Hep-1 cells. Mechanistically, PAB treatment down-regulated the phosphorylation of STAT3, ERK1/2, and Akt. Moreover, abnormal GSK-3β/β-catenin signaling in HepG2 cells was remarkably suppressed by PAB treatment. Finally, proliferation markers including cyclin D1 and c-Myc, and anti-apoptosis proteins such as Bcl-2 and survivin were also down-regulated by PAB treatment in HepG2 cells. CONCLUSION Taken together, our results suggest that PAB exerts anti-cancer activity in HCC cells through inhibition of STAT3, ERK1/2, Akt, and GSK-3β/β-catenin carcinogenic signaling pathways, and may be used as a phytomedicine in the treatment of HCC.
Collapse
|
45
|
Hedgehog signalling in the tumourigenesis and metastasis of osteosarcoma, and its potential value in the clinical therapy of osteosarcoma. Cell Death Dis 2018; 9:701. [PMID: 29899399 PMCID: PMC5999604 DOI: 10.1038/s41419-018-0647-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/14/2018] [Accepted: 04/18/2018] [Indexed: 12/15/2022]
Abstract
The Hedgehog (Hh) signalling pathway is involved in cell differentiation, growth and tissue polarity. This pathway is also involved in the progression and invasion of various human cancers. Osteosarcoma, a subtype of bone cancer, is commonly seen in children and adolescents. Typically, pulmonary osteosarcoma metastases are especially difficult to control. In the present paper, we summarise recent studies on the regulation of osteosarcoma progression and metastasis by downregulating Hh signalling. We also summarise the crosstalk between the Hh pathway and other cancer-related pathways in the tumourigenesis of various cancers. We further summarise and highlight the therapeutic value of potential inhibitors of Hh signalling in the clinical therapy of human cancers.
Collapse
|
46
|
Liu W, Zhao Z, Wang Y, Li W, Su Q, Jia Q, Zhang J, Zhang X, Shen J, Yin J. Dioscin inhibits stem-cell-like properties and tumor growth of osteosarcoma through Akt/GSK3/β-catenin signaling pathway. Cell Death Dis 2018; 9:343. [PMID: 29497056 PMCID: PMC5832770 DOI: 10.1038/s41419-018-0363-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/07/2018] [Accepted: 01/24/2018] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is the most common primary bone tumor in children and adolescents. Many patients with osteosarcoma always develop drug resistance to current chemotherapy regimens, which induces a poor prognosis. And cancer stem cells (CSCs) have been reported to possess the properties to self-renew and maintain the phenotype of tumor, which may lead to clinical treatment failure. Thus, it is an urgent task to develop several potentially useful therapeutic agents, which could target CSCs in osteosarcoma. This study aims to clarify the in vitro and in vivo anti-osteosarcoma effects of dioscin, the primary component derived from Discorea nipponica Makino, and its molecular mechanism of action. In this study, all the ten human osteosarcoma cell lines were sensitive to dioscin treatment in a dose- and time-dependent manner. Dioscin inhibits proliferation and induces cell cycle arrest as well as apoptotic cell death in osteosarcoma cells. More importantly, oral administration of dioscin (60 mg/kg) showed significant therapeutic effect on osteosarcoma growth without obvious side effects in vivo. In addition, dioscin possesses the ability to suppress stem-cell-like phenotype of osteosarcoma cells. Mechanistically, dioscin inhibits osteosarcoma stem-cell-like properties and tumor growth through repression of Akt/GSK3/β-catenin pathway. Moreover, β-catenin expression in osteosarcoma patients was associated with clinical prognosis. Conclusively, the present study provides comprehensive evidence for the inhibition of dioscin on osteosarcoma stem-cell-like properties and tumor growth through repression of Akt/GSK3/β-catenin pathway, which suggests dioscin as a promising therapeutic regimen. And β-catenin may be a potential therapeutic target as well as a significant prognostic marker for osteosarcoma patients in clinic.
Collapse
Affiliation(s)
- Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yongqian Wang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wuguo Li
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiao Su
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Jia
- Guangzhou City Polytechnic, Guangzhou, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuelin Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|