1
|
Xu S, Wang H, Zhu Y, Han Y, Liu L, Zhang X, Hu J, Zhang W, Duan S, Deng J, Zhang Z, Liu S. Stabilization of EREG via STT3B-mediated N-glycosylation is critical for PDL1 upregulation and immune evasion in head and neck squamous cell carcinoma. Int J Oral Sci 2024; 16:47. [PMID: 38945975 PMCID: PMC11214941 DOI: 10.1038/s41368-024-00311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/16/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024] Open
Abstract
Dysregulated Epiregulin (EREG) can activate epidermal growth factor receptor (EGFR) and promote tumor progression in head and neck squamous cell carcinoma (HNSCC). However, the mechanisms underlying EREG dysregulation remain largely unknown. Here, we showed that dysregulated EREG was highly associated with enhanced PDL1 in HNSCC tissues. Treatment of HNSCC cells with EREG resulted in upregulated PDL1 via the c-myc pathway. Of note, we found that N-glycosylation of EREG was essential for its stability, membrane location, biological function, and upregulation of its downstream target PDL1 in HNSCC. EREG was glycosylated at N47 via STT3B glycosyltransferases, whereas mutations at N47 site abrogated N-glycosylation and destabilized EREG. Consistently, knockdown of STT3B suppressed glycosylated EREG and inhibited PDL1 in HNSCC cells. Moreover, treatment of HNSCC cells with NGI-1, an inhibitor of STT3B, blocked STT3B-mediated glycosylation of EREG, leading to its degradation and suppression of PDL1. Finally, combination of NGI-1 treatment with anti-PDLl therapy synergistically enhanced the efficacy of immunotherapy of HNSCC in vivo. Taken together, STT3B-mediated N-glycosylation is essential for stabilization of EREG, which mediates PDL1 upregulation and immune evasion in HNSCC.
Collapse
Affiliation(s)
- Shengming Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Haifeng Wang
- Department of Stomatology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Yu Zhu
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Liu Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangkai Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jingzhou Hu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wuchang Zhang
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengzhong Duan
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, China.
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
- Laboratory of Oral Microbiota and Systemic Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
2
|
Zhang D, Xie J, Sun F, Xu R, Liu W, Xu J, Huang X, Zhang G. Pharmacological suppression of HHLA2 glycosylation restores anti-tumor immunity in colorectal cancer. Cancer Lett 2024; 589:216819. [PMID: 38522775 DOI: 10.1016/j.canlet.2024.216819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy aimed at inhibiting the negative co-stimulatory molecule programmed cell death-ligand 1 (PD-L1) has limited effectiveness, with clinical response rates remaining below 10%-15%. Therefore, new immune checkpoints need to be explored. Our study focused on human endogenous retrovirus H long terminal repeat-associating protein 2 (HHLA2), a highly glycosylated member of the B7 family that is widely expressed in colorectal cancer. HHLA2 expression negatively correlates with the prognosis of colorectal cancer. Glycosylation of HHLA2, which is regulated by the glycosyltransferase STT3 oligosaccharyltransferase complex catalytic subunit A (STT3A), is crucial for protein stability and expression in cell membranes. Additionally, the binding of HHLA2 to the receptors killer cell immunoglobulin-like receptor, three immunoglobulin domains and long cytoplasmic tail 3 (KIR3DL3) and transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) is dependent on N-glycosylation. Moreover, N-glycosylation of HHLA2 promotes immune evasion in colorectal cancer by suppressing the immune response of NK cells. Notably, the STT3A inhibitor NGI-1 enhances the anti-tumor immune response of NK cells. Our findings provide new insights and a molecular basis for targeting HHLA2 in immunotherapy for colorectal cancer.
Collapse
Affiliation(s)
- Dongze Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jinjing Xie
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | | | - Ruyan Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Wenjun Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jia Xu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xue Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215000, China; Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou, 215000, China.
| |
Collapse
|
3
|
Lampson BL, Ramίrez AS, Baro M, He L, Hegde M, Koduri V, Pfaff JL, Hanna RE, Kowal J, Shirole NH, He Y, Doench JG, Contessa JN, Locher KP, Kaelin WG. Positive selection CRISPR screens reveal a druggable pocket in an oligosaccharyltransferase required for inflammatory signaling to NF-κB. Cell 2024; 187:2209-2223.e16. [PMID: 38670073 PMCID: PMC11149550 DOI: 10.1016/j.cell.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/29/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.
Collapse
Affiliation(s)
- Benjamin L Lampson
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ana S Ramίrez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Lixia He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Mudra Hegde
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Vidyasagar Koduri
- Division of Hematology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Jamie L Pfaff
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Ruth E Hanna
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Nitin H Shirole
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Yanfeng He
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, MA 02142, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Sun YF, Zhang LC, Niu RZ, Chen L, Xia QJ, Xiong LL, Wang TH. Predictive potentials of glycosylation-related genes in glioma prognosis and their correlation with immune infiltration. Sci Rep 2024; 14:4478. [PMID: 38396140 PMCID: PMC10891078 DOI: 10.1038/s41598-024-51973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Glycosylation is currently considered to be an important hallmark of cancer. However, the characterization of glycosylation-related gene sets has not been comprehensively analyzed in glioma, and the relationship between glycosylation-related genes and glioma prognosis has not been elucidated. Here, we firstly found that the glycosylation-related differentially expressed genes in glioma patients were engaged in biological functions related to glioma progression revealed by enrichment analysis. Then seven glycosylation genes (BGN, C1GALT1C1L, GALNT13, SDC1, SERPINA1, SPTBN5 and TUBA1C) associated with glioma prognosis were screened out by consensus clustering, principal component analysis, Lasso regression, and univariate and multivariate Cox regression analysis using the TCGA-GTEx database. A glycosylation-related prognostic signature was developed and validated using CGGA database data with significantly accurate prediction on glioma prognosis, which showed better capacity to predict the prognosis of glioma patients than clinicopathological factors do. GSEA enrichment analysis based on the risk score further revealed that patients in the high-risk group were involved in immune-related pathways such as cytokine signaling, inflammatory responses, and immune regulation, as well as glycan synthesis and metabolic function. Immuno-correlation analysis revealed that a variety of immune cell infiltrations, such as Macrophage, activated dendritic cell, Regulatory T cell (Treg), and Natural killer cell, were increased in the high-risk group. Moreover, functional experiments were performed to evaluate the roles of risk genes in the cell viability and cell number of glioma U87 and U251 cells, which demonstrated that silencing BGN, SDC1, SERPINA1, TUBA1C, C1GALT1C1L and SPTBN5 could inhibit the growth and viability of glioma cells. These findings strengthened the prognostic potentials of our predictive signature in glioma. In conclusion, this prognostic model composed of 7 glycosylation-related genes distinguishes well the high-risk glioma patients, which might potentially serve as caner biomarkers for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yi-Fei Sun
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lan-Chun Zhang
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Rui-Ze Niu
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, Yunnan, China
| | - Li Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Institute of Neurological Disease, West China Hospital, Sichuan University, No. 17, Section 3 of South Renmin Road, Chengdu, 610041, China
| | - Qing-Jie Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liu-Lin Xiong
- Translational Neuromedicine Laboratory, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi, 563000, Guizhou, China.
| | - Ting-Hua Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Laboratory Animal Department, Kunming Medical University, Kunming, 650031, Yunnan, China.
- Institute of Neurological Disease, West China Hospital, Sichuan University, No. 17, Section 3 of South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
5
|
Yue J, Huang R, Lan Z, Xiao B, Luo Z. Abnormal glycosylation in glioma: related changes in biology, biomarkers and targeted therapy. Biomark Res 2023; 11:54. [PMID: 37231524 DOI: 10.1186/s40364-023-00491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Glioma is a rapidly growing and aggressive primary malignant tumor of the central nervous system that can diffusely invade the brain tissue around, and the prognosis of patients is not significantly improved by traditional treatments. One of the most general posttranslational modifications of proteins is glycosylation, and the abnormal distribution of this modification in gliomas may shed light on how it affects biological behaviors of glioma cells, including proliferation, migration, and invasion, which may be produced by regulating protein function, cell-matrix and cell‒cell interactions, and affecting receptor downstream pathways. In this paper, from the perspective of regulating protein glycosylation changes and abnormal expression of glycosylation-related proteins (such as glycosyltransferases in gliomas), we summarize how glycosylation may play a crucial role in the discovery of novel biomarkers and new targeted treatment options for gliomas. Overall, the mechanistic basis of abnormal glycosylation affecting glioma progression remains to be more widely and deeply explored, which not only helps to inspire researchers to further explore related diagnostic and prognostic markers but also provides ideas for discovering effective treatment strategies and improving glioma patient survival and prognosis.
Collapse
Affiliation(s)
- Juan Yue
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
| | - Roujie Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan No. 1, Dongcheng District, 100730, Beijing, China
| | - Zehao Lan
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya road of Kaifu district, 410008, Changsha, Hunan, China.
- Clinical Research Center for Epileptic disease of Hunan Province, Central South University, 410008, Changsha, Hunan, P.R. China.
| |
Collapse
|
6
|
Li X, Lu J, Liu L, Li F, Xu T, Chen L, Yan Z, Li Y, Guo W. FOXK1 regulates malignant progression and radiosensitivity through direct transcriptional activation of CDC25A and CDK4 in esophageal squamous cell carcinoma. Sci Rep 2023; 13:7737. [PMID: 37173384 PMCID: PMC10182098 DOI: 10.1038/s41598-023-34979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a serious malignancy with poor prognosis, necessitating identification of oncogenic mechanisms for novel therapeutic strategies. Recent studies have highlighted the significance of the transcription factor forkhead box K1 (FOXK1) in diverse biological processes and carcinogenesis of multiple malignancies, including ESCC. However, the molecular pathways underlying FOXK1's role in ESCC progression are not fully understood, and its potential role in radiosensitivity remains unclear. Here, we aimed to elucidate the function of FOXK1 in ESCC and explore the underlying mechanisms. Elevated FOXK1 expression levels were found in ESCC cells and tissues, positively correlated with TNM stage, invasion depth, and lymph node metastasis. FOXK1 markedly enhanced the proliferative, migratory and invasive capacities of ESCC cells. Furthermore, silencing FOXK1 resulted in heightened radiosensitivity by impeding DNA damage repair, inducing G1 arrest, and promoting apoptosis. Subsequent studies demonstrated that FOXK1 directly bound to the promoter regions of CDC25A and CDK4, thereby activating their transcription in ESCC cells. Moreover, the biological effects mediated by FOXK1 overexpression could be reversed by knockdown of either CDC25A or CDK4. Collectively, FOXK1, along with its downstream target genes CDC25A and CDK4, may serve as a promising set of therapeutic and radiosensitizing targets for ESCC.
Collapse
Affiliation(s)
- Xiaoxu Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Lei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongxin Xu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Liying Chen
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Zhaoyang Yan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Jiankang Road 12, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
7
|
Wu X, Wang H, Li S, Luo H, Liu F. Mining glycosylation-related prognostic lncRNAs and constructing a prognostic model for overall survival prediction in glioma: A study based on bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33569. [PMID: 37145002 PMCID: PMC10158895 DOI: 10.1097/md.0000000000033569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
Dysregulation of protein glycosylation plays a crucial role in the development of glioma. Long noncoding RNA (lncRNAs), functional RNA molecules without protein-coding ability, regulate gene expression and participate in malignant glioma progression. However, it remains unclear how lncRNAs are involved in glycosylation glioma malignancy. Identification of prognostic glycosylation-related lncRNAs in gliomas is necessary. We collected RNA-seq data and clinicopathological information of glioma patients from the cancer genome atlas and Chinese glioma genome atlas. We used the "limma" package to explore glycosylation-related gene and screened related lncRNAs from abnormally glycosylated genes. Using univariate Cox analyses Regression and least absolute shrinkage and selection operator analyses, we constructed a risk signature with 7 glycosylation-related lncRNAs. Based on the median risk score (RS), patients with gliomas were divided into low- and high-risk subgroups with different overall survival rates. Univariate and multivariate Cox analyses regression analyses were performed to assess the independent prognostic ability of the RS. Twenty glycosylation-related lncRNAs were identified by univariate Cox regression analyses. Two glioma subgroups were identified using consistent protein clustering, with the prognosis of the former being better than that of the latter. Least absolute shrinkage and selection operator analysis identified 7 survival RSs for glycosylation-related lncRNAs, which were identified as independent prognostic markers and predictors of glioma clinicopathological features. Glycosylation-related lncRNAs play an important role in the malignant development of gliomas and may help guide treatment options.
Collapse
Affiliation(s)
- Xiang Wu
- Department of Neurosurgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Haiyan Wang
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Operation, The Second Affiliated Hospital of Nanchang University
| | - Shiqi Li
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Haitao Luo
- Institute of Neuroscience, Nanchang University, Nanchang, China
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Ramírez AS, de Capitani M, Pesciullesi G, Kowal J, Bloch JS, Irobalieva RN, Reymond JL, Aebi M, Locher KP. Molecular basis for glycan recognition and reaction priming of eukaryotic oligosaccharyltransferase. Nat Commun 2022; 13:7296. [PMID: 36435935 PMCID: PMC9701220 DOI: 10.1038/s41467-022-35067-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022] Open
Abstract
Oligosaccharyltransferase (OST) is the central enzyme of N-linked protein glycosylation. It catalyzes the transfer of a pre-assembled glycan, GlcNAc2Man9Glc3, from a dolichyl-pyrophosphate donor to acceptor sites in secretory proteins in the lumen of the endoplasmic reticulum. Precise recognition of the fully assembled glycan by OST is essential for the subsequent quality control steps of glycoprotein biosynthesis. However, the molecular basis of the OST-donor glycan interaction is unknown. Here we present cryo-EM structures of S. cerevisiae OST in distinct functional states. Our findings reveal that the terminal glucoses (Glc3) of a chemo-enzymatically generated donor glycan analog bind to a pocket formed by the non-catalytic subunits WBP1 and OST2. We further find that binding either donor or acceptor substrate leads to distinct primed states of OST, where subsequent binding of the other substrate triggers conformational changes required for catalysis. This alternate priming allows OST to efficiently process closely spaced N-glycosylation sites.
Collapse
Affiliation(s)
- Ana S. Ramírez
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Mario de Capitani
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giorgio Pesciullesi
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Julia Kowal
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Joël S. Bloch
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Rossitza N. Irobalieva
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Jean-Louis Reymond
- grid.5734.50000 0001 0726 5157Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Markus Aebi
- grid.5801.c0000 0001 2156 2780Institute of Microbiology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Kaspar P. Locher
- grid.5801.c0000 0001 2156 2780Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
9
|
Børset M, Elsaadi S, Vandsemb EN, Hess ES, Steiro IJ, Cocera Fernandez M, Sponaas AM, Abdollahi P. Highly expressed genes in multiple myeloma cells - what can they tell us about the disease? Eur J Haematol Suppl 2022; 109:31-40. [PMID: 35276027 PMCID: PMC9310595 DOI: 10.1111/ejh.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Abstract
Cancer cells can convert proto‐oncoproteins into oncoproteins by increasing the expression of genes that are oncogenic when expressed at high levels. Such genes can promote oncogenesis without being mutated. To find overexpressed genes in cancer cells from patients with multiple myeloma, we retrieved mRNA expression data from the CoMMpass database and ranked genes by their expression levels. We grouped the most highly expressed genes based on a set of criteria and we discuss the role a selection of them can play in the disease pathophysiology. The list was highly concordant with a similar list based on mRNA expression data from the PADIMAC study. Many well‐known “myeloma genes” such as MCL1, CXCR4, TNFRSF17, SDC1, SLAMF7, PTP4A3, and XBP1 were identified as highly expressed, and we believe that hitherto unrecognized key players in myeloma pathogenesis are also enriched on the list. Highly expressed genes in malignant plasma cells that were absent or expressed at only a low level in healthy plasma cells included IFI6, IFITM1, PTP4A3, SIK1, ALDOA, ATP5MF, ATP5ME, and PSMB4. The ambition of this article is not to validate the role of each gene but to serve as a guide for studies aiming at identifying promising treatment targets.
Collapse
Affiliation(s)
- Magne Børset
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Samah Elsaadi
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Esten N Vandsemb
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eli Svorkdal Hess
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ida J Steiro
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Miguel Cocera Fernandez
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Pegah Abdollahi
- Department of Clinical and Molecular Medicine, Center for Myeloma Research, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Laboratory Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Pu C, Biyuan, Xu K, Zhao Y. Glycosylation and its research progress in endometrial cancer. Clin Transl Oncol 2022; 24:1865-1880. [PMID: 35752750 PMCID: PMC9418304 DOI: 10.1007/s12094-022-02858-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Endometrial cancer (EC) is one of the most common tumors in the female reproductive system, which seriously threatens women's health, particularly in developed countries. 13% of the patients with EC have a poor prognosis due to recurrence and metastasis. Therefore, identifying good predictive biomarkers and therapeutic targets is critical to enable the early detection of metastasis and improve the prognosis. For decades, extensive studies had focused on glycans and glycoproteins in the progression of cancer. The types of glycans that are covalently attached to the polypeptide backbone, usually via nitrogen or oxygen linkages, are known as N‑glycans or O‑glycans, respectively. The degree of protein glycosylation and the aberrant changes in the carbohydrate structures have been implicated in the extent of tumorigenesis and reported to play a critical role in regulating tumor invasion, metabolism, and immunity. This review summarizes the essential biological role of glycosylation in EC, with a focus on the recent advances in glycomics and glycosylation markers, highlighting their implications in the diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Congli Pu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Biyuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kai Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Cao X, Meng P, Shao Y, Yan G, Yao J, Zhou X, Liu C, Zhang L, Shu H, Lu H. Nascent Glycoproteome Reveals That N-Linked Glycosylation Inhibitor-1 Suppresses Expression of Glycosylated Lysosome-Associated Membrane Protein-2. Front Mol Biosci 2022; 9:899192. [PMID: 35573732 PMCID: PMC9092021 DOI: 10.3389/fmolb.2022.899192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
Glycosylation inhibition has great potential in cancer treatment. However, the corresponding cellular response, protein expression and glycosylation changes remain unclear. As a cell-permeable small-molecule inhibitor with reduced cellular toxicity, N-linked glycosylation inhibitor-1 (NGI-1) has become a great approach to regulate glycosylation in mammalian cells. Here for the first time, we applied a nascent proteomic method to investigate the effect of NGI-1 in hepatocellular carcinoma (HCC) cell line. Besides, hydrophilic interaction liquid chromatography (HILIC) was adopted for the enrichment of glycosylated peptides. Glycoproteomic analysis revealed the abundance of glycopeptides from LAMP2, NICA, and CEIP2 was significantly changed during NGI-1 treatment. Moreover, the alterations of LAMP2 site-specific intact N-glycopeptides were comprehensively assessed. NGI-1 treatment also led to the inhibition of Cathepsin D maturation and the induction of autophagy. In summary, we provided evidence that NGI-1 repressed the expression of glycosylated LAMP2 accompanied with the occurrence of lysosomal defects and autophagy.
Collapse
Affiliation(s)
- Xinyi Cao
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Peiyi Meng
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yuyin Shao
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jun Yao
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xinwen Zhou
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Precision Medicine, Beihang University, Beijing, China
| | - Lei Zhang
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hong Shu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Hong Shu, ; Haojie Lu,
| | - Haojie Lu
- Institutes of Biomedical Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Chemistry, Fudan University, Shanghai, China
- NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
- *Correspondence: Hong Shu, ; Haojie Lu,
| |
Collapse
|
12
|
Aberrant Cellular Glycosylation May Increase the Ability of Influenza Viruses to Escape Host Immune Responses through Modification of the Viral Glycome. mBio 2022; 13:e0298321. [PMID: 35285699 PMCID: PMC9040841 DOI: 10.1128/mbio.02983-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response.
Collapse
|
13
|
Tondepu C, Karumbaiah L. Glycomaterials to Investigate the Functional Role of Aberrant Glycosylation in Glioblastoma. Adv Healthc Mater 2022; 11:e2101956. [PMID: 34878733 PMCID: PMC9048137 DOI: 10.1002/adhm.202101956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a stage IV astrocytoma that carries a dismal survival rate of ≈10 months postdiagnosis and treatment. The highly invasive capacity of GBM and its ability to escape therapeutic challenges are key factors contributing to the poor overall survival rate. While current treatments aim to target the cancer cell itself, they fail to consider the significant role that the GBM tumor microenvironment (TME) plays in promoting tumor progression and therapeutic resistance. The GBM tumor glycocalyx and glycan-rich extracellular matrix (ECM), which are important constituents of the TME have received little attention as therapeutic targets. A wide array of aberrantly modified glycans in the GBM TME mediate tumor growth, invasion, therapeutic resistance, and immunosuppression. Here, an overview of the landscape of aberrant glycan modifications in GBM is provided, and the design and utility of 3D glycomaterials are discussed as a tool to evaluate glycan-mediated GBM progression and therapeutic efficacy. The development of alternative strategies to target glycans in the TME can potentially unveil broader mechanisms of restricting tumor growth and enhancing the efficacy of tumor-targeting therapeutics.
Collapse
Affiliation(s)
- Chaitanya Tondepu
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Science Center, University of Georgia, Athens, GA, 30602, USA
- Division of Neuroscience, Biomedical & Translational Sciences Institute, University of Georgia, Athens, GA, 30602, USA
- Edgar L. Rhodes Center for ADS, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
15
|
Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene 2021; 40:4079-4093. [PMID: 34079087 DOI: 10.1038/s41388-021-01841-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Collapse
|
16
|
Shao CS, Feng N, Zhou S, Zheng XX, Wang P, Zhang JS, Huang Q. Ganoderic acid T improves the radiosensitivity of HeLa cells via converting apoptosis to necroptosis. Toxicol Res (Camb) 2021; 10:531-541. [PMID: 34141167 DOI: 10.1093/toxres/tfab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
The use of natural substances derived from traditional Chinese medicine and natural plants as safe radiosensitizing adjuvants is a new trend for cancer radiotherapy. Ganoderma lucidum has been used as a traditional Chinese medicine with a history of more than 2000 years. Ganoderic acid T (GAT) is a typical triterpene of G. lucidum, which has strong cytotoxicity to cancer cells, but whether it has radiation sensitization effect has not been explored. In this work, we treated the HeLa cells with different concentrations of GAT before exposure to gamma-ray radiation and investigated its influence on the radiosensitivity. The cell viability, apoptosis rate, necoptosis rate, intracellular ATP level, cell cycle, the amount of H2AX and 53BP1, reactive oxygen species, and mitochondrial membrane potential were examined. Apoptotic, necroptotic, and autophagic biomarker proteins, including caspase 8, cytochrome c, caspase 3, RIPK, MLKL, P62, and LC3, were analyzed. As a result, we confirmed that with treatment of GAT, the gamma-ray radiation induced both apoptosis and necroptosis in HeLa cells, and with increase of GAT, the percentage ratio of necroptosis was increased. The involved pathways and mechanisms were also explored and discussed.
Collapse
Affiliation(s)
- Chang-Sheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Na Feng
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R., China
| | - Shuai Zhou
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R., China
| | - Xin-Xin Zheng
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Peng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Jing-Song Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, P. R., China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
| |
Collapse
|
17
|
Hu S, Xie D, Zhou P, Liu X, Yin X, Huang B, Guan H. LINCS gene expression signature analysis revealed bosutinib as a radiosensitizer of breast cancer cells by targeting eIF4G1. Int J Mol Med 2021; 47:72. [PMID: 33693953 PMCID: PMC7952247 DOI: 10.3892/ijmm.2021.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/22/2021] [Indexed: 11/06/2022] Open
Abstract
Radioresistance is the predominant cause for radiotherapy failure and disease progression, resulting in increased breast cancer‑associated mortality. Using gene expression signature analysis of the Library of Integrated Network‑Based Cellular Signatures (LINCS) and Gene Expression Omnibus (GEO), the aim of the present study was to systematically identify potential candidate radiosensitizers from known drugs. The similarity of integrated gene expression signatures between irradiated eukaryotic translation initiation factor 4 γ 1 (eIF4G1)‑silenced breast cancer cells and known drugs was measured using enrichment scores (ES). Drugs with positive ES were selected as potential radiosensitizers. The radiosensitizing effects of the candidate drugs were analyzed in breast cancer cell lines (MCF‑7, MX‑1 and MDA‑MB‑231) using CCK‑8 and colony formation assays following exposure to ionizing radiation. Cell apoptosis was measured using flow cytometry. The expression levels of eIF4G1 and DNA damage response (DDR) proteins were analyzed by western blotting. Bosutinib was identified as a promising radiosensitizer, as its administration markedly reduced the dosage required both for the drug and for ionizing radiation, which may be associated with fewer treatment‑associated adverse reactions. Moreover, combined treatment of ionizing radiation and bosutinib significantly increased cell killing in all three cell lines, compared with ionizing radiation or bosutinib alone. Among the three cell lines, MX‑1 cells were identified as the most sensitive to both ionizing radiation and bosutinib. Bosutinib markedly downregulated the expression of eIF4G1 in a dose‑dependent manner and also reduced the expression of DDR proteins (including ATM, XRCC4, ATRIP, and GADD45A). Moreover, eIF4G1 was identified as a key target of bosutinib that may regulate DNA damage induced by ionizing radiation. Thus, bosutinib may serve as a potential candidate radiosensitizer for breast cancer therapy.
Collapse
Affiliation(s)
- Sai Hu
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Pingkun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaodan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaoyao Yin
- College of Computer, National University of Defence Technology, Changsha, Hunan 410073, P.R. China
| | - Bo Huang
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
18
|
Hayman TJ, Baro M, MacNeil T, Phoomak C, Aung TN, Cui W, Leach K, Iyer R, Challa S, Sandoval-Schaefer T, Burtness BA, Rimm DL, Contessa JN. STING enhances cell death through regulation of reactive oxygen species and DNA damage. Nat Commun 2021; 12:2327. [PMID: 33875663 PMCID: PMC8055995 DOI: 10.1038/s41467-021-22572-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to DNA-damaging agents is a significant cause of treatment failure and poor outcomes in oncology. To identify unrecognized regulators of cell survival we performed a whole-genome CRISPR-Cas9 screen using treatment with ionizing radiation as a selective pressure, and identified STING (stimulator of interferon genes) as an intrinsic regulator of tumor cell survival. We show that STING regulates a transcriptional program that controls the generation of reactive oxygen species (ROS), and that STING loss alters ROS homeostasis to reduce DNA damage and to cause therapeutic resistance. In agreement with these data, analysis of tumors from head and neck squamous cell carcinoma patient specimens show that low STING expression is associated with worse outcomes. We also demonstrate that pharmacologic activation of STING enhances the effects of ionizing radiation in vivo, providing a rationale for therapeutic combinations of STING agonists and DNA-damaging agents. These results highlight a role for STING that is beyond its canonical function in cyclic dinucleotide and DNA damage sensing, and identify STING as a regulator of cellular ROS homeostasis and tumor cell susceptibility to reactive oxygen dependent, DNA damaging agents.
Collapse
Affiliation(s)
- Thomas J Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tyler MacNeil
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Thazin Nwe Aung
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Cui
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Yang Z, Yang Z, Hu Z, Li B, Liu D, Chen X, Wang Y, Feng D. UAP1L1 plays an oncogene-like role in glioma through promoting proliferation and inhibiting apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:542. [PMID: 33987240 PMCID: PMC8105798 DOI: 10.21037/atm-20-2809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/27/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Uridine diphosphate-N-acetylglucosamine pyrophosphorylase-1-like-1 (UAP1L1) is involved in protein glycosylation and promotes proliferation in some tumors. By analyzing the publicly available Gene Expression Omnibus (GEO) database, we found that UAP1L1 displayed a significant change between paired glioma and normal brain tissues. The purpose of this study was to investigate the expression and functional role of UAP1L1 in glioma. METHODS To determine the expression level of UAP1L1 in glioma, immunohistochemistry (IHC) staining was performed in tissue microarrays of 160 gliomas and 24 normal brain tissues. The correlation between UAP1L1 expression and the outcomes of glioma patients was analyzed. Human glioblastoma cell lines, U251 and U87, were employed in this study. Endogenous UAP1L1 expression in U251 and U87 cells was detected by quantitative real-time polymerase chain reaction (qRT-PCR). A lentiviral short hairpin RNA (shRNA) vector (shUAP1L1) was constructed and used to infect U251 and U87 cells to knock down the expression of UAP1L1. We performed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, flow cytometry, human apoptosis antibody array, and in vivo subcutaneous xenograft model to investigate the biological functions of UAP1L1. RESULTS We revealed that UAP1L1 expression was obviously upregulated in the glioma tissues. The increased UAP1L1 expression level was clinically associated with higher tumor grades and poorer patient prognoses. Moreover, we demonstrated that UAP1L1 knockdown suppressed proliferation and increased apoptosis of glioma cells in vitro. In the xenograft mouse model, we further verified that UAP1L1 knockdown could attenuate the growth of glioma cells in vivo. CONCLUSIONS These results indicated that UAP1L1 may play an oncogene-like role in glioma, especially in high grade glioma, and thus may be of clinical importance as a future therapeutic target.
Collapse
Affiliation(s)
- Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongliang Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Li
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Deyun Feng
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Phoomak C, Cui W, Hayman TJ, Yu SH, Zhao P, Wells L, Steet R, Contessa JN. The translocon-associated protein (TRAP) complex regulates quality control of N-linked glycosylation during ER stress. SCIENCE ADVANCES 2021; 7:eabc6364. [PMID: 33523898 PMCID: PMC7810369 DOI: 10.1126/sciadv.abc6364] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
Asparagine (N)-linked glycosylation is required for endoplasmic reticulum (ER) homeostasis, but how this co- and posttranslational modification is maintained during ER stress is unknown. Here, we introduce a fluorescence-based strategy to detect aberrant N-glycosylation in individual cells and identify a regulatory role for the heterotetrameric translocon-associated protein (TRAP) complex. Unexpectedly, cells with knockout of SSR3 or SSR4 subunits restore N-glycosylation over time concurrent with a diminished ER stress transcriptional signature. Activation of ER stress or silencing of the ER chaperone BiP exacerbates or rescues the glycosylation defects, respectively, indicating that SSR3 and SSR4 enable N-glycosylation during ER stress. Protein levels of the SSR3 subunit are ER stress and UBE2J1 dependent, revealing a mechanism that coordinates upstream N-glycosylation proficiency with downstream ER-associated degradation and proteostasis. The fidelity of N-glycosylation is not static in both nontransformed and tumor cells, and the TRAP complex regulates ER glycoprotein quality control under conditions of stress.
Collapse
Affiliation(s)
- Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Wei Cui
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Thomas J Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Seok-Ho Yu
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30601, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30601, USA
| | | | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
21
|
Shapanis A, Lai C, Smith S, Coltart G, Sommerlad M, Schofield J, Parkinson E, Skipp P, Healy E. Identification of proteins associated with development of metastasis from cutaneous squamous cell carcinomas (cSCCs) via proteomic analysis of primary cSCCs. Br J Dermatol 2020; 184:709-721. [PMID: 32794257 DOI: 10.1111/bjd.19485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is one of the most common cancers capable of metastasizing. Proteomic analysis of cSCCs can provide insight into the biological processes responsible for metastasis, as well as future therapeutic targets and prognostic biomarkers. OBJECTIVES To identify proteins associated with development of metastasis in cSCC. METHODS A proteomic-based approach was employed on 105 completely excised, primary cSCCs, comprising 52 that had metastasized (P-M) and 53 that had not metastasized at 5 years post-surgery (P-NM). Formalin-fixed, paraffin-embedded cSCCs were microdissected and subjected to proteomic profiling after one-dimensional (1D), and separately two-dimensional (2D), liquid chromatography fractionation. RESULTS A discovery set of 24 P-Ms and 24 P-NMs showed 144 significantly differentially expressed proteins, including 33 proteins identified via both 1D and 2D separation, between P-Ms and P-NMs. Several differentially expressed proteins were also associated with survival in SCCs of other organs. The findings were verified by multiple reaction monitoring on six peptides from two proteins, annexin A5 (ANXA5) and dolichyl-diphosphooligosaccharide-protein glycosyltransferase noncatalytic subunit (DDOST), in the discovery group and validated on a separate cohort (n = 57). Increased expression of ANXA5 and DDOST was associated with reduced time to metastasis in cSCC and decreased survival in cervical and oropharyngeal cancer. A prediction model using ANXA5 and DDOST had an area under the curve of 0·93 (confidence interval 0·83-1·00), an accuracy of 91·2% and higher sensitivity and specificity than cSCC staging systems currently in clinical use. CONCLUSIONS This study highlights that increased expression of two proteins, ANXA5 and DDOST, is significantly associated with poorer clinical outcomes in cSCC.
Collapse
Affiliation(s)
- A Shapanis
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - C Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - S Smith
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - G Coltart
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - M Sommerlad
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - J Schofield
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - E Parkinson
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - P Skipp
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton, UK
| | - E Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
22
|
Song X, Zhou Z, Li H, Xue Y, Lu X, Bahar I, Kepp O, Hung MC, Kroemer G, Wan Y. Pharmacologic Suppression of B7-H4 Glycosylation Restores Antitumor Immunity in Immune-Cold Breast Cancers. Cancer Discov 2020; 10:1872-1893. [PMID: 32938586 DOI: 10.1158/2159-8290.cd-20-0402] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/15/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Despite widespread utilization of immunotherapy, treating immune-cold tumors has proved to be a challenge. Here, we report that expression of the immune checkpoint molecule B7-H4 is prevalent among immune-cold triple-negative breast cancers (TNBC), where its expression inversely correlates with that of PD-L1. Glycosylation of B7-H4 interferes with its interaction/ubiquitination by AMFR, resulting in B7-H4 stabilization. B7-H4 expression inhibits doxorubicin-induced cell death through the suppression of eIF2α phosphorylation required for calreticulin exposure vis-à-vis the cancer cells. NGI-1, which inhibits B7-H4 glycosylation causing its ubiquitination and subsequent degradation, improves the immunogenic properties of cancer cells treated with doxorubicin, enhancing their phagocytosis by dendritic cells and their capacity to elicit CD8+ IFNγ-producing T-cell responses. In preclinical models of TNBC, a triple combination of NGI-1, camsirubicin (a noncardiotoxic doxorubicin analogue) and PD-L1 blockade was effective in reducing tumor growth. Collectively, our findings uncover a strategy for targeting the immunosuppressive molecule B7-H4. SIGNIFICANCE: This work unravels the regulation of B7-H4 stability by ubiquitination and glycosylation, which affects tumor immunogenicity, particularly regarding immune-cold breast cancers. The inhibition of B7-H4 glycosylation can be favorably combined with immunogenic chemotherapy and PD-L1 blockade to achieve superior immuno-infiltration of cold tumors, as well as improved tumor growth control.See related commentary by Pearce and Läubli, p. 1789.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Obstetrics and Gynecology, Department of Pharmacology, the Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Process Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhuan Zhou
- Department of Obstetrics and Gynecology, Department of Pharmacology, the Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Process Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hongchun Li
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Beijing, China.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yifan Xue
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oliver Kepp
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Paris, France
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taiwan
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Paris, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yong Wan
- Department of Obstetrics and Gynecology, Department of Pharmacology, the Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Process Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
23
|
Liu Y, Awadia S, Delaney A, Sitto M, Engelke CG, Patel H, Calcaterra A, Zelenka-Wang S, Lee H, Contessa J, Neamati N, Ljungman M, Lawrence TS, Morgan MA, Rehemtulla A. UAE1 inhibition mediates the unfolded protein response, DNA damage and caspase-dependent cell death in pancreatic cancer. Transl Oncol 2020; 13:100834. [PMID: 32688248 PMCID: PMC7369648 DOI: 10.1016/j.tranon.2020.100834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
The Unfolded Protein Response (UPR) plays a key role in the adaptive response to loss of protein homeostasis within the endoplasmic reticulum (ER). The UPR has an adaptive function in protein homeostasis, however, sustained activation of the UPR due to hypoxia, nutrient deprivation, and increased demand for protein synthesis, alters the UPR program such that additional perturbation of ER homeostasis activates a pro-apoptotic program. Since ubiquitination followed by proteasomal degradation of misfolded proteins within the ER is a central mechanism for restoration of ER homeostasis, inhibitors of this pathway have proven to be valuable anti-cancer therapeutics. Ubiquitin activating enzyme 1(UAE1), activates ubiquitin for transfer to target proteins for proteasomal degradation in conjunction with E2 and E3 enzymes. Inhibition of UAE1 activity in response to TAK-243, leads to an accumulation of misfolded proteins within the ER, thereby aggravating ER stress, leading to DNA damage and arrest of cells in the G2/M phase of the cell cycle. Persistent drug treatment mediates a robust induction of apoptosis following a transient cell cycle arrest. These biological effects of TAK-243 were recapitulated in mouse models of PDAC demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity. In vitro as well as studies in mouse models failed to show enhanced efficacy when TAK-243 was combined with ionizing radiation or gemcitabine, providing an impetus for future studies to identify agents that synergize with this class of agents for improved tumor control in PDAC. Significance The UAE1 inhibitor TAK-243, mediates activation of the unfolded protein response, accumulation of DNA breaks and apoptosis, providing a rationale for the use as a safe and efficacious anti-cancer therapeutic for PDAC. Inhibition of Ubiquitin activating enzyme 1(UAE1) leads to an accumulation of misfolded proteins within the ER. Persistent drug treatment mediates a robust induction of apoptosis in mouse models of Pancreatic Cancer demonstrating antitumor activity at a dose and schedule that did not exhibit obvious normal tissue toxicity.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Sahezeel Awadia
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Amy Delaney
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Merna Sitto
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Carl G Engelke
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Heli Patel
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Andrew Calcaterra
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | | | - Hojin Lee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
24
|
Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci 2020; 27:77. [PMID: 32620165 PMCID: PMC7333976 DOI: 10.1186/s12929-020-00670-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
N-linked glycosylation is one of the most abundant posttranslational modifications of membrane-bound proteins in eukaryotes and affects a number of biological activities, including protein biosynthesis, protein stability, intracellular trafficking, subcellular localization, and ligand-receptor interaction. Accumulating evidence indicates that cell membrane immune checkpoint proteins, such as programmed death-ligand 1 (PD-L1), are glycosylated with heavy N-linked glycan moieties in human cancers. N-linked glycosylation of PD-L1 maintains its protein stability and interaction with its cognate receptor, programmed cell death protein 1 (PD-1), and this in turn promotes evasion of T-cell immunity. Studies have suggested targeting PD-L1 glycosylation as a therapeutic option by rational combination of cancer immunotherapies. Interestingly, structural hindrance by N-glycan on PD-L1 in fixed samples impedes its recognition by PD-L1 diagnostic antibodies. Notably, the removal of N-linked glycosylation enhances PD-L1 detection in a variety of bioassays and more accurately predicts the therapeutic efficacy of PD-1/PD-L1 inhibitors, suggesting an important clinical implication of PD-L1 N-linked glycosylation. A detailed understanding of the regulatory mechanisms, cellular functions, and diagnostic limits underlying PD-L1 N-linked glycosylation could shed new light on the clinical development of immune checkpoint inhibitors for cancer treatment and deepen our knowledge of biomarkers to identify patients who would benefit the most from immunotherapy. In this review, we highlight the effects of protein glycosylation on cancer immunotherapy using N-linked glycosylation of PD-L1 as an example. In addition, we consider the potential impacts of PD-L1 N-linked glycosylation on clinical diagnosis. The notion of utilizing the deglycosylated form of PD-L1 as a predictive biomarker to guide anti-PD-1/PD-L1 immunotherapy is also discussed.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
25
|
Cipollo JF, Parsons LM. Glycomics and glycoproteomics of viruses: Mass spectrometry applications and insights toward structure-function relationships. MASS SPECTROMETRY REVIEWS 2020; 39:371-409. [PMID: 32350911 PMCID: PMC7318305 DOI: 10.1002/mas.21629] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 05/21/2023]
Abstract
The advancement of viral glycomics has paralleled that of the mass spectrometry glycomics toolbox. In some regard the glycoproteins studied have provided the impetus for this advancement. Viral proteins are often highly glycosylated, especially those targeted by the host immune system. Glycosylation tends to be dynamic over time as viruses propagate in host populations leading to increased number of and/or "movement" of glycosylation sites in response to the immune system and other pressures. This relationship can lead to highly glycosylated, difficult to analyze glycoproteins that challenge the capabilities of modern mass spectrometry. In this review, we briefly discuss five general areas where glycosylation is important in the viral niche and how mass spectrometry has been used to reveal key information regarding structure-function relationships between viral glycoproteins and host cells. We describe the recent past and current glycomics toolbox used in these analyses and give examples of how the requirement to analyze these complex glycoproteins has provided the incentive for some advances seen in glycomics mass spectrometry. A general overview of viral glycomics, special cases, mass spectrometry methods and work-flows, informatics and complementary chemical techniques currently used are discussed. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| | - Lisa M. Parsons
- Center for Biologics Evaluation and Research, Food and Drug AdministrationSilver SpringMaryland
| |
Collapse
|
26
|
A lectin-based glycomic approach identifies FUT8 as a driver of radioresistance in oesophageal squamous cell carcinoma. Cell Oncol (Dordr) 2020; 43:695-707. [PMID: 32474852 DOI: 10.1007/s13402-020-00517-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Radio-resistance is recognized as a main factor in the failure of radiotherapy in oesophageal squamous cell carcinoma (ESCC). Aberrant cell surface glycosylation has been reported to correlate with radio-resistance in different kinds of tumours. However, glycomic alterations and the corresponding enzymes associated with ESCC radio-resistance have not yet been defined. METHODS Two radioresistant cell lines, EC109R and TE-1R, were established from parental ESCC cell lines EC109 and TE-1 by fractionated irradiation. A lectin microarray was used to screen for altered glycan patterns. RNA-sequencing (RNA-seq) was employed to identify differentially expressed glycosyltransferases. Cell Counting Kit-8, colony formation and flow cytometry assays were used to measure cell viability and radiosensitivity. Expression of glycosyltransferase in ESCC tissues was assessed by immunohistochemistry. In vivo radiosensitivity was analysed using a nude mouse xenograft model. Downstream effectors of the enzyme were verified using a lectin-based pull-down assay combined with mass spectrometry. RESULTS We found that EC109R and TE-1R cells were more resistant to irradiation than the parental EC109 and TE-1 cells. Using lectin microarrays combined with RNA sequencing, we found that α1, 6-fucosyltransferase (FUT8) was overexpressed in the radioresistant ESCC cell lines. Both gain- and loss-of-function studies confirmed that FUT8 regulates the sensitivity of ESCC cells to irradiation. Importantly, we found that high FUT8 expression was positively linked to radio-resistance and a poor prognosis in ESCC patients who received radiation therapy. Moreover, FUT8 inhibition suppressed the growth and formation of xenograft tumours in nude mice after irradiation. Using a lectin-based pull-down assay and mass spectrometry, we found that CD147 could be glycosylated by FUT8. As expected, inhibition of CD147 partly reversed FUT8-induced radio-resistance in ESCC cells. CONCLUSIONS Our results indicate that FUT8 functions as a driver of radio-resistance in ESCC by targeting CD147. Therefore, FUT8 may serve as a marker for predicting the response to radiation therapy in patients with ESCC.
Collapse
|
27
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
28
|
Klaver E, Zhao P, May M, Flanagan-Steet H, Freeze HH, Gilmore R, Wells L, Contessa J, Steet R. Selective inhibition of N-linked glycosylation impairs receptor tyrosine kinase processing. Dis Model Mech 2019; 12:dmm.039602. [PMID: 31101650 PMCID: PMC6602306 DOI: 10.1242/dmm.039602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase - STT3A and STT3B - to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases - the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) - at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic processing in combination with increased endoplasmic reticulum localization. Providing cDNA for Golgi-resident proprotein convertase subtilisin/kexin type 5a (PCSK5a) and furin cDNA to wild-type and mutant cells produced under-glycosylated forms of PCSK5a, but not furin, in cells lacking STT3A. Reduced glycosylation of PCSK5a in STT3A-null cells or cells treated with the oligosaccharyltransferase inhibitor NGI-1 corresponded with failure to rescue receptor processing, implying that alterations in the glycosylation of this convertase have functional consequences. Collectively, our findings show that STT3A-dependent inhibition of N-linked glycosylation on receptor tyrosine kinases and their convertases combines to impair receptor processing and surface localization. These results provide new insight into CDG pathogenesis and highlight how the surface abundance of some glycoproteins can be dually impacted by abnormal glycosylation.
Collapse
Affiliation(s)
- Elsenoor Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Melanie May
- Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Discovery Institute, La Jolla, CA 92037, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worchester, MA 01655, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph Contessa
- Departments of Therapeutic Radiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA .,Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
29
|
Wahl DR, Lawrence TS. No Sugar Added: A New Strategy to Inhibit Glioblastoma Receptor Tyrosine Kinases. Clin Cancer Res 2018; 25:455-456. [PMID: 30181388 DOI: 10.1158/1078-0432.ccr-18-2113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/08/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022]
Abstract
A novel inhibitor of N-linked glycosylation (NGI-1) inhibits the glycosylation and phosphorylation of multiple receptor tyrosine kinases in glioblastoma (GBM). NGI-1 sensitizes multiple models of GBM to chemotherapy and radiation in vitro and in vivo and may be especially effective in GBMs that retain active PTEN.See related article by Baro et al., p. 784.
Collapse
Affiliation(s)
- Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|